
Vol.:(0123456789)

Archives of Computational Methods in Engineering 
https://doi.org/10.1007/s11831-024-10141-3

REVIEW ARTICLE

Lung Cancer Detection Systems Applied to Medical Images: 
A State‑of‑the‑Art Survey

Sher Lyn Tan1 · Ganeshsree Selvachandran2,3   · Raveendran Paramesran1,4 · Weiping Ding5

Received: 4 January 2024 / Accepted: 1 May 2024 
© The Author(s) 2024

Abstract
Lung cancer represents a significant global health challenge, transcending demographic boundaries of age, gender, and ethnic-
ity. Timely detection stands as a pivotal factor for enhancing both survival rates and post-diagnosis quality of life. Artificial 
intelligence (AI) emerges as a transformative force with the potential to substantially enhance the accuracy and efficiency 
of Computer-Aided Diagnosis (CAD) systems for lung cancer. Despite the burgeoning interest, a notable gap persists in the 
literature concerning comprehensive reviews that delve into the intricate design and architectural facets of these systems. 
While existing reviews furnish valuable insights into result summaries and model attributes, a glaring absence prevails in 
offering a reliable roadmap to guide researchers towards optimal research directions. Addressing this gap in automated lung 
cancer detection within medical imaging, this survey adopts a focused approach, specifically targeting innovative models 
tailored solely for medical image analysis. The survey endeavors to meticulously scrutinize and merge knowledge pertaining 
to both the architectural components and intended functionalities of these models. In adherence to PRISMA guidelines, this 
survey systematically incorporates and analyzes 119 original articles spanning the years 2019–2023 sourced from Scopus and 
WoS-indexed repositories. The survey is underpinned by three primary areas of inquiry: the application of AI within CAD 
systems, the intricacies of model architectural designs, and comparative analyses of the latest advancements in lung cancer 
detection systems. To ensure coherence and depth in analysis, the surveyed methodologies are categorically classified into 
seven distinct groups based on their foundational models. Furthermore, the survey conducts a rigorous review of references 
and discerns trend observations concerning model designs and associated tasks. Beyond synthesizing existing knowledge, 
this survey serves as a guide that highlights potential avenues for further research within this critical domain. By providing 
comprehensive insights and facilitating informed decision-making, this survey aims to contribute to the body of knowledge 
in the study of automated lung cancer detection and propel advancements in the field.
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1  Introduction

Lung cancer stands as the foremost cause of cancer-related 
mortality worldwide [1], constituting a significant global 
public health concern and ranking as the primary cancer 
in men and the second most prevalent in women. With 
approximately 1 in 16 men and 1 in 17 women projected 
to receive a diagnosis in their lifetime [2], the urgency of 
addressing this pervasive threat becomes evident.

The disease manifests when cells in the lungs undergo 
uncontrolled growth, disrupting normal cellular division 
processes and culminating in tumor formation. These 
tumors may manifest as either malignant (cancerous) or 
benign (non-cancerous) entities. Lung cancer typically 
presents in two main types: small cell lung cancer (SCLC) 
and non-small cell lung cancer (NSCLC), each necessitat-
ing distinct approaches to treatment [3]. NSCLC, in par-
ticular, emerges as the more prevalent subtype.

Notably, lung cancer does not discriminate based on 
age, gender, or race, underscoring the imperative of early 
intervention and treatment. In this regard, medical imaging 
emerges as a cornerstone of diagnostic endeavors, offering 
invaluable insights into pathological processes. A myriad 
of modalities, including magnetic resonance imaging 
(MRI), positron emission tomography (PET), mammogra-
phy, computed tomography (CT), radiography ultrasound, 
and duplex ultrasound, serve as indispensable tools in the 
evaluation of abnormality by facilitating the detection of 
cancerous cells within human organs [4].

Among the various imaging modalities, Chest X-ray 
and CT scans emerge as the most widely utilized meth-
ods for lung cancer detection, owing to their widespread 
availability and cost-effectiveness. However, the current 
paradigm of reviewing and analyzing medical images pre-
dominantly relies on manual interpretation, necessitating 
specialized expertise. This approach is not without its 
limitations, being susceptible to time constraints, human 
errors, biases, and the potential for erroneous diagnoses.

Furthermore, lung nodules, exhibiting diverse charac-
teristics in terms of size, shape, texture, and density, pose 
formidable challenges for manual interpretation by health-
care professionals. Recent studies [5, 6] have revealed a 
tendency to overlook many small nodules during manual 
readings, with others [7] highlighting the prevalence of 
nodules characterized by fuzzy contours, which compli-
cate precise cancer detection. Consequently, a burgeoning 
body of research advocates for the adoption of soft com-
puting-based solutions to mitigate the challenges associ-
ated with the heterogeneity of lung nodules [8–14].

Another persistent challenge in lung cancer detection, 
underscored in recent studies, pertains to the confound-
ing phenomenon of overlapping features between lung 

nodules and surrounding anatomical structures [10, 12, 
13, 15–17]. The superimposition of nodules with ele-
ments such as blood vessels, lung walls, and pleura often 
obscures diagnostic clarity, leading to erroneous inter-
pretations grounded in the intricate feature information 
gleaned from raw medical images. Moreover, the pres-
ence of concomitant lung pathologies, such as tuberculosis 
and pneumonia, further complicates matters, given their 
propensity to manifest overlapping opacities within the 
pulmonary region [18].

These factors collectively impede a system's capacity 
to discern the salient and distinctive attributes of nodules 
indicative of early-stage lung cancer. The manual scrutiny 
of scans exacerbates the issue, consuming valuable time, 
and resources. Consequently, researchers have directed their 
efforts towards automating and refining the lung cancer 
screening process. By harnessing soft computing, artificial 
intelligence (AI), machine learning (ML), and deep learning 
(DL) methodologies, endeavors aim to mitigate the likeli-
hood of misdiagnosis and augment the early detection of 
lung cancer.

1.1 � Motivation for this Survey

Prior to 2020, most reviews centered on AI for disease diag-
nosis in general, as shown in Fig. 1. While these reviews 
provided a comprehensive overview of the potential of AI as 
a clinical tool, they lacked a detailed analysis of the techni-
cal advancements in the computer-aided diagnosis (CAD) 
development for lung cancer. Since 2019, there has been 
a continuous increase in targeted surveys that concentrate 
on CAD development for lung cancer, while the number of 
general-scoped surveys has decreased since 2022.

A significant number of high-quality reviews on AI inte-
gration in lung cancer were published between 2017 and 
2023. Li et al. [19] provided an overview of ML-based 
approaches that strengthen the varying aspects of lung 
cancer diagnosis and therapy, including early detection, 
auxiliary diagnosis, prognosis prediction, and immunother-
apy practice. Ladbury et al. [20] summarized the current 

Fig. 1   Distribution of survey articles by scope and year
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literature on AI specific to lung cancer and how it applies 
to the multidisciplinary team taking care of these complex 
patients.

For the CAD system regarding lung nodule detection and 
classification, Mohammad et al. [21] comprehensively dis-
cussed the common factors (section thickness, dose, nodule 
location, and nodule size) affecting CAD performance, but 
they did not include the CAD design and algorithm as part of 
the discussion. It is worth noting that factors affecting CAD 
performance heavily rely on the model design and algorithm 
and shall not be treated as a black box.

With the emerging development of CNN, Sathyakumar 
et al. [22] performed a narrative review on a total of 648 
articles and performed comparative experiments on four 
variations of CNN models for lung nodule cancer detection. 
However, no detailed analysis and comprehensive discussion 
were presented in the paper. On the other hand, Gu et al. [23] 
based the analysis on a CAD system's main stages and tasks 
while reviewing DL algorithms, mainly CNN-based models, 
developed in 2019 and up to November 2020.

More recently, Zhou and Xin [24] reviewed 104 devel-
oped studies on lung cancer screening from federated DL 
models, multi-modal DL models, and interpretable DL mod-
els perspectives. Tomassini et al. [25] presented an investi-
gation from a data-driven perspective devoted to compre-
hensively reviewing slice-based and scan-based approaches 
using CNNs for lung nodule diagnosis and cancer histology 
classification from CT data. Shah and Parveen [26] reviewed 
and summarized 32 papers on medical imaging for lung 
cancer classification from 2012 to 2022 but did not discuss 
development trends on CAD systems based on the model 
architecture.

Although these survey articles have summarized past lit-
erature, they lack a comprehensive comparison of the meth-
ods and algorithms used by each author for lung image anal-
ysis. This aspect holds particular significance today, given 
the increasing use of customized CNN with dedicated archi-
tectures for specific tasks and objectives. In addition, certain 
reviews contain tables summarizing results and significant 
model characteristics across the year but do not provide a 
dependable overview of the research trend. This limitation 
originates from their focus on a general perspective, lacking 
in-depth exploration of the model architectures and designs.

1.2 � Contributions of this Survey

In addressing the aforementioned challenges, this survey 
endeavors to furnish a comprehensive overview of DL appli-
cations in the domain of lung cancer medical image analysis. 
Through the provision of overview tables and figures, the 
survey aims to elucidate the intricate architectures underpin-
ning these DL systems, facilitating a nuanced understanding 
of their operational mechanisms.

Specifically, this survey embarks on a meticulous explo-
ration of recent advancements in CAD systems tailored 
for lung cancer diagnosis through medical image analysis. 
It underscores the indispensable role of CAD systems in 
augmenting both the efficiency and accuracy of lung can-
cer diagnosis, while also introducing quantitative metrics 
to gauge the comparative robustness of diverse algorithms 
and techniques embedded within these systems.

Moreover, the study delves into the evolutionary tra-
jectories of CAD development for lung cancer diagnosis, 
scrutinizing the manifold ways in which model configura-
tions shape diagnostic efficacy. Through a systematic clas-
sification and discussion of new models for automated lung 
cancer detection using medical images, this survey provides 
insights from both the constituent model and designed task 
perspectives. Notably, the absence of prior review articles 
encompassing such a comprehensive analysis for lung cancer 
detection systems underscores the novelty of this endeavor.

Additionally, the survey identifies superior approaches for 
the detection and classification of lung cancer from medical 
images, while also delineating typical strategies employed 
to enhance algorithmic efficiency and performance. This 
model-driven perspective offers a unique synthesis of state-
of-the-art solutions, methodologies, challenges, and poten-
tial research avenues within the domain, thus bridging a 
significant gap in existing literature reviews.

Furthermore, the survey highlights the pivotal role of 
various AI methods, particularly ML and DL, underscor-
ing their transformative impact on the advancement of lung 
cancer diagnosis through image data analysis. By elucidating 
the utilization of these AI paradigms, the survey not only 
contributes to the theoretical underpinnings of the field but 
also provides practical insights for researchers and practi-
tioners alike.

1.3 � Organization of this Survey

Figure 2 serves as a reading map to help the reader under-
stand the contents and the relationship between each sec-
tion and the research questions. The review begins with an 
introduction in Sect. 1, providing context about intuition 
of CAD systems for lung cancer. Detailed procedures for 
including/excluding information, and primary research ques-
tions are detailed in Sect. 2. Section 3 provides a concise 
overview of the background of CAD systems for disease 
detection, setting the background for the discussion. Sec-
tion 4 offers an overview of recent methodologies dedicated 
to lung diseases, categorizing the included articles into seven 
distinct model groups, along with references review from a 
model-driven perspective. In Sect. 5, each research ques-
tion is addressed and discussed. Section 6 highlights the 
difficulties encountered by the methodologies examined and 
concludes the review.
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2 � Methodology

To improve the focus of the review process and ensure a 
comprehensive coverage, specific research questions (RQs) 
have been formulated which will be used to explore the 
application of AI in CAD systems, models architectural 
designs, and comparative studies of the latest lung cancer 
detection systems. The RQs are as follows:

RQ1: What are the types of CAD techniques used for 
diagnosing lung cancer, and how do CAD systems contrib-
ute to enhancing the efficiency and accuracy of lung cancer 
diagnosis?

