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Systematic correlation analysis was performed between simulated microme-
chanical fields in an uncracked polycrystal and the known path of an eventual
fatigue-crack surface based on experimental observation. Concurrent multi-
scale finite-element simulation of cyclic loading was performed using a high-
fidelity representation of grain structure obtained from near-field high-energy
x-ray diffraction microscopy measurements. An algorithm was developed to
parameterize and systematically correlate the three-dimensional (3D)
micromechanical fields from simulation with the 3D fatigue-failure surface
from experiment. For comparison, correlation coefficients were also computed
between the micromechanical fields and hypothetical, alternative surfaces.
The correlation of the fields with hypothetical surfaces was found to be con-
sistently weaker than that with the known crack surface, suggesting that the
micromechanical fields of the cyclically loaded, uncracked microstructure
might provide some degree of predictiveness for microstructurally small fati-
gue-crack paths, although the extent of such predictiveness remains to be
tested. In general, gradients of the field variables exhibit stronger correlations
with crack path than the field variables themselves. Results from the data-
driven approach implemented here can be leveraged in future model devel-
opment for prediction of fatigue-failure surfaces (for example, to facilitate
univariate feature selection required by convolution-based models).

INTRODUCTION

Microstructural features play a governing role in
the initiation and early stages of fatigue-crack
growth. Variation in these features leads directly
to variation in the paths and growth rates of
microstructurally small cracks and, consequently,
to scatter among fatigue lifetimes of structural
components. Modeling this variability is critical
given that most of the service life of fatigue-critical
components can be consumed by initiation and
growth of microstructure-sensitive cracks. Yet,
these early stages of fatigue-crack evolution are
difficult to model because of their complex depen-
dence on a broad range of microstructural features
and the tendency to exceed propagation rates of long
cracks with equivalent nominal stress intensity

factors.1 The reader is directed to Ref. 2 for an
encompassing review of metallographic aspects of
microstructural heterogeneities and their role in
fatigue cracking. Similarly, a review of microme-
chanical descriptions of the effect of microstructural
heterogeneities is given in Ref. 3.

Empirically based fatigue-life models were devel-
oped to link variability in fatigue life to microstruc-
tural features that were directly observable and
quantifiable. Early examples of these approaches,
which are overviewed in Refs. 4–6, based fatigue
models on microstructural characteristics such as
inclusion size, shape, and location.7–9 While empir-
ical approaches have provided foundational knowl-
edge regarding microstructural effects on fatigue
performance, the resulting correlations and appli-
cability of the developed models are valid only
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within the domain of the measured data and
experimental parameters (e.g., boundary condi-
tions, cyclic-load ratio, etc.). The formative works
of Wei and Harlow10,11 clearly illustrate the need to
use experimentation to discover and formulate
hypotheses regarding the micromechanics at hand,
not to fit empirical parameters.

Over the past two decades, there has been a shift
toward computationally modeling microstructural
features to investigate their impact on fatigue-crack
initiation and early propagation. Such efforts typi-
cally use crystal-plasticity formulations to incorpo-
rate elastic and plastic anisotropy and either
statistically representative or directly replicated
microstructural domains to capture heterogeneities.
For example, Bozek et al.12 simulated the effect of
cyclic loading on cracking of second-phase particles.
Subsequently, Hochhalter et al.13,14 used fatigue
indicator parameters to predict which cracks would
extend beyond those cracked particles. Twin bound-
ary crack initiation sites, and their dependence on
local microstructure, were presented by Yeratapally
et al.15 Fatigue indicator parameters were used by
Musinski et al.16 and Castelluccio et al.17 to develop
models for the subsequent propagation of cracks
across a polycrystal. An encompassing study of the
fatigue indicator parameters proposed to date is
provided by Rovinelli et al.18 These studies repre-
sent a small sampling of high-fidelity, microstruc-
ture-sensitive fatigue modeling; a more complete
review can be found in Refs. 19–22.

