Skip to main content
Log in

Study of the Mechanism Influencing the Initial Corrosion Behaviour of B2 Phase Fe-Mn-Al-C-Ni Lightweight Steels in 3.5% NaCl Solution

  • Design, Production, and Applications of Steels for a Sustainable Future
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In recent years, lightweight steels have become a hot research topic in the field of materials. However, little research has been done on the corrosion resistance, which is of great significance to the service life of the alloy. In this paper, the initial corrosion behaviour of Fe-Mn-Al-C-Ni lightweight steels with different B2-phase grain sizes in 3.5 wt.% NaCl solution was investigated. The immersion corrosion process of Fe-Mn-Al-C-Ni mild steel and the selective corrosion characteristics of the alloy surface were revealed by quasi-in-situ short-period immersion tests and electrochemical experiments. As a result, the grain size of the granular B2 phase is significantly reduced compared with that of the striped B2 phase, and the granular B2 phase is diffusely distributed in the matrix, which makes the corrosion tend to be uniform and improves the corrosion resistance of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida, ISIJ Inter. https://doi.org/10.2355/isijinternational.50.893 (2010).

    Article  Google Scholar 

  2. R. Rana, JOM. https://doi.org/10.1007/s11837-014-1137-2 (2014).

    Article  Google Scholar 

  3. H. Kim, D.W. Suh, and N.J. Kim, Sci. Technol. Adv. Mater. https://doi.org/10.1088/1468-6996/14/1/014205 (2013).

    Article  Google Scholar 

  4. O.A. Zambrano, J. Mater. Sci. https://doi.org/10.1007/s10853-018-2551-6 (2018).

    Article  Google Scholar 

  5. L. Wang, C.F. Dong, C. Man, Y.B. Hu, Q. Yu, and X.G. Li, Int. J. Min. Met. Mater. https://doi.org/10.1007/s12613-020-2242-6 (2021).

    Article  Google Scholar 

  6. P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-021-2308-0 (2021).

    Article  Google Scholar 

  7. I. Ohnuma, N. Kamiya, Y. Suto, T. Omori, R. Kainuma and K. Ishida, (2010) Thermodynamic database high-strenght low-density steels. Paper presented at the Discussion Meeting on Thermodynamics of Alloys 2010, Tohoku University, Sendai, Porto, 12–16 September 2010

  8. D. Raabe, H. Springer, I.G. Urrutia, F. Roters, M. Bausch, J.B. Seol, M. Koyama, P.P. Choi, and K. Tsuzaki, TMS. https://doi.org/10.1007/s11837-014-1032-x (2014).

    Article  Google Scholar 

  9. M.S. Kim, and Y.B. Kang, Calphad. https://doi.org/10.1016/j.calphad.2015.08.004 (2015).

    Article  Google Scholar 

  10. P. Maugis, J. Lacaze, R. Besson, and J. Morillo, Metall. Mater. Trans. https://doi.org/10.1007/s11661-006-1032-8 (2006).

    Article  Google Scholar 

  11. W.C. Cheng, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-005-0038-y (2005).

    Article  Google Scholar 

  12. Y.T. Ma, Y. Li, and F.H. Wang, Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2008.06.066 (2008).

    Article  Google Scholar 

  13. H.H. Huang, and T.H. Chuang, Mater. Sci. Eng. A. https://doi.org/10.1016/S0921-5093(00)01021-2 (2000).

    Article  Google Scholar 

  14. K.Y. Choi, C.H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, and N.J. Kim, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2010.07.036 (2010).

    Article  Google Scholar 

  15. F.Q. Yang, R.B. Song, Y.P. Li, T. Sun, and K.K. Wang, Mater. Des. https://doi.org/10.1016/j.matdes.2015.03.043 (2015).

    Article  Google Scholar 

  16. S.H. Kim, H. Kim, and N.J. Kim, Nature. https://doi.org/10.1038/nature14144 (2015).

    Article  Google Scholar 

  17. A. Rahnama, H. Kotadia, S. Clark, V. Janik, and S. Sridhar, Sci. Rep. https://doi.org/10.1038/s41598-018-27345-w (2018).

    Article  Google Scholar 

  18. A. Rahnamal, H. Kotadia, and S. Sridhar, Acta Mater. https://doi.org/10.1016/j.actamat.2017.03.043 (2017).

    Article  Google Scholar 

  19. R.J. Thibeau, C.W. Brown, and R.H. Heidersbach, Appl. Spectrosc. https://doi.org/10.1366/000370278774330739 (1978).

    Article  Google Scholar 

  20. G. Park, C.H. Nam, A. Zargaran, and N.J. Kim, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2019.02.013 (2019).

    Article  Google Scholar 

  21. A. Misra, H.D. Bist, M.S. Navati, R.K. Thareja, and J. Narayan, Mater. Sci. Eng. B. https://doi.org/10.1016/S0921-5107(00)00554-7 (2001).

    Article  Google Scholar 

  22. A.C. Agudelo, J.F. Marco, J.R. Gancedo, and G.A. Pérez-Alcázar, Inter. Hyper. https://doi.org/10.1023/A:1021248519209 (2002).

    Article  Google Scholar 

  23. J.H. Hwang, T.T.T. Trang, O. Lee, G. Park, A. Zargaran, and N.J. Kim, Acta Mater. https://doi.org/10.1016/j.actamat.2020.03.022 (2020).

    Article  Google Scholar 

  24. H. Kim, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2018.09.044 (2019).

    Article  Google Scholar 

  25. S.F. Zhu, Y.P. Wu, T.W. Liu, K. Tang, Q. Wei, and A.C.S. App, Mater. Inter. https://doi.org/10.1021/am401284e (2013).