RQ2: What are the key advancements in CAD for lung 
cancer diagnosis, and how do different model configurations 
impact the performance of lung cancer diagnosis?

RQ3: Which approach has demonstrated superior perfor-
mance in detecting and classifying lung cancer from medical 
images, and what are the typical methods used to enhance 
the efficiency and performance of the algorithms?

This survey adopts the PRISMA guidelines [27] to sys-
tematically review the existing literature. Figure 3 is a flow-
chart that illustrates how articles were selected and care-
fully screened using the inclusion and exclusion criteria. 

Ultimately, a total of 119 articles were included in this 
survey. Table 1 provides an overview of the article search 
outcomes with respect to their sources.

3 � An overview of Computer‑Aided 
Diagnosis and Detection System

Machine-assisted and computer-aided diagnosis and detec-
tion (CADD) techniques are revolutionizing the detection 
of lung cancer. CADD systems utilize ML algorithms to 
detect diseases in patients, eliminating observer bias [24]. 
The general types of lung cancer prediction and/or detection 
systems are shown in Fig. 4.

Diagnosis report-based systems operate on textual data 
extracted from clinical or diagnostic reports. A classifier is 
used to learn information from textual data. However, the 
datasets often suffer from missing values and irrelevant 
features, preventing the classifier from learning sufficiently 
from the data. Research in this field focuses on data pre-
processing techniques such as feature reduction and feature 
extraction with the integration of soft computing approaches.

Medical image-based systems operate on medical images 
such as chest X-rays, CT scans, and histopathological images 
to detect the presence of lung cancer. These systems typi-
cally undergo certain pre-processing procedures to locate a 
region of interest (ROI) and then extract features from the 
images. Medical image-based systems can be categorized 
into two types—feature engineering-based approach and 
DL-based approach and the general stages are presented in 
Fig. 5.

The feature engineering-based approach involves three 
stages: data pre-processing, feature extraction and selection, 
and classification. Data pre-processing includes filtering and 
segmentation, followed by post-processing correction. The 
system extracts visual features and then applies appropriate 
classifiers, usually ML techniques. However, the handcrafted 
features limit the optimality of the results, especially in sub-
tle distinctions between benign and malignant lesions.

DL approaches and neural networks (NN) based models 
are increasingly popular in medical image processing due 
to advancements in computational intelligence and frontier 
technologies. In particular, a growing body of literature has 
explored and applied convolutional neural networks (CNN) 
and other DL models/approaches for analyzing medical 
images [28].

In contrast to traditional feature engineering-based sys-
tems, DL-based systems have demonstrated their ability to 
process a massive number of images directly without the 
need for handcrafted features. Instead, the system depends 
on the visual patterns revealed in the data to detect malig-
nancy [24, 29].

Fig. 2   Reading map for this survey
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A new end-to-end detection framework has been 
recently unveiled. This framework simplifies the tradi-
tional system by automating tasks and skipping the seg-
mentation, feature extraction, and feature selection pro-
cesses. This framework uses a set of convolutional and 
pooling layers to automatically extract deep or high-level 
features from input images, based on the objective func-
tions specified by the users [28]. As a result, the system 
can directly perform predictions.

A main drawback of most existing CADD systems is 
that the performance of each step is heavily dependent 
on the accuracy of the previous step [30]. For instance, 
data segmentation accuracy is a crucial factor to consider 
when utilizing segmented images to detect and classify 
lung nodules and cancer cases. It is possible for the system 
to produce inaccurate findings when segmented images 
are inaccurate or vague. Other than that, selection of fea-
tures to be fed into a classifier or detection network is also 
closely related to the model’s accuracy and specificity. The 
solution to this problem lies in robust end-to-end detec-
tion and/or classification mathematical algorithms that can 
directly operate on lung cancer medical images.

4 � Recent Advances in CAD System Design 
for Lung Cancer

A review of 119 research articles on AI algorithms for diag-
nosing lung cancer and lung diseases using medical images 
was conducted. Out of these, 108 articles introduced novel 
AI algorithms, referred to as "New Algorithms". Most of 
these algorithms used a combination of four foundational 
models: CNN, GAN, other NN (other derivatives of NN), 
and ML (conventional non-NN architecture). Furthermore, 
fuzzy ML and metaheuristic search optimization algorithms 
were integrated as complementary techniques to enhance the 
performance of the new algorithms.

A consistent pattern prevailed throughout the observed 
articles: a strong emphasis on utilizing CNN-based models 
or components. Many researchers either devised entirely 
new CNN algorithms tailored for specific diagnostic pur-
poses or enhanced existing publicly available CNN mod-
els by incorporating customized or modified layers. How-
ever, beyond this predominant pattern, several noteworthy 
trends were identified over the years:

Fig. 3   PRISMA flowchart
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Table 1   Results of article 
search

Journal entries Count of 
cited works

Academic Radiology 2
Applied Intelligence 1
Applied Soft Computing 2
Artificial Intelligence Applications in Healthcare & Medicine 1
Artificial Intelligence in Medicine 4
Biocybernetics and Biomedical Engineering 1
Biomedical Signal Processing and Control 23
Chemometrics and Intelligent Laboratory Systems 1
Clinical Radiology 2
Computer Methods and Programs in Biomedicine 10
Computerized Medical Imaging and Graphics 2
Computers & Electrical Engineering 1
Computers in Biology and Medicine 8
Expert Systems with Applications 9
Future Generation Computer Systems 1
Healthcare Analytics 1
ICT Express 1
IEEE Access 9
IEEE Journal of Biomedical and Health Informatics 2
IEEE Transactions on Cybernetics 1
IEEE Transactions on Industrial Informatics 1
IEEE Transactions on Medical Imaging 2
Informatics in Medicine Unlocked 2
Interdisciplinary Sciences: Computational Life Sciences 1
Journal of Digital Imaging 1
Journal of King Saud University—Computer and Information Sciences 2
Journal of Medical Systems 1
Journal of Radiation Research and Applied Sciences 1
Knowledge-Based Systems 2
La radiologia medica 1
Lung Cancer 1
Measurement 2
Measurement: Sensor 1
Medical & Biological Engineering & Computing 1
Medical Image Analysis 2
Multimedia Systems 1
Multimedia Tools and Applications 4
Neurocomputing 1
Pattern Recognition 3
Radiology 1
Results in Engineering 1
Scientific Reports 2
Soft Computing 1
Thoracic: Lung Cancer 1
Translational Oncology 1
Grand Total 119
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	 i.	 Direct Application of Transfer Learning: A prevalent 
strategy involved directly adopting readily available 
CNN models, such as VGG, ResNet, and AlexNet 
and leveraging transfer learning techniques to fine-
tune them for lung disease and cancer diagnosis was 
observed [31–35].

	 ii.	 Integration of GANs: Some researchers [36–40] incor-
porated GANs into their approaches for image syn-
thesis purposes to enlarge the size of training data for 
better model generalization, some authors [11, 41–43] 
applied GANs for segmentation purposes, and some 
authors [44–47] applied GANs for classification pur-
poses.

	 iii.	 Diversification with Different Neural Network Models: 
In addition to CNNs, other NN-based models were 
explored [48–50]. It was noted that in most cases, 
these studies incorporated other NN-based models in 
conjunction with CNNs rather than employing them 
as standalone models.

	 iv.	 Exploration of Non-Neural Network Models: A distinct 
approach was taken by some researchers who ven-
tured beyond NN, experimenting with conventional 
ML approaches or alternative models to devise effec-
tive diagnostic solutions [51–54]. Similar trends were 
noted in the context of other NN models, where the 
prevailing approach involved employing traditional 
ML classifiers to classify extracted features in the final 
phase of the CAD system after the image processing 
phase, in which a foundational CNN model was uti-
lized.

	 v.	 Hybrid Model Development: A trend emerged where 
hybrid models were built, combining different AI 
and/or non-AI techniques to harness their collective 
strengths for improved diagnostic outcomes [11, 30, 
55–59].

	 vi.	 Utilization of Commercial CAD Tools: Additionally, 
some studies [60–63] examined the commercially 
available CAD tools to accurately diagnose lung dis-
eases.

4.1 � Categorization of the New Algorithm 
into distinct model groups

All the New Algorithms have been systematically classified 
into the 7 distinct model groups, as outlined below:

	 (i)	 Pure CNN: Entries constructed solely using CNN 
architecture, without integrating optimization algo-
rithms and/or Fuzzy ML.

	 (ii)	 Pure GAN: Entries constructed solely using GAN, 
without integrating optimization algorithms and/or 
Fuzzy ML.

	 (iii)	 Pure Other NN: Entries constructed solely using 
Other-NN, without integrating optimization algo-
rithms and/or Fuzzy ML.

	 (iv)	 Pure ML: Entries constructed solely using ML, with-
out integrating optimization algorithms and/or Fuzzy 
ML.

	 (v)	 Other: Entries constructed solely using approaches 
other than those among CNN, GAN, Other-NN, and 
ML, without integrating optimization algorithms 
and/or Fuzzy ML.

	 (vi)	 Commercial CAD system: Entries that applied com-
mercially available CAD systems or prototypes.

	(vii)	 Hybrid ML: Entries meeting at least one of the fol-
lowing conditions:

a.	 Combining two or more foundational models from 
{CNN, GAN, Other-NN, ML}.

b.	 Combining one foundational model from {CNN, 
GAN, Other-NN, ML} with other ML methods.

c.	 Incorporating one foundational model from {CNN, 
GAN, Other-NN, ML} along with an optimization 
algorithm and/or Fuzzy ML.

This meticulous categorization scheme effectively 
encompasses all 108 New Algorithms, providing a clear 
framework for their analysis and comparison throughout 
the subsequent sections. Figure 6 provides insight into the 
distribution of the New Algorithms across the 7 model 
groups, illustrating the proportional representation within 

Fig. 4   General types of lung cancer CADD systems

Fig. 5   Existing lung cancer 
diagnosis frameworks
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each. Further, Fig. 7 offers a chronological view, arranging 
the 108 New Algorithm entries into the 7 model groups 
according to their publication years, whereas Fig. 8 dis-
plays according to their corresponding model groups.

Figures 6 and 7 reveal a noteworthy pattern, in which 
both Pure CNN and Hybrid ML garner significant atten-
tion, comprising the largest segments in the pie chart. An 
intriguing observation is the pronounced focus on Pure 
CNN since 2019, coinciding with the rise of Hybrid ML 
studies. Notably, Hybrid ML experienced a marked surge 
in 2023. This surge can be attributed to the recognition that 
Pure CNN may not comprehensively address the demands 
of CAD workflows and often lacks optimal generaliza-
tion within end-to-end CNN frameworks. To address these 
limitations, numerous investigations [9, 15, 58, 59, 64–74] 
adopt multi-stage models, merging diverse approaches into 
a single framework. Number of studies [11, 14, 46, 55, 57, 
75–87] navigate this challenge by leveraging metaheuristic 
search techniques for hyperparameter optimization, mitigat-
ing the prolonged training issue. The observed trend sug-
gests a continued influx of novel Pure CNN and Hybrid ML 
algorithms, driven by the ongoing pursuit of refined and 
specialized CAD solutions.