Advancements in these micromechanical model-
ing methods are being closely coupled with volu-
metric interrogation methods. This coupled
approach provides a capability whereby parameters
that cannot be measured directly can be computed
in a simulation that serves to replicate the partic-
ular microstructure of the specimen. Spear et al.23

used near-field high-energy x-ray diffraction
(HEDM) to measure grain morphology in a sample
of Al 6061-T6. These data were then used to
generate a finite-element model, which replicated
the as-measured grain structure and crack mor-
phology. Rovinelli et al.18 used diffraction contrast
and phase contrast tomography to measure
microstructure morphology and evolved crack faces
in a near-b Ti alloy. Those data were used to
generate a 3D fast Fourier transform (FFT) simu-
lation with crystal plasticity. Bayesian networks
were then used to analyze the correlation between
the proposed short-crack driving forces and exper-
imental observations.

As highlighted by the aforementioned studies,
integrating x-ray-based measurement methods with
high-fidelity simulation tools is providing a promis-
ing new approach to developing models for short-
crack propagation.24 New focus is on efficient pro-
cessing of these data (which can be quite large and
complex) to extract useful information using data-
driven approaches. In light of this, the objective of

this paper is to describe a systematic, data-driven,
correlation analysis between computed microme-
chanical fields of an uncracked, cyclically loaded 3D
polycrystal and the known path of a 3D fatigue-
failure surface based on direct observation from
prior experimental measurements.

MATERIALS AND METHODS

Experimental Measurements and Mesh
Generation from Prior Work

The data used in this work are derived from
experimental measurements25 of 3D fatigue crack
propagation within a grain-mapped volume of an Al-
Mg-Si alloy. In that work, a naturally nucleated
fatigue crack was propagated to failure under cyclic
loading. The material volume above and below the
failure surface was characterized post mortem
using x-ray computed tomography and near-field
HEDM. The former provided a high-resolution
reconstruction of the failure surface, while the
latter provided 3D grain maps adjacent to the
failure surfaces, which can be seen in Fig. 1. Of
the entire measured crack surface, 31.8% was found
to be approximately normal (within 20�) to the
global loading direction. Additionally, 41% and 59%
of the entire crack surface was deemed to be
intergranular and transgranular, respectively, with
the transgranular crack surface occurring along a
wide variety of crystallographic planes.

The two halves of post mortem data were then
virtually merged to generate a conformal finite-
element mesh that represents explicitly and with
high fidelity the internal grain boundaries and
incremental crack surfaces measured from experi-
ment, as detailed in Ref. 23. In this work, the
conformal finite-element mesh representing the
uncracked microstructure was used to obtain com-
puted micromechanical fields, which were then
correlated with the reconstructed failure surface.
Figure 1 summarizes the prior relevant work.

Numerical Simulation of Cyclic Loading
Applied to Uncracked Specimen

A concurrent multiscale finite-element model was
used to simulate cyclically applied displacement on
the fatigue specimen tested in previous work.23 The
previously generated mesh from Ref. 23 consists of a
local, polycrystalline region representing the
uncracked microstructure and a global region rep-
resenting the geometry of the fatigue specimen,
shown in Fig. 2. A mesh convergence study, detailed
in Ref. 26, was carried out to ensure that both the
global force–displacement response and local stres-
ses, strains, and accumulated slip along an arbi-
trary query path through the polycrystalline
domain converged sufficiently. The converged, mul-
tiscale mesh comprised 11.86M quadratic tetrahe-
dral elements.
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A crystal, elasto-viscoplastic, constitutive model
based on the implementation by Matous and Mani-
atty27 was applied to the polycrystalline domain,
and a J2-plasticity model was applied to the global
domain. Both models were calibrated to ensure that
the nominal (averaged) stress–strain behavior
matches experimental data for the same material
and that the simulated macroscopic strain fields in
the notch region match those from digital image
correlation measurements, which are described
elsewhere.26 The crystal, elasto-viscoplastic, consti-
tutive model is capable of predicting inhomogeneous
deformation and stress fields that arise at mesoscale
as a result of interactions among discrete grains. In
the model, plastic deformation is manifested by slip
evolution on 12 octahedral slip systems
(f111gh110i). All elements within the polycrys-
talline domain are assigned the same material
properties; however, each element is assigned a
crystal orientation based on the grain to which that
element belongs. The crystal orientations are

