Skip to main content
Log in

A New Review on Inclusion and Precipitate Control in Grain-Oriented Silicon Steels

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The technological development and indexes of advanced specification grain-oriented (GO) silicon steels are evaluated. The influences of inclusions and precipitates on the magnetic properties of GO silicon steels are summarized. The research progress on controlling inclusions and precipitates to improve the properties of GO silicon steels is reviewed based on the current manufacturing technology. The results indicate that impurity and inclusions can be efficiently reduced by selecting a suitable deoxidizer, optimizing the refining slag composition and smelting process. The precipitates are controlled by optimizing composition design of inhibitor-forming elements or grain boundary segregation elements, adjusting rolling and heat-treating operation conditions during the manufacturing process. The problems existing in the manufacture process of GO silicon steels are analyzed. The development trend of the GO silicon steels is pointed out to provide a reference for low-cost manufacturing of advanced GO silicon steels for manufacturing larger capacity, higher voltage, better energy-saving and emission reduction transformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.Z. He, Y. Zhao, and H.W. Luo, Electrical Steels (Metallurgical industry Press, Beijing, 2012), pp 53–71, 333–334, 573.

    Google Scholar 

  2. W.M. Mao and P. Yang, Material Science Principles on Electrical Steel (Higher Education Press, Beijing, 2013), pp 115–116.

    Google Scholar 

  3. R.R. Bitti and M. Candiotti, J. Magn. Magn. Mater. 26, 11 (1982).

    Article  Google Scholar 

  4. S. Mishra, C. Därmann, and K. Lücke, Acta Metall. 32, 2185 (1984).

    Article  Google Scholar 

  5. M. Munetsugu, ISIJ Int. 29, 809 (1989).

    Article  Google Scholar 

  6. A.L. Etter, T. Baudin, and R. Penelle, Scr. Mater. 47, 725 (2002).

    Article  Google Scholar 

  7. T. Kubota, M. Fujikura, and Y. Ushigami, J. Magn. Magn. Mater. 215–216, 69 (2000).

    Article  Google Scholar 

  8. Y. Ushigami, M. Mizokami, M. Fujikura, T. Kubota, H. Fujii, and K. Murakami, J. Magn. Magn. Mater. 254–255, 307 (2003).

    Article  Google Scholar 

  9. N.P. Goss, Electrical Sheet and Method and Apparatus for Its Manufacture and Test (US Patent and Trademark Office, 1934), https://www.uspto.gov/. Accessed 3 July 1934.

  10. N.P. Goss, Trans. Am. Soc. Met. 23, 511 (1935).

    Google Scholar 

  11. K. Günther, G. Abbruzzese, S. Fortunati, and G. Ligi, Steel Res. Int. 76, 413 (2005).

    Article  Google Scholar 

  12. R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951), p 451.

    Google Scholar 

  13. S. Taguchi and A. Sakakura, Process of Producing Single-Oriented Silicon Steel (US Patent and Trademark Office, 1964), https://www.uspto.gov/. Accessed 1 Dec 1964.

  14. S. Taguchi, A. Sakakura, and H. Takashima, Process for Producing Single-Oriented Silicon Steel Sheets Having a High Magnetic Induction (US Patent and Trademark Office, 1966), https://www.uspto.gov/. Accessed 22 Nov 1966

  15. S. Taguchi, A. Sakakura, F. Matsumoto, K. Takashima, and K. Kuroki, J. Magn. Magn. Mater. 2, 121 (1976).

    Article  Google Scholar 

  16. Z. Chen, Electr. Steel 2, 1 (2020).

    Google Scholar 

  17. K. Günther, L. Lahn, A. Ploch, and E. Sowka, Method for Producing a Grain-Oriented Electrical Steel Strip (EP. Patent Office, 2007), https://www.epo.org/. Accessed 14 Feb 2007.

  18. S.L. Chen, Z.M. Fang, Z.H. Luo, J.P. Wu, L. Sun, C.F. Wang, B. Huang, X.L. Guo, C. Zhang, Z.R. Liang, C.X. Xia, Y. Cao, J.H. Mao, L.T. Liu, G.M. Zhong, W.H. Zhang, Z.M. Liu, S.D. Li, D.M. Li, and Y.F. Shao, Method for Producing High-Magnetic-Induction Oriented Silicon Steel by Continuous Casting and Rolling of Thin Slab (China National Intellectual Property Administration, 2012), https://www.cnipa.gov.cn/. Accessed 27 June 2012.

  19. S.T. Qiu, M.W. Zhou, Y.S Jia, L.F. Fan, C. Ling, B. Fu, L. Xiang, C. Zhang, J. Li, and Y. Gan, High-Magnetic-Induction Oriented Silicon Steel Prepared Through Thin Slab Continuous Casting and Rolling and Preparation Method Thereof (China National Intellectual Property Administration, 2014), https://www.cnipa.gov.cn/. Accessed 17 May 2014.