4.2 � An Even More Comprehensive Categorization 
of the New Algorithms Based on Foundational 
Models and Methodology

This section provides a breakdown of how the New Algo-
rithms entries are distributed by their constituent models and 
methodologies. Figure 9 presents a diagram where the size 
of the regions reflects the number of entries falling within 
each specific combination. The pink shading represents 

Fig. 6   Distribution of new algorithms across 7 model groups

Fig. 7   Distribution of model groups of the new algorithm by year of 
publication

Fig. 8   Categories of new algorithm entries by model group types

Fig. 9   Euler diagram illustrating the distribution of new algorithm 
entries based on foundational models and methodologies
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the entries categorized under Hybrid ML, while the black 
numbers correspond to entries falling within model groups 
numbered 1 to 6, as defined in Section A.

Optimization and fuzzy instances are not considered dis-
tinct foundational models because they are typically used 
as accompanying algorithms rather than standalone entities 
within New Algorithms. Thus, foundational models that 
were attached with optimization algorithm and/or Fuzzy 
ML are classified as Hybrid ML.

Several studies involve integrating metaheuristic optimi-
zation algorithms to enhance network performance. These 
investigations are represented in the section bounded by the 
box in green border in Fig. 9, and these studies are detailed 
in Table 2. Furthermore, the exploration of Fuzzy ML within 
this domain is limited, with only two entries [30, 56] incor-
porating Fuzzy ML alongside primary models. In contrast, 
both Hybrid ML and Pure CNN investigations have gained 
significant attention, each with 42 entries.

Pure CNN has advantages in extracting informative deep 
features and operating seamlessly as an end-to-end model, 
making it more user-friendly for clinical applications. How-
ever, practical applications in medical image processing are 
often complex due to the high noise levels in raw images. 
This requires preprocessing, segmentation, and detection 
steps before they can be used for optimal classification and 
diagnostic outcomes. Hence, a significant portion of research 
work remains focused on improving the established CAD 

workflow. This explains the prevalent interest surrounding 
the exploration of Hybrid ML and Pure CNN.

4.3 � In‑Depth Review of the Model Category: Pure 
CNN

This section analyzes 43 Pure CNN entries, exclusively con-
structed upon CNN models. The objective is to examine 
each entries’ unique characteristics, design principles, and 
applications, offering readers a profound comprehension of 
CNN-driven algorithms.

4.3.1 � CNN Architectures Overview

CNNs are the preferred method for computer vision, espe-
cially in CAD for lung cancer, due to their specialized design 
for grid-like data [134]. Figure 10 shows the core founda-
tional elements collectively adopted by Pure CNN models.

In the CNN workflow, the process involves two main 
parts: extracting features from input images and classifying 
them. Different layers such as convolutional, pooling, and 
fully connected layers perform various operations on the 
input data.

•	 Convolutional layer. This layer extracts features from 3D 
tensor data through convolution operation to produce fea-
ture maps.

Table 2   Classification of all the 
108 new algorithms based on 
foundational models

Model group Foundational model Number of 
entries

Article

Pure CNN CNN 43 [5, 8, 10, 12, 13, 16–18, 29, 53, 88–120]
Pure GAN GAN 9 [36, 37, 41–45]
Other NN Other NN 1 [50]
ML ML (Non-NN) 3 [51, 52, 121]
Commercial 

CAD system
– 4 [60–63]

Other – 7 [6, 7, 122–126]
Hybrid ML CNN, ML 8 [9, 58, 59, 64, 70, 71, 73, 127]

CNN, ML, Optimization 1 [79]
CNN, Optimization 6 [57, 76, 77, 81, 84, 87]
CNN, Optimization, Fuzzy 1 [78]
CNN, Other 2 [128, 129]
CNN, Other NN 6 [68, 69, 72, 130–132]
CNN, Other NN, Optimization 2 [80, 86]
GAN, Optimization 2 [11, 46, 47]
ML, Other 1 [65]
Other NN, Fuzzy 2 [30, 56]
Other NN, ML 5 [15, 66, 67, 74, 133]
Other NN, ML, Optimization 2 [14, 82]
Other NN, Optimization 4 [55, 75, 83, 85]
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•	 Pooling layer. This layer adeptly reduces the dimen-
sionality of the feature maps, facilitating a more com-
pact representation.

•	 Fully connected layer. This layer forms connections 
between each neuron in the preceding layer and the 
current layer, producing a feature vector representing 
the final model prediction.

4.3.2 � Utilization of Transfer Learning

CNN models require significant computational resources 
and extensive training data to achieve optimal perfor-
mance. Transfer learning allows a model to leverage exist-
ing knowledge and customize it for a specific domain, such 
as classifying lung cancer images. In basic terms, the 
model gains knowledge through saved weights and then 
is further trained in a specialized field to excel in that 
domain. This speeds up learning as opposed to starting 
from scratch.

Publicly available CNN models, such as VGG, ResNet, 
DenseNet, MobileNet, AlexNet, and Inception, have been 
extensively trained on natural images from the ImageNet 
dataset and can be useful for transfer learning. Several 
investigations [31, 32, 34, 35, 59, 92, 96, 100, 114, 118] 
have showcased the incorporation of transfer learning into 
the suggested model process.

These specified studies did not investigate how well the 
knowledge transferred from the ImageNet dataset, which 
comprises natural images, would perform in classifying 
lung cancer, given the fundamental differences between 
natural images and lung images. While these studies boast 
high accuracy and commendable overall performance, they 
lack further validation to determine whether these results 
are due to overfitting or inadequate generalization.

4.3.3 � Readily Available CNNs

A minority of studies utilized well-known readily available 
CNN algorithms, which were not included in the new 108 
algorithms. These studies applied and compared the publicly 
available CNNs for lung cancer detection and classification 
tasks.

For instance, Teramoto et al. [31] used VGG-16 to clas-
sify cancer cells in histopathology images, but the accu-
racy of 79.20% was below the desired level despite high 
specificity (83.30%) and sensitivity (89.30%). In a recent 
study by Pandian et al. [34], both VGG-16 and GoogleNet 
were used to classify data from private hospitals into three 
classes. The study found that GoogleNet performed better 
than VGG-16 in this context. On a different note, Rajasekar 
et al. [35] conducted foundational research on six different 
CNN models, including CNN, CNN with Gradient Descent, 
Inception-V3, ResNet-50, VGG-16, and VGG-19. However, 
the study lacked a comprehensive analysis among the mod-
els, and crucial details about datasets and experimental set-
tings were omitted.

Notably, Bicakci et al. [32] were among the first to experi-
ment with readily available CNNs, such as SqueezeNet, 
VGG-16, and VGG-19, in the context of PET imaging for 
classifying input into adenocarcinoma and squamous cell 
carcinoma. Unfortunately, the reported F-score and AUC 
values fell considerably short of the desired standards, rang-
ing between 54—74 and 52—70 respectively.

The studies mentioned above revealed a trend where 
researchers commonly utilized readily available CNNs as a 
“Black Box” tool, without exploring the underlying math-
ematical models. Among the readily available CNNs, VGG 
models were the preferred option for direct application of 
CNN, as evidenced by their usage in all four cited stud-
ies [31, 32, 34, 35]. However, a notable challenge observed 

Fig. 10   Common structures of a typical CNN framework
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from these investigations is the exclusive use of private data-
sets, which hinders the ability to validate and reproduce the 
reported findings.

4.3.4 � Customized CNN Model Dedicated for Lung Cancer 
Diagnosis

In total, this survey examines 43 customized CNNs that are 
designed to detect lung cancer. These custom CNN archi-
tectures are built by modifying at least one existing CNN 
model. Researchers have used various techniques to improve 
the pre-existing CNN models, such as fusing multiple CNNs 
or enhancing the layers within a CAD pipeline. Some studies 
have added customized internal layers to address limitations, 
while others have integrated attention modules as an integral 
component of the CNN architecture. As a result, there is a 
wide range of variations among the deployed CNN models. 
The survey will examine these customized CNN architec-
tures based on their backbone models. Table 3 gives the 
summary of results obtained by the 43 customized CNNs.

U-Net is a popular architecture in CAD for lung cancer 
detection and segmentation. It functions as an encoder-
decoder network with skip connections, allowing it to better 
extract high-level and detailed features. As the network goes 
deeper, it can extract high-level features better, and the skip 
connections integrate detailed features back into the decoder 
phase. Among the surveyed studies, 11 instances [10, 13, 
16, 91, 94, 96, 101, 103, 106, 111, 117] were identified with 
U-Net as the backbone model for constructing customized 
CNN architectures.

Wang et al. [106] introduced a CAD system that unified 
two CNN components within a single framework. U-Net was 
adopted for the segmentation task, while a custom-designed 
CNN with a conventional structure was tailored for classifi-
cation. The segmentation model acted as a trainable preproc-
essing module, generating a classification-guided ‘attention’ 
weight map from the raw CT data. This map indicates the 
significance of distinct regions for the classification task, 
thereby enhancing diagnostic performance.

Similarly, Cao et al. [16] introduced a two-stage CNN 
(TSCNN) to detect lung nodules. In the initial stage of the 
model, U-Net was employed as the foundational architec-
ture and was enhanced with a ResDense structure, a novel 
sampling strategy, and a two-phase prediction approach. In 
the subsequent stage, the proposed dual pooling mechanism 
was integrated into the CNN classifiers (ResNet, DenseNet, 
and Inception). Likewise, Han et al. [111] adopted a two-
stage methodology, combining the strengths of 3D-RPN and 
U-Net for pulmonary nodule detection. Detected nodules 
were then forwarded to a ResNet classifier for classification.

Xie et  al. [91] introduced an innovative approach to 
address the challenge of limited data availability in model 
training. They proposed a novel deep NN model called the 

multi-view knowledge-based collaborative (MV-KBC) 
model. In their approach, instead of using full images, they 
utilized multi-patches for training. The MV-KBC model 
employed the U-Net architecture to extract 2D nodule slices 
from multiple views (a total of 9 views). These slices were 
subsequently fed into a knowledge-based collaborative 
(KBC) submodel. Within each KBC submodel, the fusion 
of three ResNet-50 networks facilitated the learning of vari-
ous aspects: overall appearance (OA), heterogeneity in voxel 
values (HVV), and heterogeneity in shapes (HS) extracted 
from segmented patches. Finally, all nine KBC submodels 
were integrated to create the overall MV-KBC model.

Dutande et al. [103] introduced a cascaded CNN approach 
named LNCDS, which operates in 2D and 3D dimensions. 
They successfully addressed limitations in the U-Net archi-
tecture, such as the insufficient representation of significant 
features and long skip connections between the encoder 
and decoder, with the incorporation of short skip connec-
tions known as residuals and harnessed the effectiveness of 
squeeze-and-excitation blocks. In the subsequent stage of 
their approach, they employed a 3D-NodNet classification 
model that utilized 3D cubes as input, leveraging the 3D 
nodule structure’s capacity to encompass more structural 
and geometrical details.

