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This article establishes a multiscale modeling framework for the parametri-
cally homogenized crystal plasticity model (PHCPM) for single crystal Ni-
based superalloys. The PHCPMs explicitly incorporate morphological statis-
tics of the y — )’ intragranular microstructure in their crystal plasticity con-
stitutive coefficients. They enable highly efficient and accurate calculations for
image-based polycrystalline microstructural simulations. The single crystal
PHCPM development process involves: (1) construction of statistically equiv-
alent RVEs or SERVESs, (2) image-based modeling with a dislocation-density
crystal plasticity model, (3) identification of representative aggregated
microstructural parameters, (4) selection of a PHCPM framework and (5) self-
consistent homogenization. Novel machine learning tools are explored at every
development phase. Supervised and unsupervised learning methods, such as
support vector regression, artificial neural networks, 2-means, and symbolic
regression, enhanced optimization, model emulation and sensitivity analysis
methods are all critical components of the multiscale modeling pipeline. The
integration of machine learning tools with physics-based models enables the
creation of powerful single crystal constitutive models for polycrystalline

simulations.
Nomenclature GND Geometrically necessary dislocation

PHCPM Parametrically homogenized crystal SVR Support vector regression

plasticity model ANN Artificial neural network
ML Machine learning
ICME Integrated computational materials

engineering
RAMP Representative aggregated

microstructural parameter INTRODUCTION
SERVE Statistically equivalent representative Machine learning (ML) is firmly within the

volume element scientific zeitgeist, and its increasing application
FIB Focused ion beam in the Integrated Computational Materials Engi-
SEM Scanning electron microscope neering (ICME) discipline has not been an excep-
CPFEM  Crystal plasticity finite element model tion. ICME advocates the integration of physics-
GA Genetic algorithm _ based modeling at multiple material scales and
g%;& I%L(;l;a%)&f;l};l;;?fvny analysis emphasizes the links between these scales.’?
3SD Statistically stored dislocation Machine learning is enabling a paradigm shift in
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ICME, allowing new protocols and algorithms that
have been developed within the computer science
community, to challenge the conventional
approaches in computational materials science.
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The acceleration to data-driven machine learning
methodologies has been recognized by national and
industry leadership such as the National Academy
of Sciences and MGI.?*

Two important developments have promoted the
pervasiveness of machine learning in scientific
fields. They are: (1) the standardization and gener-
alization of data handling procedures such as large-
scale data collection, organization and processing
and (2) the rapid availability and maturity of
professional-grade machine learning software pack-
ages.”" In conjunction with increased computa-
tional power, this confluence of events has created a
powerful set of tools, for which there are generally
accepted principles for model training and valida-
tion. Other noteworthy advantages of machine
learning include standard approaches to compli-
cated high-dimensional data sets, general regres-
sion and classification algorithms, model reduction
techniques and integration with uncertainty quan-
tification methods. With the complexity involved in
generating multiscale materials models, it is
expected that Computational Materials Science will
benefit from the machine learning evolution.

A few roadblocks however limit the potential for
the impact of machine learning techniques in the
materials science community. One is the difficulty
and economic cost associated with obtaining and
standardizing experimental data sets. In the last
decades, researchers have developed automated
systems to produce high-throughput testing and
micrographs.®'! However, this field is still evolv-
ing, and significant investment is required before
these types of systems proliferate. With limited
experimental data to fill the calibration space,
accurate physics-based models must be used as
substitutes for physical data generation. A second
impediment is the lack of physics and thermody-
namics in the machine learning-based predictions,
partly because of their roots in the computer science
and data science communities. Physics-based mate-
rial models use the laws of thermodynamics and
mechanics to provide predictions for physical behav-
ior. They are governed by rational principles and
assumptions for interpolating and extrapolating
material response even where data are scarce or
nonexistent. The thermodynamic constraints are
often difficult to enforce in purely data-driven
models. In the absence of the physics drivers, these
predictions lack robustness and generality of
applications.

Typically, a hierarchical multiscale framework
involves the creation and interfacing of multiple
physics-based models across length scales through
material characterization and mechanics. Paramet-
ric homogenization in multiscale modeling has been
introduced in Refs. 12,13,14 and 15 for Ti alloys to:
(1) overcome prohibitive computational costs of
other homogenization methods and (2) bridge length
scales through explicit microstructural representa-
tion in component-scale models. The physics-

informed, thermodynamically consistent PHCMs
differ from phenomenological models in their depic-
tion of constitutive parameters with their depen-
dencies. Constitutive coefficients are functions of
representative aggregated microstructural parame-
ters (RAMPs), which are defined as a minimal set of
morphological and crystallographic descriptors that
fully characterize the lower scale microstructural
features in terms of any constitutive response
function. Examples of candidate RAMPs include
the volume fraction of different phases, size distri-
butions of inclusions, measures of crystallographic
texture, etc. General forms of the PHCM equations
are a priori chosen to reflect fundamental deforma-
tion characteristics, such as objectivity, anisotropy,
tension-compression asymmetry, history/path-de-
pendence, etc. Machine learning tools generate
constitutive coefficients as functions of the RAMPs,
using data sets generated from micromechanical
simulations at the lower scale. This effectively
constrains the machine learning-predicted func-
tions to be within the thermodynamic framework
of constitutive relations. Once finalized, the PHCMs
offer orders of magnitude speedup in computational
efficiency, while retaining accurate dependency on
the lower scale microstructure.

This article develops a parametrically homoge-
nized crystal plasticity model (PHCPM) for single
crystal Ni-based superalloys, e.g., René 88DT. It
demonstrates a powerful application of machine
learning tools for hierarchical multiscale modeling
of materials, incorporating lower-scale phenomena
and mechanisms into higher-scale constitutive mod-
els. The PHCPM constitutive relations bridge the
morphology and mechanisms of the intragranular
vy —9"  microstructures and their crystalline
response. The morphology and distribution of the
secondary )’ precipitates in the y matrix strongly
influence its overall mechanical and failure
response.'%® Correspondingly, the single crystal
PHCPM for René 88DT is created to exhibit an
explicit dependence on the underlying 7y —9
microstructure and associated mechanisms. The
article delineates steps in the construction of this
PHCPM, demonstrating how machine learning
techniques complements physics-based modeling at
every development stage. Applications of machine
learning techniques, such as support vector regres-
sion,'® artificial neural networks,?° k-means clus-
tering®! and symbolic regression,?? enhance the
physics-based tools at each step of the PHCPM
development.

The article begins by outlining the steps in
developing the multiscale PHCPMs in Sect. 2. Sec-
tion 3 summarizes the dislocation-density crystal
plasticity model and a genetic algorithm-based
optimization procedure for calibrating this model.
In Sect. 4, a global sensitivity analysis, driven by an
artificial neural network model emulation, is dis-
cussed for RAMP identification. A k-means acceler-
ated self-consistent homogenization scheme is
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developed in Sect. 5 to create a database for map-
ping RAMPs to the PHCPM constitutive parame-
ters. Finally, in Sect. 6, symbolic regression is
employed to create an explicit analytical expression
for the PHCPM constitutive coefficients. The article
ends with a summary in Sect. 7.

