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Confidence in additive manufacturing technologies is directly related to the
predictability of part properties, which is influenced by several factors. To gain
confidence, online process monitoring with dedicated and reliable feedback is
desirable for every process. In this project, a powder bed monitoring system
was developed as a retrofit solution for the EOS P3 laser sintering machines. A
high-resolution camera records each layer, which is analyzed by a Region-
Based Convolutional Neural Network (Mask R-CNN). Over 2500 images were
annotated and classified to train the network in detecting defects in the
powder bed at a very high level. Each defect is checked for intersection with
exposure areas. To distinguish between acceptable imperfections and critical
defects that lead to part rejection, the impact of these imperfections on part
properties is investigated.

INTRODUCTION

Within the last few years, there have been several
steps towards further industrialization of the laser
powder bed fusion (LPBF) process, which includes
process qualifications,1–3 production line integration
and new machine concepts, such as the EOS P500,
for higher output at overall better quality and
integrated process control and monitoring.

However, most systems lack the capabilities for
process monitoring, even though it has started very
early within the development of the technology. The
first monitoring systems have been used to obtain
better insights of the process and understanding the
underlying principles. In 1994, a video microscopy
was integrated into a machine for in situ
investigations.4

Early, part-warpage detection is the objective of a
monitoring set-up with a fringed light projector. The
focus of this project is given by the investigation of
curling based on different build temperatures and
laser parameter settings as well as the material
formation within the melt pool.5,6

Gardner at al. assembled an optical coherence
tomography system within the laser path. The
project demonstrated the possibilities of this tech-
nique for the detection of subsurface defects. An
embedded temperature monitoring, even of the
powder around the parts, is given as outlook.7,8

Today, thermography process monitoring is the
most common monitoring technology for laser sin-
tering. As the freshly applied powder has to be pre-
heated via infrared radiators, a closed-loop temper-
ature control is mandatory for every machine. In
newer machines, thermography cameras are used
because they have a high resolution of measure-
ment points, allow in-depth information on individ-
ual part temperature histories, and open the door
for modified laser control. In research, thermogra-
phy has given insights into a better understanding
of the process itself.9–17 Tyloret al. even predicted
the break position of selective laser sintering (SLS)
specimens, by identifying colder spots within one or
several consecutive layers. It was possible to corre-
late thermography results to the fracture position
with a precision of 45–80%. However, the correla-
tion to the elongation at break as well as reduced
ultimate strength is only possible with a high
standard deviation.13
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Other researchers have implemented a low-cost
imaging process monitoring system. However, they
aimed to control the energy input by gray scales on
the image. Therefore, they have the same or a similar
approach to the thermography image sensors.18 In
March 2021, a machine-learning system for identify-
ing powder spread defects was published. The system
is installed on a S2 laser sintering system from
Sintratec , and based on a workaround, as the 4K-in-
house-camera seems not to be accessible. With a
webcam, the life image of the Sintratec camera has
been monitored and then analyzed. The Sintratec S2
is working with carbon black PA12 powder, which
increases the contrast of molten und unmolten areas.
The specific Sintratec S2 camera set-up and light
situation within the build chamber is not described.19

Within this report, a retrofittable powder spread
monitoring system is presented, which is capable of
detecting powderbed imperfections even with low
contrast materials. An automatic check for powder
spread flaws, considering the intersection with any
parts in the respective layer, allows a detailed
quality report and early warning for the operator.
Furthermore, it should be possible with this system
to implement an additional monitoring on the
recoater filling level and to use it for the no-curl-
temperature search.

System Development

The hardware design comprises the camera
assembly, the light assembly, and the trigger
assembly, which includes a Z-axis trigger to identify
the job start after the preheating phase and a
trigger attached to the recoater in order to obtain a
signal for each layer. The individual component
assemblies and their position within the EOS P3

system are illustrated in Fig. 1. The key element is
the camera assembly with an IDS GV-5890CP-M-
GL C-mount camera (CMOS Mono 12MP sensor
with the size of 1/1.7 and the ratio of 4:3) and a
modified Kowa lens – LM5JC10M with f 1.8–16 and
a fixed focal length of 5 mm. The lens is head-first
positioned in the build chamber, replacing a halogen
light, and is therefore only separated by a 2-mm
window from an environmental temperature of up
to 200�C. Hence, a proper cooling system is
required. Preliminary tests have shown that a
simple liquid cooling ring or block is not sufficient
for temperature regulation of the lens, as the first
glass of the lens exceeded the max. temperature
limit within the first 30 min. of preheating. To
overcome this issue, a selective laser melting cam-
era housing with integrated cooling jackets and air
circulation has been designed.