derived directly from the near-field HEDM mea-
surements described above. The calibrated param-
eters for both constitutive models are provided in
Table I. Properties for the J2-plasticity model
include the elastic modulus (E), Poisson’s ratio (m),
yield strength (ry), and hardening modulus (h0).
Properties for the crystal-plasticity model include a
reference slip rate ( _c0), a hardening rate-sensitivity
parameter (m), a hardening-rate parameter (G0),
and initial hardness (g0).

Boundary conditions were applied to replicate
constraints and loading applied in the actual exper-
iment. Namely, the grip ends of the specimen are
constrained from displacing in the x and y direc-
tions. The lower grip end is further constrained
from displacing in the z direction. The upper grip
end is subjected to vertical displacement, w, which
cycles between wmax ¼ 65lm and wmin ¼ 38lm. The
values for applied displacement were selected to
reproduce the applied loading from experiment,
detailed in Ref. 25.

Fig. 1. (a) Post mortem reconstructions from an Al-Mg-Si alloy fatigue specimen based on near-field HEDM. (b) Approximation of uncracked
volume and (c) reconstructed fatigue-failure surface from x-ray CT. The reference coordinate system is shown on the uncracked microstructural
volume. Adapted with permission from Refs. 23,25.

Fig. 2. Concurrent multiscale finite-element mesh and applied boundary conditions. The reference coordinate system is shown on the uncracked
microstructural volume. Adapted with permission from Ref. 23.
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Numerical simulations were performed using the
parallelized finite-element code ScIFEN.28 In total,
five load cycles were simulated. The following list
summarizes all local variables that were recorded
for the entire polycrystalline domain at the begin-
ning and end of each simulated load cycle:

D1 Maximum value of accumulated slip among
the 12 octahedral slip systems

D2 Maximum value of total accumulated slip
over each slip plane

D3 Accumulated slip summed over all slip
systems

D4 Maximum value of energy dissipated on a
given slip plane during plastic deformation

D5 Modified Fatemi–Socie parameter
� Symmetric strain tensor composed of �xx,

�yy, �zz, �xy, �xz, and �yz
�1 Principal eigenvalue of the strain tensor
�vm von Mises strain
r Symmetric stress tensor composed of rxx,

ryy, rzz, rxy, rxz, and ryz
r1 Principal eigenvalue of the stress tensor
rvm von Mises stress
Mmicro Micromechanical Taylor factor29

The variables D1;...;5 represent slip-based damage
metrics described by Hochhalter et al.13 and imple-
mented within the ScIFEN framework. Addition-
ally, the micromechanical Taylor factor, Mmicro, was
computed throughout the polycrystalline domain
based on the work of Raabe et al.,29 as follows:

Mmicro ¼ D3

�vm
: ð1Þ

In Eq. 1, D3 is the summation over all Ns slip
systems of the slip accumulated on each slip system,
a, throughout cyclic loading:

D3 ¼
XNs

a¼0

Z t

0

j _cajdt; ð2Þ

where _ca is the slip rate on a given slip system. The
term �vm represents the local von Mises equivalent
strain, which is computed as

�vm ¼
ffiffiffiffiffiffiffiffiffiffi
2

3
�: �

r
: ð3Þ

The variables in the above list, along with the cyclic
changes in those variables, were included in the
systematic correlation analysis.

Convergence of Cyclic Field Variables

The convergence of field variables was assessed
by considering the change in each variable through-
out the entire polycrystalline domain as a function
of cycle count. For any given variable, k, its cyclic
value was computed at each point in the model
based on the change in that variable from the
minimum to maximum displacement over a given
loading cycle. The change in each cyclic value was
also computed between successive loading cycles. In
other words, at each point in the model, and for all
variables in a given cycle, N:

DkN ¼kwmax;N � kwmin ;N ; ð4Þ

D2kN ¼DkN � DkN�1: ð5Þ

Figure 3 illustrates the convergence of Drzz and a

visualization of D2rzz approaching zero (similar
convergence being verified for all variables). Con-
vergence of the cyclic field variables implies that the
results taken from the fifth loading cycle sufficiently
represent the state of the polycrystalline domain to
perform a meaningful correlation study.