STEPS IN THE DEVELOPMENT
OF THE MULTISCALE PHCPM
FOR NI-BASED SUPERALLOYS

The parametrically homogenized crystal plastic-
ity model (PHCPM) advances the conventional
single crystal, crystal plasticity models used to
simulate the thermomechanical response of poly-
crystalline microstructures of Ni-based superalloys,
e.g., René 88DT. The present framework extends
the parametric homogenization approach, estab-
lished in?*725, for uniformly distributed ;' phase in
the microstructure, represented by simple unit cell
models. However, in reality, y — 7' microstructures
of a grain in the polycrystalline Ni-based superal-
loys contain many nonuniformly dispersed y’ pre-
cipitates in the y matrix, as shown in Fig. 1. These
precipitates act as a vast array of obstacles to resist
dislocation motion. The parametrically homoge-
nized model in this work incorporates statistical
distributions of precipitate descriptors that are
representative of the actual intragranular
microstructure rather than the mean values.

Statistically equivalent representative volume
elements (SERVEs) of the subgrain microstruc-
tures, developed in Refs. 26 and 27, constitute
optimal computational domains for
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micromechanical simulations to evaluate effective
microstructural response variables. The microstruc-
ture-based SERVEs are determined from the con-
vergence of their statistics of morphological
characteristics to those of the parent microstruc-
ture. Reference 26 shows that most average and
local microstructural and mechanical properties are
sufficiently approximated by SERVEs containing <
200 o' precipitates. Self-consistent parametric
homogenization of these SERVEs is conducted for
developing single crystal PHCPMs with explicit
dependence on the RAMPs that describe the y —
statistics of the intragranular microstructure as
shown in Fig. 1b. This hierarchical constitutive
model enables a highly efficient computational
method of determining the mechanical behavior at
the polycrystalline scale, while representing the
underlying y — 7’ microstructural descriptors.

A sequence of computational operations is exe-
cuted for building a parametrically homogenized
crystal plasticity model, as depicted in Fig. 2. The
core steps of this workflow are given below.

I. Generating SERVEs for Image-Based
Micromechanical Analysis Systematic devel-
opment of statistically equivalent RVEs or
SERVESs (see Fig. 1b) requires the generation
of probability distribution and correlation
functions of characteristic descriptors, repre-
senting microstructural morphology and crys-
tallography and their correlations, with data
obtained from experimental imaging methods.
The data extraction process uses a high-
throughput experimental system that couples

(b)

Fig. 1. Multiscale representation of a polycrystalline Ni-based superalloy René 88DT: (a) top-down multiscaling showing polycrystalline
microstructure with intragranular y — " microstructure within individual grains and (b) hierarchical multiscaling showing a statistically equivalent
RVE (SERVE) of the y — 7’ microstructure, contributing to the PHCPM of a point in a single crystal of the superalloy.
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Fig. 2. Flowchart of the sequence of computational procedures in the single crystal PHCPM development process for the Ni-based superalloy
René 88DT, showing integration with various machine learning techniques.

II.

a focused ion beam (FIB) and a scanning
electron microscope (SEM) to extract serially
sectioned y —y' mlcro§raphs from a single
crystal of René 88DT.?®%7 The section images
are stacked and registered for reconstructing a
3D voxelized microstructure, and a sequence of
image processing methods is apphed to the
data set to segment the prec1p1tates " The 3D
volume thus constructed is statistically char-
acterized by quantifying microstructural dis-
tributions of important descriptors such as
precipitate size, shape, position and y channel
width. With these morphological and spatial
statistics, microstructure generation algo-
rlthms have been developed to create SERVESs
n.2527 The SERVEs represent the optimal
computatlonal domain of the y — 7' microstruc-
ture for a range of morphological statistics and
mechanical responses.
Image-Based Crystal Plasticity FEM for the
SERVE & Calibration A two-phase dislocation
density-based crystal plasticity FE model
(CPFEM) has been developed in**?° to simu-
late the elasto-plastic response of 7 —9/
microstructures. The crystal plasticity model
exhibits dislocation density evolution, tension-
compression asymmetry, yield strength anom-
aly as well as non-Schmid behavior because of
the incorporation of dislocation mechanisms
such as multiplication, annihilation, cross slip,
anti-phase boundary shearing and Kear-Wils-
dorf (KW) locks. Calibration of the crystal
plasticity model requires single crystal
mechanical testing experiments over a wide
range of orientations, temperatures and strain
rates. A genetic algorithm (GA)-based opti-
mization method is implemented to minimize
the error between the experimental data and
the simulated mechanical response to deter-

mine an optimal set of material parameters.

Some details of the crystal plasticity model and

calibration are discussed in Sect. 3.

Sensitivity Analysis for Identifying Key

RAMPs Statistical parametrization of the y —

7" microstructure is conducted during statisti-

cal characterization of the experimentally

reconstructed microstructure. The representa-
tive aggregated microstructural parameters or

RAMPs comprise a minimal set of these

microstructural parameters, which are identi-

fied by measuring and comparing each param-
eter’s influence on the mechanical response.

Global sensitivity analysis provides a system-

atic procedure to quantify this degree of influ-

ence and decide on the final selection of

RAMPs. This step is elaborated in Sect. 4.

Constructing a CPFEM-Generated Database of

Homogenized Response Functions Many

SERVEs are generated from a range of target

RAMPs by varying their y — y/ microstructural

descriptor statistics. For each SERVE, image-

based crystal plasticity simulations are per-
formed, and a homogenization scheme is ap-
plied to determine the overall single crystal
response that is consistent with that of the y —

7 SERVE. By repeating this process, a data-

base is constructed that links the RAMPs that

parametrize the y — ' statistics with the cor-
responding parameters of the homogenized
single crystal constitutive law.

V. Generating Single Crystal PHCPM for Ni-
based Superalloys The y — ) microstructural
CPFEM-generated database contains the dis-
crete relationship between the heterogeneous
y — 7 microstructures and the material prop-
erties of the higher scale single crystal law.
Machine learning operates on these data sets
to establish functional dependencies and ex-

III.

Iv.
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plicit RAMP-based functional forms of the
coefficients that define PHCPM equations.

The multi-step PHCPM development process, along
with the application of machine learning tech-
niques, is depicted in Fig. 2. Machine learning is
used to accelerate the computational methods in
many of the steps. In the crystal plasticity model
parameter calibration, optimal parameters are eval-
uated by a genetic algorithm (GA) with local
minimization features through support vector
regression. In the RAMP identification process
Sobol analysis®® and artificial neural networkde
provide the foundation for an efficient global sensi-
tivity analysis of the y — 7' statistics. In CPFEM-
generated database construction, 2-means cluster-
ing offers a strategy for accelerating a large number
of complex simulations during self-consistent
homogenization. Symbolic regression is employed
in the generation of the single crystal PHCPMs to
provide functional forms for mapping RAMPs to the
PHCPM constitutive parameters. The parametric
homogenization  process is computationally
intractable without the significant efficiency
enhancement afforded by these machine learning
techniques.