Suzuki et al. [117] introduced a modified 3D U-Net model 
for automated lung nodule detection on chest CT images. 
Their adaptation allowed any feature map to be reached from 
a marginal output map within three steps, thereby prevent-
ing the vanishing gradient problem. Lei et al. [94] enhanced 
the U-Net architecture by incorporating a high-level feature-
enhanced soft activation mapping (HESAM). This inte-
gration combined high-level convolutional features with 
detailed lung nodule shape and margin features, enhancing 
feature analysis. Chen et al. [101] introduced the DC-U-Net 
model, which combines the U-Net network with dilated con-
volution. This approach expanded the feature receptive field 
without sacrificing spatial resolution, enabling the model to 
capture more information from images while maintaining 
parameter efficiency.

Conversely, Liu et  al. [96] proposed an end-to-end 
detection framework involving a modified U-Net network. 
They integrated a residual attention network as a shortcut 
into the backbone U-Net. Additionally, they incorporated 
weight transfer learning, leveraging both image-level tag 
annotations and mask annotations. Shi et al. [10] presented 
the Multiscale Residual U-Net model (MCA-ResUNet), 
designed for accurate lung nodule segmentation, particu-
larly for nodules with detailed geometric shapes. Their 
encoder featured multiple multiscale residual blocks, with 
the Atrous spatial pyramid pooling as a bridging module and 
facilitating feature layer connection through layer-crossed 
context attention. Wang et al. [13] introduced the Multi-
Granularity Scale-Aware Networks (MGSA-Net), which 
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unified path-level and global approaches within a single 
framework. This design preserved global contextual infor-
mation and local fine details through multi-granularity fea-
ture map sharing, enhancing feature map fusion and infor-
mation preservation.

V-Net is a modified version of the U-Net architecture. 
Unlike U-Net, V-Net does not incorporate Batch Normali-
zation. Additionally, U-Net does not employ element-wise 
sums at the end of successive Convolutional Layers. Moreo-
ver, while V-Net utilizes four concatenations, U-Net employs 
only three. Liu and Chan [5] introduced an integrated seg-
mentation and classification network, utilizing V-Net as the 
foundational model. In this end-to-end approach, segmen-
tation and voxel-based feature learning occurred concur-
rently, facilitated by the voxel-based feature extraction layer. 
Conversely, Ozdemir et al. [99] initially claimed to have 
deployed an end-to-end model, but their proposed approach 
was actually executed in two stages. They employed V-Net 
for segmentation in the first stage, followed by two consecu-
tive basic CNNs for malignancy ranking and classification 
in the second stage.

Six studies [8, 29, 93, 100, 113, 118] opted for VGG 
as the foundational model for their classification tasks. 
Malik et al. [113] introduced the Best Diagnostic Classi-
fier Network (BDCNet), utilizing VGG-19 as its backbone 
and customizing it with various typical CNN layer struc-
tures to enable 4-class classification (normal, COVID-19, 
pneumonia, lung cancer). Bishnoi and Goel [118] devised a 
weighted VGG deep network (WVDN) within a high-speed 
real-time transfer learning framework tailored for real-time 
applications. Zuo et al. [8] presented a multi-resolution CNN 
and knowledge transfer approach, employing VGG as the 
backbone network. Their objective was to extract features 
of differing levels and resolutions from distinct depth layers 
in the network, enhancing the classification of lung nodule 
candidates through transfer learning. Notably, they improved 
the loss function and objective equation to operate at an 
image-wise calculation level rather than pixel-wise.

Apostolopoulos et al. [100] introduced the Feature Fusion 
VGG19 (FF-VGG19) technique. This approach relied on 
VGG networks as the backbone for feature fusion using a 
self-training strategy. Bharati et al. [93] proposed a novel 
hybrid DL framework named VDSNet, combining VGG, 
data augmentation, and a spatial transformer network 
(STN) with CNN. The niche of this field is worth mention-
ing, with only one article exploring the integration of CNN 
with a transformer network. Ibrahim et al. [29] embarked 
on a pioneering venture in the realm of multi-modality 
data classification, incorporating a fusion of CNN models 
(VGG19 + CNN, ResNet-152 V2, ResNet-152 V2 + GRU, 
and ResNet-152 V2 + Bi-GRU). Their models operated end-
to-end, relying solely on high-level features automatically 
extracted during the model training phase.

Huang et al. [88] devised a rapid and fully automated 
end-to-end system combining Faster R-CNN and CNN 
for nodule detection and FCN2s for nodule segmentation. 
Despite the authors’ assertion, this system functions in mul-
tiple stages. Initially, a 2D Faster R-CNN was employed to 
identify pulmonary nodule patches. The authors incorpo-
rated a conventional CNN before directing the patches to a 
modified FCN (with VGG-18 as the backbone) for precise 
nodule segmentation to mitigate false positives.

Huang et  al. [112] introduced a 3D OSAF-YOLOv3 
model for lung nodule detection. This model is created by 
fusing the 3D YOLOv3 architecture with the one-shot aggre-
gation module, the receptive field block, and the feature 
fusion scheme. Sahu et al. [90] leveraged MobileNet as the 
backbone network for their novel multi-section CNN. The 
unique aspect of their model is incorporating a view pool-
ing layer, enabling it to aggregate information from cross 
sections from different angles, effectively encoding the nod-
ule’s volumetric characteristics. Furthermore, the presented 
model capitalizes on the advantages of MobileNet, which is 
known for its lightweight nature and is conducive to deploy-
ment on mobile devices.

Three investigations [18, 89, 114] have developed novel 
customized CNN algorithms with AlexNet as the backbone 
model. Mehmood et al. [114] introduced CSIP-TL, a new 
model that combines class-selective image processing, trans-
fer learning, and AlexNet for classification. This approach 
improved undesirable class outcomes by using Histogram 
Equalization (HE) to enhance image quality and retrained 
the model with improved images for the problematic classes. 
Kasinathan et al. [89] developed an Enhanced CNN classifier 
with segmentation using an active contour model. The arti-
cle did not detail the enhancements applied to the AlexNet 
model but emphasized their integration. In another study, 
Souza et al. [18] proposed a method for lung segmentation in 
chest X-rays using AlexNet and ResNet as backbone models. 
AlexNet generated precise lung contours to produce initial 
segmentation maps, while ResNet-18 reconstructed missing 
lung regions. The final segmentation result was obtained by 
combining the outputs of both CNNs.

References [104, 107, 115, 120] utilized the ResNet archi-
tecture as their foundational framework. Zhao et al. [120] 
introduced an adaptive and attentive 3D CNN with ResNet 
at its core. Their model incorporated a high-resolution fused 
attention module in the initial stage for candidate nodule 
detection. Subsequently, they developed an adaptive 3D 
CNN with an adaptive 3D convolution kernel to reduce false 
positives. This was achieved by extracting multilevel con-
textual information. Ozdemir and Sonmez [115] integrated 
a feature-wise attention layer into ResNet-50 to enhance the 
discriminative features acquired by the network. This modi-
fication aimed to improve the network’s ability to capture 
important information. In a distinct approach, Xiao et al. 
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[107] investigated contour representation in polar coordi-
nates instead of Cartesian coordinates. They proposed a 
nucleus segmentation model based on polar representa-
tion, utilizing the ResNet architecture as a foundational 
component.

Chen et al. [102] devised Lung Dense Neural Network 
(LDNNET), built upon the DenseNet network structure. 
Their model functions as an end-to-end framework designed 
for lung nodule classification tasks. Li et al. [95] presented 
a multi-resolution patch-based CNN that adopts DenseNet 
as its foundational backbone for lung nodule detection. 
Features extracted from patches were fused using a feature 
fusion strategy, enhancing the model’s detection capabili-
ties. In contrast, Pandit et al. [119] introduced a multi-space 
image pool layer to an autoencoder. This innovative addi-
tion enabled the model to take account of reconstruction 
loss by subtracting it from accuracy, thereby contributing to 
improved performance.

Xu et al. [17] presented ISANET, an innovative approach 
for multiclass classification that combined various attention 
mechanisms—the channel attention mechanism, Squeeze-
and-Excitation (SE), and spatial attention (SA) with the 
InceptionV3 architecture. InceptionV3 was the backbone 
model, which was tuned with a channel attention module 
positioned before the final layer. Masood et al. [97] intro-
duced an advanced multidimensional region-based fully 
convolutional network (mRFCN) tailored for lung nodule 
detection and classification. Their model featured a multi-
layer fusion region proposed network (mLRPN) designed to 
enhance ROI selection by incorporating position-sensitive 
score maps. Additionally, during the downsampling process, 
a deconvolutional layer was integrated to recover any poten-
tial loss of small objects, such as lung nodules.

Guo et al. [104] developed an end-to-end model, ProNet, 
for classifying histological subtypes. They utilized the 
ResNet architecture, incorporating a sequence of two batch 
normalization layers, followed by multiple building blocks 
and a global average pooling module in their research.

Moreover, a collection of studies [12, 53, 92, 98, 105, 
108, 110, 116] has introduced fully customized CNN mod-
els, deliberately avoiding the use of pre-existing CNN 
architectures as their backbones. These models typically 
encompass a conventional CNN structure, incorporating 
convolutional, pooling, and fully connected layers. The 
models vary in the number of layers employed and often 
integrate additional enhancement modules like attention 
mechanisms.

Suresh and Mohan [116] developed a deep CNN that 
adheres to the typical CNN model structure and asserted its 
status as an end-to-end solution that eliminates the need for 
manual feature extraction. Ashraf et al. [53] formulated a 
distinctive approach, constructing a customized model fea-
turing three branches of identical customized CNN models. 

These branches were subsequently fused to produce the final 
output, effectively fusing information from the three sub-
models. In contrast, using histopathological images, Civit-
Masot et al. [108] introduced the Explainable Deep Learning 
(xDL) framework for non-small cell lung cancer diagno-
sis. This novel approach harnessed the Gradient-weighted 
Class Activation Mapping (Grad-CAM) algorithm, which 
directed the system’s focus toward specific regions one at 
a time rather than analyzing the entire images collectively.

Saradhi et al. [12] introduced the Multiscale CNN with 
Compound Fusions (MCNN-CF) model, which takes mul-
tiscale 3D patches as inputs and performs feature fusion 
within the network. This fusion process occurs at two dif-
ferent network depths in two distinct manners. The model 
is organized into three stages, each consisting of submod-
ules. Notably, the first stage simultaneously learns low-level 
features from 3D patches of varying sizes corresponding 
to each nodule candidate. In the subsequent two stages, 
high-level features are acquired through multiple fusions of 
features from the previous stage. Two distinct fusion tech-
niques, namely Concatenation and Addition, are employed in 
the second and third stages, respectively. These fusion tech-
niques contribute to integrating learned features, enhancing 
the model’s overall performance and capabilities.

Two studies [105, 110] have recognized the importance of 
focusing on specific regions within the input and addressed 
this by integrating attention mechanisms into CNN archi-
tectures. Sun et al. [105] introduced the attention-embedded 
complementary-stream CNN (AECS-CNN) to achieve this 
objective. The AECS-CNN model consists of three key 
functional blocks: the attention-guided multi-scale feature 
extraction block ensures the acquisition of multi-scale fea-
tures with attention-driven focus, the complementary-stream 
block, augmented with an attention module, guides the net-
work in weighing features from diverse scale inputs to pri-
oritize the nodule region, the classification block utilizes the 
integrated features for accurate classification. These efforts 
collectively enable the network to concentrate on significant 
regions, enhancing information accuracy and classification 
performance.