Correlation Analysis

The finite-element results were first converted to
a format amenable to performing the correlation
analysis. Results associated with the fifth loading
cycle were subsampled from the unstructured finite-
element mesh onto a 383 � 750 � 600 lm3 grid with
1 lm spacing between points. This was done for all
field variables, producing a scalar-valued grid for
each variable, k, corresponding to peak load, and for
each cyclic value, Dk.

Additionally, the spatial gradients of every k and
Dk variable were calculated and included in the
correlation analysis. Here, the gradients of k and Dk
at each point in the model were computed based on
finite differences in the y and z directions (reminis-
cent of 2D image slices through the volume) using
h ¼ 3lm spacing,* after which the L2 norm was
taken to produce a scalar value. In the following
equations, subscripts indicate the grid coordinates
of a given point.

Table I. Calibrated material parameters

J2-plasticity model Crystal plasticity model

E ðMPaÞ m ry ðMPaÞ h0 ðMPaÞ _c0 ðs�1Þ m G0 ðMPaÞ g0 ðMPaÞ

70,326 0.33 206.5 1200 0.05 0.0049 150.0 95.5

*Values of 1 lm and 3 lm were considered for h, with the latter
being equal to half the size of the discretization for the quadratic
finite-element mesh. Ultimately, h = 3 lm was found to provide
stronger correlations.
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dkx;y;z
dy

¼ kx;yþh;z � kx;y�h;z

2h
;

dkx;y;z
dz

¼ kx;y;zþh � kx;y;z�h

2h

ð6Þ

The next step is to represent the 3D crack surface,
which was previously reconstructed from post mor-
tem x-ray CT data and aligned with the uncracked
microstructural domain, as a 2D grid of elevation
values. This was accomplished by initializing a
383 � 750 lm2 grid with 1 lm spacing between
points, then assigning to each point an interpolated
value of the corresponding z coordinate of the crack
surface, resulting in a height map. The interpola-
tion method used was inverse bilinear interpolation.
For a given point in the x–y grid plane, the
corresponding height-map value of the crack surface
was used to identify neighboring points in the 3D
scalar-valued grids.

In total, there were 88 scalar-valued grids to
consider in the correlation analysis: one for each
field variable, k, listed in ‘‘Numerical Simulation of
Cyclic Loading Applied to Uncracked Specimen’’
section; one for each cyclic variable, Dk; and one for
the gradient values of both k and Dk. Each grid
consisted of 383 � 750 � 600 ¼ 1:724 � 109 data
points derived from high-fidelity numerical simula-
tion of the uncracked microstructure. There were an
additional 383 � 750 ¼ 2:87 � 105 data points
derived from the experimentally observed fatigue-
failure surface.

Using this as input data, the goal of the algorithm
implemented here is to determine—with minimal
prior assumptions—which micromechanical field
variables are correlated with the fatigue-crack path.
The method chosen here is to compute the correla-
tion between the value of a given variable at a
particular point in the microstructure and its
vertical distance to the crack surface. Only a local
neighborhood around the crack surface is consid-
ered, i.e., a region into which the crack could
plausibly have grown from any given configuration.
The value of L was systematically varied, and
ultimately a value of L ¼ 25 lm (approximately
25% of the average grain diameter) above and below

the crack surface was selected to optimize the
correlation results. This value was used in all
correlation analyses described throughout this
paper. The definition of L is shown in Fig. 4 for a
slice and subsection of the grid defined for DMmicro.
The grid points are shown in black with spacing of
1 lm, and the finite-element results obtained using
an unstructured mesh are shown in the back-
ground. The trace of the actual crack surface is
superimposed for reference.