An overview of the camera assembly is given in
Fig. 2. The camera window is shielded by a nitrogen
gas flow. This is realized by several metal sheets,
working as spacer, clamps, or guideways. A PTFE
block is used to isolate the camera housing and to
gain some more space for the lens, which must be in
an exact position in order to have a total view of the
build platform. Nine screws, including spring-
loaded washers and nuts, attach the build chamber
window assembly to the camera housing. Those
washers secure a pressure regulation even if the
materials exhibit thermal expansion.

The light is positioned within the machine hub
and in front of the build chamber. The light
furthermore comes perpendicular to the recoater
moving direction, which enlarges the shadows cast
of powder failures created by agglomerates, snow
balls, or coating attachments.
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Fig. 1. Overview of the LC-ProMo hardware assemblies and its location on a stripped-down EOS P3 machine.
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An overview of the information flow inside the
monitoring system is given in Fig. 3. The LC_Pro-
Mo_Job application is running on a Raspberry Pi
and controls all signals and the camera. The most
important signals are the process information, here
shown as trigger signals, and the capture image
signal. If the Z-trigger is activated, the preheating
phase is over and the recoater trigger is set to
listening, hence the monitoring starts. As not only
the freshly applied layer but also the recoater filling
level must be monitored, the trigger has to be
activated twice. Once, if the recoater is directly
below the camera and a view on the inside is
possible, and once for the platform powder spread
analysis as soon as the recoating process is finished.

The images are sent to the PC over the Ethernet,
including the current layer index given by the
image name. On the PC, the EOS-Formats applica-
tion generates a binary mask of the layer indicating

the part position and exposure areas by using the
.sli files from the build job. The image is then
transformed using a perspective correction to gain a
perpendicular bird’s-eye view, and a high pass filter
for working out the fine details in the powder is
applied. This image is afterwards sent to the
detection module which contains the Mask Region-
Based Convolutional Neural Network (Mask R-
CNN). The detection result is super-positioned with
the sli-based exposure mask to highlight the imper-
fections within the build parts. If one of the failures
exceeds a severity alarm threshold, this layer is
highlighted and an alert is given. Each failure,
including the severity score and position, is further-
more logged in a job report file.

Detection Software

Detecting and localizing faults in the images
translates to the task of object detection/instance
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Fig. 2. (a) Cross-section view of the double-walled camera housing with coolant and air flow. (b) Detailed view of the N2 protection flow for the
window fluidization within the build chamber.
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segmentation in machine learning. For the project,
a pre-trained Mask R-CNN20 engine, which is based
on the Faster R-CNN21 framework, is used. The
network has been trained on the COCO dataset,22,23

and is further refined for the new purpose. To this
end, the pre-trained head of the network for bound-
ing box, mask, and class prediction is replaced with
a new one, but keeps the feature extraction back-
bone, as used in the architecture of the PyTorch
tutorial.24

The annotation process has been carried out using
the SuperAnnotate platform.25 A custom dataset
adapter was developed which acts as an interface
between the SuperAnnotate given .json format and
the Mask R-CNN used COCO format, so that the
images and annotations can be read by the network.

For the training, over 2500 images from more
than 13 different build jobs (A–M) have been
marked precisely with over 5500 imperfections and
6500 attributes. Each fault is defined by a specific
location, shape (area, line, point) and severity (low,
medium, high, critical). The annotations have been
created by multiple people. Since, currently, it is not
defined how the severities can be distinguished
precisely and explicitly, the annotations have a
subjective pillar. For more consistency, a quality
check was made for every individual image by just
one person.

The results of the first 1000 images have shown
an over-sensitivity in the detection network; there-
fore, the low imperfection markers have been elim-
inated from the annotations. This greatly increased
the annotation speed as over 50% of all annotations
had been of low severity and could be observed in
nearly every layer. Figure 4 shows the statistics in
more detail. Relating the number of annotations to
the total number of layers (2544), 46.6% of all layers
show some line defects, of which most are classified
as medium, with presumably no influence on the
part properties. However, there are 4.8% with a
critical severity, while 26.0% of all layers show point
imperfections and 10% of the annotated features are
area imperfections. In 5.4% of the annotations, a

foreign object is seen in the powder spread. In all,
52.3 % of the layers are perfect, as long as the low
imperfections are not considered. As more than one
imperfection can be positioned within one layer, the
sum of the percentual values is higher than 100%.