Fu et  al. [110] extend their approach by integrating 
multiple attention-based learning modules to concurrently 
assess nine distinct visual attributes of lung nodules across 
complete CT image volumes. They employ a slice atten-
tion module to eliminate insignificant slices, cross-attribute 
attention modules to explicitly leverage inter-attribute rela-
tionships by combining high-level CNN representations, 
and attribute specialization attention modules to ensure the 
meaningfulness of high-level CNN representations for the 
specific attributes.

Ali et al. [92] introduced the Transferable Texture CNN, 
an end-to-end model. Comprising merely three convolu-
tional layers and an energy layer, this model extracts texture 
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features from the convolutional layer. The energy layer’s 
role is twofold: it preserves texture information from the 
preceding layer and dynamically learns during forward 
and backward propagation. This strategic inclusion of the 
energy layer not only retains the essential energy/texture 
information but also reduces the network’s learnable param-
eters, subsequently contributing to reduced computational 
complexity.

4.4 � In‑depth Review of the Model Category: Pure 
GAN

GAN has gained attention lately. Among 119 articles 
reviewed, only three [38–40] utilized established GANs 
without modifications. Specifically, Toda et  al. [39] 
employed the Style Pix2pix model, Moris et al. [38] utilized 
CycleGAN, and Mendes et al. [40] employed Pix2Pix and 
cCGAN for lung image generation. Eight studies [36, 37, 
41–45, 47] introduced the novel Pure GAN algorithms for 
detecting and classifying lung cancer. Three studies [11, 46, 
47] combined GANs with optimization algorithms. Table 4 
summarizes the results obtained by the customized GANs.

In two recent research works, Nishio et al. [36] and Jin 
et al. [37], GANs were harnessed to expand the available 
dataset for lung cancer by generating images. Nishio et al. 
[36] tailored a 3D GAN model close to a 3D pix2pix net-
work. Their model utilized the ResNet architecture as its 
foundation. Noteworthy modifications included integrating 
3D random erasing to infuse noise into the generator and 
introducing a loss function called PathGAN loss, which 
combined L1 loss and GAN loss. This model’s adaptability 
enabled the creation of masked images containing nodules 
of varying sizes rather than being restricted to a specific size.

Jin et al. [37] approached the augmentation challenge 
as a free-form image generation problem, considering the 
complexities of arbitrary and irregular shapes. Their model, 
FRGAN, allowed users to specify their areas of interest 
for synthetic tumor generation with shape and size prefer-
ences. The process involved masking and erasing the chosen 
region, after which FRGAN reconstructed the erased portion 
using a learned mapping between the mask and the tumor. 
The model predominantly relied on a dilated–gated genera-
tor, leveraging dilation operations for an expanded recep-
tive field and a more comprehensive convolutional feature 
connection branch for tumor reconstructions of shape. The 
introduction of a hybrid loss function, fusing multi-mask 
loss, style loss, and perceptual loss, facilitated the integra-
tion of complementary information.

GANs have been utilized in various other tasks, includ-
ing segmenting and classifying lung nodules. Notably, 
several methods have been explored for segmentation, 
often involving a series of steps requiring manual param-
eter adjustments at each stage. However, Jain et al. [41] 

introduced a novel LGAN approach, which automates 
the segmentation process. The model adopts U-Net as its 
foundational architecture and innovatively incorporates an 
Earth Mover distance-based loss function. This approach 
aims to achieve end-to-end segmentation, pushing the gen-
erated lung segmentation mask to align closely with the 
actual ground truth mask.

In a similar effort, Pawar and Talbar [42] introduced 
an approach named LungSeg-Net, which operates on the 
principles of a conditional GAN. Their primary focus was 
on extracting pertinent features to construct segmentation 
maps. They integrated a multi-scale dense feature extrac-
tion module between the encoder and decoder blocks to 
enhance their approach. This module consists of four 
inception blocks interconnected through dense connec-
tions, allowing for robust multi-scale feature extraction 
from the encoded feature maps.

Likewise, Tyagi and Talbar [43] devised a 3D condi-
tional GAN termed CSE-GAN for lung nodule detection. 
Their strategy considered data distribution to address the 
challenge of class imbalance, which can lead to model 
overfitting. To combat this, they adopted a patch-based 
training methodology. The generator within their proposed 
network is based on the well-known U-Net architecture, 
tailored with a concurrent squeeze and excitation module. 
In contrast, the discriminator is a typical CNN network, 
enhanced with a spatial squeeze and channel excitation 
module. This setup allowed the discriminator to differen-
tiate between ground truth and generated segmentation.

In addition, the inherent classification task of the dis-
criminator in a GAN has been exploited for alternative 
purposes in certain studies [44, 45], where the focus 
shifted to classifying lung nodules as benign or malig-
nant. For instance, Salama et al. [45] proposed the Deep 
GAN framework, which leveraged a convolutional vari-
ational auto-encoder (CVAE) as the generator. This archi-
tecture was employed to create a dense, class-balanced 
dataset for training the classifier model. In this case, the 
discriminator was a ResNet-50 network configured to 
classify lung tumors. Likewise, Xie et al. [44] introduced 
the MK-SSAC model, which operates on semi-supervised 
adversarial classification. This model employs multi-view 
knowledge-based collaborative learning, utilizing three 
semi-supervised adversarial classification modules to 
handle different aspects of benign-malignant lung nodule 
classification: overall appearance, shape heterogeneity, and 
texture heterogeneity. The model incorporates an adver-
sarial autoencoder-based unsupervised reconstruction net-
work, a supervised classification network, and transition 
layers. These transition layers enable the transfer of image 
representation abilities learned by the reconstruction net-
work to the classifier, enhancing the overall classification 
performance.
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4.5 � In‑Depth Review of the Model Category: Pure 
Other NN

Pure Other NN comprises models that do not primarily rely 
on convolution layer as their fundamental structure such 
models include Artificial Neural Networks (ANN), Long 
Short-Term Memory (LSTM) networks, and Recurrent 
Neural Networks (RNN). They contribute to the diagnosis 
process by classifying features extracted from earlier phases 
of the workflow. Some studies in this category are com-
plemented by accompanying algorithms and categorized as 
Hybrid ML. These networks may not excel at image process-
ing alone, but often serve as classifiers in the final stages of 
a CAD workflow to classify features extracted from earlier 
phases. Thus, it is noted that a significant portion of stud-
ies falling within the Other NN category is complemented 
by accompanying algorithms, and therefore categorized as 
Hybrid ML instead [14, 15, 30, 55, 56, 66–69, 72, 74, 75, 
80, 82, 83, 85, 86, 130–133].

Among the surveyed studies, only one study [50] falls 
under the category of Other NN. In this study, the authors 
tackled the challenge of classifying lung nodules with vary-
ing appearances by introducing the Progressive Growing 
Channel Attentive Non-Local (ProCAN) network. The Pro-
CAN approach was devised to address this challenge through 
three strategic solutions. Firstly, the non-local network was 
enhanced by integrating channel-wise attention mechanisms, 
enhancing its capability to capture essential features. Sec-
ondly, the principles of Curriculum Learning were adopted, 
enabling the model to begin training on simpler examples 
before progressing to more complex ones. Thirdly, a progres-
sive growth technique was employed to gradually modify the 
network’s depth, facilitating its adaptation to the increasing 
difficulty of the classification task. The expansion of the 
network was realized by introducing new layers facilitated 
by the Bernoulli Blending algorithm. This comprehensive 
strategy empowered ProCAN with the competence to handle 
the challenge inherent in lung nodule classification, thereby 
establishing it as a robust solution for this demanding prob-
lem. Notably, ProCAN’s foundational architecture is based 
on NNs, consisting of seven CAN (Channel Attentive Non-
Local) blocks, followed by a global average pooling (GAP) 
layer and a fully connected layer.

4.6 � In‑Depth Review of the Model Category: Pure 
ML

In this survey, Pure ML methods refers to ML approaches 
that are not based on NNs. Although ML methods are 
frequently used as classifiers in the final stages of a CAD 
system, their usage is limited due to a shift towards more 
efficient approaches, such as end-to-end models or using 

NNs to extract high-level features for better classification 
performance.

Only three identified studies [51, 52, 121] were catego-
rized as Pure ML. These studies emphasized a multi-stage 
CAD system, wherein pre-processing, handcrafted feature 
extraction, and selection are performed in dedicated stages. 
The extracted features are subsequently input into an ML 
classifier for final classification.

For instance, in the work by Savitha and Jidesh [51], a 
two-stage CAD system was developed to classify lung nod-
ules into solid and subsolid types. Image denoising, segmen-
tation, and feature extraction were conducted as initial steps. 
In the first stage, the system classified nodules from non-
nodules using SVM, FCM, and RF classifiers, respectively. 
The identified nodules were then subjected to further clas-
sification into solid and subsolid categories using K-means 
clustering and SVM.

Huang et al. [121] focused on quantitatively extracting 
features from CT images to classify subtypes of non-small-
cell lung cancer. The Partition Around Medoids (PAM) con-
sensus clustering algorithm was employed for this purpose. 
In another study, conventional SVM classification was used 
to address the nodule versus non-nodule classification prob-
lem. Before classification, segmentation and feature extrac-
tion were performed to derive quantitative features for the 
SVM classifier [52]. The authors introduced a hybrid seg-
mentation approach, Adaptive Morphology-Based Segmen-
tation Technique (AMST), which combined k-means cluster-
ing, morphological top-hat and bottom-hat operations, and 
adaptive structuring elements.

These studies underscore the application of traditional 
ML techniques in lung nodule classification, often integrated 
within multi-stage CAD systems that involve preprocessing, 
feature extraction, and final classification. Table 5 gives the 
summary of results obtained by the Pure ML methodologies.

4.7 � In‑Depth Review of the Model Category: Other

An additional seven articles [6, 7, 122–126] fall under the 
“Other” category in this classification. This category com-
prises models that do not fit into the defined categories of 
Pure CNN, Pure GAN, Pure Other NN, or Pure ML. Instead, 
they are built using traditional non-ML methods and are 
combined within multi-stage CAD systems, which involve 
multiple stages for the analysis and processing of lung nod-
ule data. Table 6 gives the summary of results obtained by 
the Pure ML methodologies.

CAD systems were developed to automate the detection 
and classification of pulmonary nodules in lung CT images 
[122, 124]. These systems could simultaneously detect and 
categorize three types of nodules (ground-glass opacity, 
part-solid, and solid) using a combination of morphological, 
texture, and nodular features unique to the nodules.
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Furthermore, Cui et al. [6] introduced an in-house DL-
CAD system that embraced a double reading approach for 
enhanced accuracy, involving both DL- and radiologist-
based reading. Heidari et  al. [126] pioneered a global 
model named FBCLC-Rad, which was the first federated 
learning model in literature. Their innovation lies in uti-
lizing data from multiple hospitals via blockchain-based 
federated learning to train a global CapsNets model, 
thereby optimizing information sharing. In another study, 
Kavithaa et al. [123] utilized the Spatial Image Clustering 
Technique and the Linear Subspace Image Classification 
Algorithm (LSICA) for the segmentation and classification 
of lung cancer, respectively.

