Skip to main content
Log in

Three-Dimensional Characterization of Selective Laser Melted Graphene Oxide-Reinforced Ti-48Al-2Cr-2Nb Alloy

  • Processing-Microstructure-Property Relationships in Additive Manufacturing of Ti Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of graphene oxide (GO) on selective laser melting (SLM) of Ti-48Al-2Cr-2Nb (at.%, Ti-4822) has been investigated using three-dimensional (3D) focused ion beam-scanning electron microscopy (FIB-SEM) tomography. The reconstructed 3D images from FIB-SEM tomography reveal the micro-/nano-features in the SLMed Ti-4822, including the dual-phase (α2 + γ) cellular structure and various types of defects. With the addition of 0.3 wt.% GO, the formed α2 cells are significantly refined, the γ phase network becomes thinner and more tightly packed, and the volume fraction of γ phase increases while that of α2 decreases. In addition, micro-cracks and nano-pores are observed in the SLMed Ti-4822, while only nano-pores with dramatically reduced size and number density are characterized in the SLMed Ti-4822 with GO. Our 3D characterization results have provided experimental evidence indicating that the addition of GO can improve the manufacturability of SLM of Ti-4822.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Li, Y. Yang, J. Liu, Y. Zhou, M. Li, S. Wen, Q. Wei, C. Yan, and Y. Shi, Acta Mater. 136, 90. (2017).

    Article  Google Scholar 

  2. L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, and S. Collins, Acta Mater. 58, 1887. (2010).

    Article  Google Scholar 

  3. M. Seifi, A.A. Salem, D.P. Satko, U. Ackelid, S.L. Semiatin, and J.J. Lewandowski, J. Alloys Compd. 729, 1118. (2017).

    Article  Google Scholar 

  4. H. Yue, Y. Chen, X. Wang, S. Xiao, and F. Kong, J. Alloys Compd. 766, 450. (2018).

    Article  Google Scholar 

  5. X. Zhang, B. Mao, L. Mushongera, J. Kundin, and Y. Liao, Mater. Des. 201, 109501. (2021).

    Article  Google Scholar 

  6. X. Zhang, C.J. Yocom, B. Mao, and Y. Liao, J. Laser Appl. 31, 031201. (2019).

    Article  Google Scholar 

  7. D. Cheng and L. Li, Int. J. Extreme Manuf. (2020)

  8. Y.-K. Kim, S.-J. Youn, S.-W. Kim, J. Hong, and K.-A. Lee, Mater. Sci. Eng. A, 763, 138138 (2019).

    Article  Google Scholar 

  9. Y.-K. Kim, J.K. Hong, and K.-A. Lee, Intermetallics 121, 106771. (2020).

    Article  Google Scholar 

  10. B. Lin, W. Chen, Y. Yang, F. Wu, and Z. Li, J. Alloys Compd. 830, 154684. (2020).

    Article  Google Scholar 

  11. W. Chen and Z. Li, Additive Manufacturing of Titanium Aluminides, 1st edn. (Elsevier, Cambridge, 2019), pp 235–263.

    Google Scholar 

  12. G. Baudana, S. Biamino, B. Klöden, A. Kirchner, T. Weißgärber, B. Kieback, M. Pavese, D. Ugues, P. Fino, and C. Badini, Intermetallics 73, 43. (2016).

    Article  Google Scholar 

  13. W. Ge, C. Guo, and F. Lin, Procedia Eng. 81, 1192. (2014).

    Article  Google Scholar 

  14. J. Gussone, Y.-C. Hagedorn, H. Gherekhloo, G. Kasperovich, T. Merzouk, and J. Hausmann, Intermetallics 66, 133. (2015).

    Article  Google Scholar 

  15. L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, and J. Eckert, SFF Symp. Texas 547 (2011)

  16. T. Vilaro, V. Kottman-Rexerodt, M. Thomas, C. Colin, P. Bertrand, L. Thivillon, S. Abed, V. Ji, P. Aubry, and P. Peyre, Adv. Mater. Res. 89, 586. (2010).

    Article  Google Scholar 

  17. X. Shi, H. Wang, W. Feng, Y. Zhang, S. Ma, and J. Wei, Int. J. Refract. Met. Hard Mater. 91, 105247. (2020).

    Article  Google Scholar 

  18. P. Gao, and Z. Wang, J. Alloys Compd. 854, 157172. (2021).

    Article  Google Scholar 

  19. X. Zhang, B. Mao, Y. Liao, and Y. Zheng, J. Mater. Res. 35, 1998. (2020).

    Article  Google Scholar 

  20. Y. Chen, H. Yue, and X. Wang, Mater. Sci. Eng. A 713, 195. (2018).

    Article  Google Scholar 

  21. C. Kenel, G. Dasargyri, T. Bauer, A. Colella, A.B. Spierings, C. Leinenbach, and K. Wegener, Mater. Des. 134, 81. (2017).