DISLOCATION DENSITY-BASED CRYSTAL
PLASTICITY MODEL FOR ; — ;'
MICROSTRUCTURE AND PARAMETER
CALIBRATION

The Crystal Plasticity Model

The micromechanical behavior of individual
phases of the y — 7 microstructure is described by
a dislocation density-based crystal plasticity consti-
tutive model developed and detailed in Refs. 23 and
25. It captures dislocation density evolution at
various temperatures, strain rates, orientations
and applied loading. The finite deformation model
is based on the multiplicative decomposition of the
deformation gradient F = F.F, into a plastic com-
ponent F,, corresponding to the mapping of refer-
ence material elements to a stress-free intermediate
configuration and an elastic component F.. The
elastic response of the material is characterized by
the evolution of the second Piola-Kirchhoff stress in
this intermediate configuration as:

S =C(T): E. (1)

where T is temperature, C(T) is the temperature-
dependent fourth order elasticity tensor and E, is
the elastic Green-Lagrange strain. For FCC and L1,
structures of the y and )’ phases of the superalloy
exhibiting cubic symmetry, C reduces to three
independent components. Linear temperature
dependence with the same slope is assumed for all
the components. Using standard Voigt notation, the
components of C are:
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Cyy = CY) — BT, Cyy = CY) — BT, and Cyy = C\Y) — BT
(2)

where [ is a material constant and C(lol), CE&) and C(lg)
are elasticity components at zero absolute temper-
ature. The plastic flow rate of the material is
kinematically confined to the crystallographic slip
directions mj along specific slip planes nj for a
given slip system o. The plastic velocity gradient L,
is written as:

. Nslip
L, =F,F,'=> i"m}@n; (3)
o=1

where Ng;, is the number of slip systems and * is
the plastic slip rate. Slip occcurs on the octahedral
slip systems for both the y and }’ phases and
additionally on cube slip systems for the 7y’ precip-
itate phase. Following the Orowan equation, a flow
rule is adopted to define the plastic slip rate as:

o0 0 _i : Tgff : o
; —pmbexp< kBT>Smh< : >s1gn(t) (4)

cut

where p? is the mobile dislocation density, 6 is the
Burgers vector, @ is the activation energy for slip,
and 7, is the cutting stress. The effective stress is
defined as 13 := #(|t*| — 144 — 7). A is the Heav-

iside function, 1 = (F'F.S,): (m}®n%) is the

e ¢
resolved shear stress, 1;, . is the passing stress,

and 77 is a critical resolved shear stress. 1 is zero for
the y phase and is dependent on additional temper-
ature and orientation dependent mechanisms for
the 7 phase. For a given slip system, the in-plane
(parallel) and out-of-plane (forest) dislocations
induce slip resistance stresses 1, and 7, respec-
tively. These slip resistance stresses are given in
terms of the parallel and forest dislocation densities,
p, and p?, as:

P — ksT
T;ass = CPSGb P;; + p%w Tgut = Co Ci bz pﬁ (5)
avbjw

where c,s, Cqv, Cjwy are material constants and G is
the shear modulus.

The evolutions of p; and p; are formulated as
projections of the overall statistically stored dislo-
cation (SSD) density pZ, and geometrically neces-
sary dislocation (GND) density pg,, onto the slip
plane. The unstressed material contains an initial
SSD density pj, resulting from processing. With
applied loading, this dislocation content evolves in
time according to the relation:

Pssd = CifPip + CdfPap + CaaPoq + Ctabiy (6)

where ¢, cqr, Caq and ¢, are j”-dependent material
constants controlling the competition between the
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dislocation multiplication and annihilation mecha-
nisms. Further details regarding the evolution of
the individual mechanisms for pf. , p},, p%, and p} , as
well as the evolution of Pand and p?,, are provided in
Refs. 23 and 25. The final consideration is a
definition of ¥ for the ' phase to capture anti-phase
boundary (APB) shearing and cross-slip mecha-
nisms due to KW locks. The critical resolved shear
stress is given as:

o o
= { Tc,apb + ‘Cc,kw

¢ o .
Te cube on cube slip systems

on octahedral slip systems

(7)
, ol . .
where 7, = fwb 1 s the stress required for
dislocations to overcome the APB energy, I'1y; is

the APB energy on the octahedral planes, t*, is the

c.kw
resistance due to KW locks, and 7, is the slip

resistance stress on the cube planes. The particular
non-Schmid model for 7, , outlined in Ref. 25, is
parametrized by three material properties, viz. A, k1
and xy. This slip resistance due to KW locks controls
the tension-compression asymmetry, orientation
dependence and temperature dependence of the
material.

Summary of Experiments Used for Model
Calibration

The set of experiments described in Refs. 29 and
30 for the superalloy SC-16 is chosen for calibrating
the dislocation-density crystal plasticity model in
Sect. 3. The composition and microstructure of SC-
16 superalloy are similar to those of the René 88DT
superalloy. The experiments represent a wide range
of applied strain rates, load orientations and
temperatures.

Eight constant strain rate experiments from?’
(set &1) and six constant strain rate experiments
from®° (set &9) are chosen for material parameter
calibration. In the set of experiments &7, single
crystals are loaded to 5% true strain, and the stress-
strain plots are documented. These experiments are
performed at 1123 K with all six combinations of
([001], [011], [111]) orientations and strain rates
1072571 and 105! and at 1223 K for the [001]
orientation at both the strain rates 1072s~! and
10-%s~ L. The set of experiments &5 only reports yield
stresses at a constant strain rate of 10735~ rather
than the entire stress-strain plots. The yield
stresses selected for calibration from this experi-
mental database are those derived from mechanical
tests loaded to > 2.5% plastic strain. Each experi-
ment is represented by a single combination of
([001], [011], [111]) orientations and (923 K, 1023 K)
temperatures.

Genetic Algorithm-Based Calibration
of Crystal Plasticity Model Parameters

The parameters in the dislocation-density crystal
plasticity model for y — 7’ superalloys in Sect. 3 may
be grouped into four sets, expressed as:

1. Elasticity: CY, C1), C, p

2. Yield and Rate Sensitivity: @, pssp,, Cpss Cjws Cav,
Capb

3. Hardening Evolution: ¢, c4f, Caas Cia

4. Anomalous Yield and Tension-Compression
Asymmetry: k1, kg, A

The four elastic constants in set 1 characterize the
parametrization of C(T) in Egs. (1) and (2). Cali-
brating with respect to the linear portions of the
four experimental stress-strain curves correspond-
ing to a 10~2s~! strain rate in &; in Sect. 3.2, they

are determined to be C<101> =256 GPa, C(l(;) =185

GPa, C{) = 167 GPa and f = 49.2 MPa/K.

