Skip to main content

Advertisement

Log in

Energy Transfer Between Femtosecond Laser and Silicon Carbide

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The femtosecond laser ablation of a wide bandgap semiconductor is characterized by a complicated energy transfer and rarely explored process. A coupled two-temperature-Fourier heat conduction model is developed to investigate the energy deposition and material removal mechanisms of femtosecond laser ablating silicon carbide (SiC). Absorption mechanisms, temperature distribution, and threshold fluence are investigated. Non-thermal melting and thermal melting processes are calculated. The results show that during the interaction between laser and SiC, the main absorption mechanism was governed by multiphoton absorption and Auger recombination. Simulation results of the new model show that the influence of latent heat on lattice temperature is insignificant and the heat accumulation on the surface is little. The obtained damage threshold represents reasonable prediction, based on comparison with experimental and literature data. The damage threshold and the non-thermal melting threshold for 800 nm increase with the pulse duration. The thermal melting occurs immediately after non-thermal melting at high fluence. The molten layer thickens logarithmically with the increase of the fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Liu, R. Zhang, W. Li, J. Wang, X. Yang, L. Cheng, and L. Zhang, Int. J. Adv. Manuf. Technol. 96, 1795 (2018).

    Google Scholar 

  2. R.E. Scott, L.L. Taylor, and J. Qiao. 2017 Conference on Lasers and Electro-Optics (CLEO) IEEE. 1–2 (2017)

  3. D.P. Wan, J. Wang, and M. Philip, Mach. Sci. Technol. 15, 263 (2011).

    Google Scholar 

  4. F. Caruso, and D. Novko, Adv. Phys. X 7, 1 (2022).

    Google Scholar 

  5. A.D. Hobiny, and I.A. Abbas, Phys. Mesomech. 23, 167 (2020).

    Google Scholar 

  6. L. Jiang, and H.L. Tsai, J. Heat. Transf. 127, 1167 (2005).

    Google Scholar 

  7. Y. Zhang, D.Y. Tzou, J.K. Chen, USA, 4–24 (2015)

  8. J. Huang, Y. Zhang, and J.K. Chen, Int. J. Heat. Mass. Transf. 52, 3091 (2009).

    Google Scholar 

  9. Y. Ren, J.K. Chen, and Y. Zhang, Int. J. Heat. Mass. Transf. 55, 1620 (2012).

    Google Scholar 

  10. L. Jiang, and H.L. Tsai, J. Appl. Phys. 104, 1 (2008).

    Google Scholar 

  11. Q. Li, H. Lao, J. Lin, and Y. Chen, Appl. Phys. A. 105, 125 (2011).

    Google Scholar 

  12. G.D. Tsibidis, L. Mouchliadis, M. Pedio, and E. Stratakis, Phys. Rev. B 101, 1 (2020).

    Google Scholar 

  13. E.M. Huseynov, Ceram. Int. 46, 5645 (2020).

    Google Scholar 

  14. G. Bongiovanni, P.K. Olshin, and C. Yan, Microsc. Microanal. 27(S2), 65 (2021).

    Google Scholar 

  15. L. Li, An investigation into the micro/nano machining process for germanium substrates using femtosecond lasers (The University of New South Wales, Australia, 2019), pp121–134.

    Google Scholar 

  16. P. Lorazo, L.J. Lewis, and M. Meunier, Phys. Rev. Lett. 91, 1 (2003).

    Google Scholar 

  17. L. Jiang, and H.L. Tsai, Int. J. Heat. Mass. Transf. 48, 487 (2005).

    Google Scholar 

  18. M. Koc, T. Özel, Micro-manufacturing design and manufacturing (Canada, 2011), pp. 133–135

  19. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, and E.E.B. Campbell, Appl. Phys. A. 81, 345 (2005).

    Google Scholar 

  20. B. Wu, and Y.C. Shin, Appl. Surf. Sci. 255, 4996 (2009).

    Google Scholar 

  21. R. Zhang, Study on the maching performance and material removal mechanism of single-crystal silicon carbide substrate by femtosecond lasers (Shandong University, China, 2021), pp83–88.

    Google Scholar 

  22. R. Zhang, C. Huang, J. Wang, H. Zhu, P. Yao, and S. Feng, Ceram. Int. 44, 17775 (2018).

    Google Scholar 

  23. S. Feng, Study on near-damage-free micromachining mechanisms of single crystal silicon carbide wafer using hybrid laser-waterjet (Shandong University, China, 2018), pp50–55.

