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Abstract
In the past three decades, biomedical engineering has emerged as a significant and rapidly growing field across various 
disciplines. From an engineering perspective, biomaterials, biomechanics, and biofabrication play pivotal roles in interacting 
with targeted living biological systems for diverse therapeutic purposes. In this context, in silico modelling stands out as an 
effective and efficient alternative for investigating complex interactive responses in vivo. This paper offers a comprehensive 
review of the swiftly expanding field of machine learning (ML) techniques, empowering biomedical engineering to develop 
cutting-edge treatments for addressing healthcare challenges. The review categorically outlines different types of ML 
algorithms. It proceeds by first assessing their applications in biomaterials, covering such aspects as data mining/processing, 
digital twins, and data-driven design. Subsequently, ML approaches are scrutinised for the studies on mono-/multi-scale 
biomechanics and mechanobiology. Finally, the review extends to ML techniques in bioprinting and biomanufacturing, 
encompassing design optimisation and in situ monitoring. Furthermore, the paper presents typical ML-based applications 
in implantable devices, including tissue scaffolds, orthopaedic implants, and arterial stents. Finally, the challenges and 
perspectives are illuminated, providing insights for academia, industry, and biomedical professionals to further develop and 
apply ML strategies in future studies.

Abbreviations
ABS  Acrylonitrile butadiene styrene
AM  Additive manufacturing
ANN  Artificial neural network
AR-RF  Additive regression random forest
BJ  Binder jetting
BO  Bayesian optimisation
BPNN  Backpropagation neural network
CFSFDP  Clustering by fast search and finding of 

density peaks

cGAN  Conditional generative adversarial network
CNN  Convolutional neural networks
DED  Directed energy deposition
DIC  Digital image correlation
DLP  Digital light processing
DMO  Discrete material optimisation
DOD  Drop-on-demand
DOE  Design of experiment
DT  Decision tree
EBB  Extrusion-based bioprinting
EBM  Electron beam melting
EBSD  Electron backscatter diffraction
EDS  Energy dispersive X-ray spectroscopy
EN  Elastic nets
FDM  Fused deposition modelling
FE  Finite element
FE2  Multiscale finite element
FFF  Fused filament fabrication
GA  Genetic algorithm
GAGP  Globally approximate Gaussian process
GAN  Generative adversarial network
GB  Gradient boosting
GBDT  Gradient boosting regression tree
GEP  Gene expression programming
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GNN  Graph neural network
GP  Genetic programming
GPR  Gaussian process regression
Grad-CAM  Gradient-weighted class activation mapping
GRU   Gated recurrent unit network
HA  Hydroxyapatite
hEB  Human embryonic stem cell embryoid 

bodies
hiMSC  Human immortalised mesenchymal stem 

cell
IFT  Invariant feature transform
IND  Indomethacin
KEM  Knee extension moment
KFA  Knee flexion angle
KNN  K-nearest neighbour learning
KPA  Knee power absorption
KRR  Kernel ridge regression
LM  Levenberg–Marquardt
LR  Linear regression
LSR  Lasso regression
LSTM  Long short-term memory
LVGP  Latent-variable Gaussian process
ML  Machine learning
MLP  Multilayer perceptron
MMC  Moving morphable component
MP-LVGP  Multi-response latent-variable Gaussian 

process
MS  Mass spectrumetry
NB  Naïve Bayesian
NN  Neural networks
NSAID  Non-steroidal anti-inflammatory drug
NST  Neural style transfer
OSS  One-step secant
PBF  Powder bed fusion

PCA  Principal component analysis
PINN  Physics-informed neural network
PLA  Polylactic acid or polylactide
PLGA  Poly (lactic-co-glycolic acid)
RF  Random forest
RNN  Recurrent neural network
ROI  Region of interest
RR  Ridge regression
RVE  Representative volume element
S3VM  Semi-supervised support vector machine
SCG  Scaled conjugate gradient
SIMP  Solid isotropic material with penalisation
SLA  Stereolithography
SLM  Selective laser melting
SLS  Selective laser sintering
SOM  Self-organising map
SVM  Support vector machine
TB  Trabecular bone
TNT  Titanium dioxide nanotube
TPMS  Triply periodic minimal surface
VAE  Variational autoencoders
vGRF  Vertical ground reaction force
WAAM  Wire arc additive manufacturing
XGBoost  Extreme gradient boosting

1 Introduction

In recent decades, cutting-edge engineering disciplines have 
increasingly converged with biological systems, signifi-
cantly impacting the healthcare industry. Biomedical engi-
neering, in particular, has rapidly emerged as an innovative 
and multidisciplinary field that has drawn extensive inter-
est from research communities. Figure 1a illustrates some 

Fig. 1  Outline of review 
contents. a Machine learning 
(ML) in biomaterials, biome-
chanics/mechanobiology, and 
biofabrication. Created with 
BioRender.com. b The number 
of publications related to ML 
or data-driven approaches in 
conventional engineering since 
2010. c The number of publica-
tions related to ML or data-
driven approaches in biomedical 
engineering fields since 2010
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fast-growing disciplines within biomedical engineering, 
including biomaterials [1–3], biomechanics/mechanobiology 
[4–7], and biofabrication [8, 9]. These fields seamlessly inte-
grate material sciences, mechanics, mathematics, physics, 
chemistry, computer science, and advanced manufacturing 
with biological sciences and clinical medicine, resulting in 
substantial benefits to human healthcare and socio-economic 
systems.

Biomaterials present a broad class of natural and 
synthetic materials that are able to intimately interact with 
living biological systems. They exhibit multifunctionalities 
crucial for immune system support, cell interactions, and 
response to chemical, physical, and mechanical conditions 
within a local biological environment [10, 11]. So far, 
polymers, metals, ceramics, and composites are amongst 
the most typical biomaterials extensively utilised in various 
biomedical applications, including implantable and wearable 
devices [12, 13], regenerative medicine [14] and drug 
delivery [15]. Figure 2a depicts biomaterials employed in 
regenerative medicine for cardiac, bone, and skin tissue 
engineering, as well as drug delivery systems. These 
materials encompass a variety, incorporating polymeric, 
inorganic, and lipid-based nanoparticles. For decades, 
substantial efforts have been dedicated to exploration 
of novel biomaterials with desired chemical, physical, 

mechanical, and biological properties [1, 2]. Conventional 
routes for discovering and developing new biomaterials 
often relied heavily on trial-and-error experimental tests, 
proving workable but costly and time-consuming. In 
order to expedite the experimental processes and enhance 
success rates, advanced computational techniques have been 
widely employed as complementary approaches in modern 
biomaterial design [16, 17], which have proven effective in 
disclosing how material constituents and structures influence 
multifunctional properties from macroscale to nanoscale, 
thus offering compelling opportunities to achieve desired 
material performances as well as customised functionalities 
for patient-specific applications.

Biomechanics and mechanobiology often play critical 
roles in comprehending the responses and adaptation of 
living tissues to local environmental changes induced by 
prosthetic and therapeutic treatments. These disciplines 
closely engage with forces, deformation, stiffness, perme-
ability, and other physical fields such as temperature and 
electromagnetic signals, exerting significant control over 
load-bearing characteristics and biotransportation across 
molecular, cellular, tissue, and organ levels [18–24], as 
depicted in Fig. 2b. While mechanobiology is closely cor-
related with biomechanics, it places a greater emphasis on 
actively regulating in vivo tissues or cellular behaviours 

Fig. 2  Applications of bioma-
terials, biomechanics/mecha-
nobiology, and biofabrication. 
a Biomaterials for implantable 
and wearable devices, includ-
ing prosthetics, dental implants, 
scaffolds, and stents. Cre-
ated with BioRender.com. b 
Illustration of biomechanics/
mechanobiology for bone tis-
sue engineering. Created with 
Biorender.com. c Biofabrication 
using bioink. Reproduced with 
permission. Copyright 2016, 
Elsevier [42]



 C. Wu et al.

such as tissue growth/remodelling and cell differentiation/
proliferation [25–29]. As shown in Fig. 2b, mechanobiol-
ogy regulates cellular behaviours with mechanical stimuli, 
thereby affecting osteoclasts, monocytes, pre-osteoblasts, 
osteoblasts, and osteocytes processes for bone adaptation 
and remodelling. The development of biomechanical and 
mechanobiological modelling techniques has been rapid, 
facilitated by advances in computational and data sciences 
integrated with innovative non-invasive imaging technolo-
gies [18, 30–32]. In both preclinical research and clinical 
trials, biomechanical and mechanobiological modelling 
have made significant contributions and theoretical break-
throughs in unveiling the complex relationships among a 
range of factors in engineering, biomaterials, and biomedi-
cine. For example, disciplines like tissue engineering [33, 
34], orthopaedics [35, 36], oromaxillofacial reconstruction 
[37–39], cardiovascular and pulmonary systems [40, 41] 
have widely embraced biomechanical and mechanobio-
logical modelling techniques, thereby advancing multidis-
ciplinary knowledge in this rapidly emerging field.

Biofabrication encompasses a versatile set of advanced 
manufacturing techniques for creating non-living 
biomaterials, living constructs (cells or tissues), and hybrid 
components [43]. Recently, additive manufacturing (AM) 
has been rapidly developed to craft novel and sophisticated 
implantable or wearable devices, including bone scaffolds 
[44], fixation plates [45], dental implants [46], and smart 
surfaces [47]. For non-living materials, biomanufacturing 
can be mainly classified by different construction processes, 
such as fused deposition modelling (FDM), stereolithography 
(SLA) for polymers [48], selective laser sintering (SLS), and 
electron beam melting (EBM) for metals and alloys [49], as 
well as vat photopolymerisation and binder jetting (BJ) for 
bioceramics [50]. A more recent and notable development 
in this field is bioprinting, accomplished through ink-jet 
and valve-jet printing techniques that utilise customised 
bioink, combining living cells/tissues with supporting base 
materials to directly mimic structures of native organs/
tissues [43]. Figure 2c illustrates bioprinting, depicting the 
creation of a microfibrous scaffold using a composite bioink 
encapsulating endothelial cells.