For GA-based calibration, the 13 inelastic param-
eters in sets 2, 3 and 4 are lumped into a 13-
dimensional material property vector, denoted as P.
The calibration process determines an optimal
vector P =P, that matches the predictions of
simulation with the experimental data set. Defining
an error metric ¢ as the sum of simulation-exper-
iment errors as:

_ W Jlomm — 62" | de..
d) - Zwi (max( eXPi) X max( expi)

icé, Ozz €zz
__sim; _exp; (8)
+ w(2) |O-Y — Oy | €max
Z J =P
jE&s Oy ° €max

wgl) and w'? are the experiment weights with the

constraint ;. wEl) + 2 e wJ@ =1. The super-
scripts sim; and exp; denote the ith experimental
and simulation variables in the set, and Gy is the
yield stress as defined in Ref. 30. €5, is a fixed
strain that is set to 0.05, and o,, and ¢,, are the
stress and strain components rotated into the
appropriate experimental loading orientation.
Determining the global minimum of ¢ characterizes
a successful calibration, which is conducted using a
machine learning-enhanced genetic algorithm (GA).

GAs are global optimization schemes with the
ability to stochastically traverse the parameter
space and avoid the pitfalls of pure gradient-based
methods.?! Some of the necessary benefits of GAs for
CPFE calibration include the global search to avoid
local minima of ¢, unstructured sampling of the
material property input space and massive paral-
lelism in the implementation. The GA applied to the
crystal plasticity calibration problem is outlined in
Fig. 3 with the following steps:
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Fig. 3. Flowchart of the genetic algorithm used for material parameter calibration. The path shown by gold arrows shows the additional material
parameter update provided by the support vector regression (SVR) emulation.

L. Initialization Initialize a random set of n material
parameter vectors or a  “generation,”
P {P P( ) PE:)}-

2. Evaluatlon Evaluate the error metric ¢ for each
choice of P e 2 to assess proximity to the
expenmental data.

3. Evolution Based on performance measured by ¢,

determine the next generatlon of material prop-

erties vectors 20tV by applying binary trans-
formations and standard mutation/crossover

operators to the previous generation 2.

Termination Repeat the process restarting at

the evaluation step with 201 until an optimal

P. is discovered in the latest generation, deter-

mined by a tolerance ¢ on ¢.

The evaluation step, which involves running multi-
ple expensive micromechanical simulations, is com-
pletely parallelizable, since the error computation of
each material property vector is independent of the
others in the same generation.

Accelerated Calibration Error Minimization
with Support Vector Regression (SVR)

A general shortcoming of GAs and other global
optimization strategies is that they are prone to
relatively slow convergence in comparison with
gradient-based methods. To overcome this limita-
tion, the GA is augmented by a machine learning-
based approach for approximating the location of
local minima. In the evolution step of the GA,
mutation and crossover operators use the informa-
tion of the current generation 2% to determine
guesses for elements of the next generation 20+1.
Instead of only pursuing parameter space guesses
from these operators, an additional suggestion

Pﬁjﬁ'l) is added to 2"V with the goal of approxi-
mating a gradient-based estimate.

During the GA iterations, the landscape of the
error metric ¢ is probed at an increasing number of
discrete points, which is used to create a smooth
representation of the landscape. The process of
approximating ¢ falls under the regression category
of supervised learmng techniques. The support
vector regression (SVR) method'®?? is chosen
because of its ability to handle sparse data and its
smoothness properties. The key feature of support
vector regression is the nonlinear translation of
data into an infinite-dimensional feature space,
where regression is executed. The result of SVR is
an emulated model of ¢ that does not require
performing CPFE simulations to sample from it
and is therefore a computationally efficient approx-
imation of the calibration error.

For each generation of the GA, an updated SVR
emulation of ¢ is generated through training and
testing with five-fold cross-validation to the data
from all previous and current generations. The
material property vectors from all completed gen-
erations are assembled, normalized and replicated
into five sets, each partitioned into training and
testing data sets, 80% to 20%, respectively. In each
of these five replicated sets, 20% different data are
designated as the testing data. The SVR is trained
to each of the training data sets and attempts to
predict the corresponding testing data set. The
accumulation of testing error over these five parti-
tions yields the overall cross-validation error. This
process is repeated for different values of SVR
hyper-parameters,”'? such as the regularization
parameter and radial basis function kernel coeffi-
cient, and the cross-validation error is computed for
each. The hyper-parameters, corresponding to the
least cross-validation error, are selected as the SVR
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model parameters. Subsequently, the SVR is
trained once more with all available data to gener-
ate the final emulated model of the ¢ landscape.
Although the actual ¢ is difficult to minimize, it is
efficient to find local minima of its SVR emulation
using the constrained Jacobian-free solver
COBYLA.?*3* This procedure is followed to propose

an additional candidate solution P\:*!) for every new
generation of GA. This feature drives the global
optimization in probable directions through the
material parameter space. The entire algorithm is
summarized in the flowchart shown in Fig. 3.

Results of Material Parameter Calibration

For calibrating the two-phase dislocation density-
based crystal plasticity model, a SERVE containing
50 grecipitates is generated for the SC-16 superal-
loy,?%%" for which the loading conditions follow the
experiments. The GA with SVR-assisted accelera-
tion optimization strategy is applied to the 13-D
material parameter space. For high dimensions, an
important consideration is the method used to
represent possible choices for numerical represen-
tation of material parameters. In GA, each dimen-
sion of a given P is a material property within some
finite sampling range that is discretized into finite
sampling intervals. When searching through high
dimensions and many orders of magnitude, it is
beneficial to transform the finite intervals of each
material property into a logarithmic scale for uni-
form sampling across scales. The algorithm
described in Fig. 3 generates the calibrated material
parameters given in Table I. Comparisons between
experiments and final simulation results are given
in Fig. 4. Figure 4a shows the sample single crystal
experimental and simulated stress-strain plots at
various orientations, temperatures and strain rates
that comprise a subset of the training data set &;.
The validation experimental and simulated stress-
strain plots for conditions [001], 1223 K, 1073s~!
and [001], 1123 K, 10 %s~! are shown in Fig. 4b.