  20. S. Nakashima, K. Iwayama, and I. Iwanaga, Process for Preparation of Thin Grain Oriented Electrical Steel Sheet Having Superior Iron Loss and High Flux Density (EP. Patent Office, 1990), https://www.epo.org/. Accessed 22 Nov 1990.

  21. I. Iwanaga and K. Iwayama, Method of Producing Grain Oriented Electrical Steel Sheet Having High Magnetic Flux Density (EP. Patent Office, 1990), https://www.epo.org/. Accessed 31 Oct 1990.

  22. I. Iwanaga, K. Iwayama, K. Miyazawa, and T. Mizoguchi, Process for Producing a Grain-Oriented Electrical Steel Sheet by Means of Rapid Quench-Solidification Process (EP. Patent Office, 1990), https://www.epo.org/. Accessed 3 Oct 1990.

  23. B. Jean-Claude, D. Philippe, and M. Frederic, Process for Manufacturing Magnetic Steel Strip by Direct Casting (EP. Patent Office, 1993), https://www.epo.org/. Accessed 5 May 1993.

  24. H.Y. Song, H.T. Liu, W.Q. Liu, Y.P. Wang, and G.D. Wang, Metall. Mater. Trans. A 47, 1770 (2012).

    Article  Google Scholar 

  25. H.Y. Song, H.T. Liu, H.H. Lu, L.Z. An, B.G. Zhang, and W.Q. Liu, Mater. Lett. 137, 475 (2014).

    Article  Google Scholar 

  26. Y. Wang, Y.X. Zhang, X. Lu, F. Fang, Y.B. Xu, G.M. Cao, C.G. Li, R.D.K. Misra, and G.D. Wang, J. Magn. Magn. Mater. 419, 225 (2016).

    Article  Google Scholar 

  27. Y.P. Wang, H.T. Liu, H.Y. Song, J.X. Liu, H.Y. Shen, Y. Jin, and G.D. Wang, J. Magn. Magn. Mater. 452, 288 (2017).

    Article  Google Scholar 

  28. X.H. Li, X.T. Meng, P.F. Zhao, X.G. He, H.B. Yu, and H.W. Luo, China Metall. 29, 1 (2019).

    Google Scholar 

  29. K. Jenkins and M. Lindenmo, J. Magn. Magn. Mater. 320, 2423 (2008).

    Article  Google Scholar 

  30. W.M. Mao, Z.G. An, and S.X. Li, Chin. Sci. Bull. 54, 4537 (2009).

    Google Scholar 

  31. C.Y. Zhu, X.H. Chen, G.Q. Li, Y. Fu, and G. Xu, Mater. Rep. 29, 6 (2015).

    Google Scholar 

  32. S. Fortunati, L. Albini, and J. Schneider, Evolution of microstructure and texture for ES non-grain oriented versus grain oriented electrical steels part 2: GO. Paper presented at the WMM20, Rome, 3–5 Nov 2020.

  33. M. Shiozaki and Y. Kurosaki, J. Mater. Eng. 11, 37 (1989).

    Article  Google Scholar 

  34. J. Barros, J. Schneider, K. Verbeken, and Y. Houbaert, J. Magn. Magn. Mater. 320, 2490 (2008).

    Article  Google Scholar 

  35. D.S. Petrovič, Mater. Tehnol. 44, 317 (2010).

    Google Scholar 

  36. P. Ghosh, R.R. Chromik, A.M. Knight, and S.G. Wakade, J. Magn. Magn. Mater. 356, 42 (2014).

    Article  Google Scholar 

  37. M.Y. Zhu, Modern Metallurgy (Steel Metallurgy Volume) (Metallurgical Industry Press, Beijing, 2008), pp 148–151.

    Google Scholar 

  38. P. Beckley and J.E. Thompson, Proc. Inst. Electr. Eng. 117, 2194 (1970).

    Article  Google Scholar 

  39. D. Jiles, Introduction to Magnetism and Magnetic Materials (Taylor & Francis Group, London, 2015), pp 143–150.

    Book  Google Scholar 

  40. J.E. May and D. Turnbull, Trans. Metall. Soc. AIME 212, 769 (1958).

    Google Scholar 

  41. T. Senuma, ISIJ Int. 42, 1 (2002).

    Article  Google Scholar 

  42. J.E. May and D. Turnbull, J. Appl. Phys. 30, 210 (1959).

    Article  Google Scholar 

  43. Y. Kurosaki, M. Shiozaki, K. Higashine, and M. Sumimoto, ISIJ Int. 39, 607 (1999).

    Article  Google Scholar 

  44. H. Matsuoka, M. Motoyoshi, and M. Makino, Continuously Cast Slabs for Grain Oriented Electrical Steel Sheet and Method for Producing Said Steel Sheet (US Patent and Trademark Office, 1975), https://www.uspto.gov/. Accessed 8 Apr 1975.

