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We present our latest results on linking the process–structure–properties–
performance (PSPP) chain for metal additive manufacturing (AM), using a
multi-scale and multi-physics integrated computational materials engineering
(ICME) approach. The abundance of design parameters and the complex
relationship between those and the performance of AM parts have so far im-
peded the widespread adoption of metal AM technologies for structurally
critical load-bearing components. To unfold the full potential of metal AM,
establishing a full quantitative PSPP linkage is essential. It will not only help
in understanding the underlying physics but will also serve as a powerful and
effective tool for optimal computational design. In this work, we illustrate an
example of ICME-based PSPP linkage in metal AM, along with a hybrid
physics-based data-driven strategy for its application in the optimal design of
a component. Finally, we discuss our outlook for the improvement of each part
in the computational linking of the PSPP chain.

INTRODUCTION

Metal additive manufacturing (AM) offers enor-
mous potential for the rapid production of net-
shaped, geometrically complex, lightweight, mini-
mum-waste and customized metallic parts without
the need for the expensive tools required in
conventional casting, subtractive or formative
manufacturing processes.1–4 Typically, metal AM
provides high degrees of freedom in all aspects of
component design, including alloy selection,
(macro-)structural geometry and microstructural
features. Some alloying systems that otherwise
would require expensive conventional processing
can be readily used in AM, such as refractory
alloys,3 high-manganese steels5–9 or titanium alu-
minides.10 One of the central benefits of metal AM
lies within its unrivalled flexibility in building
highly customized and complex geometries of
macroscopic structures.

Recent experimental studies have reported that
unique microstructures are formed during AM,
which are substantially influenced by the process

parameters.6,11–24 AM components having the same
shape and size (macroscopic structure) but made
using different process parameters possess strik-
ingly different microstructures, and hence mechan-
ical properties. Consequently, the AM process
parameters can be controlled to tailor the
microstructures. Therefore, one could simultane-
ously 3D-print the (macroscopic) structure as well
as the desirable microstructure depending on the
expected in-service performance of the specialized
component.

The high dimensionality of design space, multi-
objective design requirements, high sensitivity of
the AM parts performance to the design, and
extremely complex relationships between the design
parameters and performance have so far impeded
the widespread adoption of metal AM technologies
for structurally critical load-bearing components. In
this context, multi-scale and multi-physics inte-
grated computational materials engineering
(ICME)25 for computational (bottom–up) linking of
process–(micro)structure–properties–performance
(PSPP)26 is a viable solution.1,27–34 The role of the
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microstructure is of particular importance, as it
controls the material inherent mechanical proper-
ties but is often neglected in AM component design.

In this paper, we present a systematic ICME-
based approach that can be used for comprehensive
and optimal design for AM. Generally, in metal
manufacturing, the design space consists of alloy
composition, process parameters, and macroscopic
geometry of the structure/component, with the
design objective being the in-service performance
of the final component. The performance depending
on the thermo-chemo-mechanical (TCM) service
load may include multiple functional aspects, such
as specific energy absorption capacity, fatigue
strength/life, high-temperature strength, creep
resistance, erosion/wear resistance, and/or corrosion
resistance. The TCM processing fields, microstruc-
ture, and (macroscopic) TCM material properties
are treated as design internal/hidden variables,
which are directly affected by the design parameters
and determine the performance of the final product.
The design elements and their interaction in metal
additive manufacturing are shown in Fig. 1. It
should be noted that, according to the selected
metal manufacturing method (which can be various
metal AM methods), the chosen alloy family and
design criteria, certain constraints are imposed to
each element in the design space. The pre-imposed
constraints to the design space include the limita-
tion in the chosen alloy family (corresponding to an
allowable concentration of the principal element
and each alloying element), process parameters
which are constrained by the applied AM method
(e.g., laser powder bed fusion; LPBF) and the
utilized AM machine (e.g., power density of the
energy source), and the component geometry which
is limited due to the device it will be a part of (e.g.,
constraints on the component weight, shape and

size). Therefore, a constrained subset of the design
space is always under consideration. Moreover, the
performance space is also constrained by a set of
requirements corresponding to the design criteria
and the expected/acceptable performance (range) of
the final component under the service TCM loads
(e.g., the tolerable minimum energy absorption
capacity, which preserves the in-service functional-
ity of an additively manufactured lattice structure).