Of this subset of points within L of the surface,
only regions where the gradient of a given field
variable was sufficiently high were considered. This
filter was implemented due to the propensity of
some variables to exhibit near-zero change within
the neighborhood, L. In such cases, the correlation
of that variable with the distance to the crack
surface does not add value to the analysis. In order
for a gradient of a variable to be considered
sufficiently high, it must be at least t% of its value
at the same point. Here, t was determined indepen-
dently for each variable by finding the value of t that

Fig. 3. Convergence of Drzz and D2rzz (MPa) during cyclic loading.

Fig. 4. Cyclic micromechanical Taylor factor computed for the un-
cracked polycrystal, shown at a particular slice through the volume.
Superimposed is the trace of the actual crack surface from x-ray CT
imaging. Also superimposed is the grid used for correlation analysis.
The neighborhood of influence is defined by the distance L above
and below the crack surface.
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maximized the correlation of that variable, while
still retaining at least 10% of the total crack surface
(see Fig. 5). For example, t ¼ 8% for �zz, while
t ¼ 11% for DD3. This implementation guarantees
that regions contributing to the correlation analysis
are not overly sparse, yet contain k-values that are
highly informative.

This method can be easily parallelized, as com-
putations are performed on each point of the crack
surface independently of all other points. Since
computations must be performed for each of the
88 � 383 � 750 � 50 ¼ 1:264 � 109 points, such par-
allelization is a necessity. The data were loaded into
shared memory accessible by all processes, after
which the code was run on multiple cores. The
entire algorithm is described in Fig. 6.

The results from the algorithm consist of data
frames, where each row is an observed point from
the microstructure and each column is the value of a
field variable, or distance to the crack surface in the
case of the last column. These data frames were
then imported into R,30 which provides robust
libraries for correlation analyses and visualizations.
Pearson correlation coefficients were computed for
each column with respect to the final column, then
visualized for comparison.

RESULTS AND DISCUSSION

The computed fields for all 22 metrics and their
respective cyclic values are visualized for the
uncracked microstructure in Supplementary
Figs. S1–S8 (online version). The computed correla-
tion coefficients are shown in Fig. 7. A negative
correlation indicates that, as the distance to the
crack surface decreases, the variable of interest
increases, and vice versa.

The correlation coefficients shown in Fig. 7 are
not, at first look, overwhelmingly high. The chal-
lenge in assessing the statistical significance of
these correlations is that the independent and
identically distributed assumption required by a

typical t-test has been violated. A nonparametric
measure, such as bootstrapping31 or using Spear-
man rank, could potentially help resolve this prob-
lem. An alternative approach to determine whether
the correlation values in Fig. 7 are meaningful (but
not necessarily statistically significant) is to apply
the same correlation algorithm to alternative sur-
faces that could serve as hypothetical crack paths
through the microstructure. Four alternative paths
were considered: two z-normal planes positioned
200 lm above and below the lower and upper faces,
respectively, of the microstructural domain, and two
instances of the measured crack surface offset by
125 lm above and below the known crack path.
Figure 8 shows the results for the latter two cases.
Results for the two z-normal planes are provided in
Supplementary Fig. S9 (online version). In all four
cases, the correlations are consistently weaker than
those for the actual crack surface, providing some
evidence that micromechanical fields from a cycli-
cally loaded, uncracked microstructure tend to
correlate with the actual path of the 3D fatigue
crack.

As shown in Fig. 7, the crack path is generally
shown to be more strongly correlated with the
spatial-gradient values than with the field variables
at peak load or with the cyclic field variables,
suggesting that the eventual fatigue crack sought
paths of high gradients in stress and/or strain space.
Considering only the gradient-based parameters, D3

and D5 exhibit the strongest correlation with the
crack path among all the slip-based damage met-
rics, although the difference is relatively marginal.
This indicates that the combined effect of slip
activity on multiple slip systems (D3) as well as
the combined effect of crystallographic slip and
tensile stress on a slip plane (D5) play a more
significant role in predicting the crack path than
just the maximum value of slip on a single slip
system or slip plane. While it seems reasonable for
some of the metrics to have a relatively strong
correlation with crack path (e.g., rð�zzÞ, rðD�vmÞ,
and rðD�1Þ), there are other correlations that are
not immediately intuitive (e.g., rð�xxÞ and rðDryyÞ).
Clearly, the factors affecting crack growth are
highly complex, and one cannot rely on treating all
field variables as independent mechanisms. As
such, it is likely that there exists some complex
combination of variables that serves to accommo-
date, promote, or hinder crack propagation, which
corroborates previous conclusions in literature (e.g.,
Refs. 14, 18, 20). It will require further investigation
using, for example, machine learning to understand
how interaction of the variables leads to such
apparent correlations.