Lured by remarkable advances in computational sciences 
and computer technologies over the past decades, there has 
been a remarkable increase in data generation. For this 
reason, how to manage and make use of the unprecedented 
amount of data has inspired researchers to develop a range 
of data-driven approaches. Machine learning (ML), as 
a prominent class of data-driven approaches, employs 
computational algorithms learned from data, as opposed 
to experience or theory, to enhance performance in solving 
specific tasks. It stands as one of the most prevalent 
computational strategies utilised in a broad range of fields, 
including image and voice recognition, autonomous driving, 

online fraud detection, automatic language translation and 
medical diagnosis [51].

Engineering has undeniably witnessed profound 
impacts from various ML approaches, with significant 
efforts dedicated to material sciences [52], computational 
modelling techniques [33], and AM [53]. Figure  1b 
depicts the publication trend in these fields from the 
Web of Science Core Collection since 2010. Each 
subcategory, namely “machine learning” or “data-
driven” combined with “materials”, “mechanics”, and 
“additive manufacturing/3D printing”, was counted. The 
publications in these fields have experienced remarkable 
growth since 2016. Material sciences, in particular, 
have emerged as the most dynamic discipline, with over 
6,500 publications in 2023 alone, and the upward trend 
is expected to continue in the following years. While the 
percentages of publications in AM and mechanics are 
slightly lower than that of materials sciences, they are 
notably increasing, demonstrating potent applications 
across diverse disciplines within broad engineering fields.

Nevertheless, despite the unprecedented success 
of ML in other traditional engineering disciplines, 
biomedical engineering remains relatively underexplored. 
Figure 1c analyses the number of publications applying 
ML in biomaterials, biomechanics/mechanobiology, and 
biofabrication since 2010. The publications with topics 
containing keywords such as machine learning/data-
driven plus biomaterial, biomechanics, mechanobiology, 
bioprinting, and biofabrication were counted from 
the Web of Science Core Collection. A rapid increase 
in publications has been more evident since 2017, 
with over 200 articles in 2023 alone. Biomechanics 
and mechanobiology constitute the largest portion of 
these publications (60.89%). While the total number of 
publications in these areas lags behind those shown in 
Fig. 1b, it reveals significant potential and tremendous 
opportunities for biomedical engineering to establish a 
new paradigm.

Therefore, the purpose of this review is to conduct 
a state-of-the-art evaluation of the development of ML 
in biomedical engineering and provide insights into its 
potential applications in relevant areas. We focus on various 
ML techniques applied in biomaterials, biomechanics/
mechanobiology, and biofabrication from an engineering 
perspective, as outlined in Fig. 1a. It is important to note that 
these areas are highly interdisciplinary in nature; and other 
important disciplines, such as biophysics, biochemistry, and 
biology, may not have been reviewed comprehensively here.

The remaining sections are organised as follows. 
Section 2 briefs the ML approaches commonly used in the 
reviewed studies. Sections 3–5 review ML in disciplines 
of biomaterials, biomechanics/mechanobiology, and 
biofabrication, respectively. Section 6 focuses on typical 
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applications in bone scaffolds, orthopaedic/dental implants, 
and arterial stents. Section 7 discusses the challenges and 
perspectives, followed by a conclusion in Sect. 8.

2  Machine Learning Approaches

Machine learning integrates principles from statistics, neu-
ral networks, optimisation theory, computer science, system 
identification, and various other fields. Its overarching goal 
is to simulate or implement human learning behaviours, 
enabling the continuous improvement and reorganisation of 
known skills [54]. According to the differences in learning 
manners, ML can be categorised into supervised learning 
[55], unsupervised learning [56], semi-supervised learn-
ing [57], and reinforcement learning [58], as depicted in 
Fig. 3. Given the dynamic nature of ML techniques, the 
algorithms mentioned here may not represent an exhaus-
tive enumeration of ML methods. Nevertheless, this section 
briefly reviews some typical ML models extensively utilised 
in biomedical engineering in open literature.

2.1  Supervised Learning

Supervised learning utilises labelled training data to 
establish a mapping with new instances. Labels for training 
samples must be provided, and higher labelling accuracy 
generally leads to more effective learning outcomes. 
Supervised learning models aim to find an implicit 
functional relationship between input and output data based 
on given knowledge, making it suitable for classification and 
regression problems. Commonly used supervised learning 
models are summarised below.

2.1.1  K‑Nearest Neighbour  (KNN)

KNN, proposed by Fix et  al. [59] and enhanced by 
Cover and Hart [60], stands as a prominent algorithm for 
classification and pattern regression [61]. It operates on 
the premise that similar instances are proximate, allowing 
the identification of new input features by calculating 
distances to existing sample data. Subsequently, inputs 
are classified into the nearest category. The essence 
of KNN lies in measuring distances between tested 
and training samples. In this context, Surya et al. [62] 
conducted a comprehensive review of KNN performance 
using various distance measures. The advantages of KNN 
stem from its simplicity in developing a training model 
[63]. Furthermore, the need for parametric regulation of 
complex models is eliminated [64]. However, it is worth 
noting that KNN may exhibit reduced efficiency with a 
substantial volume of sampling data. Nevertheless, KNN 
has found widespread applications in recommendation 
systems, text mining, finance, agriculture [65], and 
medical-related prediction [66–68], among other domains.

2.1.2  Decision Tree (DT)

DT is a fundamental method for classification and 
regression, encompassing both a classification tree and 
a regression tree. Among the most classical algorithms 
are ID3, C4.5, and C5.0 [69–71]. DT manifests a tree 
structure where internal nodes represent attribute tests, 
branches depict the outputs of these tests, and leaf nodes 
house the classification labels. It can be perceived as a 
compilation of if–then rules or as a conditional probability 
distribution defined in feature and classification spaces. 
Learning steps for DT typically involve feature selection, 

Fig. 3  The framework of 
machine learning models
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generation of DT structures, and model trimming. Due 
to its visual structure, DT is easily comprehensible and 
widely applicable across various domains, including data 
analysis in biomedical fields [72–78].

2.1.3  Random Forest (RF)

RF, proposed by Breiman [79], is composed of multiple 
DTs constructed with random feature subsets. Therefore, 
RF is recognised as an ensemble algorithm. Each DT 
functions as a classifier, and RF integrates the classification 
results from all DTs. The classification with the highest 
proportion is determined as the final output result. Due to 
the randomness inherent in DT construction, the common 
issue of overfitting can be alleviated to a considerable extent 
[80]. The RF algorithm has found certain applications in 
various biomedical fields to date [81–84].

2.1.4  Naïve Bayesian (NB)

Based upon the Bayes theorem, the NB algorithm classifies 
data samples using knowledge of probability statistics [85]. 
Unlike Decision Trees (DT), NB is firmly rooted in a more 
robust mathematical foundation. It assumes that all attributes 
are independent, allowing the NB algorithm to learn the joint 
probability distribution from input samples to output data. 
After training the NB model, it can generate output results 
with the greatest posterior probability when given input 
values. However, meeting the requirement of independence 
for dataset attributes can be challenging in many cases. 
Consequently, numerous studies have been conducted to 
address this assumption by considering attribute weighting, 
attribute selection, and structure extension [86]. The NB 
algorithm has extensive applications in various biomedical 
areas [87, 88].

2.1.5  Support Vector Machine (SVM)

SVM [89] has found extensive applications in statistical 
classification and regression analysis. In general, it belongs 
to a linearised classifier aiming to maximise the interval in 
feature spaces by solving convex quadratic programming 
problems. SVM maps the vectors of samples to a higher-
dimensional space, where a hyperplane best separates two 
groups of mapped vectors. The advantages of SVM lie in its 
ability to learn data samples with good reproducibility and 
accuracy, ensuring that the model is generic and capable 
to new data, thereby maximising the proportion of correct 
labels [90]. SVM has been applied across various fields, 
such as text classification [91], image classification [92], 
biological sequence analysis, biological data mining [93], 
biomechanics [94–98], regenerative medicine [99, 100], and 
more.

2.1.6  Logistic Regression and Linear Regression

Logistic regression and linear regression [101, 102] are 
similar in many aspects, both falling under the umbrella of 
generalised linear models. The primary distinction lies in 
the types of their outputs. If the output is continuous, it is 
referred to as multiple linear regression and is employed 
to address regression problems. On the other hand, if the 
output follows a binomial distribution, it is recognised as 
logistic regression and is frequently used for classification 
issues. The process for both algorithms involves selecting 
data sets and output variables of interest, specifying a ML 
model, training the model parameters, and conducting 
model evaluation and validation [103]. These methods are 
fairly popular and widely utilised in various fields, such as 
biometrics [104], finance prediction [105], disease diagnosis 
[106], etc.

2.1.7  Backpropagation Neural Network (BPNN)

An artificial neural network (ANN) [107] is a complex 
system comprising numerous nodes (neurons) interconnected 
by pathways designed to emulate human brain functions. 
The outputs of an ANN are determined by various factors, 
including network structure, connection methods, weights, 
and activation functions. The weights in an ANN require 
training based on a sufficient dataset. Typically, an ANN 
consists of one input layer, one or more hidden layers, and 
one output layer. Among the learning frameworks for ANNs, 
it appears that the backpropagation neural network (BPNN) 
stands out. In a BPNN, initial weights are assigned randomly, 
and output data are generated as input data traverse the 
entire ANN model. These output data are then compared 
with known correct results, and any discrepancies are fed 
back from the output layer to the input layer to iteratively 
update the neural weights of the ANN model. Numerous 
techniques have been developed to optimise these weights, 
including the Levenberg–Marquardt (LM) method [108], 
scaled conjugate gradient (SCG) [109], one-step secant 
(OSS) [110], and others. This iterative process continues 
until the output errors fall within an acceptable tolerance.