A polycrystal internal structure, i.e., microstruc-
ture, with respect to its hierarchal heterogeneity
owns the following main distinctive attributes
known as the microstructural features, which span
across different length scales:

� Meso-scale features Distribution of grain mor-
phology (size, shape and shape-axis orientation),
crystallographic texture (orientation and misori-
entation), phases, twins, and micro-precipitates.

� Submeso-scale/constitutive features Distribution
of alloying elements (elemental micro-segrega-
tion), dislocation density, porosity/micro-voids
(and other defective inclusions), and nano-pre-
cipitates.

In our previous experimental-numerical study on
high-manganese steel processed by LPBF,35 it was
shown that different aspects of microstructural
heterogeneity, in particular grain morphology and
crystallographic texture, influence the overall ani-
sotropic mechanical properties, and can be captured
using crystal plasticity modeling and computational
polycrystal homogenization.

The emerging cross-disciplinary ICME toolset
enables a physics-based and hence reliable linkage
between process and performance. In this work, we
outline an ICME-based strategy, which can be used
to connect the AM processing conditions with struc-
ture–properties–performance of an AM component
and will lead to a better understanding of their
relationship. It is hypothesized that such an
approach will allow exploiting the unique and
flexible local processing conditions of AM for tailor-
ing the local properties of AM components. The
proposed framework is illustrated through a simple
example, in which the crucial information obtained
from the results of each simulation/calculation is
passed on to the next one in the chain. This example
consists of the following steps:

� Alloy selection for AM using CALPHAD and
ab initio/first-principles calculations based on
density functional theory (DFT).

� Finite element (FE) simulation of thermal field
during AM.

� Simulation of microstructure evolution during
AM (using the results of thermal field simula-
tion), by phase field (PF) and kinetic Monte
Carlo (KMC) models.

� Crystal plasticity (CP) simulation of macroscopic
plastic flow properties by a physics-based con-
stitutive model and using the full field method

Fig. 1. The design elements and their interaction in metal additive
manufacturing.
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for computational polycrystal homogenization
through a fast Fourier transform-based (FFT-
based) spectral solver.

� FE simulation of the performance of macroscopic
structure using the CP simulation results.

In the present case study, single-phase austenitic
high-manganese steel was selected as the model
alloy and processed by LPBF to fabricate a lattice
structure which is ultimately subjected to a service
compressive load for an application corresponding
to its specific energy absorption capacity (energy
absorption capacity normalized by the weight of the
structure).

ALLOY SELECTION

The design space is initially constrained by
selecting a limited set of chemical compositions
(within an alloy family) using rapid screening of
alloy compositions based on the presumed (TCM)
properties. The approach adopted for the present
study combined CALPHAD and DFT calculations,
as schematically illustrated in Fig. 2.

First, the compositional subspace is computation-
ally screened by CALPHAD and thermodynamics-
based models. In the present study, the aim was to
design a single-phase face-centered cubic (fcc) high-
manganese steel as the model alloy. Therefore, the
vast compositional space was constrained to a
subspace associated with the high-manganese steel
family. Such an alloy remains single-phase during
AM, which reduced the number of possible design
internal variables in this case study. Further, in the
selected alloy family, the activation of twinning-
induced plasticity,36–38 which is highly dependent
on the microstructural heterogeneities, in particu-
lar crystallographic orientation distribution,35 was
used to promote a high strain hardening (rate) and