The detection/segmentation problem is modeled
as a two-class problem, with the classes failure and
background. In the training process, the images and
their annotations are randomly flipped horizontally
to artificially create more diverse training data. The
common way to measure the accuracy of an object
detection system is the average precision (AP) and
average recall (AR) based on correct detections of
true positives (TP), wrong detections of false posi-
tives (FP), undetected objects, i.e., false negatives
(FN) and true negatives (TN), for the background
using the intersection over union (IoU) on the
bounding boxes, i.e., masks. An object counts as a
TP if the IoU is larger than a given threshold, and
as FP otherwise. The IoU is defined as the ratio of
the intersection of the bounding boxes and their
union, as shown in Eq. (1).

=
area of overlap

area of union
=

ð1Þ

Precision ¼ TP

TP þ FP
¼ TP

all detections
ð2Þ

Recall ¼ TP

TP þ FN
¼ TP

all objects
ð3Þ

F1 ¼ 2
AP � AR
APþ AR

ð4Þ

Since the precision and recall can differ depend-
ing on the given threshold, the IoU is usually
averaged over different thresholds, e.g., from 0.50 to
0.90. The AP and AR can then be calculated for each
threshold of IoU by Eqs. II and III. Combining all
the AP results in the mean AP and mean AR, if only
1 of 10 objects is detected by the network, the
precision might be very good. However, in this case,
the recall would be very low, with only 10%. By
detecting more objects, the precision might
decrease, as more detections do not match the given
bounding boxes with the given threshold of the IoU.
Hence, both values should be analyzed together.

Some layers have more than one entry that
overlap with the real object. In such cases, the first
entry is considered as TP, the others as FP. This
rule is used with the PASCAL VOC 2012 metric:26,27
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Fig. 4. Number of annotations for line, point, and area failures with
different severities related to all detections.
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e.g. five detections (TP) of an item are counted as
one correct detection and four as false alarms.28

For the interpretation of the mean average pre-
cision and recall, the relationships are important.
Even the human eye will not always distinguish
between a low severity powder bed imperfection and
a failure, which has to be marked as medium. Some
of those FPs might be failures with the severity low,
as there is an anomaly visible, but the influence on
the part is assumed to be neglectable. Most impor-
tant is the FN score for the imperfections with high
severity. Hence, a manual evaluation of the network
is required.

To obtain an unbiased estimation of the accuracy,
the data have been divided into training data,
validation data, and testing data in a 7-fold cross-
validation split. The training data are used to train
the network and to adjust its weights, while the
validation data are used for early stopping when the
F1 score (Eq. (IV)) did not improve for 10 epochs.
The F1 score is calculated on a maximum of 100
detections and averaged over IoU thresholds from
0.50 to 0.95 and all area types [@AP and AR
(IoU = 0.50:0.95 | area=all | maxDets = 100)]. To
avoid data leakage, the split is performed among the
build jobs and not within. To analyze the influence
of the preprocessing, the training has been per-
formed once with the original dataset, hence with-
out high pass and tonal value corrections. Those
tests show that the engine itself is capable of
detecting the failures even without the preprocess-
ing. The human eye often has problems detecting
contrasts in those image settings. However, the
results without the preprocessing is ranked at the
lower end of the scale compared to other training
scenarios, which are shown in Fig. 5. Here, within
one dataset, the larger bubble shows the test result,
whereby the smaller datapoint represents the last
epoch evaluation during the training.

The test splits show a wide range in the mean
average precision (mAP) and recall (mAR). Most

splits had better testing results than within the last
epoch evaluation; however, sets V, VI, and VII show
an opposite behavior. The training sets are very
different in the part structure. Some test sets
include thin walls oriented in the recoater direction,
which might be detected as failure, if the engine was
not trained to differentiate those parts from line
defects. Hence, a comparable validation with a
uniform test set is required. As double detections
are punished with down-scoring the precision, this
validation is made manually for a real build job, and
is not based on the PASCAL VOC 2012 metric.