    Google Scholar 

  24. J.B. Casady, and R.W. Johnson, Solid-State Electron. 39(10), 1409 (1996).

    Google Scholar 

  25. J. Song, W. Tao, and H. Song, Appl. Phys. A 122, 341 (2016).

    Google Scholar 

  26. H. Kiyota, K. Hara, M. Jankowski, and M.M. Fejer, J. Appl. Phys. 127, 1 (2020).

    Google Scholar 

  27. Y. Fang, Y. Nie, X.Z. Wu, J.Y. Yang, Y.Q. Chen, Y.Y. Wang, Q.Y. Wu, and Y.L. Song, J. Appl. Phys. 125, 1 (2019).

    Google Scholar 

  28. A.K. Singh, and S. Sinha, J. Appl. Phys. 128, 1 (2020).

    Google Scholar 

  29. A. Suslova, and A. Hassanein, J. Appl. Phys. 124, 1 (2018).

    Google Scholar 

  30. H. Zhu, J. Wang, P. Yao, and C. Huang, Int. J. Mach. Tool. Manu. 116, 25 (2017).

    Google Scholar 

  31. C. Persson, and U. Lindefelt, Mater. Sci. Forum. 264–268, 275 (1998).

    Google Scholar 

  32. P. Molian, B. Pecholt, and S. Gupta, Appl. Surf. Sci. 255, 4515 (2009).

    Google Scholar 

  33. N.A. Mahadik, R.E. Stahlbush, P.B. Klein, A. Khachatrian, S. Buchner, and S.G. Block, Appl. Phys. Lett. 111, 1 (2017).

    Google Scholar 

  34. C.C. Sun, A.H. You, and E.K. Wong, AIP. Conf. Proc. 1328, 277 (2011).

    Google Scholar 

  35. S. Pearl, N. Rotenberg, and H.M. Driel, Appl. Phys. Lett 93, 1 (2008).

    Google Scholar 

  36. V. Grivickas, J. Linnros, P. Grivickas, and A. Galeckas, Mater. Sci. Eng. B61–62, 197 (1999).

    Google Scholar 

  37. P. Wutimakun, H. Miyazaki, Y. Okamoto, J. Morimoto, T. Hayashi, and H. Shiomi, Mater. Sci. Forum. 600–606, 521 (2009).

    Google Scholar 

  38. O. Nilsson, H. Mehling, R. Horn, J. Fricke, R. Hofmann, S.G. Müller, R. Eckstein, and D. Hofmann, High. Temp-High. Press. 29, 73 (1997).

    Google Scholar 

  39. S. Dakshinamurthy, N.R. Quick, and A. Kar, J. Appl. Phys. D Appl. Phys., 40, 353 (2007)

  40. D.H. Duc, I. Naoki, and F. Kazuyoshi, Int. J. Heat. Mass. Transf. 65, 713 (2013).

    Google Scholar 

  41. L. Fedorenko, A. Medvid, M. Yusupov, V. Yukhimchuck, S. Krylyuk, and A. Evtukh, Appl. Surf. Sci. 254, 2031 (2008).

    Google Scholar 

  42. J.H. Yoo, S.H. Jeong, and R. Greif, J. Appl. Phys. 88, 1638 (2000).

    Google Scholar 

  43. R. Zhang, C. Huang, J. Wang, S. Feng, and H. Zhu, Mater. Sci. Semicond. Process. 121, 1 (2021).

    Google Scholar 

  44. S. Feng, R. Zhang, C. Huang, J. Wang, and Z. Jia, J. Wang. Sci. Semicond. Process. 105, 1 (2020).

    Google Scholar 

  45. A.O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, Mater. Sci. Forum. 264–268, 513 (1998).

    Google Scholar 

Download references

Acknowledgements

The work is supported by High Quality Curriculum Construction Project of Shandong Jianzhu University Graduate Education (YZKC202210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanjing Wang.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 268 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, Q., Huang, C. et al. Energy Transfer Between Femtosecond Laser and Silicon Carbide. JOM 75, 4047–4058 (2023). https://doi.org/10.1007/s11837-023-05862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05862-y

Navigation