2.1.8  Convolutional Neural Networks (CNN)

Convolutional neural network (CNN) [111] is one of the 
representative algorithms for deep learning, crafted to mimic 
the visual perception processes observed in animals. It is 
adaptable to both supervised and unsupervised learning 
paradigms. In this architecture, key components include 
input and hidden layers, with the hidden layers typically 
comprising convolutional layers, pooling layers, and fully 
connected layers. Convolutional layers play a pivotal 
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role in extracting features from input data samples, while 
pooling layers serve to filter these features and convey 
new information to the fully connected layer. Regardless 
of implementing the supervised or unsupervised learning 
frameworks, CNNs leverage the concept of transferring 
error information backwards, akin to BPNN, facilitating 
the iterative adjustment of model parameters to enhance 
learning.

2.2  Unsupervised Learning

In contrast to supervised learning, unsupervised learning 
models are designed to unveil inherent structures or 
patterns within unlabelled data samples [112]. Despite this 
capability, the absence of corrective mechanisms inherent 
in supervised approaches makes it challenging to ensure the 
reasonability of learning models during the learning process. 
Unsupervised learning excels in discerning underlying laws 
among input data samples. Once trained and verified, these 
models find proper application in novel scenarios. Two 
prevalent techniques employed in unsupervised learning 
are clustering and dimension reduction [113]. Notable 
algorithms within this domain include K-means [114], 
Self-Organising Map (SOM) [115], Principal Component 
Analysis (PCA) [116], and CNN [117] as follows.

2.2.1  K‑means

The K-means algorithm [118] is one of the most popular 
unsupervised ML models for its simplicity. The fundamental 
concept behind K-means is to categorise samples into 
the most similar groups based on the distances between 
each sample and category centre. Upon introduction 
of new samples into each cluster, the category centres 
undergo updates. The final classification of each sample is 
determined through iterative processes, ceasing when no 
further changes in category centres occur. However, due to 
the necessity of calculating distances between samples and 
all category centres, the K-means algorithm may exhibit 
sluggish performance when applied to large-scale datasets. 
Additionally, its sensitivity to noise may cause category 
centres to deviate to some extent from the correct ones in 
certain cases [114].

2.2.2  Self‑Organising Map (SOM)

SOM [119] can be conceptualised as a straightforward 
neural network consisting only of an input layer and an 
output layer without hidden layers. SOM endeavours to map 
a dataset from any dimension into a one-dimensional or two-
dimensional space by adaptively performing a transformation 
in an organised manner. Employing competitive learning, the 
winning neuron which is most closely aligned with the input 

data, is activated, prompting updates to the parameters of 
nodes neighbouring the activated neuron in terms of their 
distances from the winner. SOM facilitates the visualisation 
of database structures in a single image and has found 
extensive applications in clustering and data mining across 
various domains, including finance, industry, biomedical 
science, and more [120–124].

2.2.3  Principal Component Analysis (PCA)

PCA [125] is one of the most frequently utilised 
linear dimension reduction algorithms. It achieves 
the transformation of high-dimensional datasets into 
a lower-dimensional space through various forms of 
linear projection. PCA aims to maximise the variance of 
datasets in the projected dimensional space, enabling 
the utilisation of fewer dimensions while preserving the 
essential characteristics of the original datasets [126]. As 
a linear dimensional reduction method, PCA minimises 
the loss of features from the original dataset. Essentially, 
PCA seeks to distil key information from data samples, 
facilitating a simplified characterisation of the datasets 
[127]. Furthermore, PCA is adept at noise reduction within 
datasets and contributes on computational efficiency. This 
method finds applications in various biomedical areas [95, 
128, 129].

2.2.4  Convolutional Neural Network (CNN) 
for Unsupervised Learning

In scenarios with limited labelled samples, CNN can be 
extended to the realm of unsupervised learning. Several 
models have been proposed in this context, including 
Variational Autoencoders (VAE) [130], Convolutional 
Restricted Boltzmann Machines [131], Deep Convolutional 
Generative Adversarial Networks [132], and so on.

2.3  Semi‑supervised Learning

Semi-supervised learning [133] emerges as a valuable 
approach in scenarios featuring both labelled and unlabelled 
data samples, amalgamating principles from supervised 
and unsupervised learning. Often, full supervision proves 
unnecessary, and semi-supervised learning offers a less time-
consuming and labour-intensive alternative for manually 
labelling training samples [134, 135]. Generally speaking, 
this methodology leverages a smaller set of labelled samples 
alongside a larger pool of unlabelled ones. The inclusion 
of unlabelled samples mitigates the challenges associated 
with performance degradation in conventional supervised 
learning when training samples are insufficient. Prominent 
algorithms in semi-supervised learning include self-training, 



 C. Wu et al.

semi-supervised support vector machine (S3VM), and 
graph-based methods.

2.3.1  Self‑Training

Self-training represents the simplest method in semi-
supervised learning, seeking to augment labelled datasets 
using unlabelled data samples [136, 137]. The process 
involves training with a limited number of labelled samples 
and subsequently labelling unlabelled samples with a well-
trained ML model [138]. Given the potential inaccuracy of 
predictions from a model trained on an insufficient dataset, 
filtering techniques may be necessary in this context. A 
key drawback of self-training is the potential introduction 
of noisy labels by a well-trained ML model, prompting 
further studies to address this issue [139, 140].

2.3.2  Semi‑supervised Support Vector Machine (S3VM)

As proposed by Bennett [57], Semi-Supervised Support 
Vector Machine (S3VM) extends the conventional SVM 
method in the realm of semi-supervised learning. In 
scenarios without unlabelled samples [141], it resembles 
SVM, aiming to identify a hyperplane with the maximum 
interval distance between support vectors. When considering 
unlabelled samples, S3VM attempts to establish a 
hyperplane that not only separates different types of labelled 
samples but also navigates through low-density areas in 
the dataset [142]. In this regard, Ding et al. [143] provide 
a comprehensive review of mainstream models in semi-
supervised support vector machines, including Transductive 
SVM (TSVM), Laplacian SVM (LapSVM), MeanS3VM, 
and S3VM based upon cluster kernels.

2.3.3  Graph‑Based Methods

Graph-based methods include minute [144], spectral graph 
transducer [145], Gaussian fields, harmonic function [146], 
etc. These methods share some similarities with the nearest-
neighbour learning algorithms in supervised frameworks, 
differing in their incorporation of unlabelled samples to 
enhance ML model performance. Labelled and unlabelled 
data samples are treated as vertices connected by edge 
weights. The generation of graph edges, computation of edge 
weights, and execution of graph-based algorithms constitute 
crucial steps, with the effectiveness of this semi-supervised 
ML algorithm reliant on well-defined graph edges and edge 
weights [147].

2.4  Reinforcement Learning

Reinforcement learning [148] stands as the fourth 
fundamental category of ML methods, alongside 
supervised learning, unsupervised learning, and semi-
supervised learning. In contrast to supervised learning, 
which aims to train ML models for producing correct 
outcomes, reinforcement learning places a strong emphasis 
on evaluating outcomes through reinforcing signals. 
Reinforcement learning models evolve through existing 
experiences and learning from mistakes to achieve improved 
results. Common reinforcement learning algorithms include 
Monte Carlo learning and Q-learning.

2.4.1  Monte‑Carlo Learning

Monte Carlo learning involves the use of a substantial 
number of random samples to explore the entire knowledge 
space by directly learning from the environment [149]. This 
approach allows the construction of a relatively abstract 
model using known data samples, with the model parameters 
determined through the Monte Carlo technique to minimise 
residuals from original data. The Monte-Carlo algorithm 
learns from experiences, encompassing the state of samples, 
actions, and rewards. Upon extracting experiences from 
samples, reinforcement learning tasks can be addressed 
based on average sample returns [150, 151]. This type 
of reinforcement learning algorithm is less sensitive to 
initial values. However, the convergence of Monte-Carlo 
learning can be a key issue, and many studies have been 
carried out to deal with it [152, 153]. This reinforcement 
learning algorithm exhibits lower sensitivity to initial values. 
However, achieving convergence in Monte-Carlo learning 
can be a pivotal challenge, prompting numerous studies in 
the literature over time [154].

