Check for updates ### URBAN MINING: CHARACTERIZATION AND RECYCLING OF SOLID WASTES # Spent Lead-Acid Battery Recycling via Reductive Sulfur-Fixing Smelting and Its Reaction Mechanism in the PbSO₄-Fe₃O₄-Na₂CO₃-C System YUN LI, 1,2 SHENGHAI YANG, 1 PEKKA TASKINEN, 2 JING HE, 1 YONGMING CHEN, 1,4 CHAOBO TANG, 1,5 YUEJUN WANG, 3,6 and ARI JOKILAAKSO 1,2,7 1.—School of Metallurgy and Environment, Central South University, Changsha 410083, China. 2.—Department of Chemical and Metallurgical Engineering, Aalto University, 02150 Espoo, Finland. 3.—Department of Ecology and Resources Engineering, Hetao College, Bayannur 015000, China. 4.—e-mail: csuchenyongming@163.com. 5.—e-mail: chaobotang@163.com. 6.—e-mail: thirtythree61@aliyun.com. 7.—e-mail: ari.jokilaakso@aalto.fi An innovative and environmentally friendly lead-acid battery paste recycling method is proposed. The reductive sulfur-fixing recycling technique was used to simultaneously extract lead and immobilize sulfur. SO₂ emissions and pollution were significantly eliminated. In this work, the detailed lead extraction and sulfur-fixing mechanisms in the PbSO₄-Fe₃O₄-Na₂CO₃-C system were investigated thermodynamically and experimentally, and the phase transformation and microstructural evolution processes characterized. In addition, a series of bench-scale pilot experiments were carried out to confirm the feasibility of the technique. The results show that the lead extraction and sulfur-fixing reactions followed the shrinking unreacted-core model. The recycling products were separated into three distinct layers: slag, matte, and crude lead bullion. Primary recoveries of 96.2% for lead and 98.9% for sulfur were obtained. The purity of the crude lead bullion was 98.6 wt.%. Sulfur was fixed in the solidified matte as FeS and NaFeS₂. ### INTRODUCTION Spent lead-acid batteries (LABs) are widely scrapped from automobiles and electric bicycles in urban areas. The reported amounts of scrap LAB annually in China total more than 2.6 million metric tons. 1,2 LABs are a solid waste and classified as hazardous materials in many countries. Their disposal has become a significant environmental concern.3 Recycling and reuse of LABs are attracting great attention from both the public and materials processing industry. At the same time, the depletion of high-quality lead ores resulting in rising extraction costs presents critical challenges for the lead extractive metallurgical industry. As a result, scrap LABs have become a significant secondary lead source worldwide. Secondary lead produced by recycling is gradually dominating the world's lead market. Typically, a spent LAB consists of four components: waste electrolyte (1130%), polymeric materials (22–30%), lead alloy grids (24–30%), and lead paste (30–40%). Of these, lead paste is the most difficult part to deal with. However, it is a high-quality secondary lead-bearing material. Around 80–85% of the total secondary lead is recycled from lead paste. 6 Currently, the worldwide LAB recycling technology can be divided into traditional routes such as pyrometallurgy and hydrometallurgy, and advanced approaches including electrowinning, biological techniques, and vacuum methods. Pyrometallurgy is presently the predominant route worldwide for recycling LAB, in which high-temperature treatment of spent LABs in a blast, electric, reverberatory, or rotary furnace without pre-desulfurization is employed. In the hydrometallurgical process, 18,14 a pre-desulfurization step is necessary. Na₂CO₃, NaOH, and K₂CO₃ solutions or citric acid and citrate salts are usually adopted as desulfurization reagents. However, the treatment of spent LABs involves a potential health and environmental risk. 16,17 At the same time, existing LAB pyrometallurgical processes operated at high temperatures are usually associated with high atmospheric emissions, since dioxins, chloride compounds, and mercury can be generated in the process. Meanwhile, hydrometallurgical processes are accompanied by laborious procedures, generation of large amounts of problematic waste water, and high electricity consumption. 