Within the realm of lung segmentation, Wang et al. [7] 
introduced a novel method for Solitary Pulmonary Nodule 
(SPN) segmentation. This approach combined a multiscale 
total-variation pyramid and improved GrabCut techniques 
to address issues related to nodule inhomogeneity and 
fuzzy contours. Shariaty et al. [125] proposed a Texture 
Appearance Model (TAM) that utilized extracted features 
from CT scans to create a Texture Representation of Image 
(TRI). This approach aimed to differentiate between lung 
nodules and lung tissue within lung CT images, focusing 
on texture-based distinctions.

4.8 � In‑Depth Review of the Model Category: Hybrid 
ML

Most studies are observed integrating multiple foundation 
models to derive a new algorithm. Table 7 gives the sum-
mary of results obtained by the Hybrid ML methodolo-
gies and the development is discussed according to the 
combination pairs:

4.8.1 � Eight Studies Combined CNN and ML: [9, 58, 59, 64, 
70, 71, 73, 127]

A recent trend in lung cancer classification involves the 
utilization of deep features extracted by one or more Deep 
NN models, which are then passed to another Deep NN 
or Conventional ML classifier for the final classification. 
Several studies have explored this approach, including [9, 
58, 59, 71].

Kumar et al. [70] compared the performance of hand-
crafted features and deep features for classification pur-
poses. References [58, 59, 73] demonstrated the use of 
pre-trained CNN to extract deep features, followed by their 
utilization in conventional classifiers for final classifica-
tion. While these studies focused on comparative analy-
ses of various models, further performance enhancements 
were not a primary objective.

Wang et al. [9] introduced CNN-AvgFea-Norm3-based 
RF, a weakly supervised approach for efficient classifi-
cation of whole-slide lung cancer images. Their method 
employed a patch-based fully convolutional network for 
extracting discriminative blocks and generating represent-
ative deep features. Different strategies for context-aware 
block selection and feature aggregation were explored and 
was then fed into a random forest classifier for image-level 
prediction.

Alshayeji and Abed [71] introduced NoduleDiag, an 
end-to-end conventional ML approach that fused hand-
crafted features and deep features from various networks 
(ResNet-50, AlexNet, EfficientNet-80) for classifying can-
cerous CT images and determining malignancy stages based 
on observable nodule characteristics. Furthermore, Savitha 
and Jidesh [64] combined conditional random field (CRF), 
a non-NN model, with DL for semantic segmentation and 

Table 5   Summary of the pure ML model group

Acc accuracy, P precision, F1 F1-Score, S specificity, R recall

Year Article Model(s) used Main structure of the 
model(s)

Dataset Data Modality Results

2019 [51] A fully automated system 
for identification and 
classification of subsolid 
nodules

Classification stage 1: 
SVM, RF and FCM

Classification stage 2: SVM 
and K-means clustering

LIDC-IDRI, ELCAP Pub-
lic Lung Image Database

CT images S = 96.00, R = 95.00

2020 [52] An adaptive morphology-
based segmentation 
technique for lung nodule 
detection

Segmentation: Adap-
tive morphology-based 
segmentation technique 
(AMST)

Classification: SVM

LIDC-IDRI, Hospital-
based data

CT images Acc = 92.86, 96.86, 
S = 91.33, 96.00, 
R = 92.90, 97.25

2022 [121] Identification of non-small-
cell lung cancer subtypes 
by unsupervised cluster-
ing of CT image features

Classification: Partition 
around medoids (PAM) 
consensus clustering 
algorithm

Lung1, TCGA-LUAD CT images Not provided
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deep feature extraction and classification within a CAD 
system.

Hu et al. [127] proposed Mask R-CNN Lung Map for 
automatic lung segmentation from CT images, incorporating 
supervised and unsupervised ML methods such as Bayes, 
SVM, K-means, and Gaussian Mixture Models. However, 
limitations in Mask R-CNN were noted due to memory 
usage and detection speeds associated with region proposals.

These studies collectively illustrate the diverse 
approaches and methods used to leverage deep features for 
lung cancer classification, incorporating both DL and con-
ventional ML techniques to enhance accuracy and efficiency 
in this critical medical application.

4.8.2 � Six Studies combined CNN and Other NN: [68, 69, 72, 
130–132]

Marentakis et al. [130] proposed a novel method that does 
not require detailed segmentation. They explored combina-
torial models, specifically the combination of LSTM, CNN, 
and radiomics techniques. Wang et al. [68] utilized DL 
techniques to classify lung adenocarcinoma subtypes in CT 
images. They introduced an ensemble model by combining 
a modified 3D-ResNet-34 with radiomics strategies.

Wankhade and Vigneshwari [132] introduced a new 
approach called Cancer Cell Detection using Hybrid Neural 
Network (CCDC-HNN). They employed parallel CNN and 
RNN models for segmentation, feature extraction, and clas-
sification, with results combined at a merge layer. Bushra 
et al. [72] developed a unique DL framework, LCD-CapsNet, 
which encapsulates both CNN and Capsule Neural Network 
(CapsNet). This framework leveraged the strengths of these 
networks to minimize data and achieved spatial invariance 
for lung cancer detection and classification in CT images. 
The proposed LCD-CapsNet achieved high accuracy, but 
its algorithm’s complexity, particularly the inner loop of the 
dynamic routing algorithm, resulted in slower performance 
compared to CNNs.

Chen et al. [131] introduced a multi-task learning model 
for histologic subtype classification of non-small cell lung 
cancer using CT images. Their approach aimed to optimize 
both subtype and staging classifications simultaneously. The 
multi-task learning model demonstrated better subtype clas-
sification performance than radiomics-based methods due to 
its ability to automatically extract higher-level features. Hal-
der et al. [69] introduced a DL framework, 2-Pathway Mor-
phology-based CNN (2PMorphCNN), for accurate lung nod-
ule classification. This framework combined morphological 
and textural features using two trainable parallel paths: one 
path employed Gabor filters for CNN-based feature learn-
ing, while the other used adaptive morphology-based feature 
extraction. The 2PMorphCNN outperformed other nodule 

classification methods by capturing and combining textural 
and morphological features from lung nodule images.

These studies collectively highlight various innova-
tive approaches using DL, multi-task learning, ensemble 
models, and hybrid models to enhance lung cancer detec-
tion and classification using medical images, while also 
addressing challenges such as efficient feature extraction 
and classification.

4.8.3 � Two Studies Combined CNN and Other: [128, 129]

Bae et al. [128] developed a novel CAD system for classify-
ing lung diseases. They introduced a unique approach by 
utilizing Perlin noise for data augmentation, which gener-
ates natural-looking textures efficiently. This augmented data 
was then used as input for the FusionNet classifier, enabling 
precise pixel-level disease classification.

Addressing the issue of varying resolution screening data, 
Xu et al. [129] introduced DeepLN, an integrated solution 
employing CNNs, a multi-level feature combination strategy, 
and RPN. This system effectively handles multi-resolution 
challenges by using neural-network-based detectors to iden-
tify lung nodules. They tackled the class imbalance problem 
using hard negative mining and a modified focal loss func-
tion. Furthermore, they proposed an innovative ensemble 
technique based on non-maximum suppression to merge 
outcomes from various NN models trained on different CT 
image resolutions.

4.8.4 � One Study Combined ML and Other: [65]

Li et al. [65] designed a CAD system named Relief-SVM 
to classify different subtypes of lung cancer using histopa-
thology images. The process involved initial extraction of 
traditional features, subsequent application of RELIEF for 
selecting relevant features, and ultimately employing SVM 
for the classification task.

4.8.5 � Five Studies Combined Other NN and ML: [15, 66, 67, 
74, 133]

In most of these studies, SVM was utilized as the primary 
classifier within their respective CAD systems as seen in 
references [15, 66, 67, 74, 133].

Addressing the imperfections in raw images, Shakeel 
et al. [133] introduced an innovative hybrid pre-process-
ing technique called Improved Profuse Clustering Tech-
nique (IPCT) to enhance image quality combined with 
Deep Learning Instantaneously Trained Neural Networks 
(DITNN) for the purpose of classifying cancer and non-
cancer cases.

Due to the challenge of overlapping cells, Kavitha et al. 
[15] proposed an Efficient Classification Model for Cancer 
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Stage Diagnosis (ECM-CSD). They employed Region-Based 
Fuzzy C-Means Clustering (FCM) for lung region segmenta-
tion and SVM for classifying cancer stages.

Nanglia et al. [66] presented the Kernel Attribute Selected 
Classifier (KASC) incorporating three key blocks. Their 
approach involved preprocessing, utilizing Speeded Up 
Robust Features (SURF) optimized by Genetic Algorithm 
(GA) for feature extraction, and employing SVM integrated 
with a Feed-Forward Back Propagation Neural Network for 
classification.

Rey et al. [67] introduced a hybrid CAD system involv-
ing fuzzy clustering, SVM, and ANN. Their system featured 
automated detection through a combination of Modified 
Spatial Kernelized Fuzzy C-Means (MSKFCM) and Back 
Propagation Neural Network (BPNN). They also incorpo-
rated volume of interest creation using a growing algorithm, 
feature selection through PCA, and utilized SVM and ANN 
classifiers with various regularization techniques.

Siddiqui et al. [74] proposed the GFSVM-EDBN method, 
which employs an Enhanced-DBN (E-DBN) consisting 
of cascaded Gaussian-Bernoulli and Bernoulli-Bernoulli 
Restricted Boltzmann Machines (RBMs) for feature selec-
tion. They combined this with a SVM for classifying lung 
CT images. This cascading approach simplifies layer-to-
layer operations and offers improved feature selection com-
pared to conventional DBN methods.

4.8.6 � Three Studies Combined {CNN, GAN, Other‑NN, ML} 
and Fuzzy: [30, 56, 78]

To date, the utilization of Fuzzy ML is rare, as evidenced by 
only three studies [30, 56, 78] incorporating a fuzzy compo-
nent as part of their algorithms. Dey et al. [78] introduced an 
optimized fuzzy ensemble of CNNs through the Sugeno inte-
gral-based ensemble approach, which was further enhanced 
using eight well-established optimization algorithms for the 
purpose of lung disease screening. Meanwhile, Tian et al. 
[56] integrated the existing fuzzy possibilistic c-ordered 
mean alongside enhanced capsule networks (ECN), incor-
porating the converged search and rescue (CSAR) algorithm 
to optimize the clustering processes.

The effectiveness of each stage heavily relies on the accu-
racy achieved in the preceding stage, which constitutes a sig-
nificant drawback. In their work, Tiwari et al. [30] addressed 
this concern by employing a Target-based Weighted Elman 
DL Neural Network (TWEDLNN) alongside a Farthest 
First Fuzzy C-Means (3FCM) algorithm for lung cancer 
detection. While Elman Deep Neural Networks (EDNN) 
are adept at handling discrete time series challenges, they 
might exhibit convergence issues or prolonged execution 
times. To mitigate this, the study introduced target-based 
weight values to enhance the control and performance of 
EDNN. In traditional Fuzzy C-Means (FCM) algorithms, 

cluster centroids are chosen randomly, which can yield sub-
optimal outcomes. To overcome this limitation, the proposed 
3FCM approach leverages the Farthest Point First Clustering 
(FPFC) algorithm to select initial centroids in a more effec-
tive manner.

4.8.7 � Eighteen Studies Combined {CNN, GAN, Other‑NN, 
ML} and Optimization algorithm: [11, 14, 46, 47, 55, 
57, 75–77, 79–87]

The interest in integrating optimization techniques has been 
steadily increasing over the years due to the growing demand 
for computational resources and the advancement of DL 
models. The number of studies in this area has exponentially 
increased and is expected to continue growing in the future.