2.4.2  Q‑learning

Q-learning, introduced by Watkins and Dayan [155], 
employs a Q-table as a reference to explore external 
states and receive rewards until a target state is attained. 
The training process of Q-learning primarily involves 
strengthening the ‘brain’ conventionally represented as the 
‘Q’ table. It excels in identifying the most efficient path to 
reach the desired state effortlessly [156]. In comparison 
to the Monte Carlo reinforcement learning algorithm, 
Q-learning is more efficient but exhibits higher sensitivity 
to initial values [157, 158].
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3  Machine Learning in Biomaterials

3.1  Overview

Biomaterials encompass versatile subclasses of organic/
inorganic biocompatible materials that can intimately 
interact with living tissues. Apart from their mechanical 
and physical properties, tissue/cellular interactions with 
biomaterials have proven critically important [159, 
160]. Table 1 summarises some typical biomaterials to 
illustrate the application spectrum. For example, polymers 
signify one of the major subclasses, varying from natural 
biopolymers such as proteins and polynucleotides [161] 
to synthetic degradable and non-degradable ones [162]. 
Their applications embrace a fairly broad range, such as 
connective hard and soft tissues [163], bioinks [43], drug 
delivery media, and tissue scaffolds [164]. Metals and 
their alloys are other important subclasses of biomaterials 
owing to their excellent mechanical properties and inertness 
[165], which have been well developed as a good alternative 
for either temporary or permanent replacement of failure 
tissues. Typical metallic biomaterials include stainless 
steel, titanium alloys, magnesium alloys, and shape memory 
alloys, which are widely used in orthopaedic devices [38, 
39], dental devices [166–173], wearable devices [13] 
and arterial stents [41]. Similar to metallic biomaterials, 
ceramics have been used to replace or restore some diseased 
hard tissues (e.g., bone and teeth) owing to their excellent 
mechanical properties, chemical resistance, and transparency 
[33, 34, 174]. Composite biomaterials, generally composed 
of two or more materials with different compositions 
and microstructures, have also been studied and tested in 
medical applications such as orthopaedic implants and tissue 
scaffolds [175, 176], which could offer more freedom for 
engineers to customise various functionalities with ease.

Conventional routes for unravelling novel biomateri-
als rely on a large number of trial-and-error experiments 
in vitro and/or in vivo, which are generally time-consuming 
and uneconomic. Therefore, a so-called “rational design” 
using computational techniques has been more and more 
favoured for exploring novel biomaterials recently [212]. 
Latest advances in ML approaches have inspired biomate-
rials engineers and developers in rational design for their 
superior ability to handle a large volume of data over human 
experience, which has extensively influenced the design phi-
losophy and development of new biomaterials as well as 
their clinical applications [213–215].

The ML applications in biomaterials can be categorised 
into three typical areas, namely data mining/processing, 
digital twins, and data-driven design. Data mining/
processing allow identifying decisive factors affecting the 
target biomaterial properties, thus offering an intuitive way 
for characterising and understanding biomaterials. Digital 
twins establish quantitative relationships between those 
determinative factors and desired biomaterial properties, 
which can play a critical role in obtaining real-time 
responses of desired performances. Benefiting from the 
data mining/processing and digital twins, biomaterial design 
allows better customising those determinative factors for 
achieving desired and/or optimal functionalities [216, 217]. 
These three categories play important roles in exploring 
novel biomaterials, which are analysed in the following 
subsections.  In this section, the analysis was conducted 
under the thematic umbrellas of biomaterials with data 
mining/data processing, digital twins, as well as data-driven 
design as follows.

3.2  Data Mining/Processing for Biomaterials

Biomaterials are generally associated with substantial data 
acquired from either experimental (in vitro and/or in vivo) 

Table 1  Typical biomaterials and their applications

Biomaterials Typical examples Applications Category and References

Polymers • Proteins
• Polynucleotides
• Degradable polymers
• Non-Degradable polymers

o Bioink
o Hard and soft tissue
o Drug delivery
o Tissue scaffolds

▪ Data mining & process [177, 178]:
▪ Digital twin: [179–185]
▪ Design: [186]

Metals & alloys • Stainless steel
• Titanium alloys
• Magnesium alloys
• Shape-Memory alloys

o Orthopaedic devices
o Dental implants
o Wearable devices
o Stents

▪ Data mining & process: [187–189]
▪ Digital twin: [190–195]
▪ Design: [196, 197]

Ceramics • Zirconia
• Alumina
• Titania

o Orthopaedic devices
o Dental implants
o Tissue scaffolds

▪ Data mining & process: [198, 199]
▪ Digital twin: [200–203]
▪ Design: [204, 205]

Composites • Fibre-reinforced
• Blend of ceramic and metal
• Blend of ceramic and polymer

▪ Digital twin: [206, 207]
▪ Design: [208–211]
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tests or in silico modelling. ML techniques such as clus-
tering, classification, and dimensionality reduction can 
be used to excavate such big data to determine the most 
relevant and dominant factors for the targeted biomaterial 
properties. In this aspect, Madiona et al. [177] employed 
the self-organising map (SOM) method to reduce the 
dimensionality of data describing surface interactions 
between polymers and living tissues (Fig.  4a), which 
provides an effective way to understand the molecular 
properties of polymer surfaces. In their study, the SOM 
was constructed with a network size of 8 × 8 and trained 
through a specified number of iterations, totalling 10,000 
epochs. Figure 4a visually represents the data labels with 
distinct colours: polyethene terephthalate-red, poly(methyl 
methacrylate)-green, low-density polyethene-blue, 
poly(caprolactam)-sky blue, poly(undecanoamide)-lavender, 

poly(lauryllactam)-light yellow, poly(trimethyl-hexameth-
ylene terephthalamide)-dark green, poly(hexamethylene 
adipamide)-indigo, Poly(hexamethylene azelamide)-dark 
red, and Poly(hexamethylene dodecanediamide)-light blue. 
Baier et al. [199] used the K-means clustering method to 
analyse micropores that could distinctively influence cellular 
physiology and new bone ingrowth in CaP bioceramics, in 
which five geometrical parameters (Fig. 4b) in each cluster-
ing group were investigated. In Fig. 4b, the three micropore 
clusters are based on Feret’s diameter and circularity as 
highlighted in black (1), red (2), and green (3). Shen et al. 
[189] studied the cell proliferation with titanium dioxide 
nanotube (TNT) using a DT model, where it was found that 
cell density and sterilisation could simultaneously impact 
the cell proliferation on various TNTs (Fig. 4c). The study 
involved a comparison between predicted and measured 

Fig. 4  Applications of data min-
ing/processing in biomaterials. 
a Unsupervised self-organising 
map (SOM). Reproduced with 
permission. Copyright 2019, 
Elsevier [177]. b K-means 
clustering method to analyse 
bioceramic micropores. The 
yellow dots indicate the centres 
of each cluster. Reproduced 
with permission. Copyright 
2019, Authors [199]. c The 
decision tree (DT) model for 
investigating cell proliferation 
on titanium dioxide nanotubes. 
Reproduced with permission. 
Copyright 2021, Authors [189]. 
d The flowchart uses the sup-
port vector machine (SVM) 
to estimate the mechanical 
properties. Reproduced with 
permission. Copyright 2021, 
Elsevier [188]. e A fully 
connected neural network to 
identify polymer configura-
tions (globule, anti-Mackay, 
Mackay), including input layer, 
hidden layer, and output layer 
composed of neurons (circles). 
Reproduced with permission. 
Copyright 2017, American 
Physical Society [178]
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cell proliferation values using Decision Trees (DT). The 
DT employed an 80%/20% split for training and testing 
data. Additionally, a radar plot was generated to analyse the 
importance of each experimental feature. This encompassed 
factors such as the average diameter of TNTs, cell seeding 
density on the samples, samples annealed at high tempera-
tures, cell incubation time, and sample sterilisation methods. 
Li et al. [188] used the SVM algorithm to identify the effects 
of various parameters on the mechanical behaviours of bio-
degradable magnesium (Mg) implants, which include metal 
forming processes and procedural temperature (Fig. 4d).

It is worth noting that some ML-based studies on material 
sciences for engineering applications could also be rather 
useful [218–224]. For example, Wei et al. [178] employed 
an ANN model to classify different states of polymeric 
configurations, in which the classification can offer a novel 
and intuitive way to unravel the phase transitions between 
different polymers. Tripathi et  al. [198] used the PCA 
method to filter noise data for identifying micro-damage 
in piezoelectric ceramics. Chittam et al. [187] investigated 
the performances of the logistic regression, SVM, and RF 
algorithms for data mining/processing in Mg-alloy, which 
presented a detailed framework on how to use these powerful 
data science tools in development of biomaterials.

3.3  Digital Twins for Biomaterials

Once pattern/feature recognitions on biomaterial datasets 
are achieved through some ML procedures, how to relate 
the identified parameters with material properties becomes 
a critical issue. In this regard, various ML approaches can 
be used to establish the relationships between identified 
parameters and desired biomaterial properties, which 
typically serve as digital twins [225–228] of their in vivo 
and/or in vitro experimental counterparts to predict real-
time responses with sufficient accuracy when varying 
different parameters or patterns. The digital twin constructs 
a solid bridge between a physical biomaterial and its virtual 
counterpart, enabling to apply computational modelling 
techniques to accelerate the design process of new 
biomaterials [229, 230].

A number of studies have attempted to apply ML-based 
approaches for establishing digital twins for biomateri-
als in literature [231–234]. For example, Epa et al. [180] 
employed a three-layer NN to model the adhesion of 
human embryonic stem cell embryoid bodies (hEB) on 
the various polymeric surfaces. Rostam et al. [182] mod-
elled the immune response of cells to polymer surfaces by 
using the RF, SVM, and NN models, offering a potential 
tool for the “immune-instructive” rational design of poly-
mers. Vassey et al. [184] employed the gradient boosting 
regression method [235] to correlate structure-surface 
with cell-response, paving a futuristic way to modulate 

inflammatory responses by rational design of biomateri-
als as shown in Fig. 5a. The gradient-boosting regression 
model, trained on a dataset, predicted cell attachment and 
phenotype based on various surface features. The attach-
ment of macrophages, categorised as high (blue), medium 
(green), or low (orange), was correlated with the sizes of 
topographical features in terms of total pattern area (μm2). 
Robles-Bykbaev et al. [181] investigated the osteocyte 
growth in scaffolds composed of type I collagen, in which 
the linear and nonlinear logistic regression models were 
used to simulate the degradation of collagen together with 
osteocyte growth and stem cell growth (Fig. 5b). The 
supervised RF algorithm classified the training samples 
into four distinct maps. The statistical learning model 
encompassed both linear/nonlinear regression and Long 
Short-Term Memory (LSTM) neural networks to predict 
biological activities. The proposed digital twins exhibited 
fairly promising results for estimating the biodegradation 
of collagen scaffolds through image data, which could 
serve as a potential tool for scaffold design. Burroughs 
et al. [179] used the RF to model cellular responses to top-
ographically-patterned microscopic polymers, which pro-
vides an alternative numerical strategy in design of bioma-
terials for regenerative medicine (Fig. 5c). In Fig. 5c, the 
ChemoTopoChip layout features the colours representing 
various chemistries. The scatter plots illustrate (i) human 
immortalised mesenchymal stem cell (hiMSC) alkaline 
phosphatase intensity using a RF model with indicator 
variables for chemistries and topographical descriptors, 
and (ii) human macrophage polarisation using a RF model 
with indicator variables for chemistries and topographical 
descriptors. The line y = x represents an ideal fit, and R2 
corresponds to the goodness of fit.

