Skip to main content
Log in

Grain Boundary and Lattice Fracture Toughness of UO2 Measured Using Small-Scale Mechanics

  • In-Situ Characterization Techniques for Investigating Nuclear Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Small-scale mechanical testing has been used to isolate the properties of individual grain boundaries and regions of the lattice in undoped UO2 polycrystals. Notched microcantilever specimens were prepared by focused ion beam milling and tested in bending. Fracture toughness values were calculated from finite element analysis of the sample geometry at fracture load using the J-integral method. Lattice and grain boundary fracture toughness values of 1.17 ± 0.16 MPa m1/2 and 1.08 ± 0.08 MPa m1/2, respectively, were obtained. The similarity between the lattice and grain boundary fracture toughness values is consistent with the preference for transgranular room-temperature fracture in UO2. The grain boundary and lattice fracture toughness values also agree well with the toughness of dense polycrystals, which suggests that microstructural-scale toughening mechanisms are limited in such samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.J. Hastings, A.D. Smith, P.J. Fehrenbach, and T.J. Carter, J. Nucl. Mater. 139, 106 (1986).

    Article  Google Scholar 

  2. K. Une, K. Nogita, S. Kashibe, and M. Imamura, J. Nucl. Mater. 188, 65 (1992).

    Article  Google Scholar 

  3. T. Zhang, R. Yue, X. Wang, and Z. Hao, Nucl. Eng. Des. 330, 463 (2018).

    Article  Google Scholar 

  4. Y. Sumi, L.M. Keer, and S. Nemat-Nasser, J. Nucl. Mater. 96, 147 (1981).

    Article  Google Scholar 

  5. C. Bernaudat, Nucl. Eng. Des. 156, 373 (1995).

    Article  Google Scholar 

  6. J.M. Gatt, J. Sercombe, I. Aubrun, and J.C. Ménard, Eng. Fail. Anal. 47, 299 (2015).

    Article  Google Scholar 

  7. Y. Zhang, P.C. Millett, M.R. Tonks, X.-M. Bai, and S.B. Biner, J. Nucl. Mater. 452, 296 (2014).

    Article  Google Scholar 

  8. V.V. Novikov, R.B. Sivov, E.N. Mikheev, and A.V.J.A.E. Fedotov, Atomic Energy, 118(2), 117 (2015).

  9. J.W. Adams, R. Ruh, and K.S. Mazdiyasni, J. Am. Ceram. Soc. 80, 903 (1997).

    Article  Google Scholar 

  10. Y. Dong, S. Hampshire, J.-E. Zhou, X. Dong, B. Lin, and G. Meng, J. Power Sources 196, 8402 (2011).

    Article  Google Scholar 

  11. H.L. Marcus and M.E. Fine, J. Am. Ceram. Soc. 55, 568 (1972).

    Article  Google Scholar 

  12. M. Rubat du Merac, I.E. Reimanis, C. Smith, H.-J. Kleebe, and M.M. Müller, Int. J. Appl. Ceram. Technol. 10, E33 (2013).

    Article  Google Scholar 

  13. S.K. Dutta and G.E. Gazza, Mater. Res. Bull. 4, 791 (1969).

    Article  Google Scholar 

  14. L. Feng, R. Hao, J. Lambros, and S.J. Dillon, Acta Mater. 142, 121 (2018).

    Article  Google Scholar 

  15. K. Harada, A. Shinya, D. Yokoyama, and A. Shinya, J. Prosthodon. Res. 57, 82 (2013).

    Article  Google Scholar 

  16. F.Y. Cui, A. Kundu, A. Krause, M.P. Harmer, and R.P. Vinci, Acta Mater. 148, 320 (2018).

    Article  Google Scholar 

  17. S.C. Finkeldei, J.O. Kiggans, R.D. Hunt, A.T. Nelson, and K.A. Terrani, J. Nucl. Mater. 520, 56 (2019).

    Article  Google Scholar 

  18. J.B. Wachtman, M.L. Wheat, H.J. Anderson, and J.L. Bates, J. Nucl. Mater. 16, 39 (1965).

    Article  Google Scholar 

  19. S. Brinckmann, C. Kirchlechner, and G. Dehm, Scr. Mater. 127, 76 (2017).

    Article  Google Scholar 

  20. X. Tian, L. Ge, Y. Yu, Y. Wang, Z. You, and L. Li, J. Alloys Compd. 803, 42 (2019).

    Article  Google Scholar 

  21. K. Yamada, S. Yamanaka, and M. Katsura, J. Alloys Compd. 271–273, 697 (1998).

    Article  Google Scholar 

  22. H. Xiao, X. Wang, C. Long, Y. Liu, A. Yin, and Y. Zhang, J. Nucl. Mater. 509, 482 (2018).

    Article  Google Scholar 

  23. M.T. Aybers, R. Artir, A.A. Aksit, and S. Akbal, Mater. Charact. 57, 182 (2006).

    Article  Google Scholar 

  24. B. Gong, D. Frazer, T. Yao, P. Hosemann, M. Tonks, and J. Lian, J. Nucl. Mater. 516, 169 (2019).

    Article  Google Scholar 

  25. H. Xiao, X. Wang, C. Long, and H. Chen, J. Nucl. Mater. 524, 247 (2019).

    Article  Google Scholar 

  26. S.-C. Lee, H.-R. Lee, C.-Y. Joung, and Y.-W. Lee, J. Nucl. Sci. Technol., (Suppl. 3), 819 (2002).

  27. Y.-H. Ma, Z.-G. Wang, J.-H. Ouyang, S.J. Dillon, L. Feng, and Y.-J. Wang, J. Eur. Ceram. Soc. 39, 3277 (2019).

    Article  Google Scholar 

  28. P. Chantikul, S.J. Bennison, and B.R. Lawn, J. Am. Ceram. Soc. 73, 2419 (1990).

    Article  Google Scholar 

  29. S. Gallops, T. Fett, and J.J. Kruzic, J. Am. Ceram. Soc. 94, 2556 (2011).

    Article  Google Scholar 

  30. K. Kapoor, A. Ahmad, A. Laksminarayana, and G.V.S.H. Rao, J. Nucl. Mater. 366, 87 (2007).

    Article  Google Scholar 

  31. T.R.G. Kutty, K.N. Chandrasekharan, J.P. Panakkal, and J.K. Ghosh, J. Mater. Sci. Lett. 6, 260 (1987).

    Article  Google Scholar 

  32. P. Hosemann, Scr. Mater. 143, 161 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by the Advanced Fuels Campaign of the Nuclear Technology Research and Development program in the Office of Nuclear Energy, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen J. Dillon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Finkeldei, S.C., Heuser, B. et al. Grain Boundary and Lattice Fracture Toughness of UO2 Measured Using Small-Scale Mechanics. JOM 72, 2075–2081 (2020). https://doi.org/10.1007/s11837-020-04118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04118-3

Navigation