18 As a result, the stringent environmental requirements are increasingly difficult to meet with current pyro- and hydrometallurgical recycling technologies. Therefore, the lead industry is keen to seek advanced technologies which are more economical, minimize environmental pollution,²⁰ and reduce energy usage and production costs. In this article, an innovative and environmentally friendly lead-acid battery paste recycling method is proposed. The reductive sulfur-fixing 21-23 technique was used to simultaneously extract lead and immobilize sulfur. This novel technique is distinguished from conventional pyrometallurgy techniques such as oxidizing matte smelting and reductive smelting by the use of a reducing atmosphere in the processing combined with sulfur transformation and fixation as a sulfide matte. Iron-containing wastes are also employed as sulfur-fixing agents to immobilize sulfur as FeS. The smelting products obtained contain three products, namely crude metal bullion, matte, and slag. The novelty of this process is the treatment of various iron/lead-bearing wastes, SO₂free sulfur fixation, a much shorter flowsheet, absence of harmful byproducts, and wide adaptability for different secondary materials. 12 This work investigated the detailed lead extraction and sulfurfixing mechanisms in the PbSO₄-Fe₃O₄-Na₂CO₃-C system, thermodynamically and experimentally. The phase transformations and microstructural evolution processes were characterized, and the lead extraction and sulfur-fixing reaction mechanisms proposed. Furthermore, bench-scale experiments were carried out to confirm the feasibility and reliability of the new technique. ### EXPERIMENTAL PROCEDURES ### **Materials** In the reaction mechanism investigation, PbSO₄, Na₂CO₃, Fe₃O₄, and carbon powder with purity of \geq 99% were employed to ensure high experimental accuracy. In the batch tests, lead paste separated from LAB scrap was used as raw material. Hematite and coke obtained from Jiuquan Iron & Steel Co., Ltd., Gansu, China were applied as sulfur-fixing agent and reductant, respectively. Their chemical compositions were analyzed by inductively coupled plasma-atomic emission spectrometry (ICP-AES, PerkinElmer, Optima 3000, Norwalk, USA) and are shown in Supplementary Table S-I (Online Supplementary Material). The phase compositions of the lead paste and hematite were characterized by x-ray diffraction (XRD) analysis (D/max 2550PC, Rigaku Co., Ltd., Japan). The results are presented in Supplementary Fig. S-1, showing that the lead paste comprised 56.3% PbSO₄, 18.9% PbO₂, 13.7% Pb, and 11.1% PbO. Lead sulfate (anglesite) is the main substance in the lead paste. Hematite mainly contains Fe₂O₃ and (Mg,Al)₆(Si,Al)₄O₁₀(OH)₈, SiO₂, and Ca(Al,Si)₂O₄. ### Methods PbSO₄ was selected as a model compound in the reaction mechanism investigation, since it is the major as well as the most difficult component to deal with in spent lead paste. At the same time, to reveal the reaction paths that may take place in each raw material component, the PbSO₄-Fe₃O₄-Na₂CO₃-C system was divided into the PbSO₄-Na₂CO₃, PbSO₄-Na₂CO₃-C, PbSO₄-Fe₃O₄, and PbSO₄-Fe₃O₄-C subsystems. The specimens were mixed carefully and pressed uniaxially under 15 MPa into cylindrical samples of 10 mm diameter. Each specimen was