Concerning biomaterials for drug delivery applications, 
Santana et al. [183] integrated a perturbation theory with 
ML approaches for predicting biological responses (e.g., 
probability of drug deviation from an anticipated dose) 
to nanoparticles that were designed for drug release. The 
study compared a number of regression models, including 
logistic regression, DT, NB, RF, and ANN models. The 
results, as depicted in Fig. 5d, revealed that the RF and 
NN models outperformed the others in terms of predictive 
accuracy. The investigation considered different drug 
release systems: No. 1, pristine nanoparticles with linked 
drugs; No. 2, coated nanoparticles with drugs linked to the 
nanoparticles; and No. 3, coated nanoparticles with drugs 
linked to coating agents. A combination of the trained 
perturbation theory and ML models was employed to 
predict the success of drug release systems using various 
molecular and coating descriptors.

In the material engineering field, substantial efforts have 
been made to apply various ML techniques for predicting 
or modelling mechanical and/or physical properties of 
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materials, which can also be applied to design of biomaterials 
[236–238]. Typically, ML approaches can be used to predict 
polymeric material properties such as dielectric constant, 
glass transition temperatures, and bandgap, which are some 
important clues for biological responses [185]. Several 
studies have been reported to characterise mechanical and 
physical properties by ML techniques [190, 191, 193, 194], 
demonstrating great potential for biomedical applications. 
For example, Moghadam et al. [192] employed an ANN 
model to predict the bulk modulus of metal-organic 
materials, which enabled to establish structural-mechanical 

stability for 3358 base-materials with starkly different 
morphologies. Yang et al. [207] used a deep-learning CNN 
model to construct a digital twin for evaluating the stiffness 
of composite with different base materials. Various digital 
twins for ceramics were also widely reported [200–203], 
which are expected to be applied for future studies in 
biomedical engineering. Table 2 summarises more studies 
applying ML approaches in modelling material properties 
for the reference of biomaterial applications.

Fig. 5  Applications of 
digital twins for biomaterials. 
a Machine learning  predicting 
structure-surface with cell-
response. Reproduced with 
permission. Copyright 2020, 
Authors [184]. b ML modelling 
of cellular growth and degrada-
tion of collagen. Reproduced 
with permission. Copyright 
2019, Authors [181]. c Chemi-
cal and topographical features 
enhancing the responses of both 
cell types using ML. Repro-
duced with permission. Copy-
right 2021, Authors [179]. d 
ML prediction of drug release. 
Reproduced with permission. 
Copyright 2022, Royal Society 
of Chemistry [183]
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3.4  Data‑Driven and Machine Learning‑Based 
Design for Biomaterials

ML approaches in data mining/processing enable to identify 
key patterns and/or parameters for constructing proper digi-
tal twins, which can be used for attaining desired material 
properties effectively. In literature, numerous studies have 
adopted different ML techniques for devising novel biomate-
rials. For example, Damiati et al. [186] explored the optimal 
design of a biodegradable polymer for drug delivery applica-
tion. In their study, the drug delivery vehicles were based 
upon Poly (D, L-lactide-co-glycolide) (PLGA), where a non-
steroidal anti-inflammatory drug (NSAID) Indomethacin 
(IND) was loaded. A multi-layer ANN model was employed 
to predict PLGA droplet sizes with respect to the input of 
PLGA concentration (Fig. 6a) and flow rates of both PLGA 

and aqueous phases, and thus the desired polymer particles 
can be tuned using the ANN model. Wu et al. [197] investi-
gated the design of a titanium alloy with the desired Young’s 
modulus close to that of human bone. The study involved 
several key steps, including property prediction using two 
ANNs, mass spectrometry (MS) temperature filtering, and 
plotting combined maps, etc. These two ANN models were 
established to predict the martensitic transformation tem-
perature (i.e., MS temperature) and the resulting Young’s 
modulus of the Ti-alloy, as illustrated in Fig. 6b. The con-
stituents of the Ti-alloys, namely Ti, Nb, Zr, Sn, Mo, and Ta, 
were considered as the inputs. Using the ANN models, six 
groups of Ti-alloys were obtained, with Young’s modulus 
ranging from 40 to 65 GPa, validated through the dedicated 
experimental testing.

Table 2  A summary of machine learning (ML) applications in modelling/predicting various properties of biomaterials

SVM support vector machine, XGBoost extreme gradient boosting, RF random forest, GPR Gaussian process regression, ANN artificial neural 
network, CNN convolutional neural network, LSTM long short-term  memory neural networks, GNN graph neural network, VAE variational 
AutoEncoders, DT decision tree, KRR Kernel ridge regression, GBDT gradient boosting regression tree

References Material ML approach Modelling/prediction

[239] Hydrogen SVM Hydrogen solubility with respect to pressure and temperature
[240] Fibre-reinforced polymer XGBoost, RF Strain with respect to material structures, mechanical properties, FRP 

properties, confinement properties
[241] Polymer GPR, ANN Polymer crystal and chain bandgap, frequency-dependent dielectric 

constant, gas permeability, specific heat, tendency to crystallise, tensile 
strength, Young’s modulus, glass transition temperature, melting 
temperature, thermal decomposition temperature, polymer density

[242] RF Solubility with respect to molecular descriptors
[243] CNN, LSTM, GNN, VAE Predicting copolymer-enzyme stability
[244] XGBoost, RF The degree of the graft polymerisation reaction
[245] Alloy ANN, DT Amorphous, intermetallic compounds, solid solutions
[246] Cu-Al alloy SVM Tensile strength and hardness with respect to chemical composition and 

porosity of the compacts
[247] Low-alloy steel DT Corrosion rate with respect to chemical composition features
[248] Alloys RF, XGBoost, ANN Growth velocity of medium, high entropy alloys
[249] GPR, KRR Formation enthalpy, elastic constants, band gaps
[250] ANN Solid solution
[251] RBF-NN Hardness in Al–Cr–Fe–Ni system
[252] SVM, RF, GBDT, GPR Predicting ultimate tensile strength, yield strength, and elongation (EL)
[253] SVM, RF Shrinkage with respect to multicomponent alloys
[254] High-Entropy Alloys RT, RF, KNN, Time–temperature-transformation diagrams
[255] SVM, RT, KNN Yield strength with different compositions
[256] DT, RF, kNN, SVM, ANN Solid solution phases
[195] DT Solid-solution and non-solid-solution
[257] Metallic glasses ANN Glass formation for multicomponent alloys
[258] RF Amorphous state, critical casting diameter, supercooled liquid range with 

different alloy composition
[202] Ceramics ANN Melting temperature with material compositions
[259] Partial least square regression Surface roughness and topography
[203] XGBoost Bending strength
[260] Porous materials CNN Material properties
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Wen et  al. [196] conducted an ML-based design of 
high entropy alloys with a great hardness, as illustrated in 
Fig. 6c. The alloys were derived from the Al-Co-Cr-Cu-
Fe–Ni HEA system. An experimental dataset containing 

material compositions and physical properties was utilised 
to train a SVM model for predicting the hardness. Iteration 
loop I involved constructing a ML-based surrogate model 
( yi = f (ci) ) with a training dataset, which was then applied 

Fig. 6  Applications of machine 
learning (ML) in design for 
biomaterials. a Correlation 
between the observed and pre-
dicted PLGA droplet diameter. 
Reproduced with permission. 
Copyright 2021, Authors [186]. 
b Illustration of the operational 
process of βLow-assisted 
alloy design. Reproduced 
with permission. Copyright 
2020, Elsevier [197]. c ML 
design of high-entropy alloys. 
Reproduced with permission. 
Copyright 2019, Elsevier [196]. 
d Microstructures of synthe-
sised materials designed by ML. 
Reproduced with permission. 
Copyright 2020, Authors [204]. 
e ML design of hydroxyapatite 
nanopowders as bone fillers. 
Reproduced with permission. 
Copyright 2021, Elsevier [262]. 
f Hierarchical design construc-
tion and ML applicability for 
stronger and tougher micro-
structural materials. Reproduced 
with permission. Copyright 
2018, Authors [209]
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to a search space to predict the properties and associated 
uncertainties. A utility function for Design of Experiment 
(DOE) was employed to select a candidate by balancing 
the exploitation and exploration. After synthesising and 
measuring the recommended candidates, the new data 
were incorporated into the training dataset, facilitating 
iterative improvement of the surrogate model. Iteration 
loop II was basically similar to Iteration loop I, with the 
introduction of a feature pool. In this loop, a ML-based 
surrogate model was trained from compositions ( ci ) and 
preselected physical features ( pi) , denoted as yi = f (ci, pi) . 
In their study, seventeen new alloys were optimised with 
higher hardness than the training dataset, showcasing a 
potential framework for tailoring the mechanical proper-
ties of other metallic alloys.