hence energy absorption capacity (see ‘‘Mechanical
Properties’’ and ‘‘Performance’’ sections). The Pre-
cHiMn-04 database39 was used for (thermodynam-
ics-based phase stability) CALPHAD calculations
within the Fe-Mn-Al-C chemistry subspace by
Thermo-Calc software. Moreover, thermodynamics-
based stacking fault energy (SFE) calculations were
performed for the selected alloy family.38,40,41 DFT-
based ab initio calculations were subsequently
performed to derive phase stabilities and energetic
material properties, such as the SFE,42–48 lattice
and elastic constants,49,50 and solid solution
strength.51–57 We selected an alloy with an SFE
being sufficiently low to promote deformation twin-
ning and, at the same time, sufficiently high to
avoid martensitic phase transformation during
deformation. Subsequently, alloys processed by dif-
ferent AM methods, with the elemental composition
X30MnAl23-x (x = 0–2 wt.% Al) were experimen-
tally screened.6 The alloy X30MnAl23-1 was iden-
tified as single-phase fcc with high work-hardening
capacity and, therefore, serves as a model alloy for
the present ICME study. In addition, a similar
methodology has also been successfully employed
and validated for high-entropy alloys.58–65

THERMAL FIELD

The output of the alloy selection (‘‘Alloy Selection’’
section) provided the required input for the work
performed in this section, i.e., the thermo-physical
properties of the alloy. The temperature (T) field in
the melt pool and heat-affected zone play the most
significant role in the formation of the as-built
microstructure. The grain morphology, texture,
segregation of solute elements, and the formation
of primary precipitates are known to be affected by
the temperature gradient near the solidification
front and by the growth velocity. The development

Fig. 2. The alloy selection approach. CALPHAD calculations are first performed to narrow the space of promising chemical compositions. More
precise calculation of phase stabilities and energetic material properties are performed using DFT-based models.
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of a stable melt pool depends on the interaction
between the moving heat source (laser beam), the
material in various states (powder, liquid, and
solidified) and the ambient environment. In the
past decade, FE-based transient thermal conduction
models that originate from laser-welding applica-
tions have been employed to simulate the temper-
ature evolution in AM processes.66,67 More recently,
comprehensive multi-physics models have been
developed to simulate the thermal-fluid flow (heat
and mass transfer) in the melt pool (using compu-
tational fluid dynamics) and the particle dynamics
in the powder bed.68–71 However, due to complex
fluid–structural interactions and extremely high
temperature gradients, the computational cost for
such type of simulations is prohibitively high for
large-scale applications. Therefore, in this work, we
used the less demanding FE method (without
consideration of fluid flow in the melt pool).

Our earlier work,72 demonstrated an FE model
for the simulation of melt pool geometry under
different scan speeds during LPBF. The implicit
thermal solver of FE software ABAQUS was used to
numerically simulate the transient thermal field
and melt pool geometry, using a moving semi-
ellipsoidal volumetric heat flux defined by the
(user-defined) subroutine DFLUX with a Gaussian
heat source intensity profile. The temperature-de-
pendent thermal conductivity was adopted from
experimental measurements on a similar alloy.73

Since the laser radiation interacts mostly with the
liquid melt pool during LPBF,74 an absorption
coefficient of 0.41 for liquid iron irradiated by an
Nd-YAG laser was chosen.75 Five scanning tracks
with a bi-directional scan strategy were modeled.
The solution domain was decomposed to the powder
bed and solidified material, which were approxi-
mated as homogenous and continuous fields. The
thermo-physical properties of the material, includ-
ing liquidus temperature (Tl), solidus temperature
(Ts), specific heat capacity, and latent heat were

calculated by Thermo-Calc using the PrecHiMn-04
database. The thermo-physical properties of the
powder were determined based on those of the solid
and the powder bed density, which was assumed to
be a fraction (40%) of that of the bulk material.76

The user-defined field subroutine (USDFLD) was
used to define a state variable (0 � u � 1), which
was initialized with u ¼ 0 representing the powder.
At each material/integration point, once the tem-
perature reached the liquidus temperature (T ¼ Tl),
the state variable changed its value to u ¼ 1
denoting the non-powder (fully liquid or dense solid)
state. For Ts � T � Tl, the powder density and heat
conductivity were linearly interpolated between
those of fully solid and liquid states. An example
of the simulated temperature field and melt pool
geometry during the bi-directional scanning in
LPBF of a (rectangular) block structure is shown
in Fig. 3.