    Article  Google Scholar 

  26. Y.S. Zhang, and X.M. Zhu, Corros. Sci. https://doi.org/10.1016/S0010-938X(99)00017-7 (1999).

    Article  Google Scholar 

  27. Y.S. Zhang, X.M. Zhu, and S.H. Zhong, Corros. Sci. https://doi.org/10.1016/j.corsci.2003.09.002 (2004).

    Article  Google Scholar 

  28. S. Fajardoa, I. Llorentea, J.A. Jiméneza, J.M. Bastidasa, and D.M. Bastidas, Corros. Sci. https://doi.org/10.1016/j.corsci.2019.04.026 (2019).

    Article  Google Scholar 

  29. S.C. Tjong, Surf. Coat. Techno. https://doi.org/10.1016/0257-8972(86)90056-3 (1986).

    Article  Google Scholar 

  30. T. Dieudonné, L. Marchetti, M. Wery, F. Miserque, M. Tabarant, J. Chêne, C. Allely, P. Cugy, and C.P. Scott, Corros. Sci. https://doi.org/10.1016/j.corsci.2014.02.018 (2014).

    Article  Google Scholar 

  31. J. Liu, W.P. Chen, X.M. Zhang, and Z.Q. Fu, J. Iron Steel Res. https://doi.org/10.1007/s42243-018-0080-9 (2018).

    Article  Google Scholar 

  32. S. Barella, A.F. Ciuffini, A. Gruttadauria, C. Mapelli, D. Mombelli, and E. Longaretti, Mater. https://doi.org/10.3390/ma12162572 (2019).

    Article  Google Scholar 

  33. M. Cavallini, F. Felli, R. Fratesi, and F. Veniali, Mater. Corros. https://doi.org/10.1002/maco.19820330506 (1982).

    Article  Google Scholar 

  34. T. Ohtsuka, K. Kubo, and N. Sato, Corrosion. https://doi.org/10.5006/1.3583054 (1986).

    Article  Google Scholar 

  35. E.J. Akiyama, S.J. Li, T. Shinohara, Z.G. Zhang, and K. Tsuzaki, Electrochem. Acta. https://doi.org/10.1016/j.electacta.2010.09.043 (2011).

    Article  Google Scholar 

  36. X.X. Xu, H.L. Cheng, W. Wu, Z.Y. Liu, and X.G. Li, Corros. Sci. https://doi.org/10.1016/j.corsci.2021.109760 (2021).

    Article  Google Scholar 

  37. W. Peng, Z.Y. Wu, Y.L. Xu, Q.X. Ran, W.J. Xu, J. Li, and X.S. Xiao, Corros. Sci. https://doi.org/10.1016/j.corsci.2017.03.005 (2017).

    Article  Google Scholar 

  38. W. Wu, L. Qin, X. Cheng, F. Xu, and X. Li, Corros. Sci. https://doi.org/10.1016/j.corsci.2022.110936 (2023).

    Article  Google Scholar 

  39. M.X. Yang, F.P. Yuan, Q.G. Xie, Y.D. Wang, E. Ma, and X.L. Wu, Acta Mater. https://doi.org/10.1016/j.actamat.2016.02.044 (2016).

    Article  Google Scholar 

  40. X.J. Yang, Y. Yang, M.H. Sun, J.H. Jia, X.Q. Cheng, Z.B. Pei, Q. Li, D. Xu, K. Xiao, X.G. Li, and J. Mater, Sci. Technol. https://doi.org/10.1016/j.jmst.2021.05.086 (2021).

    Article  Google Scholar 

  41. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, J. Electrochem. Soc. https://doi.org/10.1149/1.3499565 (2010).

    Article  Google Scholar 

  42. Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Haoc, C. Man, S.S. Chena, X. Wang, Z.Y. Liu, and X.G. Li, Corros. Sci. https://doi.org/10.1016/j.corsci.2017.01.016 (2017).

    Article  Google Scholar 

  43. A. Collazo, X.R. Novoa, C. Perez, and B. Puga, Electrochem. Acta. https://doi.org/10.1016/j.electacta.2007.11.078 (2008).

    Article  Google Scholar 

  44. J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.119760 (2020).

    Article  Google Scholar 

  45. X.Y. Liu, Inorganic Chemistry, (Xiayun Liu, Chengdu, 2018), pp. 255–256

  46. B.Z. Sun, X.M. Zuo, X.Q. Cheng, X.G. Li, and N.P.J. Mater, Degrad. https://doi.org/10.1038/s41529-020-00142-5 (2020).

    Article  Google Scholar 

  47. P. Liu, L.L. Hua, X.Y. Zhao, Q.H. Zhang, Z.S. Yu, J.M. Hua, Y.Q. Chen, F.F. Wu, and F.H. Cao, Corros. Sci. https://doi.org/10.1016/j.corsci.2020.108686 (2020).

    Article  Google Scholar 

  48. Y. Yang, X.Q. Cheng, J.B. Zhao, Y. Fan, and X.G. Li, Corros. Sci. https://doi.org/10.1016/j.corsci.2021.109549 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (no. 52171063) and the China Postdoctoral Science Foundation (no. 2022M710348).

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, 52171063, Xuequn Cheng, Postdoctoral Research Foundation of China, 2022M710348, Xuequn Cheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuequn Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Wu, W., Cheng, X. et al. Study of the Mechanism Influencing the Initial Corrosion Behaviour of B2 Phase Fe-Mn-Al-C-Ni Lightweight Steels in 3.5% NaCl Solution. JOM 75, 2212–2224 (2023). https://doi.org/10.1007/s11837-023-05753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05753-2

Navigation