GLOBAL SENSITIVITY ANALYSIS OF y — 9/
MICROSTRUCTURAL DESCRIPTORS
AND RAMP SELECTION

Global Sensitivity Analysis (GSA)

The morphology of the intragranular precipitate-
matrix microstructure as shown in Fig. 1 is charac-
teristic of Ni-based superalloy single crystals. There

are many possible parametrizations of these
microstructures within some tolerance of their
representation. Example statistical distributions
that distinguish )’ precipitate morphology include
the size, aspect ratio and degree of sphericity, while
characterization of 7’ precipitate spatial configura-
tions include the two-point correlation function,
local volume fraction distribution, channel-width
distribution and distance-to-edge distribution.?” For
parametric homogenization leading to the PHCPMs,
it is prohibitive to incorporate detailed microstruc-
tural representation to the higher scale. It is
important to have an optimal set of reduced param-
eters for representing the microstructure, while
retaining the accuracy of microstructural influence
on response prediction. This motivates the use of
GSA to determine an optimal set of RAMPs that
affect the overall yield and hardening response of
the microstructural SERVE.

GSA is an uncertainty quantification method that
is used to determine the degree to which each
component of input R of a function f influences its
output Y. In the PHCPM calibration process, R is
the vector of all candidate RAMPs considered, f is
the computationally expensive crystal plasticity
model, and Y := (oy, H) where oy is the 0.02% offset
yield stress and H is the hardening modulus defined
by the best linear approximation to the slope of the
stress-strain curve after reaching oy. The candidate
RAMPS included in R are all the parameters
representing microstructural characteristics
described in Ref. 27. It is a set of 19 parameters
describing the statistical distributions of y’ precip-
itate descriptors, e.g., radius, aspect ratio, shape,
two-point correlation, distance to edge and local
volume fraction.

Global sensitivity analysis, also called Sobol’
analysis or variance-based sensitivity analysis,
avoids restrictive assumptions such as linearity or
independence, implementation issues in high
dimensions, dependence on the local behaviors of
the function and unintuitive interpretations of the
resultant measure.?® To overcome these issues, GSA
defines multiple orders of sensitivity indices for
each candidate RAMP in R that account for the
global behavior of £.23® The approach is to addi-
tively decompose the variance of the mechanical
response output Y into partial variances of condi-
tional expected values of the components of R.
Explicitly, the variance of each mechanical output
Y® in Y is decomposed as:

Table 1. List of calibrated values of inelastic parameters

Q Q)] PSsSD, (m72) Cjw Cps Cav

Ce (] cs K1 K2 A KM

4.95 x 10719 2.0 x 101! 126 098 390

1.5 x 10°®

21x10% 339 813 008 0.04 392




4412

1000
a L
o 800 ———3e
g L
N L
© 600 |
[7)} 5 sy
[2}
o L
=
» 400 F
E‘ ——EXp. =+=Sim. [001], 1123K, 1e-5/s
e 200 —Exp. —=—Sim. [001], 1223K, 1e-2/s
8 —Exp. ——Sim. [011], 1123K, 1e-2/s
—Exp. ——Sim. [111], 1123K, 1e-2/s
TR N N WU TN TR NN TN TN TN TN NN SN U TN N NN SN SN 1

0 0.01 0.02 0.03 0.04 0.05
True Strain ¢,,

(@)

Cauchy Stress o,, (MPa)
S
o

Weber, Pinz, Ghosh

800

»

o

o
T

N

o

o
T

——Exp. ——Sim. [001], 1223K, 1e-3/s
——Exp. —e—Sim. [001], 1123K, 1e-6/s

I T T SN T T T T T T N T N TN 1

0 0.01 0.02 0.03 0.04 0.05
True Strain ¢,,

(b)

I T T T 1

Fig. 4. (a) Calibration: sample single crystal experimental and simulated stress-strain curves at various orientations, temperatures and strain
rates. (b) Validation: single crystal experimental and simulated stress-strain curves for loading cases, not part of the calibration data set.
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V#® .= Varg, (Er_,(Y® | R))) (9b)

Vi(jk) = VarRij(ERNij(Y@) |Ri,R;)) = Vi =V;  (9¢)

where d is the dimension of R, R; is the ith
component (candidate RAMPs) of R, and R.; is the
vector containing all components of R except the ith
component, i.e., R = R_; UR;. These definitions also
apply to Vj; for the pair of indices ij. This variance
decomposition leads to the definition of the first
order sensitivity index for the i-th candidate RAMP
as:

v®
sk . Ti (10)
i Var(Y®)

These sensitivity indices essentially reveal what
fraction of the k-th response output variance is
governed by the variance of the i-th candidate
RAMP. They account for the entire input space in
their computation and therefore yield a global
measure of sensitivity.

To apply the sensitivity analysis framework to the
micromechanical problem for Ni-based superalloys,
many virtual microstructural SERVEs are created
using generation methods described in Refs. 26 and
27. Each SERVE is uniaxially loaded to 5% strain
and simulated using CPFEM to determine the yield
and hardening response. This process is executed
for about 13,000 different microstructures,

characterized by different instantiations of R. This
data set creates a discrete representation of the
CPFE model f that connects the microstructure
parameters to the mechanical response.

Artificial Neural Network Model Emulation
of Dislocation Density-Based CPFE Model

To numerically compute the sensitivity index for
each candidate RAMP, the variance of the condi-
tional expected values Varg (Er_ (Y® |R;)) is
required. Thus, the conditional distribution
f(Y®)|R;) must be sampled from repeatedly for
many values of R;. This sampling is an expensive
operation since evaluating f implies performing a
CPFE simulation of a SERVE. However, the com-
putational cost is greatly reduced by using the
discrete data set of generated SERVEs and the
corresponding mechanical responses to create an
emulated model of f for statistical sampling.

Similar to the SVR approach, a regression-type
machine learning technique is trained from the
discrete data to replace the expensive dislocation-
density CPFE model. In this case, an artificial
neural network (ANN) is selected to represent the
expensive model f over SVR, since more data points
exist. The ANN is trained and tested with five-fold
cross-validation to the CPFE data. A three hidden
layer network is selected, and the chosen hyper-
parameters for cross-validation are the Ly penalty
regularization parameter and the number of nodes
in the hidden layers. The input candidate RAMPs
describing each virtual microstructure are normal-
ized onto a unit hypercube before operations.

Selection of RAMPs for y

The trained ANN enables rapid Monte Carlo
sampling of Vi(k) and evaluation of the first-order

— 9 Microstructures
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Table II. Sensitivity indices for the top six candidate RAMPs from microstructural descriptors

Descriptors RAMP (mean and standard deviation) Yield strength (%) Hardening modulus (%)
Volume fraction Hy 64.7 57.3
Oy 3.1 2.2
Channel width He 21.2 27.6
o¢ 3.6 6.1
Shape exponent Uy, 1.3 2.8
On 14 1.3

sensitivity index SEk) for each candidate RAMP
using Eq. 10. The sensitivity indices are used as a
screening method rather than a strict variance
decomposition because of complications with input
covariances. The result of applying GSA to the
13,000 y — 7' microstructural SERVEs is the identi-
fication of the top-ranking sensitivity indices of
RAMPs, listed in Table II.