MICROSTRUCTURE EVOLUTION

As mentioned earlier, the microstructure has
distinctive features at the meso- and submeso-
scales. Therefore, in order to sufficiently capture
the (mechanical) material properties at the macro-
scale, microstructure development needs to be sim-
ulated at both the meso- and submeso-scales. Here,
elemental micro-segregation as a decisive submeso-
structural aspect together with the grain structure
at the meso-scale were simulated, respectively using
FP and KMC models, based on the information
delivered by the alloy selection (‘‘Alloy Selection’’
section) and thermal field (‘‘Thermal Field’’ section)
calculations/simulations.

Elemental Segregation

Modeling of elemental micro-segregation during
AM requires not only the thermo-physical proper-
ties (‘‘Alloy Selection’’ section) but also the evolution
of the temperature field over time during

Fig. 3. (a) FE-simulated temperature field, (b) corresponding melt pool geometry, and (c) site-specific temperature evolution during LPBF of a
block structure.
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solidification (‘‘Thermal Field’’ section). The solidi-
fication simulations with a focus on elemental
segregation were carried out using the phase-field
software MICRESS� based on the multi-phase field
approach.77 PF and diffusion equations are derived
from a free energy functional. Numerical minimiza-
tion of the free energy of the multiphase system was
performed using Thermo-Calc to simulate the solute
partitioning and to evaluate the thermodynamics
driving force for phase transformations. This
method has been widely used to simulate the
microstructure evolution during solidification. In
addition to composition and temperature, order
parameters (PF variables) were used, giving an
extra degree of freedom. This parameter can vary
continuously from 0 (absence) to 1 (existence) for
different phases/grains, so that non-equilibrium
processes can be investigated without the necessity
to track the interface.77,78

A two-dimensional (2D) simulation was per-
formed to study the relationship between the pro-
cess parameters, the resulting thermal conditions,
and the microstructure, including micro-segrega-
tion. The FE-simulated thermal field during the
LPBF process was used as input. The vertical
direction in the modeled (2D) domain is parallel to
the build direction of the LPBF sample. The height
of the simulated area was chosen in such a way that
the total melt pool height is displayed. Since the
solidification parameters in the melt pool are dif-
ferent in every position and only a one-dimensional
temperature profile can be handled in MICRESS�,
the melt pool width was not considered, resulting in
a 70 9 10 lm simulation domain with a grid size of
0.0125 lm. Thermodynamics properties were deter-
mined using the Thermo-Calc (TCFE9 and
MOBFE4) databases. An initial structure was
defined by two phases, representing the solidified
layer and the melt. Epitaxial growth was assumed.

The height of the initial structure was set to 40 lm.
This height corresponds to the existing substrate
height in the modeled area, after lowering the
substrate plane by 30 lm before adding a new
powder layer and remelting. The melt was present
in the area above the grains. The melt composition
and starting structure were identical. At the bound-
aries of the simulated domain, insulating boundary
conditions were defined. The time step size was
automatically selected by the PF solver. The PF-
simulated cellular segregation profiles of man-
ganese and carbon (two main alloying elements in
the selected alloying system) are shown in Fig. 4.
Since carbon is a fast diffusive interstitial alloying
element, the carbon profile appears smoother than
that of manganese, which results from back-diffu-
sion of the carbon from the enriched cell boundaries
into the cells during solidification and cooling. On
the other hand, the substitutional alloying element
manganese, with slower diffusivity and lower back-
diffusion, remained richer within the inter-dendritic
regions. The temperature-dependent diffusion coef-
ficients for all the elements are derived from the
coupled Thermo-Calc mobility database MOBFE4.