CNN layers generate high-dimensional deep features, 
which can lead to the curse of dimensionality. The curse of 
dimensionality refers to the challenges and inefficiencies that 
arise when dealing with high-dimensional data. To address 
this, a subset of studies [76, 79, 81] has attempted to opti-
mize the models using specific algorithms to find optimal 
hyperparameters and improve performance.

Li et al. [76] employed a genetic algorithm (GA) to opti-
mize a basic CNN. Their visual analysis indicated that the 
GA-optimized CNN exhibited improved accuracy, although 
no quantitative measurements were provided. In another 
study, Xu et al. [81] introduced a novel CAD system for 
lung cancer using CT-scan images. They utilized a modified 
Bowerbird optimization algorithm to enhance an AlexNet 
model. Modifications were introduced to address previous 
challenges related to low accuracy and slow convergence 
speed with Bowerbird algorithm, incorporating opposition-
based learning and chaos mechanisms.

Addressing the challenge of high-dimensional deep fea-
tures generated by the concatenation layer in multi-input 
CNN methods, Huang et al. [79] introduced a manifold-
based DL model named as Deep Feature Optimization 
Framework (DFOF). In this research, optimization tech-
niques were integrated into the two-stream feature extrac-
tion stage to segregate interclass samples and to form the 
embedding features to be fed into a classifier.

Meanwhile, the integration of optimization techniques 
is also gaining traction in the realm of research involving 
customized CNNs. Jiang et al. [77] introduced NASLung, 
a customized CNN that incorporates a convolutional-based 
attention module (CBAM) with A-Softmax loss function 
and employed a neural architecture search approach known 
as Partial Order Pruning to search for low-latency neural 
architecture. An ensemble of diverse NNs was utilized to 
enhance prediction accuracy and overall robustness. Nota-
bly, the model achieved remarkably competitive perfor-
mance while utilizing less than 1/40th of the parameters 
typically employed.
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Kanipriya et al. [80] presented an innovative approach 
called Improved Capuchin Search Algorithm (ICSA) opti-
mized hybrid architecture, combining CNN and LSTM, 
denoted as ICSA-LSTM-CNN, for the classification of lung 
nodule subtypes. The Capuchin search algorithm draws 
inspiration from the energetic foraging behavior of capu-
chin monkeys, and the algorithm was improved with Oppo-
sition-Based Learning and Chaotic Local Search to optimize 
hyperparameters.

Ajai and Anitha [57] introduced the Shuffled Social Sky 
Optimizer-based Multi-Object Rectified Attention Network 
(SSSO-based MORAN) for lung cancer classification. 
This model utilizes a novel algorithm, the Shuffled Shep-
herd Optimization Algorithm (SSOA), combined with the 
Social Ski-Driver (SSD) algorithm. The SSOA is inspired 
by animal instinct, mimicking a shepherd’s ability to find 
optimal paths, while SSD addresses imbalanced data issues 
by considering velocity and previous positions for solution 
updates. Notably, the SSSO-based MORAN is heavyweight 
as it incorporates multiple advanced components, including 
Deep Renyi entropy fuzzy clustering (DREFC) for segmen-
tation, artificial feature extraction, and a grid-based scheme 
for detection, culminating in an advanced classification 
approach.

A significant issue of high overfitting was encountered, 
where the models displayed effectiveness for specific classes 
but lacked performance across all categories. Addressing 
this concern, Rajagopal et al. [84] demonstrated an alterna-
tive solution for lung disease detection. They employed a 
deep convolutional spiking NN optimized with the arithme-
tic optimization algorithm (LDC-DCSNN-AOA). Impres-
sively, their approach achieved heightened sensitivity in 
comparison to the competing models.

Sengodan et al. [86] introduced a method, named Multi-
populational Neighborhood Particle Swarm Optimized 
Modified Ensemble Faster Learning (MNPS-MEFL). Their 
approach involved adaptively tuning an ensemble of SVM 
and Faster R-CNN classifier using the algorithm. This adap-
tive tuning aimed to strengthen accuracy specifically for pre-
cise detection of benign and malignant lung nodules.

Previous research did not focus on optimizing the 
assigned weights within the ensemble model through a meta-
heuristic-based strategy. Srivastava et al. [87] implemented 
ensemble learning across six DCNN classifiers. They 
employed Differential Evolution optimization to determine 
optimal assigned weights for these classifiers during ensem-
ble model training. Additionally, a majority voting mecha-
nism based on Condorcet’s Jury Theorem was introduced. 
This innovation significantly reduced computational efforts 
by eliminating the need for training meta-learners.

In addition to models based on CNNs, researchers in both 
references have also delved into the optimization of GAN 
models. Jain et al. [11] applied the Salp Shuffled Shepherd 

Optimization Algorithm, while Kumar et al. [46] applied the 
Sunflower Optimization Algorithm. Both approaches were 
employed to address challenges associated with high levels 
of overfitting in GAN models.

Murthy and Prasad [47] proposed Transformer-Aided 
GAN (T-GAN) technique to address the issue of spatial 
feature degradation within a GAN-based classification 
approach. They introduced a transformer into the GAN net-
work, aiming to minimize spatial features distractions within 
the image by optimizing the various layers within the GAN 
framework. Furthermore, to fine-tune the network model, 
they introduced a novel technique termed Dynamic Levy 
Flight Chimp Optimization (DyLF-CO).

The challenges in detecting tumors with varying appear-
ances and characteristics prompted Braveen et al. [14] to 
propose the Ant Lion-based Autoencoders (ALbAE) model 
for optimal high-level feature extraction to allow precise 
classification based on discriminative features. Moreover, 
Lakshmanaprabu et al. [75] introduced an Optimal Deep 
Learning (ODNN) classifier, composed of a Deep Belief 
Network and a Restricted Boltzmann Machine, using a Mod-
ified Gravitational Search Algorithm (MGSA) for weight 
optimization, aimed at detecting lung cancer.

The concept of Opposition-Based Learning (OBL) 
involves generating vary solutions to diversify the search 
space, potentially leading to improved optimization out-
comes. Priya et al. [55] employed OBL alongside Deep 
Belief Networks, employing the Opposition-Based Pity 
Beetle Algorithm (OPBA), inspired by beetle behavior. 
Sabzalian et al. [85] enhanced Bidirectional Recurrent Neu-
ral Networks (BRNNs) for lung cancer diagnosis using an 
Improved Ebola Search Optimization Algorithm, outper-
forming standard gradient-based optimization techniques. 
Meanwhile, Prakash et al. [83] optimized the Lung Cancer 
Classification system (EESNN classifier) with the Flamingo 
Search Optimization Algorithm.

Convergence challenges in Mask R-CNN were addressed 
by Indumathi and Siva [82], who introduced a hybrid Mask 
R-CNN-Bidirectional Long Short-Term Memory (BiDL-
STM) model for more accurate lung disease prediction. 
This model utilizes the Crystal algorithm to optimize Mask 
R-CNN through hyperparameter tuning, improving scalabil-
ity and convergence, and enhancing segmentation accuracy 
through region selection.

4.8.8 � In‑Depth Review of the Model Category: Commercial 
CAD System

Four studies [60–63] revolved around the implementation of 
readily available CAD systems. Table 8 gives the summary 
of results obtained by the Commercial CAD methodologies.

Morozov et al. [61] introduced the practical tool FAn-
Tom software, grounded in a cluster model, which was 



	 S. L. Tan et al.

made accessible on GitHub. This tool was designed for 
nodule localization and could accommodate variations in 
interpretations from diverse individual readers annotating 
CT scans. Lancaster et al. [63] conducted an evaluation 
and comparison of an DL-based screening method called 
AVIEW LCS for lung cancer. The performance of this 
AI system was assessed in comparison to manual reading 
methods.

Tam et al. [62] introduced AI integration into cancer diag-
nosis. They employed Red Dot for initial classification and 
then directed patients towards further treatment or radiolo-
gist review based on the AI reader’s assessment. Hsu et al. 
[60] conducted a study to compare the effectiveness and 
reading time of different readers using the ClearReadCT 
system, an automatic AI-powered CAD system, for lung 
nodule detection across various reading modes.

5 � Discussion

In this section, a detailed analysis will be conducted in rela-
tion to each individual research question.

5.1 � RQ1: What are the types of CAD techniques 
used for diagnosing lung cancer, Cancer, 
and how do CAD systems contribute 
to enhancing the efficiency and accuracy 
of lung cancer cancer diagnosis?

Medical imaging analysis for lung cancer CAD systems can 
be classified into three main categories based on feature 
engineering, DL, and end-to-end frameworks. These systems 
are constructed using foundational models, including Pure 
CNN, Pure ML, Pure GAN, Other NN, Pure Other, Hybrid 
ML, and Commercial CAD systems. The most popular tech-
nique among them is the Pure CNN approach. The goal of 
CAD systems is to automate lung cancer detection tasks and 
provide accurate diagnostic assessments.

5.2 � RQ2: What are the Key Advancements 
in CAD for Lung Cancer Diagnosis, and How 
Do Different Model Configurations Impact 
the Performance of Lung Cancer Diagnosis?

In essence, the landscape of medical imaging analysis has 
been marked by these compelling trends: the direct utiliza-
tion of transfer learning, the incorporation of GANs, the 
exploration of diverse NN models, the investigation of non-
NN approaches, the development of hybrid models, and 
the integration of commercial CAD tools. Notably, many 
researchers have either introduced entirely novel CNN 
algorithms tailored to specific diagnostic objectives or have 
enhanced publicly available CNN models by incorporating 
custom or modified layers.

5.2.1 � RQ2a: What are the advantages and disadvantages 
of CNN‑based approaches?

CNNs have revolutionized the field of lung cancer imaging 
analysis by their capacity to automatically extract hierar-
chical features from data. Nevertheless, CNN-based strat-
egies come with both merits and demerits like any other 
technology.

Advantages: CNNs excel at automatically learning and 
extracting hierarchical features and discriminative patterns 
from raw data. Also, their translation invariance properties 
enable them to identify patterns irrespective of their loca-
tion within the input data, proving advantageous for tasks 
like image classification where nodule location can vary. 
Moreover, the hierarchical learning nature of CNNs facili-
tates an efficient understanding of varying levels of abstract 
representation, from structural level to high level features. 
Furthermore, CNNs also inherently capture spatial hierar-
chies, making them appropriate for tasks involving spatial 
relationships such as object segmentation and detection.

Disadvantages: Within the CNN architecture, deeper net-
works do not necessarily yield improved performance and 
determining the optimal depth for effectiveness remains 
unclear [135]. Moreover, deeper network depth corresponds 

Table 8   Summary of Commercial CAD system group

Acc accuracy, P precision, F1 F1-Score, S specificity, R recall

Year Article Model(s) used Dataset Data Modality Results

2021 [60] ClearReadCT system Private dataset CT images S = 83.00, R = 80.00, AuC = 82.00
2021 [61] FAnTom software MoscowRadiology-CTLungCa-500 

dataset
CT images Not provided

2021 [62] Red Dot NHS Cancer Registry database Chest X-ray images Acc = 87.00, P = 92.00, S = 93.00, 
R = 80.00

2022 [63] AVIEW LCS ultra-LDCT thorax scan of Moscow 
Lung Cancer Screening (MLCS) data 
management system, LUNA16

CT images Positive misclassification: 18.70, 
Negative misclassification: 2.80
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to an increase in trainable parameters, rendering the model 
computationally intensive and reliant on robust hardware. 
Moreover, CNNs are data hungry and demand a substantial 
volume of data to perform effectively and training them from 
scratch with limited data can lead to overfitting or weak gen-
eralization. In addition, task specific CNNs may not general-
ize well across different tasks, necessitating tailored archi-
tectural fine-tuning for varying objectives.