placed in an alumina crucible and pushed slowly into the constant-temperature zone of a horizontal tube furnace (Supplementary Fig. S-2). The temperature was measured using a Pt-Rh thermocouple and controlled using a SHIMADEN SR25 intelligent temperature controller (accuracy $\pm 1^{\circ}$ C). Nitrogen with purity of 99% was applied as protective gas in the reaction mechanism investigations. The N_2 gas flow during the reaction was fixed at 0.5 L/min. After the preset smelting time, the sample was removed rapidly from the furnace and quenched in liquid nitrogen. In the bench-pilot confirmation experiments, 2000 g LAB paste was mixed thoroughly with a desired proportion of hematite, coke, Na_2CO_3 , and other fluxes (CaO and SiO_2). The specimen was loaded into an alumina crucible and put into a chamber furnace. After the required smelting time, the sample was taken out and cooled down at room temperature. Next, the crucible was broken to carefully separate and weigh the end products obtained, i.e., crude lead, ferrous matte, and slag. Each product was prepared for ICP-AES analysis. The direct recovery rate of Pb (η) and the sulfurfixing rate (γ) were calculated based on Eqs. 1 and 2, respectively: $$H = rac{ ext{Mass of Pb in the crude lead}}{ ext{Mass of Pb in the initial feed materials}} imes 100\%$$ $$\gamma = \frac{\text{Mass of sulfur in the condensed solid smelting products}}{\text{Mass of sulfur in the initial feed materials}} \times 100\% \tag{2}$$ The phases and microstructure of the samples were characterized by XRD using Cu K_{α} radiation and scanning electron microscope with energy- dispersive spectroscopy (SEM–EDS, Carl Zeiss LEO 1450, Germany; EDS, INCA Wave 8570, Oxford Instruments, UK). XRD data were collected in the 2θ range from 10° to 80° in steps of 1° . The recorded patterns were evaluated using the PDF-2 powder XRD database. Samples for SEM–EDS analysis were mounted in epoxy resin and polished using conventional metallographic grinding and polishing techniques. #### THERMODYNAMIC CALCULATIONS Figure 1 illustrates the equilibrium compositions of the PbSO₄-Fe₃O₄-Na₂CO₃-C reaction system for different carbon additions as simulated using HSC Chemistry software, version 9.2.6, and its database;²⁵ the phase diagrams of the Al₂O₃-SiO₂-CaO-10 wt.%Na₂O and Fe-Fe₃O₄-FeS systems were calculated using MTDATA version 6.0^{26} MTOX database 8.2.27 Figure 1a suggests that, without carbon addition, PbSO₄ prefers to react with Na₂CO₃ to produce Na₂SO₄ and PbO, even below 200°C. As the temperature is increased above 500°C, some PbO decomposes to metallic lead. In a weakly reductive atmosphere, as shown in Fig. 1b, PbSO₄ is reduced to PbS. At the same time, as the temperature increases, PbS prefers to react further with Fe₃O₄, instead of Na₂CO₃, generating metallic Pb and FeS. However, when the temperature reaches around 630°C, Na₂CO₃ gradually reacts with FeS as well as PbS. Thus, the amounts of Pb, Na₂S, and Fe₃O₄ products increase, while those of PbS, Na₂CO₃, and FeS decrease. However, some PbS remains due to insufficient addition of carbon. Fig. 1. Equilibrium compositions (a)–(c) of the PbSO₄-Fe₃O₄-Na₂CO₃-C reaction system calculated for different carbon additions; data taken from HSC 9.2.6 and its database; and liquidus contour diagrams of (d) the Al_2O_3 -SiO₂-CaO-10 wt.%Na₂O system and (e) the Fe-Fe₃O₄-FeS system calculated using MTDATA version 6.0 and MTOX database 8.2.