Grain Structure

The melt pool dimension as derived from the
thermal field simulation along with the process
parameters (laser power, spot size, and scanning
strategy) served as direct input for simulation of the
mesoscopic grain structure formed during LPBF.
The meso-scale microstructure (or simply meso-
structure) evolution was simulated using a KMC
model,79 which is implemented in the open source
SPPARKS Potts-KMC simulator software. After 10
deposited layers, from the center of the simulated
volume, the grain structure shown in Fig. 5 was
extracted as a representative volume element

Fig. 4. PF-simulated micro-segregation pattern of (a) manganese and (b) carbon with the corresponding distribution profiles along an intercept
line (perpendicular to the build direction).
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(RVE). As shown in Fig. 5, grain sections on the
build direction (BD)-transverse direction (TD) plane
and scan direction (SD)–TD plane are dominantly
elongated towards BD and SD, respectively,
whereas grain sections on the BD–SD plane are
almost equiaxed. This is due to the specifically
chosen AM process parameters including the bi-
directional scanning pattern (without rotation or
switching between SD and TD in each AM layer),
and considering the fact that grain growth is
favorable along the maximum local heat flow direc-
tion. This is in line with the typically observed grain
shapes in AM meso-structures, as the grain sections
on BD–TD sections are columnar, meaning that
they are polarized (having an elongated shape with
relatively low aspect ratio and low angle of the
major principal axis) along BD. Here, the aspect

ratio (m � b=a, where 0<m � 1) for a given grain is
defined as the length of minor axes (b) of the best-fit
ellipse divided by its major axis length (a).

MECHANICAL PROPERTIES

The (as-built) AM microstructures have been
shown to be highly polarized (strong crystallo-
graphic texture and strongly polarized grain mor-
phology), heterogeneous and spatially non-uniform
in every possible aspect compared to their tradi-
tionally manufactured counterparts.35 These inher-
ent microstructural disparities result in a highly
anisotropic (macroscopic) plastic flow behavior.
Macroscopic mechanical response/properties of such
materials can be adequately captured by the full
field method for computational polycrystal homog-
enization using RVE coupled with physics-based CP
constitutive modeling.

The RVE extracted using the results of meso-
structure simulation (‘‘Grain Structure’’ section)
was used in CP simulations to derive the macro-
scopic mechanical response of material in terms of
homogenized (monotonic) flow curves. The

polycrystalline aggregate was set under externally
imposed macroscopic boundary conditions corre-
sponding to displacement-controlled uniaxial load
with a quasi-static (true) strain rate (_�e ¼ 10�3 s�1),
which translates to pure deformation periodic
boundary conditions on the RVE (Fig. 5). The
governing boundary value problem is then solved
using the physics-based CP model detailed in Ref.
35 to fulfill the mechanical equilibrium by the FFT-
based spectral solver of the modular CP code
DAMASK.81 The applied CP constitutive model
computes the mechanical response as well as evo-
lution and anisotropic interaction of micro-state
variables (MSVs) at deformation (slip/twin) systems
of meso-scale grid/integration points (or simply
meso-points) of the RVE, using physically motivated
formulations that take submeso-scale/constitutive
effects into account. The constitutive state variables
are unipolar and dipolar dislocation densities, as
well as twin volume fraction. The incrementally
resolved fields (stress, strain and MSVs) at the
meso-points are then homogenized over the meso-
scopic RVE to give the macroscopic response.

Since the applied constitutive model is based on
the underlying physics of crystal plastic deforma-
tion, most of the corresponding constitutive/sub-
meso-structural parameters have a clear physical
meaning and are adopted from various sources of
independent experimental measurements and/or
submeso-scale simulations (ab initio, atomistic and
discrete dislocation dynamics) associated with the
selected alloy composition (X30MnAl23-1). The
effective grain size as a constant was determined
from the grain size (number and volume fraction)
distribution of the KMC-simulated grain ensemble.
As mentioned in ‘‘Alloy Selection’’ section, the SFE,
as another material constant, was calculated from
the chemical composition of the material. The initial
dislocation density was estimated as a function of
the average cooling rate during solidification. Fur-
thermore, the results of micro-segregation