    Article  Google Scholar 

  22. N. Vanderesse, E. Maire, M. Darrieulat, F. Montheillet, M. Moreaud, and D. Jeulin, Scr. Mater. 58, 512. (2008).

    Article  Google Scholar 

  23. E. Wielewski, D. Menasche, P. Callahan, and R. Suter, J. Appl. Crystallogr. 48, 1165. (2015).

    Article  Google Scholar 

  24. Y. Lu, M. Wang, Z. Wu, I. Jones, M. Wickins, N. Green, and H. Basoalto, MRS Commun. 10, 461. (2020).

    Article  Google Scholar 

  25. C. Kübel, A. Voigt, R. Schoenmakers, M. Otten, D. Su, T.-C. Lee, A. Carlsson, and J. Bradley, Microsc. Microanal. 11, 378. (2005).

    Article  Google Scholar 

  26. Y. Zheng, S. Antonov, and H. Fraser, Microsc. Microanal. 26, 2078. (2020).

    Article  Google Scholar 

  27. R.A. Williams, M. Uchic, D. Dimiduk, and H. Fraser, Microsc. Microanal. 12, 1234. (2006).

    Article  Google Scholar 

  28. R. Williams, D. Bhattacharyya, G. Viswanathan, R. Banerjee, and H. Fraser, Microsc. Microanal. 10, 1178. (2004).

    Article  Google Scholar 

  29. R.A. Williams, D. Huber, J. Sosa, and H. Fraser, Microsc. Microanal. 20, 322. (2014).

    Article  Google Scholar 

  30. S.J. Randolph, J. Filevich, A. Botman, R. Gannon, C. Rue, and M. Straw, J. Vac. Sci. Technol. B 36, 06JB01. (2018).

    Article  Google Scholar 

  31. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J. Simmons, Scr. Mater. 55, 23. (2006).

    Article  Google Scholar 

  32. T. Searles, J. Tiley, A. Tanner, R. Williams, B. Rollins, E. Lee, S. Kar, R. Banerjee, and H. Fraser, Meas. Sci. Technol. 16, 60. (2004).

    Article  Google Scholar 

  33. J.M. Sosa, D.E. Huber, B. Welk, and H.L. Fraser, Integr. Mater. Manuf. Innov. 3, 10. (2014).

    Article  Google Scholar 

  34. C. Guo, J. Li, Z. Wang, and J. Wang, Mater. Des. 151, 141. (2018).

    Article  Google Scholar 

  35. T. Vilaro, C. Colin, and J.-D. Bartout, Metall. Mater. Trans. A 42, 3190. (2011).

    Article  Google Scholar 

  36. C. Kenel, D. Grolimund, J.L. Fife, V.A. Samson, S. Van Petegem, H. Van Swygenhoven, and C. Leinenbach, Scr. Mater. 114, 117. (2016).

    Article  Google Scholar 

  37. J. Gussone, G. Garces, J. Haubrich, A. Stark, Y.-C. Hagedorn, N. Schell, and G. Requena, Scr. Mater. 130, 110. (2017).

    Article  Google Scholar 

  38. C. Kenel and C. Leinenbach, J. Alloys Compd. 637, 242. (2015).

    Article  Google Scholar 

  39. Y. Liu, L. Shi, G. Yang, W.Z. Jin, and J. Cui, Cryst. Res. Technol. 54, 1900054. (2019).

    Article  Google Scholar 

  40. Y. Liu, R. Hu, T. Zhang, H. Kou, J. Wang, G. Yang, and J. Li, J. Mater. Eng. Perform. 25, 38. (2016).

    Article  Google Scholar 

  41. D. Lin, C.R. Liu, and G.J. Cheng, Acta Mater. 80, 183. (2014).

    Article  Google Scholar 

  42. Z. Hu, D. Wang, C. Chen, X. Wang, X. Chen, and Q. Nian, J. Mater. Res. 34, 1744. (2019).

    Article  Google Scholar 

  43. Q. Yan, B. Chen, and J. Li, Carbon 174, 451. (2021).

    Article  Google Scholar 

  44. Z. Zhao, P. Bai, R.D.K. Misra, M. Dong, R. Guan, Y. Li, J. Zhang, L. Tan, J. Gao, T. Ding, W. Du, and Z. Guo, J. Alloys Compd. 792, 203. (2019).

    Article  Google Scholar 

  45. E.O.T. Olakanmi, R. Cochrane, and K. Dalgarno, Prog. Mater. Sci. 74, 401. (2015).

    Article  Google Scholar 

  46. D. Wang, Z. Wang, K. Li, J. Ma, W. Liu, and Z. Shen, Mater. Des. 162, 384. (2019).

    Article  Google Scholar 

Download references

Acknowledgments

X. Zhang and Y. Liao gratefully acknowledge the faculty startup support provided by the Iowa State University. D. Li and Y. Zheng appreciate the financial support by the faculty startup funding from University of Nevada, Reno.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiliang Liao or Yufeng Zheng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 875 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, D., Liao, Y. et al. Three-Dimensional Characterization of Selective Laser Melted Graphene Oxide-Reinforced Ti-48Al-2Cr-2Nb Alloy. JOM 73, 1795–1803 (2021). https://doi.org/10.1007/s11837-021-04666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04666-2

Navigation