All the remaining candidate RAMPs in R yield
first-order sensitivity indices < 1% and are thus
excluded from the RAMP selection. In conclusion,
the RAMPs considered for incorporation in the
PHCPM equations are:

e (u,, 0,): Mean and standard deviation of the local
volume fraction distribution;

e (u., o.): Mean and standard deviation of loga-
rithm of the channel width per mean radius
distribution;

e (u,, 0,): Mean and standard deviation of the
logarithm of the shifted shape exponent distri-
bution.

The shifted shape exponent distribution quantifies
the degree of sphericity or cuboidalness of the }’
precipitates, discussed in Ref. 27.

The mean volume fraction and mean channel
width are the most dominant RAMPs with respect
to the yield strength and hardening modulus. The
variance of the channel width and local volume
fraction also make a significant contribution to
these response functions. This influence is justified
by the increased dislocation flow through large vy
matrix channels devoid of ' precipitates, which is
consistent with plastic strain localization in contour
plots given in Ref. 26. The six RAMPs p,, oy, ., 0c,
4, and o, are representations of microstructural
descriptors to be wupscaled through parametric
homogenization for developing the PHCPMs.

DEVELOPING THE PARAMETRICALLY
HOMOGENIZED CRYSTAL PLASTICITY
MODEL (PHCPM) FOR NI-BASED
SUPERALLOY SINGLE CRYSTALS

Ni-based superalloys exhibit a variety of funda-
mental deformation characteristics such as aniso-
tropy, strain rate and temperature dependency in
their single crystal response that are attributed to
deformation mechanisms in the intragranular y — )

microstructure. The PHCPMs represent the
microstructure-dependent mechanical response of
the underlying complex y — 7" microstructure in an
upscaled, reduced-order form. Prior to the develop-
ment of PHCPMs with constitutive parameters that
are explicit functions of the RAMPs, it is necessary to
determine an appropriate constitutive framework,
which represents the aforementioned mechanical
response characteristics and is consistent with the
homogenized y — 7' crystal plasticity response.'®'3

Relations Defining the Single Crystal PHCPM

The chosen form of the PHCPM equations corre-
sponds to the activation energy-based crystal plas-
ticity model given in Ref. 36. The formulation follows
from the same kinematic description in Eq. 3, but
deviates from the lower-scale constitutive laws
through the introduction of a thermally activated
flow rule with phenomenological hardening evolution
laws. With the assumption of dislocation motion
being a thermally activated process, an Orowan-type
flow rule defines the plastic slip rate as:

. Quct A (T =s2) | .
P = 9o €Xp (— k;_:;" 1- o a sign (1)

(11)

where 7}, is the reference slip rate, Q. is the activation
energy for slip, kp is the Boltzmann constant, and t* is
the resolved shear stress. The athermal slip resistance
s* is due to parallel dislocations, and s?,, := s% +s%
is composed of the thermal slip resistance due to forest
dislocations s? and an additional cross slip resistance
8% < due to the temperature-dependent formation of
Kear-Wilsdorf locks.

Self-hardening and latent hardening effects are
dependent on the in-plane and out-of-plane multi-
plication and flow of dislocations. Initial values are
prescribed for both athermal and thermal slip
resistances, s, and s.o. The evolution of these slip
resistances is governed by:

Nslip
. Bl . . B B
$2 =Y nP’ sin(nf, t})]
p=1
Nslip
2= h|j cos(nf, t})|
p=1
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where t} := mZ x nZ, and h* and h* are matrices
of interaction coefficients between slip systems. For
simplicity, the interaction coefficients are assumed
to be equivalent, i.e., h*f = h?¥ = h*f. They evolve
and saturate according to:

h? = g’ h?  where h’ =hy|1 - ST

BT &
sign 1- T
Ssat

Ssat
(13)

where s” , is the saturation slip resistance, r is the
saturation rate exponent, g*¥ are hardening coeffi-
cients, and hg is the initial hardening parameter.
Values of the material parameters and details of
this constitutive law are given in Ref. 36.

Two constitutive parameters that govern the yield
and hardening behavior are selected as RAMP-
dependent variables for establishing a direct con-
nection to the underlying complex y — 7’ microstruc-
ture. These are the initial thermal slip resistance s,
and the initial hardening parameter ho. Let the
vector of these material parameters be denoted
M := (s.0,h0). Determining the explicit mapping
from the RAMPs to the material parameter vector
M of the PHCPM is a primary goal.

Self-consistent Homogenization
for Determining Upscaled Response

Homogenization or volume-averaging of the
SERVE response for developing the PHCPMs
requires the solution of the SERVE-based microme-
chanical problem with appropriate boundary condi-
tions. Various approaches have been suggested to
define boundary conditions for heterogeneous
micromechanical models for homogenization. They
include the periodic boundary conditions,?” affine
boundary conditions and self-consistent

Weber, Pinz, Ghosh

schemes.?° The self-consistent methodology, as
shown in Fig. 5a, is selected for constructing the
PHCPMs in this work. The multiscale domain
consists of an intragranular y — ) SERVE that is
embedded in an outer homogeneous domain defined
by the PHCPM constitutive behavior. The interface
is constructed as a handshake region with overlap-
ping homogeneous and heterogeneous domains.
Displacement continuity is enforced on both bound-
aries of the handshake region, and traction conti-
nuity is satisfied on the heterogeneous-handshake
interface. A self-consistency condition is enforced
within the handshake domain, which is the solution
to the problem defined as:

Find the set of homogenized material parameters
M., such that :

M., = arg min(¥) with
M

(14a)

‘P:/Ot‘/QZ(M):D(M)dQ—/Qa:ddQ‘dt (14b)

where (M) is the Cauchy stress and D(M) is the
rate of deformation tensor in the PHCPM-based
homogeneous domain, while ¢ is the Cauchy stress
and d is the rate of deformation tensor in the
heterogeneous y — Y domain.

The self-consistency condition of Eq. 14a defines an
optimization problem. For a fixed heterogeneous
SERVE with a fixed set of RAMPs, multiple coupled
simulations must be performed in an iterative proce-
dure to determine the optimal M,. This set of itera-
tions is very computationally expensive and is a major
factor in limiting the parametric homogenization
process. A procedure is first described to demonstrate

Homogeneous
Domain

Handshake
Region

Heterogeneous
Domain

(a)

3000
——Elastic (PHCPM)
[ e Elastic (Heterogeneous)
= 2500 ——Plastic (PHCPM)
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=2 2000 |
=
2 1500
[0
[a]
51000 |
[0]
| et
|
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O 2, 2
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Fig. 5. (a) Multiscale domain for self-consistent homogenization, consisting of an intragranular y — y’ SERVE embedded in a PHCPM-defined
homogeneous domain with a handshake interface region for satisfying self-consistency conditions, and (b) comparing the elastic and plastic
energy densities as a function of the true strain in the PHCPM-based homogeneous and CPFEM-based heterogeneous regions of the multiscale
domain, after convergence of the self-consistent M... The results are for a uniaxial [001] constant strain rate loading.
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a base strategy to execute this material property
optimization. Subsequently, it is shown in Sect. 5.3
that employing a modification invoking an unsuper-
vised learnlng technique, viz. k-means clustering,?’
greatly improves the efficiency of the procedure and
makes the optimization computationally feasible.