Fig. 5. (a) Grain structure as RVE extracted from the ensemble of grains after 10 additively deposited (LPBF) layers simulated using the KMC
model.79 (b) Mean grain shape (aspect ratio at orthogonal planes) and grain shape-axis orientation distribution in terms of pole figures with
respect to ellipsoidal grain principal axes (ea, eb, ec), which were analyzed and plotted by DREAM.3D software.80
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simulations (‘‘Elemental Segregation’’ section) have
been used to calculate the variance in the submeso-
scale distribution of SFE and, subsequently, the
parameters associated with the probability density
of twin nucleation. The homogenized mechanical
response in terms of (flow) stress and strain hard-
ening (h � @r

@e) along with the evolutions of twin
(volume) fraction and (unipolar) dislocation density
with strain are plotted in Fig. 6.

PERFORMANCE

The design objective of the present case study was
obtaining the deformation behavior and the result-
ing specific energy absorption capacity of the f2cc,z
lattice structure. FE simulations are a useful tool to
assess the performance of structural parts under
different loading conditions, and offer guidance in
the selection of materials and geometrical features
of components to optimize their performance.82 FE
models are constructed from computer-aided design
(CAD) files which describe the geometry of the

structural component. The imported geometry is
then discretized using finite elements, and specific
boundary conditions are applied corresponding to
service loads. It is worth noting that the selection of
FE type influences the accuracy of the predictions as
well as the computation time.83,84

Here, we present a FE model of the f2cc,z lattice
structure fabricated by LPBF of the alloy
X30MnAl23-1 under compressive load (Fig. 7a).
The geometry and boundary conditions were
adapted from Refs. 6 and 24. The compression
specimen consisted of five f2cc,z unit cells in each
direction with 500-lm-diameter struts. The simula-
tions were performed using the commercial FE
package QForm VX and utilized tetrahedron ele-
ments. QForm VX employs an automatic remeshing
algorithm as a function of the varying stress field,
which allows obtaining an accurate prediction of the
structural deformation behavior. The material
behavior under plastic deformation was represented
as flow curves (true stress response as a function of
accumulated plastic strain) with different

Fig. 6. Simulated homogenized (a) flow curves, (b) strain hardening curves, (c) evolution of twin (volume) fraction, and (d) evolution of (unipolar)
dislocation density of/in the high-manganese steel processed by LPBF (using the RVE shown in Fig. 5) under uniaxial tension at _�e ¼ 10�3 s�1

and T = 23�C along different axes.

Motaman, Kies, Köhnen, Létang, Lin, Molotnikov, and Haase1098



deformation parameters (combination of strain rate
and loading axis), which were determined using the
computational polycrystal homogenization approach
described in ‘‘Mechanical Properties’’ section.

Most FE software packages provide the possibility
of integrating advanced material models, and per-
mit the user to trace the evolution of MSVs.
Figure 7c shows an example of the local (equivalent)
strain distribution in the lattice structure during
compressive deformation measured using digital
image correlation (DIC). The major deformation in
the lattice structure is accommodated by the verti-
cal (iZ) struts,24 as their axes are parallel to the
loading direction (iLD). Additional areas of high
strain concentrations are observed at the strut
junctions (Fig. 7c). These zones of (macro-scale)
strain localization lead to failure of the struts in
these regions. Similar observations have also been
reported in Refs. 24 and 84. The comparison of FE-
simulated and experimental force-displacement
responses of the lattice structure (Fig. 7b) implies
a reliable numerical prediction of the lattice struc-
ture performance for the elastic and elasto-plastic
deformation regimes. However, simulation of the
force-displacement response of the lattice structure