²⁷ Fig. 1. continued. Figure 1c indicates that, at equilibrium conditions, all the lead can be extracted from $PbSO_4$ and PbS before $800^{\circ}C$ when the carbon addition is sufficient. However, when the temperature is increased from $700^{\circ}C$ to $800^{\circ}C$, the equilibrium amount of FeS remains steady while the amounts of metallic Pb and Na_2S increase and, at the same time, those of Na_2CO_3 as well as PbS decrease. This indicates that Na_2CO_3 is partly involved in the lead Fig. 2. Thermogravimetric behavior in different PbSO₄-Fe₃O₄-Na₂CO₃-C subsystems (mole ratio 3:1:3:18): (a) TG curves, (b) DTA curves. extraction reactions from PbS. When the temperature exceeds 800°C, some FeS will also react with Na₂CO₃ to generate Na₂S and Fe₃O₄. The above thermodynamic equilibrium composition calculations reveal that, in the absence of a reducing agent and below 200°C, PbSO₄ prefers to react with Na₂CO₃ rather than Fe₃O₄ to generate PbO and Na₂SO₄. Once the temperature is increased and the atmosphere is sufficiently reducing, PbSO₄ will be reduced to PbS. At that point, PbS will prefer to react with Fe₃O₄ rather than Na₂CO₃ to produce FeS and PbO. When the temperature exceeds 800°C, the excess Na₂CO₃ will continue to react with FeS. Thus, the sulfur transfers from the initial PbSO₄ to PbS and then FeS, and finally to Na₂S. As a result, the presence of Na₂CO₃, and a reductant as well as sulfur-fixing agent Fe₃O₄, can ensure efficient sulfur fixation and lead extraction at both low and high temperature. No gaseous SO₂ or SO₃ is generated throughout the whole reaction process. All lead can thus be extracted from PbSO₄ and PbS. The phase diagrams of the Al₂O₃-SiO₂-CaO-10 wt.%Na₂O system shown in Fig. 1d indicate that the first liquid slag appeared below around 975°C surrounded by liquid wollastonite [(Ca,Fe)SiO₃], tridymite (SiO₂), and feldspar [(AlCa,NaSi)AlO₈]. At that point, PbS, FeS, metallic Pb, Na₂SO₄, and Na₂S were generated in the smelting system, as shown in Fig. 1a-c. They stayed in liquid form, together with the remaining Fe₃O₄ and liquid Na₂CO₃. As the temperature was increased further, more liquid was formed from (Ca,Fe)SiO₃ and other solid smelting materials. When the temperature reached 1200°C (1473 K), more tridymite (SiO₂) and feldspar [(AlCa,Na-Si)AlO₈] also dissolved in the melt, and the liquid slag region expanded. Figure 1e further reveals that pyrrhotite FeS melts may come into contact with spinel Fe₃O₄, halite FeO, or/and FCC-A1 Fe before 1000°C (1273 K). A eutectic iron sulfide—oxide liquid appeared and gradually expanded along with the temperature. At 1200°C (1473 K), FeS was in liquid form. This promoted the generation of FeS and its settling from the smelting system as a separate sulfide melt layer. ### RESULTS AND DISCUSSION ### Thermogravimetric Behavior of PbSO₄-Fe₃O₄-Na₂CO₃-C Mixtures The thermogravimetric behavior of the reactants and their mixtures was characterized using a thermogravimetric analyzer (TG–DTA, STA 494 F3; Netzsch, Germany) at heating rate of 10°C/min in N₂ flow of 100 mL/min, from 25 to 1000°C. The results are shown in Fig. 2. It can be observed from Fig. 2a that the weight loss in the PbSO₄-C, PbSO₄-Na₂CO₃-C, and PbSO₄-Fe₃O₄-C subsystems was greater than that in the PbSO₄, PbSO₄-Fe₃O₄, and PbSO₄-Na₂CO₃ subsystems. This implies that the presence of carbon promoted the conversion of PbSO₄. Figure 2b further illustrates that T_1 (around 82°C) is associated with loss of crystallographic water from Na_2CO_3 . T_2 (406°C) is ascribed to the transformation of Fe₃O₄ into crystal form. T_3 (443°C) corresponds to preliminary decomposition of PbSO₄. T_4 (563°C) and T_5 (717°C) are associated with the conversion reactions between PbSO₄ and Na₂CO₃. The pronounced endothermic peaks detected at T_6 (around 875°C) can be attributed to further decomposition of PbSO₄. The last obvious endothermic peaks recorded at T_7 (around 980°C) are assumed to be linked with the generation of