For a given embedded heterogeneous microstruc-
ture and a chosen external loading, the base opti-
mization process solves for (i) the deformation
history F(X,?) of every material point X through
time ¢ and (ii) simultaneously for the self-consistent,
optimal M, in a staggered iterative fashion. Major
steps of the procedure are delineated as:

1. Initialize With an initial guess M for material
properties of the homogeneous region, the mul-
tiscale domain with the embedded SERVE in
Fig. 5a is simulated for a given load history on
the external boundary. The simulation yields a
time-evolving displacement field for every node
of the mesh and consequentl?r the time-depen-
dent deformation gradient F at every integra-
tlon point of the element. The initial estimates of
MY are unlikely to satisfy self-consistency and
need 1terat1ve update.

2. Holding F fixed, find M%) Next, the defor-
mation history for every element is held fixed at
the values obtained from step 1 and applied
respectively to each element of the homogeneous
mesh separately. This decouples the stress
response and state variables in each element
from those of 1ts contlguous neighbors. A new
generation of MUtV is created by optimizing for
the material property vector that best satisfies
the self-consistency expression in Eq. 14a for
the decoupled problem. This decouphng facili-
tates the search for the next M +! ) satisfying the
self-consistency condition. However, it does not
account for global equilibrium and the element
boundary displacement, which are both restored
through corrective iteration.

3. Holding M/ ﬁxed find F*) With the new
generation of MY the multiscale domain is
loaded again to ﬁnd a new set of deformation
histories FV for each element. The staggered,
iterative algorithm in stelzs 2 and 3 is continued
until convergence of MV is reached.

Accelerated Strategy for Parametric
Homogenization with k-Means Clustering
of Deformation Histories

Determining the self-consistent M, is a computation-
ally expensive undertaking. It is necessary to acceler-
ate the optimization performed in Step 2 of Sect. 5.2,

i.e., searching for the next self-consistent M+ for

each fixed set of decoupled deformation histories F®

An unsuperwsed learning technique viz. k-means
clustermg2 is applied for this acceleration. The essen-
tial idea is to recognize that self-consistency is a
volume-averaged measure and can be approximately

satisfied by performing an optimization on a reduced
number of representative elements undergoing char-
acteristic decoupled deformation histories.

The k-means clustering algorithm attempts to
group similar mathematical objects into 2 groups by
minimizing variance in intra-group distance. Apply-
ing k-means to the optimization problem provides
an appropriate method to choose representative
elements and their respective weightings. Accord-
ingly, the unsupervised clustering of deformation
histories requires the definition of an inner product
to quantify the degree of closeness between time-
dependent deformation histories of any two ele-
ments. The selected inner product .# of the defor-
mation history of X; and that of Xj is given as:

4 (Fx,, Fx;)
fo Xi,t) — F(Xj,2)) : (F(X;,¢)

Jo dt

—F(X;,t))dt

(15)

where T is the total time of the simulation and
Fx(t) := F(X,t). The k-means algorithm searches
forr a set of £k representative groups
F ={F1,F9,...,F1}, where each group is the
deformation history for a set of elements. The
optimal partition of £ groups is defined as:

S sEEFY) (18

where FY, is the mean or representative deformation
history for the g-th group of deformation histories
Z 4. Each cluster is therefore represented by a mean
deformation history. In the limit, £ =1 approxi-
mately corresponds to volume-averaging the defor-
mation histories of all elements and applying it to a
single element, while & = Njmenss corresponds to
simulating every element with its respective decou-
pled deformation history. A sufficient number of
clusters is determined to be about 100-200 by
assessing the incremental error reduction with the
addition of new clusters.

Within step 2, for each fixed set of deformation

history F, clusters are established and integration
points are simulated under their representative
decoupled deformation histories for successive itera-

tions of M“*Y. The sequence of choices for MY is the
outcome of the numerical optimizer, where the objec-
tive function is the self-consistency condition. For this
approximation, the integral in the self-consistency
Eq. 14ais modified to be the weighted volume average
of the mechanical response. The weight of each
representative deformation history is the total volume
of all the elements associated with the group.

The staggered iterative algorithm typically
requires only 2-3 iterations of trial deformation
histories to find a self-consistent M, with < 1%
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error. A representative plot of the satisfaction of the
self-consistency condition is shown in Fig. 5b for a
constant strain rate loading of the multiscale
domain. The volume-averaged elastic and plastic
energy densities are defined as ¢:d. and ¢:d,,
respectively, where d. and d, are the elastic and
plastic rate of deformation tensors in the deformed
configuration. These are compared to demonstrate
the efficacy of the homogenization procedure. This
method provides a tremendous speedup to an
otherwise numerically intractable optimization
problem. The self-consistent homogenization proce-
dure is next applied to about 120 microstructural
SERVESs, characterized by different instantiations
of RAMPs, for different loading orientations. For
each SERVE, the procedure associates a particular
set of RAMPs to a computed M,. These linkages
between microstructure and material properties are
stored in a database and are the basis for the final
stage of parametric homogenization.

MICROSTRUCTURE RAMPS TO MATERIAL
PROPERTY MAPPINGS FOR SINGLE
CRYSTAL PHCPM

Symbolic Regression for RAMPs to Material
Property Mapping

This is the final step in the PHCPM development.
It creates an explicit mapping between the RAMPs
characterizing the intragranular y — 7' microstruc-
ture and the material properties of the homoge-
neous single crystal plasticity constitutive model.
The database generated in the previous section is a
discrete representation of this mapping. Supervised
learning tools are used in this section to provide
functional forms of the PHCPM constitutive param-
eters in terms of RAMPs. The symbolic regression
method?**® is selected for its efficacy, ability to
provide quick intuitions into the trends of the
database and differentiability properties, which

Weber, Pinz, Ghosh

enable further analgsis techniques such as uncer-
tainty propagation.’

The symbolic regression method searches for a
functional representation between inputs and out-
puts. It generates nested functions as a graph of
elementary function evaluations, such as sinx and
x2, connected by common operations, such as addi-
tion and multiplication. The goal of the optimization
process is to search over the space of all graphs of
this type to identify the particular one that best
represents the input-output relationship of the
database. Genetic programming is used to explore
the space of candidate graphs for symbolic regres-
sion. It is a global optimization method similar to
GA. A generation of candidate graphs is proposed
and evaluated on its performance at learning an
input-output data set. A new generation is evolved
from the current generation by applying mutation
and crossover operators. The operators essentially
flip nodes and swap subtrees between the best
graphs of the generation. The evolutionary algo-
rithm is repeated until the best functional repre-
sentation of the data is discovered within an error
tolerance. Further details of supplementing this
process to penalize complexity and enable cross-
validation methods are provided in Ref. 41.