In design of bioceramics, similar strategies have also 
been taken to explore high-entropy ceramics [261]. For 
example, Kaufmann et al. [204] employed the RF method 
to explore the entropy-forming ability of disordered metal 
carbides. A set of material features reflecting essential 
chemistry, physics, and thermodynamics of each constitu-
ent was taken as inputs (Fig. 6d). In Fig. 6d, the first col-
umn presents an electron micrograph for each of the syn-
thesised compositions. Columns 2–6 display the selected 
Energy Dispersive X-ray Spectroscopy (EDS) chemistry 
maps for each of the five metal cations present in every 
system. Column 7 is an electron backscatter diffraction 
(EBSD) map of the grain structure, revealing the effect on 
grain size in multi-phase compared to single-phase com-
positions. Compositions are listed from the largest to the 
smallest ML predicted entropy-forming ability (scale bar 
100 µm). Yu et al. [262] investigated the structural behav-
iour of nanosized substituted hydroxyapatite (HA) pow-
ders using different ML techniques, in which a multi-layer 
perceptron (MLP) was adopted to model structural char-
acteristics, and a genetic programming (GP) technique 
was employed to appraise the strength of the predictive 
model (Fig. 6e). Note that the ANN inputs the chemical 
compositions and outputs crystallite size (D), micro strain 
(η), and grain boundary volume fraction (f) of the various 
substituted HA nanopowders for design.

Design of biocomposites is commonly associated with 
a large design space, thus becoming a fairly demanding 
yet an active research field favouring some ML techniques 
[208, 211, 263]. For example, Gu et al. [209] systemati-
cally studied the design of bioinspired hierarchical com-
posites using the ML techniques, as shown in Fig. 6f. The 
microstructure comprises a detailed assemblage of unit 
cells, which are then converted into a data matrix of build-
ing blocks encoding the individual unit cells. Strength and 

toughness ratios of designs were computed from the train-
ing data and ML output designs. Strain field plots were 
obtained from digital image correlation (DIC) measure-
ment for ML optimisation. An ANN model was employed 
to predict the toughness and strength by taking material 
components in different locations of a unit cell as inputs. 
The new microstructural patterns obtained from the ANN 
model have exhibited a higher toughness and higher 
strength, the design of which was further prototyped by 
using AM techniques and validated by the experimental 
tests. Han et al. [210] proposed a ML framework for the 
design of bioactive glass used for biomedical applica-
tions. To precisely predict the dissolution behaviour of 
the bioglass composites, they compared the performances 
of several typical ML-based regression models, such as 
hybridising the RF model with the additive regression 
(AR-RF), SVM, ANN, linear regression, and Gaussian 
process regression models, where the AR-RF had proven 
to be of better performance over the other models. The 
proposed ML model could be used to design new bioglass 
composites with a controlled release and is expected to 
form a useful tool for considering other physical, chemi-
cal, biological, and mechanical properties. Table 3 sum-
marises some more recent studies for the data-driven and 
ML-based designs of materials/biomaterials.

4  Machine Learning in Biomechanics 
and Mechanobiology

Biomechanics plays a significant role in biomedical 
engineering, addressing a diverse array of healthcare 
objectives spanning from the body level to tissue and 
cellular levels [284, 285]. Mechanobiology signifies an 
emerging field that also investigates physical forces and 
mechanical properties of biological systems but focuses 
more on their spatial-temporal effects on regulating 
cellular/tissue activities. Recently, ML approaches have 
demonstrated their efficacy in the realms of biomechanics 
and mechanobiology, tackling the intricate knowledge 
required for these interdisciplinary features [36, 95, 
286–290]. The following subsections detail the state-
of-the-art developments in these fields and explore 
the computational strategies employed in multiscale 
modelling. It should be noted that in this review, the 
relevant studies were identified using such keywords as 
“machine learning” or “data-driven,” and combined with 
biomechanics, mechanobiology, and multiscale modelling 
in Web of Science Core Collection.
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4.1  Biomechanics

4.1.1  Body Movements

ML techniques have been increasingly used to study bio-
mechanics in the aspect of body movements, especially 
combining with signals acquired from various wearable 
and other devices. For example, several studies have show-
cased the applications of ML algorithms in analysing knee-
specific biomechanics in conjunction with inertia sensors 
[83, 95, 291–296]. These studies focused on recording 
peak tibial acceleration, which exhibited a certain cor-
relation with vertical ground reaction force (vGRF), knee 
flexion angle (KFA), knee extension moment (KEM), and 
sagittal plane knee power absorption (KPA) (Fig. 7a–c). 

For instance, Fig. 7c illustrates the model consisting of 
seven rigid segments and 16 Hill-type muscles (blue) with 
seven virtual inertial sensors (red): namely 1-iliopsoas, 
2-glutei, 3-hamstrings, 4-rectus femoris, 5-vasti, 6-gas-
trocnemius, 7-soleus, and 8-tibialis anterior. In these 
biomechanical studies, the ML regression models (e.g., 
ANN, linear and nonlinear regression) could predict either 
global vGRF or knee-specific measures (e.g., KFA, KEM, 
KPA) by extracting various features such as shank and foot 
angle, running speed, ground slope (Fig. 7d). In general, 
the acceleration signals of a step are transformed into a 
feature vector representation, and a structured prediction 
algorithm enables to map the sequence of input vectors to 
the most likely gait segmentation sequence.

Table 3  A summary of machine learning (ML) in design for materials

XGBoost extreme gradient boosting, ANN artificial neural network, RF random forest, SVM support vector machine, BO Bayesian optimisation, 
GA genetic algorithm, GPR Gaussian process regression, CNN convolutional neural network, VAE variational AutoEncoders, DT decision tree

References Material ML approach Design aims

[264] Al alloys XGBoost High hardness alloys
[265] ANN, RF, SVM High strength and electrically conductive
[266] Composite metal oxide ANN, BO, GA Material compositions with a desired target light absorption 

spectrum
[267] Ceramics ANN Interlocked designs with enhanced thermo-mechanical 

performances
[268] Composite laminates XGBoost, RF, GPR, ANN Reducing first-ply failure, improving ultimate strength
[269] Polymeric membrane XGBoost, BO Breaking the upper bound for water/salt selectivity and 

permeability
[270] High entropy alloys KNN, SVM, RF, ANN High hardness and high entropy alloys
[271] Metallic glasses ANN Desired thermal properties
[272] Polymer GPR Polymer with high bandgap and high glass transition 

temperature
[273] Titanium dioxide ANN Developing and customising crystallographic facets and facet 

junctions
[274] Antifouling material ANN, RF Surface resistance to protein adsorption
[275] Alloys VAE Inverse alloy design based on microstructure images with 

extremely similar features
[276] Alloys ANN, RF Desired magnetocaloric performance subject to room 

temperature magnetic refrigeration
[277] Alloy steels RF, GPR, ANN, Desired creep life
[201] Ceramics DT, RF, SVM Low permittivity ceramics
[278] Oxide materials ANN Discovering new perovskite visible photocatalysts with a higher 

hydrogen production rate
[279] Copper alloys SVM, RF, GPR, BO Improving the conflicting mechanical and electrical properties
[280] Digital materials CNN Desired elastic wave properties
[281] Porous crystalline materials VAE, CNN Property enhancement, stability, system equilibrium
[282] Hydrogel NN Design and evaluate a series of porous hydrogels by considering 

three independent variables: macromolecules, Polyvinyl 
Alcohol and Gelatin, crosslinking agent

[283] Titanium substrates Regression-based statistical learning Design functionalised surface for orthopaedic implant, with 
optimal osteogenic, angiogenic, and neurogenic activities
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A similar strategy has also been reported for scapular 
kinematics [297], where humeral orientations and acro-
mion process positions obtained from the motion capture 
data were used to train a multi-layer ANN model for the 

estimation of scapula orientation (Fig. 7e). Table 4 provides 
a summary of the studies using ML in biomechanics for 
body movements.

Fig. 7  Applications of machine 
learning (ML) in the measure-
ment of body movements. 
a Sensors positioned on the 
lateral aspect of the torso, 
upper arm, forearm, and hand. 
Reproduced with permission. 
Copyright 2020, Authors [83]. b 
Marker placement for standard 
biomechanical gait analysis. 
Reproduced with permission. 
Copyright 2018, Authors [95]. c 
Conceptual drawing of a muscu-
loskeletal model. Reproduced 
with permission. Copyright 
2020, Authors [294]. d ML 
applied to the signals. Repro-
duced with permission. 
Copyright 2021, Elsevier [293]. 
e Alignment of the 3D triad to 
the images for trunk orientation 
and matching of the 3D scapula 
model to the images for scapula 
orientation. Reproduced with 
permission. Copyright 2019, 
Elsevier [297]

Table 4  A summary of machine learning approaches in biomechanics for body movements

SVM support vector machine, ANN artificial neural network, DT decision tree, RF random forest, KNN K-nearest neighbours algorithm, CNN 
convolutional neural network, LSTM long short-term memory, GRU  gated recurrent unit network

References Approach Application of Body movement

[298] SVM A SVM classifier for the estimation of muscle fatigue of writs-forearm
[299] ANN Estimating Ground reaction forces for athlete monitoring
[300] ANN Monitoring hip joint angles and moments during stair ascent
[301] KNN, ANN Wearable gadget tracking movement disorder
[302] DT, RF, KNN, ANN. CNN Multidimensional data for motion recognition
[303] LSTM, CNN Sleep staging using body movement, electrocardiogram, and abdominal breathing signals
[304] KNN, SVM. RF. DT, LSTM Extracting various human activities
[305] CNN Describing the movement of the human body through the human skeleton
[306] GRU Motion prediction using the signal of brain waves
[307] ANN 3D ground reaction force and moment prediction from foot kinematics
[308] ANN Human activity recognition using multi-sensor
[309] RF, SVM, KNN Wi-Fi-based human activity recognition using channel state information
[310] CNN Hand gesture recognition using muscle sensing
[311] CNN Synchronous muscle forces and joint kinematics prediction from surface electromyogram
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4.1.2  Hard Tissue