  45. Q. Zheng, Y. Peng, and S.Y. Lei, Effect of metallurgical conditions on behavior of inclusions in grain-oriented silicon steel ingots. Paper presented at 2002 National Conference on Metallurgical Physics and Chemistry. University of Science and Technology Anshan, Anshan 21–29 Sept 2002.

  46. C.F. Yao, J.H. Wang, H.M. Wang, C.J. Xing, C.J. Wang, and G.Y. Li, Shanghai Met. 34, 13 (2012).

    Google Scholar 

  47. C.Y. Zhu, G.Q. Li, Z.P. Chen, and F. Zhang, Electr. Eng. Mater. 2, 37 (2012).

    Google Scholar 

  48. C.Y. Zhu, J.X. Zheng, G.Q. Li, X.H. Chen, and F. Zhang, Spec. Steel 35, 60 (2014).

    Google Scholar 

  49. B.W. Zhou, G.Q. Li, C.Y. Zhu, J.X. Zheng, Y. Fu, and F. Zhang, Iron Steel Vanadium Titan. 35, 110 (2014).

    Google Scholar 

  50. B.W. Zhou, C.Y. Zhu, G.Q. Li, X.L. Wan, and J. Schneider, Steel Res. Int. 87, 1702 (2016).

    Article  Google Scholar 

  51. H. Zhou, B. Hu, W.X. He, X.L. Cheng, and L.H. Ma, Steelmaking 28, 29 (2012).

    Google Scholar 

  52. L. Liu, Iron Steel 41, 1 (2006).

    Google Scholar 

  53. X.H. Chen, C.Y. Zhu, G.Q. Li, Y. Fu, and Y.L. Jiang, Research on evolution of inclusions and removal rate of oxides in grain-oriented silicon steel during RH refining process. Paper presented at the 6th International Congress on the Science and Technology of Steelmaking, Beijing International Convention Center, Beijing, 12–14 May 2015.

  54. Z.Z. Liu, J. Wei, and K.K. Cai, ISIJ Int. 42, 958 (2002).

    Article  Google Scholar 

  55. Z.Z. Liu, K.J. Gu, and K.K. Cai, ISIJ Int. 42, 950 (2002).

    Article  Google Scholar 

  56. Y. Luo, W. Yang, Q. Ren, Z.Y. Hu, and M. Li, Metall. Mater. Trans. B 49B, 926 (2018).

    Article  Google Scholar 

  57. K. Matsumura and B. Fukuda, IEEE Trans. Magn. 20, 1533 (1984).

    Article  Google Scholar 

  58. J. Lehmann and M. Nadif, Rev. Mineral. Geochem. 73, 493 (2011).

    Article  Google Scholar 

  59. C.Y. Zhu, G.Q. Li, Z.P. Chen, X.M. Xia, and X.J. Hong, Chin. J. Process Eng. 12, 943 (2011).

    Google Scholar 

  60. Y. Zhu, G.Q. Li, Z.P. Chen, G.J. Ma, and J. Liu, ISIJ Int. 48, 123 (2008).

    Article  Google Scholar 

  61. C.Y. Zhu, G.Q. Li, Z.P. Chen, and X.X. Dong, J. Wuhan Univ. Sci. Technol. 31, 595 (2006).

    Google Scholar 

  62. C.Y. Zhu, G.Q. Li, Z.P. Chen, J. Liu, and X.M. Xia, Distribution equilibrium of manganese and phosphorous between converter slags saturated with 2CaO·SiO2 and MgO and low manganese-bearing steels. Paper presented at the 3rd Proceedings of Baosteel BAC, Baosteel Central Research Institute, Shanghai, 26–28 Sept 2008.