metallic lead. ### Experimental Reaction Mechanisms in the PbSO₄-Na₂CO₃-C Mixture The experimental phase transformation paths in the different reaction systems and at different temperatures and reaction times were characterized Fig. 3. Phase transformation paths in (a) the PbSO₄-Na₂CO₃ (mole ratio 1:1) reaction system at different smelting temperature after 30 min reaction time; (b) the PbSO₄-Na₂CO₃ (mole ratio 1:1) reaction system at 850°C for different reaction times; (c) the PbSO₄-Na₂CO₃-C (mole ratio 1:1:6) reaction system at different smelting temperatures after 30 min reaction time; (d) the PbSO₄-Na₂CO₃-C (mole ratio 1:1:6) reaction system at 850°C for different reaction times. by XRD and SEM-EDS analyses. The results for the PbSO₄-Na₂CO₃-C system are shown in Fig. 3. It was observed that the reactions between PbSO4 and Na₂CO₃ took place below 650°C. PbO and Na₂SO₄ were detected at 650°C within a 30-min duration. At the same time, when the temperature was intermediate products were increased, more PbO·PbSO₄, 2PbO·PbSO₄, detected, e.g., 4PbO·PbSO₄. This indicates that the reactions between PbSO₄ and Na₂CO₃ are a multistage process and follow the shrinking unreacted-core model. The unreacted PbSO₄ core is surrounded by liquid Na₂CO₃. The products xPbO·PbSO₄ (x = 1, 2,or 4) form a boundary layer. When the temperature exceeded 1000°C, the reactions were completed and the final products were stable in PbO and Na₂SO₄. No metallic Pb was detected due to the absence of reductant. These results agree well with the thermodynamic calculations presented in Fig. 1. Figure 3b further reveals that the exchange reactions between $PbSO_4$ and Na_2CO_3 favorably occur at $850^{\circ}C$ quickly, within as little as 5 min. Thus, SO_3 in $PbSO_4$ was transformed and fixed to Na_2SO_4 , instead of being emitted to the furnace atmosphere. The presence of Na_2CO_3 inhibited self-decomposition of $PbSO_4$. Once a reductant was present, as shown in Fig. 3c and d, $PbSO_4$ was reduced to PbS when the temperature was higher than $750^{\circ}C$. Metallic Pb was also detected. This implies that PbO had been reduced by carbon. Furthermore, as the temperature was increased to $1000^{\circ}C$, the stable sodiumbearing product after 30 min reaction time was Na_2S , rather than Na_2SO_4 . This indicates that Na_2SO_4 had been reduced to Na_2S . The final products were PbS, Pb, and Na_2S . The reaction paths in the $PbSO_4$ - Na_2CO_3 -C system at $850^{\circ}C$ after different reaction times, which are illustrated in Fig. 3d, further reveal that the $PbSO_4$ and PbO reduction reactions can occur rapidly. PbS and metallic Pb appeared within 5 min reaction time. The presence of carbon thus changes the reaction paths in the $PbSO_4$ - Na_2CO_3 system. Only very weak diffraction peaks of PbO, $Na_4CO_3SO_4$, and Na_2SO_4 were detected in the reaction products. The reduction of $PbSO_4$ to PbS dominated the reaction path at $850^{\circ}C$. The sulfur in $PbSO_4$ would be converted mainly to PbS rather than Na_2SO_4 . ### Experimental Reaction Mechanisms in the PbSO₄-Fe₃O₄-C Mixtures Figure 4 presents the phase evolutions in the PbSO₄-Fe₃O₄-C system. It can be observed in Fig. 4a and b that no reactions took place between PbSO₄ and Fe₃O₄ in the absence of reductant, as only a decomposition product, viz. PbO·PbSO₄ from PbSO₄, was detected. With the addition of a reductant, as illustrated in Fig. 4c, below 650°C, PbSO₄ was still not involved in any reaction with iron oxide during the first 30 min. However, at 750°C, PbS was detected, and PbSO₄ also converted to PbO·PbSO₄ and further to 2PbO·PbSO₄, and metallic Pb emerged. This implies that, without Na₂CO₃, PbSO₄ self-decomposition