Since the discontinuity of the crack is not modeled
in this work (as was done in previous work23), the
micromechanical fields computed here do not
account for stress redistribution due to formation
of new traction-free surface area; nor do they
account for plastic zones or stress concentrations

Fig. 5. Colored data points within L vertical distance of the crack
surface that meet the spatial-gradient threshold for inclusion in the
correlation analysis of �vm .
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in the vicinity of a crack front. However, the
objective is to identify what, if any, correlations
exist between micromechanical fields in an
uncracked microstructure and the 3D path of an
eventual fatigue-crack surface. The implications of
relatively strong correlations could be significant, in
that the crack path might be approximated prior (or
without having) to incorporate geometrically expli-
cit crack representations. It is expected that such

correlations would be relatively strong within a
limited spatial domain surrounding the crack-nu-
cleation site. Future work could investigate the size
of this domain, beyond which the correlations are
expected to diminish.

The analysis from this work could provide insight
into the extraction of relevant features for predic-
tive machine-learning models. In models where
univariate feature selection is required, such as

Fig. 6. Data extraction algorithm.

Fig. 7. Correlation coefficients computed between the following metrics and distance to crack surface: (a) field variables, k; (b) cyclic change in
field variables, Dk; (c) spatial gradient of field variables, rðkÞ; and (d) spatial gradient of cyclic field variables, rðDkÞ.
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convolution-based networks that infer useful infor-
mation based on a grid of scalars, choosing the
correct variables to use as a representation is
critical. With new insight from the correlation
analysis presented here, ongoing studies by the
authors focus on the use of machine learning to
identify critical combinations of, and relationships
among, the most correlated variables with the
evolution of fatigue-crack surfaces.

CONCLUSION

This work presents a systematic, data-driven
approach to parameterize and correlate local
micromechanical fields computed for an uncracked,
cyclically loaded specimen with the known 3D
fatigue-crack path observed from experiment.
Specifically, local micromechanical field variables
in the vicinity of an eventual crack surface are
correlated with distance to that eventual surface.
The intent is to identify whether the response of the
uncracked microstructure subjected to realistic far-
field loading might provide any predictive power in

identifying the path of a fatigue-failure surface,
which could have implications for future modeling
efforts. In this work, a total of 88 micromechanical
parameters, and 1:264 � 109 data points, are con-
sidered in the analysis. Thus, the data used here are
considered to be large and rich in nature, albeit for
just a single specimen. The parameters include field
variables and slip-based damage metrics computed
at peak load, as well as their corresponding cyclic
values. Also considered are the gradients of all
previously mentioned parameters. The microme-
chanical parameters, taken at discrete points, are
then correlated with the distance from a given point
to the known crack surface.

In general, the gradients of the micromechanical
field variables appear to exhibit a stronger correla-
tion with crack path than the field variables,
themselves. This supports the claim that fatigue
cracks generally seek paths of high gradients of
stress, strain, or both. The variables, treated inde-
pendently, are not sufficient to fully describe evolu-
tion of fatigue-crack surfaces. However, the
systematic correlation analysis from this work

Fig. 8. Correlation coefficients computed between the following metrics and distance to hypothetical crack surfaces located 125 lm below (left
bars) and 125 lm above (right bars) the known crack surface: (a) field variables, k; (b) cyclic change in field variables, Dk; (c) spatial gradient of
field variables, rðkÞ; and (d) spatial gradient of cyclic field variables, rðDkÞ.
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provides insight into the extraction of relevant
features for future development and testing of
predictive models.
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