  63. C.Y. Zhu, G.Q. Li, Z.P. Chen, and X.X. Dong, J. Wuhan Univ. Sci. Technol. 31, 595 (2008).

    Google Scholar 

  64. N.G. Ainslie and A.U. Seyboh, J. Iron Steel lnst. 194, 341 (1960).

    Google Scholar 

  65. J.G. Benford, J. Appl. Phys. 38, 1100 (1967).

    Article  Google Scholar 

  66. J.W. Flowers and S.P. Karas, J. Appl. Phys. 38, 1085 (1967).

    Article  Google Scholar 

  67. W.M. Swift, Metall. Trans. 4, 153 (1973).

    Article  Google Scholar 

  68. W.M. Swift, Metall. Trans. 4, 841 (1973).

    Article  Google Scholar 

  69. W.M. Swift, F.J. Harvey, and K. Foster, Metall. Trans. B 6B, 377 (1975).

    Article  Google Scholar 

  70. Z.G. An and W.M. Mao, Trans. Mater. Heat Treat. 31, 45 (2010).

    Google Scholar 

  71. T.L. Dong, R. Liu, E.B. YuE, S.T. Qiu, and P. Zhao, J. Iron Steel Res. Int. 22, 44 (2010).

    Google Scholar 

  72. H. Yashiki and T.A. Tanaka, Grain Oriented Magnetic Steel Sheet and a Manufacturing Method for the Same (Japan Patent Office, 1994), https://www.j-platpat.inpit.go.jp/. Accessed 5 July 1994.

  73. H. Yashiki and T. Kaneko, A Method of Producing Directional Electrical Steel Sheet (Japan Patent Office, 1991), https://www.j-platpat.inpit.go.jp/. Accessed 13 May 1991.

  74. H. Yashiki and T. Kaneko, A Manufacturing Method of the Grain Oriented Magnetic Steel Sheet Which was Excellent in Die-Cutting Nature (Japan Patent Office, 1992), https://www.j-platpat.inpit.go.jp/. Accessed 14 Sept 1992.

  75. H. Yashiki and T. Kaneko, A Grain Oriented Magnetic Steel Sheet and a Manufacturing Method for the Same (Japan Patent Office, 1933), https://www.j-platpat.inpit.go.jp/. Accessed 19 Jan 1993.

  76. Z.W. Wu, Y. Zhao, J. Li, and B. Li, J. Mater. Eng. 0, 55 (2012).

  77. C.S. Lee, C.H. Han, J.S. Woo, G.S. Choi, J.K. Kim, B.D. Hong, and K.S. Han, Method for Manufacturing High Magnetic Flux Density Grain Oriented Electrical Steel Sheet Based on Low Temperature Slab Heating Method (China National Intellectual Property Administration, 1999), https://www.cnipa.gov.cn/. Accessed 6 Oct 1999.

  78. C.S. Lee, C.H. Han, J.S. Woo, G. Choi, J.K. Kim, Hong, and K.S. Han, Method for Manufacturing High Magnetic Flux Density Grain Oriented Electrical Steel Based on Low Temperature Slab Heating Method (US Patent and Trademark Office, 2002), https://www.uspto.gov/. Accessed 17 Sept 2002.

  79. T. Sakai, T. Shimazu, K. Chikuma, M. Tanino, and M. Matsuo, Trans. Iron Steel Inst. Jpn. 70, 2049 (1984).

    Article  Google Scholar 

  80. Y. Zhao, Z. He, Y. Weng, and B. Wu, Mater. Sci. Forum 641, 204 (1996).

  81. S.D. Li, Res. Iron Steel 46, 20 (1988).

    Google Scholar 

  82. H.D. Sun, Z.C. Liu, and Q.S. Gan, Electr. Steel 1, 13 (2003).

    Google Scholar 

  83. C. Zhang, L. Xiang, E.B. Yue, S.T. Qiu, and P. Zhao, J. Iron Steel Res. 21, 29 (2009).

    Google Scholar 

  84. L. Xiang, E.B. Yue, S.T. Qiu, and P. Zhao, Iron Steel (Beijing, China) 44, 79 (2009).

    Google Scholar 

  85. K. Iwayama, K. Kuroki, Y. Yoshitomi, K. Homma, and T. Wada, J. Appl. Phys. 55, 2136 (1984).

    Article  Google Scholar 

  86. L.J. Xiao, L. Xiang, E.B. Yue, S.T. Qiu, and Y. Gan, J. Iron Steel Res. 22, 48 (2010).

    Google Scholar 

  87. Z.Z. Zhang, W. Ren, and J.F. Fang, Spec. Steel 32, 67 (2011).

    Google Scholar 

  88. T.L. Dong, L. Xiang, E.B. Yue, S.T. Qiu, and P. Zhao, J. Iron Steel Res. 22, 56 (2010).

    Google Scholar 

  89. A.F. Dong and W.K. Zhang, Spec. Steel 33, 29 (2012).

    Google Scholar 

  90. C. Ling, L. Xiang, S.T. Qiu, and Y. Gan, J. Iron Steel Res. Int. 21, 690 (2014).

    Article  Google Scholar 

  91. M.R. Jahangiri, A. Bajgholi, and A.A. Zhaam, Int. J. Adv. Manuf. Technol. 75, 1291 (2014).

    Article  Google Scholar 

  92. T. Sakai, M. Shiozaki, and K. Takashina, J. Appl. Phys. 50, 2369 (1979).

    Article  Google Scholar 

  93. H.C. Fiedler, J. Appl. Phys. 38, 1098 (1967).

    Article  Google Scholar 

  94. A. Sakakura, S. Taguchi, T. Wada, K. Ueno, T. Yamamoto, and N. Urushiyama, Process for Heat-Treating Electromagnetic Steel Sheets Having a High Magnetic Induction (US Patent and Trademark Office, 1972), https://www.uspto.gov/. 25 Jan 1972.