The symbolic regression method operates on the
database generated from self-consistent homoge-
nization of the y — )" SERVEs. The first 90% of the
generated SERVEs and their corresponding homog-
enized values of M are used to determine and
calibrate the symbolic regression model. The
remaining 10% of the database is retained as data
for model validation. The specific symbolic regres-
sion software package HeuristicsLab*® is used in
this study. The resulting functional expression of
each component of M as a function of the RAMPs is
given below. These are the fundamental compo-
nents of the PHCPM.

Functional forms of constitutive parameters for PHCPM

Initial Thermal Slip Resistance

Initial Hardening Parameter

2 2 2 2
§x0 = (allJ'v On — a0y — a3z 0y + asfhy e — as Uy + ag L, + a0, +ago;

2 Hn _
—aglly Uy — ajoln e + ariUnGn — arald, On +1113; +al4) 50

ho = <b1u3 + byl o, — by (L + ) — bapt2 0 + bsthy — belty + b7)5*0 (20)
where §,o := 1 MPa is a normalization constant and

a=[51.4,25.1,7.25,20.6,11.0,4.42,6.99,1.50-10"%,
10.7,2.53,18.7,5.47,0.445,323]

b = [3.04-10%,1.89-10%,143,115,5.93 - 10*,230,401]

19)

n
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Fig. 6. Comparing constitutive parameters (a) s.o and (b) hy generated from expressions (17) and (18) with given values of RAMPs, with the
actual data that evolves from self-consistent homogenization.

Table III. Comparison of simulation time per CPU core for various simulation domains, demonstrating the
tremendous computational efficiency of the PHCPM

Simulation domain

50 precipitate microstructure

Full single crystal of René 88DT

Micromechanical model PHCPM
1h <1ls
24 cores Single core
Intractable 3 min
(millions of precipitates) 12 cores

Results of Simulations with the Single Crystal
PHCPM

The performance of the resulting PHCPM in
Egs. 11-13 with symbolic regression trained func-
tional expressions in Eqs. 17 and 18 is assessed in
this section. Figure 6 shows a comparison of the
constitutive parameters s, and Ak generated from
expressions (17) and (18) with given values of
RAMPs, with the actual calibration data that
evolves from self-consistent homogenization. Differ-
ent RAMP values in this comparison correspond to
different realizations of the SERVE in the multi-
scale domain of the self-consistent homogenization
process. Ninety percent of the homogenized consti-
tutive parameter database from all SERVEs is used
for the calibration of the coefficients of Eqs. (17) and
(18), while 10% is retained for validation. The
validation results show that for both s.o and A,
the predicted values are generally within an accept-
able error tolerance error, implying satisfactory
accuracy.

A significant advantage of the PHCPM-based FE
simulations is that they provide tremendous com-
putational efficiency in comparison with detailed
micromechanical CPFEM simulations. Two exam-
ples are conducted to illustrate the speedup from
PHCPM-based simulations, and the results are

provided in Table III. The results correspond to a
total strain of 5%. The first example compares the
CPU time of detailed CPFEM simulations of a y — 7/
SERVE containing 50 ' precipitate with that for a
single integration point of PHCPM-based FE simu-
lations. The PHCPM-based simulations show
speedup by a factor of ~ 10° in the computational
time. In the second example, a single grain in a
polycrystalline superalloy of average grain size =
15.2um is modeled. The single crystal FE mesh
consists of 2500 linear tetrahedral elements. The
underlying y — 7 microstructure has an average
precipitate size of 65nm. A single crystal of volume
1.47 x 103nm? can accommodate between 1 and 10
million precipitates at a volume fraction of ~ 30%.
The corresponding simulation times are given in
Table III.

CONCLUSION

The objective of this article is to establish a
comprehensive multiscale modeling framework for
developing the parametrically homogenized crystal
plasticity model (PHCPM) for single crystal Ni-
based superalloys. Single crystals of these materials
are characterized by an underlying 7y—9
microstructure with a dispersion of )’ precipitates.
The PHCPMs explicitly incorporate the relevant
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statistics of lower scale y —)' descriptors in the
single crystal plasticity relations. This enables
highly efficient and accurate image-based polycrys-
talline microstructural simulations without the
need for exorbitant simulations of complex 7y — 9/
microstructures. An additional advantage of the
PHCPMs is that they can be readily used for
representing spatial variations in the y — ) mor-
phology in the polycrystalline microstructures.

The single crystal PHCPM development process
involves a sequence of computational methods, with
explicit use of machine learning. These include: (1)
construction of SERVEs for intragranular 7y —y
microstructures of single crystals, (2) image-based
simulations of SERVEs with experimentally cali-
brated dislocation-density crystal plasticity models,
(8) identification of representative aggregated
microstructural parameters (RAMPs) for the y —y/
microstructure-response mapping, (4) selection of a
PHCPM constitutive framework and (5) performing
self-consistent homogenization using a multiscale
domain to establish functional expressions of
PHCPM constitutive coefficients in terms of
RAMPs.

Novel integration of machine learning tools is
explored at every development phase for establish-
ing relations, while overcoming major computa-
tional bottlenecks. For constitutive parameter
calibration of the CPFE model, rapid minimization
of calibration error in a high-dimensional input
space is enabled by the use of SVR model emulation
in a genetic algorithm (GA) framework. Various
stochastic and heuristic global optimization tech-
niques, such as the ant colony optimization and
particle swarm optimization, are suitable for this
application. However, the key features of GAs that
make them desirable for this calibration are: (1) the
ability to randomly sample any point in the input
space with some probability in an unstructured
manner, (2) the ability to favor sampling local
regions of the input space near probable locations
of minima, (3) massive parallelism within each
generation and (4) quick computations to move to
the next generation. These characteristics enable
the SVR enhancement to create and explore refined
locally convex regions while retaining a global
depiction of the objective function landscape.

For global sensitivity analysis-based identifica-
tion of RAMPs, an artificial neural network provides
a means of sampling high-dimensional conditional
distributions constructed from relatively scarce and
expensive data. For self-consistent homogenization,
k-means minimizes the PHCPM material parameter
search optimization to only a few iterations of
reduced order computations. For generating the
RAMP to PHCPM constitutive coefficient mapping,
symbolic regression yields a simple and accurate
representation of the relationship that bridges the
material behavior across length scales. The combi-
nation of these unique machine learning tools with

Weber, Pinz, Ghosh

a structured approach to multiscale modeling
enables rigorous upscaling for image-based
microstructural modeling.

The single crystal PHCPM exhibits orders of
magnitude speedup over its explicit microstructure
counterpart. This capability permits location-speci-
fic analysis of y —} intragranular microstructures
within polycrystalline ensembles. In summary, the
PHCPM development process demonstrates the
seamless integration of physics-based models and
data-driven methods to create significantly compu-
tationally advantageous models for material
response in the ICME paradigm.
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