intensified. As the temperature increased to 850°C, the product after 30 min reaction time consisted of PbS, Pb, and Fe₃O₄. Figure 4d further illustrates that the PbSO₄ reduction reactions to PbS could take place instantaneously. PbSO₄ disappeared before it was involved in any reaction with Fe₃O₄. FeS did not emerge until 1000°C after 30 min reaction time, and was Fig. 4. Phase transformation paths in (a) the PbSO₄-Fe₃O₄ (mole ratio 3:1) reaction system at different smelting temperatures after 30 min reaction time; (b) the PbSO₄-Fe₃O₄ (mole ratio 3:1) reaction system at 850°C for different reaction times; (c) the PbSO₄-Fe₃O₄-C (mole ratio 3:1:18) reaction system at different smelting temperatures after 30 min reaction time; (d) the PbSO₄-Fe₃O₄-C (mole ratio 3:1:18) reaction system at 850°C for different reaction times. Fig. 5. SEM micrographs of products generated in (a) the PbSO₄-Na₂CO₃-C system at 750°C after 30 min reaction and in (b) the PbSO₄-Fe₃O₄-C system at 850°C after 5 min reaction. Fig. 6. Phase transformation and microstructural evolution mechanisms during reductive sulfur-fixing recycling process of scrap lead battery paste. generated by the exchange reactions between PbS and Fe₃O₄. PbSO₄ did not directly react with the sulfur-fixing agent, iron oxide. The sulfur-fixation reactions occurred with the help of exchange reactions between PbSO₄ and Na₂CO₃, as well as PbS and Fe₃O₄. The reaction mechanism proposed is consistent with the thermodynamic results above. ### **Microstructural Evolution Mechanisms** Selected samples, produced from simulated smelting systems at different temperatures and reaction times, were further characterized by SEM–EDS analysis. The results are presented in Fig. 5. Figure 5a shows the SEM–EDS results for the PbSO₄-Na₂CO₃-C system at 750°C for 30 min reactions. It was observed that (PbO)_x·PbSO₄ (x = 1, 2, or 4) was close to Na₂SO₄ particles and a part of PbSO₄ had reduced to PbS. Moreover, PbSO₄ and Na₂SO₄ were surrounded by PbO and metallic Pb. This confirms that the reactions between PbSO₄ and Na₂CO₃ follow the shrinking unreacted-core model. PbSO₄ first reacts with Na₂CO₃ to generate Na₂SO₄ and PbO. Na₂CO₃ surrounds and gradually "erodes" the PbSO₄ unreacted core, then the PbSO₄ core is disintegrated by molten Na₂SO₄. At the same time, the reaction product PbO gradually diffuses out from the unreacted PbSO₄ core. Figure 5b illustrates the SEM–EDS results for the $PbSO_4$ - Fe_3O_4 -C system at 850°C after 5 min reaction time. It reveals that PbS was surrounded by FeS. Metallic Pb was located in the center of the PbS particle. A $PbFe_xO_y$ boundary layer was detected between the metallic Pb and PbS layers. This demonstrates that the reactions between PbS and Fe_xO_y also follow the shrinking unreacted-core model. A possible phase transformation and Fig. 7. (a) Macrograph of smelting products in bench-scale pilot experiments; (b) XRD patterns of matte and slag; (c) element distribution behavior ($W_{lead \, paste}: W_{hematite}: W_{Na_2 \, CO_3}: W_{coke} = 1800 \, g:360 \, g:72 \, g: 216 \, g.$ FeO/SiO₂ = 1.3, CaO/SiO₂ = 0.4, 1200°C, 1.5 h). microstructural evolution mechanism for the entire PbSO₄-Na₂CO₃-Fe₃O₄-C reaction system is summarized and presented graphically in Fig. 6. ### Confirmation Experiments and Characterization of Products Two bench-scale pilot confirmation experiments with 1800 g lead paste were carried out to determine the reliability of this novel process under the following conditions: $W_{\rm lead \, paste}: W_{\rm hematite}: W_{\rm Na_2CO_3}: W_{\rm coke}=100$ g:20 g:4 g:12 g. FeO/SiO₂ = 1.3, CaO/SiO₂ = 0.4, smelting temperature of 1200°C, and smelting time of 1.5 h. A physical macrograph