  95. M. Koizumi, T. Kikuti, and S. Bandô, Trans. Iron Steel Inst. Jpn. 66, 1351 (1980).

    Article  Google Scholar 

  96. Res. Gp. of Silicon-Iron, Peking Institute of Iron and Steel Research, Acta Metall. Sin. 13, 80 (1977).

    Google Scholar 

  97. H. Kobayashi, K. Kuroki, M. Minakuchi, and K. Yakashiro, Process for Preparation of Grain-Oriented Electrical Steel Sheet Comprising a Nitriding Treatment (US Patent and Trademark Office, 1990), https://www.uspto.gov/. Accessed 25 Dec 1990.

  98. H. Yashiki and T. Kaneko, Trans. Iron Steel Inst. Jpn. 80, 659 (1994).

    Article  Google Scholar 

  99. S.D. Li, Electr. Steel 35, 16 (1999).

    Google Scholar 

  100. T. Nakayama and N. Honjou, J. Magn. Magn. Mater. 213, 87 (2000).

    Article  Google Scholar 

  101. J.H. Oh, S.H. Cho, and J.J. Jonas, ISIJ Int. 41, 484 (2001).

    Article  Google Scholar 

  102. T. Kumano, T. Haratani, and N. Fujii, ISIJ Int. 45, 95 (2005).

    Article  Google Scholar 

  103. T. Kumano, Y. Ohata, N. Fujii, Y. Ushigami, and T. Takeshita, J. Magn. Magn. Mater. 304, 602 (2006).

    Article  Google Scholar 

  104. M. Hashimoto, The Al Addition Method in Electric Steel Production (Japan Patent Office, 2006), https://www.j-platpat.inpit.go.jp/. Accessed 19 Oct 2006.