Biomechanics of hard tissues is critically important for 
unravelling injuries, diseases, trauma, and design for 
implantable devices [312, 313]. Hard tissues, typically 
bones, are less prone to damage but often result in seri-
ous consequences when injuries occur [314]. While non-
invasive imaging technologies such as X-ray and computed 
tomography (CT) have been widely used for detecting 
bone fractures, diagnoses relying on the human experience 

are often labour-intensive [315]. Moreover, micro-frac-
tures are often challenging to be detected properly due to 
image ambiguity, noise, and other knowledge-dependent 
limitations [316]. To overcome this issue, ML approaches 
have been employed to classify bone fractures using image 
data [317–325]. Deep learning-based CNN and ANN mod-
els have proven effective in understanding bone micro-
structures and their fracture mechanics, as illustrated in 
Fig. 8a–d. For example, Fig. 8a illustrates a flowchart for 
three classification cases. Following a semi-automated 

Fig. 8  Machine learning (ML) 
methods for detecting bone frac-
tures. a Flowchart illustrating 
the three classification cases. 
Reproduced with permission. 
Copyright 2020, Elsevier 
[319]. b Optimised convolu-
tional neural network (CNN) 
structures for the classifica-
tion of cortical bone images 
and trabecular (cancellous) 
bone images. Reproduced with 
permission. Copyright 2021, 
Elsevier [317]. c Gradient-
weighted Class Activation 
Mapping (Grad-CAM) activa-
tion heatmaps for the optimised 
CNN on pristine and failed 
cortical bone images, with 
the heatmaps overlaid on the 
original images. Reproduced 
with permission. Copyright 
2021, Elsevier [317]. d Grad-
CAM activation heatmaps for 
the optimised trabecular bone 
CNN on pristine and failed 
trabecular bone images, with 
the heatmaps overlaid on the 
original images. Reproduced 
with permission. Copyright 
2021, Elsevier [317]. e Input 
parameters for predicting frac-
ture risk, including geometry, 
bone density, boundary condi-
tions, and material properties. 
Reproduced with permission. 
Copyright 2020, Elsevier [326]
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cropping phase, a classic CNN was used as a baseline 
for classification, characterised by subsequent binary 
networks. The class activation map was then employed 
to visualise where the network was focusing. Instead of 
directly using images, Villamor et al. [326] established 
patient-specific FE models based on Dual-Energy X-ray 
absorptiometry; subsequently, the data extracted from 

finite element (FE) analyses, together with clinical infor-
mation, were used to train the SVM capable of classifying 
potential hip fractures (Fig. 8e).

Apart from bone fracture identification, ML approaches 
have also been widely employed for bone mechanics 
studies. Some early works can be traced back to 2004 
when Lucchinetti et al. [327] employed an ANN model 
to inversely identify Young’s modulus and Poisson’s 

Fig. 9  Machine learning (ML) 
in bone mechanics. a Artificial 
neural network (ANN)-derived 
density-modulus relationship 
for proximal tibial subchondral 
trabecular and cortical bone 
along with existing density-
modulus relationships in the 
literature. Reproduced with 
permission. Copyright 2017, 
Elsevier [328]. b Prediction of 
bone fracture resistance curves 
using ML. Reproduced with 
permission. Copyright 2018, 
Taylor & Francis [329]. c ML 
model for predicting long bone 
load–displacement curves. 
Reproduced with permission. 
Copyright 2020, Elsevier [330]. 
d ML predicting bone stiffness. 
Reproduced with permission. 
Copyright 2021, Taylor & 
Francis [331]
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ratio of a small trabecular bone from experimental tests. 
Recently, Nazemi et al. [328] employed an ANN model 
to characterise the bone density-modulus relationships by 
correlating the stiffness of cortical and trabecular bone 
between the FE-based results and experimental tests. The 
comparisons of density-modulus relationships between 
the ANN-derived and literature are illustrated in Fig. 9a. 
Vukicevic et al. [329] used an evolutionarily assembled 
ANN model to predict bone fracture resistance curves 
under different age groups. As illustrated in Fig. 9b, the 
specimens from cortical bone underwent compact ten-
sion tests to prepare the R-curves with specific values of 
crack size and stresses. Then, evolutionary assembling of 
ANN was performed to obtain the age-specific R-curves. 
Rahmanpanah et al. [330] employed two ANN models to 
predict the load–displacement curves of a long bone, in 
which the trained ANN models can successfully predict 
responses of specific bone samples that were not used in 
the training process (Fig. 9c). In their study, the experi-
mental tests were first conducted to obtain bone length 
( l  ), load exposure ( t  ), limb side ( s ), horse age ( l  ), and 
strain components ( �1, �2, �3, �4, �5, �6 ). Then, these vari-
ables, along with the applied load that was predicted by 
the first ANN, comprised the input variables of the sec-
ond ANN. Mouloodi et al. [331] employed the ANN as a 
regression model to predict bone stiffness under compres-
sive cyclic loading, in which the applied force, exposure 

time, bone anatomy, and age were used as input variables 
and exhibited a fairly accurate prediction compared with 
the experimental results (Fig. 9d). More studies using ML 
approaches in bone mechanics are outlined in Table 5 for 
a reference.

4.1.3  Soft Tissue

Soft tissues play a major role in connecting, supporting, and 
stabilising hard tissues and organs. Investigating soft tissues 
poses challenges due to their intricate nonlinear properties 
arising from heterogeneous and multiphasic microstructures, 
for which conventional methods may become inefficient and 
less effective [23, 287, 350, 351]. To tackle these challenges, 
promising solutions using ML techniques have gained 
particular interest from research communities recently.

For example, ML approaches have been utilised as sur-
rogate models to predict stress distributions in arterial 
walls, which is crucial for estimating the rupture risks of 
atherosclerotic plaques [352, 353]. Specifically, the FE 
analyses were conducted to derive stress distributions in 
arterial walls. The resulting FE data served as labelled 
ground truth data to train the ML models, such as SVM 
[352] (Fig. 10a) or CNN [353], with the inputs encompass-
ing geometric parameters and arterial pressure. In Fig. 10a, 
the colour-coded surfaces correspond to the predicted pres-
sure risk ratios. The results underscore the potential of ML 

Table 5  A summary of machine learning (ML) in bone mechanics

ANN artificial neural network, RF random forest, XGB extreme gradient boost

References ML approach Application

[332] ANN Estimating mechanical strength (primary compressive and tensile, secondary tensile and ward triangle) using 
statistically derived parameters from images

[333] ANN Inversely identifying interfacial tissue Young’s modulus around dental implants
[334] ANN Estimating cement mechanical strength using liquid-phase concentration and the liquid/powder ratio parameters
[335] ANN Simulating the accumulation of fatigue damage of trabecular bone during cyclic loading
[336] ANN Inversely identifying loading conditions of long bones from CT data
[337] ANN Inversely identifying loads from bone remodelling results using FEA and ANN
[338] ANN Predicting elastic properties of cortical bone in different scale level
[339, 340] ANN Inversely identifying patient-specific loads from bone geometry and remodelling results
[341] ANN Estimating elastic properties of bone at fibril scale
[342] ANN Investigating inter-dependencies of parameters in multidimensional space, including compressive strength, bone 

volume fraction, structural model index, trabecular thickness, inter-connectivity, and pore morphology
[343] ANN Estimating elastic properties of bone tissue 
[344] ANN Estimating femur neck strains and fracture loads using patient weight, bone mass, and geometry
[345] ANN Estimating loads for long bones
[346] ANN Estimating displacement of long bones
[347] ANN Estimating crack density and crack length in cancellous bone under cyclic loads
[348] U-net NN Estimating hydrostatic pressure in periodontal ligaments and the strain energy in the alveolar bone
[349] RF, XGB Relations between structure/composition and mechanics in osteoarthritic regenerated articular tissue
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Fig. 10  Machine learning 
(ML) in soft tissue mechanics. 
a Support vector regression 
using shape feature parameters. 
Reproduced with permission. 
Copyright 2017, Springer 
Nature [352].  b The ML model 
predicts the zero-pressure shape 
of the aorta. Reproduced with 
permission. Copyright 2018, 
John Wiley and Sons [354]. 
c The comparison between 
the SVM model and the ANN 
model to predict tissue defor-
mation (magnitude errors). 
Reproduced with permission. 
Copyright 2017, Elsevier [355]. 
d The schematic of the ML 
approach to predicting elastic 
properties of collagenous tissue 
through images. Reproduced 
with permission. Copyright 
2017, Elsevier [356]
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methods for real-time diagnosis directly utilising clinical 
data, thereby reducing or eliminating the need for extensive 
FE analyses.

Liang et  al. [354] presented an inverse problem to 
predict the geometry of a zero-pressure aorta using a multi-
layer ANN model (Fig. 10b). The approach parameterised 
the input shapes as sets of scalar values, named as shape 
codes. These shape codes were then transformed from input 
to output shapes through a nonlinear mapping, ultimately 
decoding into the zero-pressure shape. Similar methodologies 
have been applied to predict real-time tissue deformation by 
using the trained ML models such as ANN and SVM [355]. 
Ground truth data were obtained using the patient-specific FE 
models subjected to various boundary conditions, altering the 
magnitude or position of applied external forces (Fig. 10c).