First, typical and atypical failure images are fed
into the engines. Here, the individual scores for the
different severities are measured and used for
defining the alarm threshold. Then, those engines
are applied to the manual test images. All failures
need to be detected with as few false alerts as
possible. Especially, the critical failures should not
be missed. For the medium failures, the alarm
threshold could be adapted further with the risk to
miss out some of those detections. Overall, 16 layer
images are fed to all seven networks. In total, 6
critical flaws, 7 high flaws, and 4 medium flaws
should be detected by the networks. Those elements
consist of 1 foreign object, 8 line flaws, and 1
massive area flaw, where the individual failures can
not be distinguished. Net_I, _IV, _V, and _VII show
no misses within the detection, but the false alerts
range from 16.8% (Net_V) down to 1,2% (Net_VII).
The Net_II, _III, and _VI have missed one or two
medium flaws in this test. Hence, Net_VII is
recommended for the LC-ProMo system, as it shows
the overall best performance in the manual test.
The manually checked precision and recall is the
best in this test, whereby the PASCAL VOC 2012 is
also good.

Imperfections versus Failures

Next, analyses have been carried out to differen-
tiate between different failure intensities and their
influences on the part properties. Eleven build jobs
with 15 tensile test specimens flat on the platform
(YXZ) have been built. To reduce the influence of
inhomogeneous cooling times, the overall job is only
6.12 mm high. The specimens have been spread to
increase the probability of having powder spread
failures within the parts.

All the jobs have been built on the P395 with the
layout presented in Fig. 6. Within those jobs, no
failure has been intentionally applied. They have
only been provoked by not cleaning the recoater
after every job. However, all imperfections are
random. The part properties profile for those jobs
is the standard EOS default job
PA2200_120_110_Balance (layer thickness
120 lm). The build job temperature is set to
178.5�C and the recoating velocity is 120 mm/s.
With a 6-mm preheating base layer, 4-mm part free
space and 3-mm cover layer, the overall job is just
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19.12 mm high and has a build duration of approx-
imately 20 min.

In total, there have been 81 imperfections with
contact to 36 parts marked by the annotator. Those
include 3 critical detections on two parts, 27
medium markers on 18 parts, and 57 with the
severity attribute low affecting 26 parts. Most of the
detections have been line imperfections, which are
very often observed for several layers on the same
position. One of the critical detections is shown in
Fig. 6b. It is a random critical point failure. This
failure is even visible on the next layer and also
within the final part. It is expected that powder
attached to the outer side or the top of the recoater
is responsible for point defects in general. Most
probably, this powder falls off from time to time, and
results in this huge powder pile (Fig.6b), which is
now visibly interfering with test specimen 5 from
job-7-L. Overall, 11 jobs have been built to obtain a
sufficient data background for the analysis.

When comparing the fracture position with the
recoating-failure position, it is not possible to iden-
tify a direct correlation between powder spread
imperfections and part fracture. In Fig. 7, the
specimens with a failure intersection have been
marked depending on the flaw severity: critical
(red), medium (yellow) and low (blue). Those spec-
imens are set to the X-axis of the diagram, defined
by the job name and the part specimen number,
which had the contact to the powder spread imper-
fection. For specimen 1 in build job 5, a very good
correlation is visible. In job 7 on specimen 5, this
correlation is not directly visible. The medium or
low severity detections show a large variation, so it
is very hard to indicate a trend. To further check the
correlations, the elongation at break and the tensile
strength have been analyzed.

A box-plot diagram of the tensile strength per
specimen position over all 11 build jobs is presented
in Fig. 8a. The cross marks the average value, the

(a) (b)

Fig. 6. (a) Build job layout with DIN EN ISO 527 tensile test specimens type 1BA, with enlarged shoulders (total specimen is 100 mm long), all
specimens start at 4 mm. (b) Monitoring image with critical point flaw in build job 7 on specimen 5.
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first as well as the third quartile, and the median is
given by the box and the line within the box,
respectively. The whiskers indicating the range of
the data without outlier datapoints. Outliers are
marked in yellow, whereby measurements were
considered to be outliers if the value differs from the
respective quartile by more than 1.5 times the
interquartile distance. The specimens with a critical
powder spread detection are marked in red. The
tensile strength of those specimens shows no sig-
nificant deviation, as the variation in the measure-
ments is already very high. Even for this shallow
build job, the typical strength reduction towards the
corners (specimens 1 and 15) is visible, which points
towards inhomogeneous powder bed temperatures
and laser power exposure. The same systematic for
plotting the data is applied for the elongation at
break in Fig. 8b. The reduced elongation at break
for the corner position is also visible. Even if there
are some outliers, specimens with the critical detec-
tions are within the normal measurement variation.
All the outliers are positioned at the upper end of
the testing range. Having a view of the specimens
which show a very high elongation at break is a
common observation in LS.29