  105. X.H. Chen, C.Y. Zhu, L. Deng, and G.Q. Li, Adv. Mater. Res. 906, 268 (2014).

    Article  Google Scholar 

  106. C.Y. Zhu, X.H. Chen, G.Q. Li, Y. Fu, and Y.L. Jiang, J. Chongqing Univ. 38, 111 (2015).

    Google Scholar 

  107. B.W. Zhou, G.Q. Li, C.Y. Zhu, Y. Fu, and F. Zhang, Hot Working Technol. 45, 19 (2016).

    Google Scholar 

  108. C.Y. Zhu, X.H. Chen, W.T. Chen, G. Xu, and G.Q. Li, Hot Working Technol. 46, 29 (2017).

    Google Scholar 

  109. Q.L. Yong, Secondary Phase in Steels (Matallurgy Industry Press, Beijing, 2006), pp 269–284.

    Google Scholar 

  110. B.W. Zhou, C.Y. Zhu, G.Q. Li, X.L. Wan, and S. Jürgen, Steel Res. Int. 87, 1702 (2016).

    Article  Google Scholar 

  111. B.W. Zhou, C.Y. Zhu, G.Q. Li, and Y. Fu, Mater. Sci. Technol. 31, 1809 (2015).

    Article  Google Scholar 

  112. B.W. Zhou, G.Q. Li, C.Y. Zhu, and R.G. Hou, J. Chongqing Univ. 40, 70 (2017).

    Google Scholar 

  113. B.W. Zhou, C.Y. Zhu, G.Q. Li, Z. Luo, Y. Gao, S.Q. Bao, and S. Jürgen, Arch. Metall. Mater. 63, 1701 (2018).

    Google Scholar 

  114. X. Li, M. Wang, Y.P. Bao, J. Gong, X.H. Wang, and W.G. Pang, JOM 71, 3135 (2019).

    Article  Google Scholar 

  115. Q. Gao, X.H. Wang, J. Li, J. Gong, and B. Li, J. Iron Steel Res. Int. 28, 479 (2021).

    Article  Google Scholar 

  116. P. Marko, A. Sólyom, and V. Fric, J. Magn. Magn. Mater. 41, 7 (1984).

    Article  Google Scholar 

  117. M.L. Lobanov, G.M. Rusakov, and A.A. Redikul’tsev, Phys. Met. Metallogr. 114, 559 (2013).

    Article  Google Scholar 

  118. J. Li, Y. Sun, Y. Zhao, X.J. Yu, and B. Li, Iron Steel (Beijing, China) 42, 72 (2007).

    Google Scholar 

  119. J.J. Li, E.B. Yue, L. Xiang, S.T. Qiu, and P. Zhao, Met. Funct. Mater. 16, 55 (2009).

    Google Scholar 

  120. Z.W. Wu, Y. Zhao, J. Li, and B. Li, Met. Funct. Mater. 18, 1 (2011).

    Google Scholar 

  121. Y. Zhao and Z.Z. He, Acta Metall. Sin. Chin. Ed. 32, 283 (1995).

    Google Scholar 

  122. Y. Zhao, Z.B. Meng, Z.Z. He, D.R. Pei, J.H. Mao, L.F. Wang, and L.J. He, Iron Steel (Beijing, China) 32, 51 (1997).

    Google Scholar 

  123. N. Takahashi, Y. Suga, and K. Kuroki, Manufacture of Grain-Oriented Silicon Steel Sheet Having High Saturation Magnetic Flux Density (Japan Patent Office, 1989), https://www.j-platpat.inpit.go.jp/. Accessed 14 Sept 1989.

  124. N. Takahashi, K. Kuroki, S. Arai, and Y. Suga, Production of Grain-Oriented Electrical Steel Sheet Having High Magnetic Flux Density (Japan Patent Office, 1989), https://www.j-platpat.inpit.go.jp/. Accessed 14 Nov 1989.

  125. N. Takahashi, Y. Suga, and K. Kuroki, Manufacture of Grain-Oriented Silicon Steel Sheet Having High Saturation Magnetic Flux Density (Japan Patent Office, 1989), https://www.j-platpat.inpit.go.jp/. Accessed 6 Dec 1989.

  126. S.D. Li and L.X. Niu, Electr. Steel 2, 23 (2000).

    Google Scholar 

  127. J.K. Kim, S.J. Lee, and Y.J. Yoon, Process for Manufacturing High Magnetic Flux Density Grain Oriented Electrical Steel Sheet Having Superior Magnetic Properties (U.S Patent and Trademark Office, 1995), https://www.uspto.gov/. Accessed 26 Sept 1995.

  128. Z.Z. He, Electr. Steel 37, 2 (1999).

    Google Scholar 

  129. H. Masui, N. Fujii, H. Fujii, T. Kumano, and I. Iwanaga, A Manufacturing Method of a High Magnetic Flux Density Grain Oriented Magnetic Steel Sheet (Japan Patent Office, 1996), https://www.j-platpat.inpit.go.jp/. Accessed 6 Aug 1996.

  130. K. Hulka, C. Vlad, and A. Doniga, Steel Res. 73, 453 (2002).

    Article  Google Scholar 

  131. Y. Zhang, Y.L. Fu, R.W. Wang, and K.M. Wu, China Metall. 18, 16 (2008).

    Google Scholar 

  132. Z.F. Liu, Z.B. Liu, J. Li, and Z.Z. He, Acta Metall. Sin. Chin. Ed. 27, 282 (1991).

    Google Scholar 

  133. Y. Zhao, Z.Z. He, J. Zhu, Y.Q. Weng, and B.R. Wu, Acta Metall. Sin. Chin. Ed. 29, 496 (1993).

    Google Scholar 

  134. S. Nakashima, K. Takashima, and J. Harase, J. Jpn. Inst. Met. Mater. 56, 592 (1992).

    Article  Google Scholar 

  135. Z.Z. He, Z.F. Liu, B.C. Zhang, and W.R. Zhang, Acta Metall. Sin. Chin. Ed. 17, 433 (1981).

    Google Scholar 

  136. Y. Kawamo, S. Nakashima, K. Takashima, and J. Harase, Trans. Iron Steel Inst. Jpn. 79, 1197 (1993).

    Article  Google Scholar 

  137. Y. Zhao, Z.Z. He, Y.Q. Weng, and B.R. Wu, J. Iron Steel Res. 7, 66 (1995).

    Google Scholar 

  138. G.S. Choi, C.S. Lee, J.S. Woo, and B.D. Hong, Method for Manufacture Steel Sheet by Heating Slab at Low Temperature (US Patent and Trademark Office, 1997), https://www.uspto.gov/. Accessed 5 Aug 1997.

  139. Y. Gao, G. Xu, X.L. Guo, and G.Q. Li, J. Magn. Magn. Mater. 476, 428 (2019).

    Article  Google Scholar 

  140. W.M. Shi, X.B. Zhu, D.J. Feng, Z.H. Luo, G.L. Du, J.H. Mao, N.Y. Dang, X.K. Wang, and G. Song, Non grain Oriented Silicon Steel Used in Electric Drive Motor and the Manufacturing Method (China National Intellectual Property Administration, 2013), https://www.cnipa.gov.cn/. Accessed 13 Feb 2013.