and corresponding XRD patterns of the smelting products are presented in Fig. 7a and b. It can be observed that three products were obtained, visibly separated as distinct layers by settling, i.e., slag, ferrous matte, and crude lead bullion. The chemical compositions of the different products obtained and the element distribution behavior is presented in Fig. 7c and Table S-II (Supplementary Material). The above results validate the reductive sulfurfixing technique as being experimentally feasible for recycling LAB paste. More than 96.2% of the lead and 98.9% of the sulfur (89.6% in the matte and 9.3% in the slag) in the raw materials were extracted and fixed within 1.5 h at 1200°C. Crude lead bullion with purity of 98.6 wt.% Pb was obtained. The lead content in the matte and slag were 2.6 wt.% and 0.5 wt.%, respectively. The major constituent in the matte was FeS. Some CaS, Fe₃O₄, and unreacted PbS as well as entrained gangue materials such as Ca₃Al₂(SiO₄)₃, FeSiO₃, Ca₂(Al(Al-Si)O₇, and CaSiO₃ were also detected. The solidified slag comprised Ca₂(Al(AlSi)O₇, Fe₂SiO₄, CaFe₄O₇, NaAlSiO₄, Na₂Si₂O₅, CaSiO₃, Fe₃O₄, Ca₂Al₂(SiO₄)₃, and some entrained FeS. The matte and slag that were obtained were further characterized by SEM-EDS analysis. The results are shown in Fig. 8. Figure 8a-d shows that, in the matte, mackinawite mineral FeS was bonded to magnetite Fe₃O₄. Sodium iron sulfide NaFeS₂ and galena PbS filled the gaps between the Fig. 8. SEM micrographs of the experimental bench-scale pilot products; (a)–(d) matte; (e)–(h) slag. magnetite minerals. Metallic Pb was detected, embedded in the FeS and NaFeS2 minerals. In the slag, as shown in Fig. 8e-h, sodium aluminosilicate (NaAlSiO₄) and sodium disilicate (Na₂Si₂O₅) dissolved in fayalite Fe₂SiO₄ and gehlenite Ca₂(Al(Al-Si)O₇. Mackinawite FeS was entrained in the magnetite Fe₃O₄ and calcium iron oxide CaFe₄O₇ minerals, and magnetite had separated out from the fayalite matrix. These results agree well with the thermodynamic phase diagram calculations above. ### **CONCLUSION** Effective lead extraction from LAB paste by a reductive sulfur-fixing recycling technique was shown to be feasible, thermodynamically and experimentally. The reaction mechanism investigations revealed that the presence of Na₂CO₃ helped to transform SO_3 from $PbSO_4$ to $Na_2\tilde{S}O_4$ at low temperatures and in weakly reductive atmospheres. This ensures the conservation of sulfur in the smelting system without emitting gaseous SO₂ to the atmosphere. Once the atmosphere was sufficiently reductive, PbSO₄ was reduced to PbS. Thus, the sulfurfixing agent Fe₃O₄ reacted with PbS to transfer sulfur to iron matte. Finally, metallic lead was extracted from PbO, and sulfur was fixed as FeS and NaFeS₂. The lead extraction and sulfur-fixing reactions followed the shrinking unreacted-core model. Furthermore, bench-scale experiments using lead paste as raw material validated the fact that three recycling products were obtained: slag, matte, and crude lead bullion. More than 96.2% of the lead and 98.9% of the sulfur in the raw materials were extracted and fixed. The purity of the crude lead bullion was 98.6% Pb. The lead content in the matte and slag was decreased to 2.6% and 0.5% in the onestep treatment, respectively. This new process can be used for cotreating various iron-containing solid wastes and residues, and for comprehensive recycling of a variety of valuable metals compatible with iron matte and metallic lead. ### ACKNOWLEDGEMENTS Open access funding provided by Aalto University. This work is supported by the Specialized Research Project of Guangdong Provincial Applied Science and Technology, China (Grant No. 2016B020242001), Hunan