5.2.2 � RQ2b: What are the key advancements 
in CNN‑based Aapproaches for lung cancer 
detection, and how do these approaches address 
the Limitations and challenges faced in lung cancer  
detection?

Several key advancements in CNN-Based Approaches for 
lung cancer CAD development were observed. One nota-
ble advancement is the widespread utilization of transfer 
learning in several studies [31, 32, 34, 35, 59, 92, 96, 100, 
114, 118], where pre-trained CNN models, often trained on 
large datasets like ImageNet, are fine-tuned for lung cancer 
detection. This approach enables the extraction of relevant 
features from medical images without requiring massive 
amounts of labeled data.

Secondly, researchers have developed customized CNN 
architectures optimized for lung cancer detection. These 
proposed architectures often incorporate specialized layers, 
attention mechanisms, or skip connections to capture intri-
cate features and relationships within lung images [10, 90, 
92, 109, 113]. Particularly, attention mechanisms have been 
implemented within CNN architectures to focus on relevant 
ROI within the lung images to enhance the models’ ability 
to accurately identify and classify cancerous regions in a 
number of studies [17, 96, 105, 110, 115, 120]. Addition-
ally, some studies applied ensemble techniques, combining 
predictions from multiple CNN models, have gained traction 
for improving the overall performance and reducing poten-
tial overfitting [18, 29, 88, 91, 93, 103, 106, 107, 109, 111].

An ongoing challenge is the class imbalance issues. In 
medical imaging, the number of positive cases (cancerous) 
is usually significantly smaller than negative cases. Most 
studies addressed class imbalance problems with techniques 
like augmentation through geometric transformation [5, 8, 
17, 29, 53, 92, 97, 99, 102, 104, 105, 115, 116, 118] and one 
study [100] explored GAN-based image synthesis.

Apart from that, lung nodules can exhibit variations in 
shape, orientation, size, and intensity, leading to potential 
challenges in feature extraction, especially for the detec-
tion of small nodules. Some studies used multi-scale 
approaches [10, 12, 13, 53], some leveraged multi-resolution 
approaches [8, 95] and some demonstrated multi-dimen-
sional approaches can help handle these variations [97, 117].

In addition, models trained on specific datasets might 
not generalize well to different datasets due to variations 
in imaging protocols and demographics. Many studies 
addressed this issue with cross-validation on diverse datasets 
[10, 17, 29, 53, 92, 95, 96, 99, 102, 103, 109, 111, 113, 117].

Lastly, CNNs-based methods are computationally inten-
sive, especially for large datasets. Efficient model architec-
tures, hardware acceleration, and optimization techniques 
are the possible solutions to this challenge. Notably, many 
studies attempted to mitigate by embedding an optimization 
algorithm into the CNN network structure [9, 57, 64, 68, 69, 
72, 73, 77, 80, 84, 86, 87, 127, 129, 131, 132].

5.2.3 � RQ2c: How have GANs been applied to lung cancer  
diagnosis?

Research of lung cancer CAD development utilizing GANs 
is relatively confined, with only seven notable studies [36, 
37, 41–45] solely dedicated to development of GAN models. 
These studies comprise a diverse spectrum of applications, 
each contributing to the expanding potential of GANs in 
lung cancer research. Specifically, for segmentation tasks, 
studies have emerged, showcasing the capacity of GANs 
to delineate object boundaries [11, 41–43]. Alternatively, 
works [44–47] have exploited the power of GANs in refin-
ing classification models. Fundamentally, GAN, which was 
designed for generating fake images was exploited for lung 
cancer image generation too. References [36, 37] delved into 
the augmentation domain, leveraging GANs to create syn-
thetic data that expands the diversity of training samples. 
This aids in minimizing overfitting and ensuring robust gen-
eralization of ML models.

While the current landscape showcases a relatively mod-
est count of studies, the track of GAN-based approaches 
for lung cancer CAD system appears promising and expect 
growing interest in this domain, especially in the context of 
augmentation and segmentation tasks. The anticipated surge 
in GAN usage signifies a paradigm shift, propelling future 
CAD development towards more sophisticated and effec-
tive ML solutions to directly target the challenges of data 
scarcity, feature enhancement, and complex multi-modal 
analysis.

5.2.4 � RQ2d: What are the key advancements in non‑DL 
approaches for lung cancer  detection?

Non-DL methods rely on manual feature extraction from 
medical images, employing advanced techniques like texture 
analysis, shape-based features, and intensity-based features 
to capture discriminative lung cancer features that play a 
critical role for classification of lung cancer. Nevertheless, 
as the drive to automate the CAD process intensifies, the 
conventional ML approach is losing relevance due to its 
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limited capacity to effectively learn relevant lung nodule 
features, unlike CNN models. This decline in interest and 
usage is evident, as only a few studies exclusively utilized 
ML algorithms [51, 52, 121], whereas most models either 
employed pure CNN architectures or integrated ML with 
other techniques, forming a Hybrid ML approach.

Among these studies, eight [9, 58, 59, 70, 71, 73, 79, 
127] introduced Hybrid ML, combining CNN and ML for 
classification. These models exploited CNNs to learn high-
level features and then fed these features into ML classifiers 
to derive accurate diagnosis outcomes.

Additionally, numerous studies adopted other NN based 
methods and clustering approaches in conjunction with ML 
classifiers [14, 15, 66, 67, 74, 82, 133]. These proposed 
strategies typically follow a two-stage process: initially, 
segmentation, detection, or feature extraction is performed 
using other NNs or clustering techniques, followed by ML 
classifiers for final classification.

5.3 � RQ3: Which approach has demonstrated 
superior performance in detecting 
and classifying lung cancer from medical 
images, and what are the typical methods used 
to enhance the efficiency and performance 
of the algorithms?

In terms of accuracy, the ProNet model reported the low-
est accuracy at 71.6%, utilizing CT images for a classifica-
tion task [104]. On the contrary, the highest classification 
accuracy was achieved by the Jury-based ensemble model 
at 99.88%, employing a hybrid approach by integrating mul-
tiple methods [87].

On the topic of Pure CNN models, their accuracy ranged 
from 72.34% [104] to 99.69% [92, 108], specificity spanned 
from 66.36% [53] to 100% [93], and sensitivity exhibited 
a range of 63% [93] to 99.897% [102] for a two-class clas-
sification task. In the case of multiclass classification, Pure 
CNN models achieved accuracy ranging from 72.17% [106] 
using a basic customized CNN to 99.5% [119] employing a 
CNN enhanced with a Multispace Image (MIR) pool. Speci-
ficity ranged from 91.78% [5] to 100% [29], while sensitivity 
varied from 88.79% [5] to 98% [29].

Pure GAN models, employed for segmentation tasks, 
reported a Dice coefficient ranging from 80.74% [43] to 
98.99% [42] and a Jaccard index ranging from 72.52% [43] 
to 98% [42]. Interestingly, a modified GAN structure [45] 
for classification tasks yielded impressive results, report-
ing accuracy, precision, F-1 score, sensitivity, and recall of 
98.91%, 97.72%, 97.89%, 98.46%, and 98.85% respectively. 
These findings indicate the promising potential of GANs for 
classification tasks.

It is worth noting that studies often lack systematic 
evaluations, which limits this survey from offering a 

comprehensive and in-depth comparison of model perfor-
mance. Instead, it provides a general overview of perfor-
mance ranges reported in various studies. Furthermore, a 
trend emerged where studies reporting state-of-the-art accu-
racy values sometimes exhibited slightly lower sensitivity or 
significant underperformance in terms of sensitivity. This 
highlights the risk of false detection and misdiagnosis in 
proposed models. As a result, the survey underscores the 
significance of sensitivity and false positive rates, emphasiz-
ing that they are equally crucial as accuracy and should not 
be neglected in upcoming research.

Moreover, many studies, 19 [11, 14, 46, 47, 55, 57, 
75–87] in total, incorporated embedded optimization algo-
rithms to guide models in selecting optimal hyperparameters 
for performance maximization. The outcomes of these meth-
ods surpassed several state-of-the-art approaches, indicating 
their potential for enhancing model performance.

6 � Conclusion and Future Work

This research undertook a comprehensive analysis of 119 
papers published between 2019 and 2023, focusing on the 
development of Computer-Aided Diagnosis (CAD) systems 
for lung cancer from a model-driven perspective. This study 
presents a comprehensive review and trend analysis explor-
ing the composition of constituent models in lung cancer 
detection. The review elucidated essential deep learning 
(DL) concepts and popular architectural frameworks, cat-
egorizing lung cancer CAD systems into three main catego-
ries: feature engineering, DL, and end-to-end frameworks. 
Emerging trends such as the direct utilization of transfer 
learning, incorporation of Generative Adversarial Networks 
(GANs), exploration of diverse neural network (NN) models, 
investigation of non-NN approaches, development of hybrid 
models, and integration of commercial CAD tools have sig-
nificantly influenced the landscape of lung imaging analysis.

Convolutional neural networks (CNNs) emerge as a pre-
dominant approach, revolutionizing lung cancer imaging 
analysis by automatically extracting hierarchical features 
from data. Researchers have leveraged CNN algorithms tai-
lored to specific diagnostic objectives, enhancing publicly 
available models with custom or modified layers. Attention 
mechanisms and ensemble techniques have further aug-
mented CNN architectures to improve performance and 
mitigate potential overfitting. Nonetheless, CNN-based 
methods entail significant computational costs, which can be 
addressed through the adoption of efficient model architec-
tures, hardware acceleration, and optimization techniques.

Although research on GANs in this context remains 
limited, promising applications have emerged, particularly 
in data augmentation and segmentation tasks. GANs have 
facilitated the generation of synthetic data, augmenting 
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training samples' diversity and mitigating overfitting. 
However, challenges such as systematically evaluating the 
quality of synthetic images and addressing the suscepti-
bility of GANs to mode collapse and training instability 
require careful consideration.

Furthermore, a decline in conventional ML approaches 
is observed, with a discernible shift towards hybrid mod-
els integrating CNNs and ML for enhanced feature learn-
ing and classification accuracy. State-of-the-art models 
showcase impressive results, highlighting the potential of 
GANs in classification tasks and embedded optimization 
algorithms in enhancing model performance.

Despite significant strides in lung cancer detection 
through CAD systems, challenges persist, necessitating 
further research endeavors. Careful assessment of sen-
sitivity and false positive rates is imperative, alongside 
the development of image processing methods capable 
of handling low-resolution and blurred nodule images. 
Moreover, precise detection methods are essential for bor-
derline cases, necessitating the utilization of sophisticated 
mathematical tools such as fuzzy logic and deep learning 
algorithms.

In conclusion, while substantial progress has been made 
in leveraging AI-driven CAD systems for lung cancer 
detection, ongoing research efforts are essential to address 
remaining challenges and advance the field towards more 
robust and accurate diagnostic solutions.
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