  141. X.H. Chen, C.Y. Zhu, G.Q. Li, and Y. Fu, Mater. Rep. 30(Z1), 94 (2016).

    Google Scholar 

  142. X.H. Chen, The Influence of Niobium and Chromium on Behaviors of Precipitates and Hot Rolled Microstructure of Grain-Oriented Silicon Steel (Wuhan University of Science and Technology, 2016), https://kns.cnki.net/kns8/defaultresult/index. Accessed June 2017.

  143. Y.L. Liu, C.Y. Zhu, J. Jia, Y. Wang, Y. Liu, and G.Q. Li, Metals 9, 457 (2019).

    Article  Google Scholar 

  144. Y. Gao, G. Xu, X.L. Guo, G.Q. Li, and Y. Wang, J. Magn. Magn. Mater. 507, 166849 (2020).

    Article  Google Scholar 

  145. H. Li, Y.L. Feng, D. Zhang, M. Song, and D.Q. Cang, Rare Met. 32, 318 (2013).

    Article  Google Scholar 

  146. F. Fang, Y.X. Zhang, X. Lu, Y. Wang, G.M. Cao, G. Yuan, Y.B. Xu, G.D. Wang, and R.D.K. Misra, Mater. Des. 105, 398 (2016).

    Article  Google Scholar 

  147. Y.L. Feng, J. Guo, J. Li, and J.L. Ning, J. Magn. Magn. Mater. 426, 89 (2017).

    Article  Google Scholar 

  148. Y.L. Feng, Y. Li, J. Guo, J. Li, and T.T. Du, J. Magn. Magn. Mater. 439, 135 (2017).

    Article  Google Scholar 

  149. F. Fang, M.F. Lan, X. Lu, Y.X. Zhang, Y. Wang, G. Yuan, G.M. Cao, Y.B. Xu, R.D.K. Misra, and G.D. Wang, J. Magn. Magn. Mater. 442, 1 (2017).

    Article  Google Scholar 

  150. Y. Wang, F. Fang, X. Lu, X.Y. Zhang, Y.B. Xu, G.M. Cao, C.G. Li, R.D.K. Misra, and G.D. Wang, Steel Res. Int. 88, 160018 (2017).

    Google Scholar 

  151. R.G. Hou, C.Y. Zhu, G.Q. Li, B.W. Zhou, and J. Jia, ISIJ Int. 57, 2245 (2017).

    Article  Google Scholar 

  152. Y. Xiao, Y.L. Liu, L.Y. Huang, G.Q. Li, W. Yan, and C.Y. Zhu, J. Iron Steel Res. Int. (2022). https://doi.org/10.13228/j.boyuan.issn1001-0963.20210185

  153. Y. Wang, G.Q. Li, C.Y. Zhu, Y.L. Liu, and Y. Liu, Iron Steel Vanadium Titan. 40, 135 (2019).

    Google Scholar 

  154. Y. Wang, Effect of Nb on Inhibitors Precipitation, Microstructure and Texture Evolution of Grain Oriented Silicon Steel Manufactured by Low Temperature Slab Reheating Technology (Wuhan University of Science and Technology, 2021), https://kns.cnki.net/kns8/defaultresult/index. Accessed Sept 2021.

  155. J.Y. Wang, J. Jia, C.Y. Zhu, L.X. Fan, and C.W. Fan, J. Wuhan Univ. Sci. Technol. 41, 321 (2018).

    Google Scholar 

  156. Y. Wang, C.Y. Zhu, G.Q. Li, Y. Liu, and B.W. Zhou, High Temp. Mater. Process. 38, 628 (2019).

    Article  Google Scholar 

  157. Y. Wang, C.Y. Zhu, G.Q. Li, Y.L. Liu, and Y. Liu, Mater. High Temp. 37, 155 (2020).

    Article  Google Scholar 

  158. Y. Wang, C.Y. Zhu, G.Q. Li, Y.L. Liu, and Y. Liu, Materials 13, 5581 (2020).

    Article  Google Scholar 

  159. Y. Gao, X.L. Guo, Y. Wang, Y.L. Liu, C.Y. Zhu, and G.Q. Li, J. Magn. Magn. Mater. 516, 167343 (2020).

    Article  Google Scholar 

  160. Y. Wang, G.Q. Li, C.Y. Zhu, Y. Gao, Y.L. Liu, and Y. Liu, Ironmak. Steelmak. 48, 1169 (2021).

  161. C.Y. Zhu, Y. Gao, G.Q. Li, Y.L. Liu, and Y. Wang, A Method to Nb Alloying Grain-Oriented Silicon Steel Manufactured by Low-Temperature Slab Reheating Process (China National Intellectual Property Administration, 2021), https://www.cnipa.gov.cn/. Accessed 27 July 2021.