in the deformation regimes after the onset of
damage initiation (here, corresponding to the nor-
malized compressive displacement of 6%) requires
coupling the elasto-plastic constitutive model with a
suitable ductile damage model. Incorporation of a
damage model which accounts for the process-
induced defects in the as-built structure, including
internal pores/voids, surface roughness,85 and devi-
ations in the morphology of the struts, would also
enhance the agreement between the simulated local
strain distributions and those obtained from the
corresponding DIC maps (Fig. 7c and d). In partic-
ular, Fig. 7d shows the failure in some (circled) of
the struts at relatively early stages of deformation.
The experimental result also shows variations in
strut diameter and some minor bulging due to
friction in the interfaces of the lattice structure and
tools. Despite these differences, which become more
pronounced with increased accumulation of the
plastic strain and damage, the simulation was able
to predict force-displacement responses (perfor-
mance) of the lattice structure in the early stages
of deformation where damage is not dominant.
Nonetheless, the (simulated) force is slightly over-
estimated (Fig. 7b).

Fig. 7. FE simulation of a compression test of high-manganese steel lattice structure fabricated by LPBF. (a) The FE model of the f2cc,z lattice
structure with a fine mesh using tetrahedron elements. (b) Comparison of the experimental and FE-simulated force-displacement responses of
the lattice structure. (c) FE-simulated distribution of equivalent (von Mises) strain showing strain localization in the vertical (iZ) struts. The
magnified deformed area illustrates the increased density of tetrahedron elements to capture the localized deformation. (d) Experimentally
measured (local) axial (iZ) strain distribution using digital image correlation (DIC) at 10% normalized compressive displacement.
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OPTIMAL DESIGN

Once the ICME-based PSPP linkage is estab-
lished, the search–predict–optimize (SPO) cycle can
be invoked for the optimal selection of design
parameters from the design space, which consists
of alloy composition, process parameters, and
(macroscopic) structural geometry. However, a rig-
orous ICME-based PSPP linkage is quite (computa-
tionally) expensive and complex. Therefore, we
propose an efficient hybrid ICME-based data-driven
modeling as a performance-oriented optimal design
strategy for metal AM, which its workflow is
demonstrated in Fig. 8. It consists of the following
steps:

I. Decomposition of the multi-dimensional de-
sign space into a finite number of domains
according to the specific ranges of interest for
each dimension; and sampling the design
parameters from the aforementioned do-
mains, using a design-of-experiments meth-
od.

II. Predicting the performance for design
parameter combinations via the ICME-based
PSPP linkage, as illustrated in Fig. 9.

III. Establishing experimental PSPP linkages for
a few combinations of design parameters and
evaluating the uncertainty in the ICME-
based PSPP linkages.

IV. Training a data-driven model by the physics-

based performance predictions associated
with the sampled design parameters. Data-
driven Gaussian process regression models,
which are kernel-based and non-parametric,
seem to be suitable candidates to emulate the
ICME-based PSPP linkages. Such surrogate
models, which are already implemented in
MATLAB and Python, can be readily used.

V. Defining a multi-variate objective function
for minimization based on the targeted per-
formance features.

VI. Application of the trained data-driven model
for performance optimization through the
closed-loop SPO iterations using a search-
based gradient-free optimization algorithm
to minimize the multi-variate objective func-
tion.

VII. Validating and fine-tuning the ‘‘optimum’’ set
of design parameters using ICME-based
PSPP linkages followed by experimental
verification of the performance associated
with the outcome design parameters.

REMAINING CHALLENGES

Despite the fact that the demonstrated work
covers all the ICME-based links in the PSPP chain,
there are several remaining challenges. Enhanced

Fig. 8. Workflow of the proposed hybrid ICME-based data-driven method as a performance-oriented optimal design strategy for metal AM.
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accuracy in each link can be achieved by relaxing
some of the initial assumptions and integration of
more sophisticated models:

� Process–structure (PS) link convective melt pool
dynamics and powder bed particle dynamics
modeling can be used to inform/improve the
presented relatively efficient and simple model
for the simulation of thermal field during AM.
The current model can be extended to include the
effects of successive build layers and their asso-
ciated cyclic heating of lower layers on the
evolution of thermal field. Moreover, formation
of macro-scale residual stresses during AM due to
non-equilibrium cooling, which can be significant
depending on the process parameters and struc-
tural geometry, is not currently considered.
Finally, the applied microstructure evolution
models do not account for the evolution of
texture, phases, precipitates, micro-voids, and
dislocation density. Therefore, there is a critical
need for efficient and comprehensive microstruc-
ture evolution models which are coupled with the
processing fields. The cellular automata models
for microstructure evolution that are coupled
with finite element/volume/difference thermal
models seem to be promising.86–93 These types
of models have recently been applied for simula-
tion of grain morphology and crystallographic
texture during various metal AM processes.

� Structure–properties SP link the utilized model
for the structure–properties linkage is robust
and computationally efficient. However, it does
not account for a number of physical phenomena
that can be significant in some regimes. These
physical phenomena are the deformation-twin
thickening, dynamic/static pinning of disloca-
tions, strain-path change, tension–compression
asymmetry, slip transfer at microstructural
interfaces and, most importantly, damage and
fracture. Computationally expensive but ad-
vanced (continuum) gradient-based crystal plas-
ticity constitutive models with dislocation
fluxes94,95 that are coupled with phase field
models for damage96 and twinning97 can be used
to inform/improve the applied more efficient
model.

� Properties–performance PP link the model used
for performance simulation takes the flow curves
corresponding to different deformation parame-
ters (combination of strain rate, temperature
and loading axis) as input. These flow curves
were provided from the SP simulations. How-
ever, since, generally, the macro-scale material
points in the performance simulations are under
complex multi-axial and cyclic loading conditions
with different and varying deformation param-
eters, the applied modeling approach, which is
not physics-based and history-dependent, may
lead to inaccurate predictions. This inaccuracy

Fig. 9. Overview of the ICME-based PSPP linkage for performance (specific energy absorption capacity) prediction of a lattice structure, made of
high-manganese steel, additively manufactured by LPBF.
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becomes significant when the mechanical re-
sponse of the material is highly sensitive to
deformation parameters, such as those observed
in the highly anisotropic stress response in AM
materials. One solution is the application of
mean-field methods for computational polycrys-
tal homogenization rendering the unique macro-
scale material response as a function of evolving
micro-state variables and multi-axial deforma-
tion parameters, e.g., self-consistent meth-
ods.98–100 Moreover, nonlocal microstructural
constitutive modeling at the macro-scale,101

implemented in a thermo-micro-mechanical
framework,102 is also a viable solution. In this
context, the applied mean-field/nonlocal consti-
tutive model must adequately account for the
microstructural features, such as grain morphol-
ogy and crystallographic texture, which are
known to control the macroscopic anisotropy in
mechanical response of the polycrystalline
aggregates. Such mean-field or nonlocal models
can be informed by the results of full-field SP
simulations. Furthermore, another important
aspect which is currently neglected in the
depicted PP link is damage. For a more precise
and comprehensive performance simulation of
the macroscopic structure, a physics-based con-
tinuum damage model, which accounts for
defects such as surface roughness and
voids,103–108 should be coupled with the applied
elasto-plastic constitutive model.

CONCLUDING REMARKS

A versatile ICME-based approach for optimal
design for metal additive manufacturing has been
introduced. The following concluding remarks can
be made:

� Due to the vastness and multi-dimensionality of
the design space and the highly complex rela-
tionship between the design parameters and
outcome performance, the optimal design is only
achievable computationally, as it will dramati-
cally reduce time and effort in experimentation
and provide accelerated pathways to explore the
design space.

� We proposed a hybrid physics-based data-driven
strategy for optimizing the performance of addi-
tively manufactured products by selecting the
optimum design parameters from the design
space. The physics-based ICME methods allow
for the capturing of the prevalent physical
mechanisms, whereas the combination with
data-driven approaches enables computationally
efficient acquisition of the PSPP linkages.

� The approach outlined in this paper will provide
a roadmap for widespread adoption of load-
bearing additively manufactured metallic com-
ponents.
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