Provincial Science Fund for Distinguished Young Scholars, China (Grant No. 2018JJ1044), National Natural Science Foundation of China (Grant Nos. 51234009 and 51604105), CMEco by Business Finland (Grant No. 2116781), National Natural Science Foundation for Less Developed Regions of China (Grant No. 51664013), Program for Young Talents of Science and Technology in Universities of the Inner Mongolia, China (Grant No. NJYT-17-B35), and Bayannur Science and Technology Project from Bayannur Bureau of Science and Technology for Wang Yuejun, China (Grant No. K201509). ### **OPEN ACCESS** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. ### ELECTRONIC SUPPLEMENTARY **MATERIAL** The online version of this article (https://doi.org/ 10.1007/s11837-019-03529-1) contains supplementary material, which is available to authorized users. ### REFERENCES - Q. Zhang, Int. J. Electrochem. Sci. 8, 6457 (2013). - X. Tian, Y. Wu, Y. Gong, and T. Zuo, Waste Manag. Res. 33, 986 (2015). - Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun, and Y. Zhang, Waste Manag. 64, 190 (2017). - T.W. Ellis and A.H. Mirza, J. Power Sources 195, 4525 (2010). - D. Lin and K. Qiu, Waste Manag. 31, 1547 (2011). - R.A. Huggins, Lead-Acid Batteries (US: Springer, 2016). - D. Andrews, A. Raychaudhuri, and C. Frias, J. Power Sources 88, 124 (2000). - J. Weijma, K. de Hoop, W. Bosma, and H. Dijkman, Biotechnol. Prog. 18, 770 (2002). - A. Schröder-Wolthoorn, S. Kuitert, H. Dijkman, and J.L. Huisman, Hydrometallurgy 94, 105 (2008). - 10. M.A. Kreusch, M.J.J.S. Ponte, H.A. Ponte, N.M.S. Kaminari, C.E.B. Marino, and V. Mymrin, Resour. Conserv. Recycl. 52, 368 (2007). - X. Zhang, L. Li, E. Fan, Q. Xue, Y. Bian, F. Wu, and R. Chen, *Chem. Soc. Rev.* 47, 7239 (2018). Y. Li, S. Yang, W. Lin, P. Taskinen, J. He, Y. Wang, J. Shi, - Y. Chen, C. Tang, and A. Jokilaakso, Minerals 9, 119 (2019). - R. Prengaman and A. Mirza, Lead-Acid Batteries for Future Automobiles (Amsterdam: Elsevier, 2017), p. 575. - 14. E. Kim, J. Roosen, L. Horckmans, J. Spooren, K. Broos, K. Binnemans, K.C. Vrancken, and M. Quaghebeur, *Hydrometallurgy* 169, 589 (2017). - A. Singh and P. Karandikar, Microsyst. Technol. 23, 2263 (2017). - T.J. Van der Kuijp, L. Huang, and C.R. Cherry, Environ. Health 12, 61 (2013). - 17. X. Tian, Y. Wu, P. Hou, S. Liang, S. Qu, M. Xu, and T. Zuo, J. Clean. Prod. 144, 142 (2017). - 18. A.D. Ballantyne, J.P. Hallett, D.J. Riley, N. Shah, D.J. Payne, and R. Soc, Open Sci. 5, 171368 (2018). - Y. Li, S. Yang, P. Taskinen, J. He, F. Liao, R. Zhu, Y. Chen, C. Tang, Y. Wang, and A. Jokilaakso, J. Clean. Prod. 217, 162 (2019). - M. L. Jaeck, in Primary and Secondary Lead Processing: Proceedings of the International Symposium on Primary and Secondary Lead Processing, Halifax, Nova Scotia, Canada, August 20-24, Elsevier, Amsterdam (2013), p. 113. - Y. Hu, C. Tang, M. Tang, Y. Chen, J. Yang, S. Yang, and J. He, China Nonferr. Metall. 43, 75 (2014). - L. Ye, C. Tang, Y. Chen, S. Yang, J. Yang, and W. Zhang, J. Clean. Prod. 93, 134 (2015). - Y. Li, C. Tang, Y. Chen, S. Yang, L. Guo, J. He, and M. Tang, in 8th International Symposium on High-Tempera- - ture Metallurgical Processing, TMS, San Diego, CA, US, March 23-26 (Springer, Cham, 2017), p. 767. - B. Toby, J. Appl. Crystallogr. 38, 1040 (2005). A. Roine, HSC Chemistry for Windows, vers. 9.2.6 (Outotec Research, Pori, Finland, 2019). www.hsc-chemistry.com. MTDATA ver. 8.2. (NPL, Teddington, 2015). https://mtdat - 27. J. Gisby, P. Taskinen, J. Pihlasalo, Z. Li, M. Tyrer, J. Pearce, K. Avarmaa, P. Björklund, H. Davies, M. Korpi, S. Martin, L. Pesonen, and J. Robinson, Metall. Mater. Trans. B 48B, 91 (2017). Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.