  162. M.Q. Qu, H.P. Ren, Z.L. Jin, J. Yang, and Y.H. Li, Heat Treat. Met. 42, 26 (2017).

    Google Scholar 

  163. X.H. Xie, Y.L. Liu, G.Q. Li, X.Y. Chen, and C.Y. Zhu, Iron Steel 56, 122 (2021).

  164. E. Nanba, K. Yanagihara, S. Arai, S. Yamazaki, F. Ando, K. Takeda, Y. Kurosaki, and N. Tachibana, Ultra-high Magnetic Flux Density Grain-Oriented Electrical Steel Excellent in Iron Loss at a High Magnetic Flux Density and Film Properties and Method for Producing the Same (US Patent and Trademark Office, 2011), https://www.uspto.gov/. Accessed 19 July 2011.

  165. F. Fang, D.W. Hou, Y.X. Zhang, Y. Wang, G. Yuan, X.M. Zhang, R.D.K. Misra, Z.H. Guo, and G.D. Wang, J. Mater. Sci. 56, 11988 (2021).

    Article  Google Scholar 

  166. A. Okamoto and H. Yashiki, Mater. Sci. Forum 204–206, 555 (1996).

    Article  Google Scholar 

  167. C.H. Han and S.J. Kwon, Scr. Mater. 34, 543 (1996).

    Article  Google Scholar 

  168. Y. Ushigami, F. Kurosawa, H. Masui, Y. Suga, and N. Takahashi, Mater. Sci. Forum 204–206, 593 (1996).

    Article  Google Scholar 

  169. H. Yashiki and T. Fukagawa, J. Magn. Magn. Mater. 160, 127 (1996).

    Article  Google Scholar 

  170. N. Bernier, C. Xhoffer, V.D.P. Tom, M. Galceran, and S. Godet, Mater. Charact. 86, 116 (2013).

    Article  Google Scholar 

  171. C.X. He, F.Y. Yang, L. Meng, G. Ma, X. Chen, P.F. Hou, and W.K. Zhang, J. Magn. Magn. Mater. 439, 397 (2017).

    Article  Google Scholar 

  172. F.Y. Yang, C.X. He, L. Meng, G. Ma, X. Chen, and W.M. Mao, J. Magn. Magn. Mater. 439, 403 (2017).

    Article  Google Scholar 

  173. H.D. Sun, Z.C. Hu, X.D. Liu, G.B. Li, and L.L. Lu, Method for Manufacturing a Kind Grain Oriented Electrical Steel (China National Intellectual Property Administration, 2008), https://www.cnipa.gov.cn/. Accessed 1 Oct 2008.

  174. H. Toda, K. Senda, M. Kurosawa, M. Watanabe, and A. Honda, Grain-Oriented Silicon Steel Sheet and Process for Production Thereof (US Patent and Trademark Office, 2002), https://www.uspto.gov/. Accessed 5 Nov 2002.

  175. P.J. Zhang, X.D. Liu, X. Chen, H.D. Sun, and G.B. Li, A Kind of Grain-Oriented Silicon Steel and Its Production Method and Device (China National Intellectual Property Administration, 2006), https://www.cnipa.gov.cn/. Accessed 5 July 2006.

  176. R.P. Wang, J.H. Mao, Z.M. Fang, Y. Cao, X.G. Zhang, Z.H. Luo, S.D. Li, L.T. Liu, G.M. Zhong, J. Lu, W. Zeng, W.H. Zhang, G. Xv, Y.B. Cai, H.Y. Xv, and B. Huang, Production Method of Less Nitriding High Magnetic Induction Grain-Oriented Silicon Steel (China National Intellectual Property Administration, 2010), https://www.cnipa.gov.cn/. Accessed 14 July 2010.

  177. R.P. Wang, J.H. Mao, Z.M. Fang, Y. Cao, X.G. Zhang, Z.H. Luo, S.D. Li, L.T. Liu, G.M. Zhong, J. Lu, W. Zeng, W.H. Zhang, G. Xv, Y.B. Cai, H.Y. Xv, and B. Huang, Production Method of High Magnetic Induction Grain-Oriented Silicon Steel (China National Intellectual Property Administration, 2010), https://www.cnipa.gov.cn/. Accessed 14 July 2010.

Download references

Acknowledgements

The authors appreciate this study's financial support from the National Natural Science Foundation of China (Nos. 51674180, 51974214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Liu, Y., Xiao, Y. et al. A New Review on Inclusion and Precipitate Control in Grain-Oriented Silicon Steels. JOM 74, 3141–3161 (2022). https://doi.org/10.1007/s11837-022-05345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05345-6

Navigation