For a better understanding of the delamination, a
CT scan of specimen 5 from job 7 was made. The
defect itself is already 5 mm long and goes through
the full part. The defect is positioned in the middle
of the 2-mm-high part. Within the delamination, a
shift of the layers towards the recoater movement

direction is visible. It is expected that the defect has
moved the molten mass a little, so the layers show a
small displacement. In Fig. 9a, a part cross-section
on top of the defect is shown, indicating that there is
already some standard porosity. In Fig. 9b, all
standard pores are blacked out, so only the delam-
ination is shown. The red line indicates the fracture
position, while the green line shows the measure-
ment position for the defect on the part. The
distance between those lines is approximately
3.5 mm. Considering the measurement failures
and part shrinkage, as well as the scaling factors,
the limits for the correlation should not be set to be
too narrow. The part failure is even visible at the
outside of the part, as shown in the fringed light
surface topology measurement in Fig. 9c.

Considering the measurement displacement and
the large powder spread defect, the significant
deviation between the fracture position and the
powder spread defect position can be explained. The
tensile strength and the elongation at break are also
low, but no significant dependency can be derived
from the data sets so far available. In build job 6, a
specimen with an elongation at break of 0.03%
points less than the defect part value was measured.

The fracture correlation of specimen 1 out of build
job 5 was very good, but the tensile strength and
elongation at break do not show any trend, as the
properties are above or average.

(a)

(b)

Fig. 8. Boxplots of 11 build jobs for the (a) tensile strength over all 15 specimen positions and (b) elongation at break over all 15 specimen
positions (Color figure online).
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SUMMARY AND CONCLUSION

A new monitoring system for automatic powder
spread analysis and quality assurance has been
developed, which can be retrofitted to existing EOS
P39X-systems at an affordable price. The system
can be installed and used fully autonomously, and
can detect a wide variety of powder spread flaws.

In total, seven different powder spread imperfec-
tion detection networks have been trained and
validated on a selection of layer images and one
real build job. Here, the engine VII has shown the
best overall performance and is therefore used for
the system. In the tests so far, all failures have been
detected and only three layers have been false
positive. This performance of the system allows a
reliable quality control of the build jobs, and will
gain a better understanding of the powder spread-
ing process itself in the future.

The influence of powder spread imperfections on
part properties was preliminarily investigated. As
only two specimens suffered from high or critical
powder spread flaws, the dataset is not sufficient for
reliable forecasts and predictions. For both speci-
mens, the fracture position was close to the recoat-
ing failure. The tensile strength and the elongation
at break do not show a significant deviation. Even a
trend to lower properties is only shown in one of the
specimens, where the imperfection is already visible
on the surface of the part. Based on the recoating
failure type, the affected part might delaminate,
which has a more significant influence on the
mechanical properties in z-direction than within
the build plane. Thus, investigating the influence on
different build directions is another requirement for
further investigations.

Those results support the findings of Tylor,13 as
she was able to predict the fracture position but it
was hard to see a correlation to the mechanical
properties. Thus, the remaining question is: what
would be the elongation at break and tensile
strength of these specimen without the defects?

In conclusion, the database is not large enough for
secured assessments of the powder spread influence
on the part properties. More specimens should be
measured and analyzed. Using provoked and arti-
ficially introduced powder spread imperfections
might lead to a better picture of the recoating
process and its influence on the final part.

Furthermore, preliminary tests have shown the
potential of the system for a recoater filling level
detection, resulting in an early warning for the
operator to adapt the powder fluidization, the
dosing values, or refill the powder vessels. For a
large job, this might save a lot of money. Addition-
ally, preliminary investigations have shown that
the system can detect part curling, which allows an
objective solution for the no-curl-temperature
search. Overall, the presented process monitoring
system is the next step towards a consistent quality
concept for laser sintering part manufacturing.
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