In the realm of soft tissue modelling, ML-based 
approaches have been instrumental in developing frameworks 
to predict the elastic properties and nonlinear anisotropic 
strain–stress curves of collagen tissues [356]. As shown in 
Fig. 10d, a PCA model was used to parameterise the equal-
biaxial stress–strain curves and quantify the overall stiffness. 
Subsequently, a customised CNN model extracted the struc-
tural patterns of collagen tissues and identified overall stiff-
ness for classification purposes. Concurrently, the CNN 
model was used to perform the regression to predict the PCA 
parameters. Given the limited experimental data available 
for soft tissues, an unsupervised ML method combined with 
supervised learning and data augmentation was proposed to 
overcome this challenge effectively. Furthermore, Nguyen-Le 
et al. [357] introduced a novel deep learning framework to 
predict Pelvis soft tissue deformation. The FE analyses gen-
erated a simulation-based database for training and testing. 
LSTM neural network and deep neural network effectively 
handled high-frequency oscillation signals, demonstrating 
better accuracy in predicting soft tissue deformation in real 
time. Dalton et al. [358] proposed a ML-based framework 

for modelling soft tissue mechanics, leveraging a Graph 
Neural Network (GNN) trained in a physics-informed man-
ner to minimise a potential energy function. This framework 
accommodates unique soft-tissue geometries of individual 
patients, thus enhancing computational efficiency and accu-
racy by avoiding low-order approximations.

ML approaches have also been instrumental in estimating 
constitutive parameters of cardiovascular tissues. For 
example, Cilla et al. [359] demonstrated the possibility of 
using ML techniques to fit the constitutive models based on 
a strain energy function, in which the nonlinear strain–stress 
curves obtained from the uniaxial experimental tests were 
used to train an ANN model which could substantially 
reduce computational costs. Liu et al. [360] successfully 
used a multi-layer ANN model to estimate constitutive 
parameters in a strain-invariant-based fibre-reinforced 
hyperelastic model [361], which was customised for aortic 
walls. In their study, the training data were generated by the 
FE simulations with pre-defined nonlinear and anisotropic 
elastic properties [362, 363]. Then, the systolic and diastolic 
deformations subject to two starkly different blood pressures 
were input to the ANN model, which comprised of an 
unsupervised shape encoding module and a supervised 
nonlinear mapping module to overcome the issue of data 
inefficiency, thereby enabling to identify in vivo material 
parameters in a time-efficient fashion. Gonzales-Saiz 
et al. [364] developed an ML-based framework to model 
complex and nonlinear material behaviours of soft tissue. 
They presented a multiphysics model-driven framework to 
optimally select the suitable model kinematics, rheological 
components, and their combination for a given set of 
experimental curves.

Table 6  A summary of bone growth modelling in tissue scaffolds

References Application Mechanobiological model

[33] Prediction of bone growth in scaffolds Strain energy density as the stimulus, updating apparent bone density using Wolff’s law 
[34, 374, 385] Design of scaffolds
[233] Effect of bone graft and scaffold 

structure on bone regeneration
Agent-based model for cellular activities. The mechano-regulatory theory of cell 

differentiation based on shear strain and fluid velocity
[381–383] Prediction of bone tissue 

differentiation in scaffolds
[371, 377] Design of scaffolds Adaptive change in apparent bone density driven by effective stress defined on bone 

young’s modulus and strain energy density[376, 388] Prediction of bone growth in scaffolds
[378] Prediction of bone growth in scaffolds Cell differentiation based on shear strain and fluid velocity
[379] Design of scaffolds
[387] Bone formation at implant interfaces
[380] Design of intervertebral cages Tissue differentiation based on distortional equivalent strain and hydrostatic stress
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4.2  Mechanobiology

Mechanobiology aims to investigate mechanical effects 
on tissue or cellular behaviours, which can be traced 
back to the Wolff’s law for bone remodelling in response 
to mechanical forces in the 19th Century [365]. Due to 
recent advances in experimental tools and novel methods, 
in vivo mechanical forces can be accurately measured [366], 
providing meaningful ways to gain deep insights into how 
tissues and cells interact with their physical surroundings, 
thereby facilitating the development of future treatments 
from a mechanobiological perspective.

Notably, bony tissue plays a crucial role in safeguarding 
vital organs such as the brain, heart, and lungs, as well as 
contributing to load transfer and facilitating proper body 
movement [367]. The adaptive remodelling and regeneration 
of bony tissues are paramount for understanding such 
critical processes as bone healing, distraction [368], and 
its interaction with prosthetic devices [369]. Consequently, 
numerous studies have delved into mechanobiological 
modelling at various levels—organs, tissues, and cells 
[25, 37, 370]. In tissue scaffold engineering, for instance, 
dynamic bone growth outcomes have been demonstrated to 
be significantly important for bone scaffold design [34, 38, 
371–375]. Lured by this promise, a number of significant 
studies have investigated tissue ingrowth in scaffolds based 
on different mechanobiological models [33, 34, 233, 371, 
376–388], as summarised in Table 6.

The critical importance of bone osseointegration and 
remodelling around implants lies in their potential perfor-
mance for either successful implantation or failure/loosening 
of positioned devices. In this regard, Ghosh et al. [389] car-
ried out a design optimisation of implant surfaces to enhance 

osseointegration and bone growth, in which three different 
parameterised surface models were employed as design can-
didates. To reduce computational cost for evaluating bone 
growth during the optimisation process, a NN model was 
employed as a surrogate. As bone growth results could be 
evaluated in a real-time fashion, design optimisation can be 
performed using GA and the NN model without the need for 
time-consuming time-dependent FE analyses.

In effect, mechanobiology also plays a key role in 
depicting the behaviour of soft tissues and their associated 
diseases. Numerous studies are currently underway to 
explore biomechanical forces on vessels in vivo or in silico 
[390–392]. At a cellular level, mechanosensation and 
mechanotransduction can help understand cell proliferation 
and differentiation in response to mechanics [393–399].

Despite the crucial roles of mechanobiology in cells and 
tissues, there have been relatively fewer studies utilising ML 
techniques in this area compared to generic biomechanics. 
In this regard, Dattatrey et al. [400] employed an ANN 
model to predict bone remodelling parameters in response 
to patient-specific loads, offering a potential for regulating 
the neobone responses. Tiwari et al. [401] employed an 
ANN model to establish the relationship between the 
loading parameters (strain magnitude, frequency, and 
cycle) and bone remodelling parameters, intending to 
create a comprehensive in silico model for predicting bone 
remodelling under varying load conditions.

For regulating cellular behaviour, Bonnevie et al. [402] 
applied the ML approaches to investigate the mechanosensa-
tion of cells in heterogeneous microenvironments. In their 
study, a SOM model was employed to reduce dimensionality 
of cellular shapes, and a multi-layer ANN model to predict 
the mechanobiological state of Yes-associated protein and 

Table 7  A summary of conventional multiscale finite element-based  (FE2) modelling in tissue/organs

References Main idea

[416–418] Multiscale modelling for fibre-reinforced tissue based on in-vivo structures, such as collagen fibres
[419] Failure modelling of collagenous soft tissue
[420–422] Simulation of vascularised tissue considering intravascular pressure and velocity
[413, 423, 424] Modelling of tumour growth considering extracellular matrix (ECM) components and other 

multiple distinct cell types
[425] Bone tissue considering the fibrillar scale
[426–429] Cortical modelling considering microstructure/nanocomposites
[430, 431] Multiscale fluid flow in bone tissue based on a porous media
[415, 432, 433] Modelling of cancellous bone
[434–437] Multiscale bone remodelling considering bone density art macroscale and surface density and 

permeability at the microscale level
[412] Mechanobiolgical modelling of vascular smooth muscle growth
[438] Mechanobiological modelling of cartilage tissue regeneration
[414, 439] Mechanobiological bone regeneration, degradation, and healing in scaffolds 
[440] Modelling of knee ligament
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transcriptional coactivator with PDZ-binding motif with dif-
ferent cell morphology, which was further used to identify 
contractile cell populations distinctly.

4.3  Multiscale Modelling

Biological tissues exhibit intricate and often highly nonlin-
ear and anisotropic material behaviours. To develop high-
fidelity computational approaches, various typical constitu-
tive models for tissue mechanics, such as hyperelastic [403], 
viscoelastic [404], and poroelastic [405] models, have been 
explored. The accuracy of these different constitutive models 

normally relies on correlating their model parameters with 
experimental data. Over the past decades, both hard and soft 
tissues have been identified to possess significant heteroge-
neity at the microscopic level [406, 407]. This recognition 
addresses the challenge of why a single constitutive model 
often falls short in adequately matching experimental results 
without sacrificing generality.

To overcome this difficulty, various multiscale finite 
element  (FE2) techniques have been developed for mod-
elling heterogeneous tissues, which are summarised in 
Table 7. Conventional multiscale finite element  (FE2) meth-
ods commonly employ a homogenisation approach [408] to 

Fig. 11  Machine learning (ML) in multiscale mechanobiological modelling. 
a Multiscale approach for bone adaptation simulation using combined finite 
element (FE) and artificial neural network (ANN) computation. Reproduced 
with permission. Copyright 2011, Elsevier [441]. b ML in predicting mul-

tiscale bone regeneration outcome in bone scaffolds. Reproduced with per-
mission. Copyright 2021, Springer Nature [409]
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generate effective constitutive models for macro-FE analy-
ses. However, the complex microstructures of biological tis-
sues are randomly distributed, making the homogenisation 
process computationally expensive [348]. Extracting a single 
representative volume element (RVE) that characterises all 
heterogeneous microstructures and material behaviours can 
be demanding, if not impossible, necessitating further stud-
ies [409].

For example, structures of tissue scaffolds play a 
crucial role in new bone regeneration, influencing the 
mechanical stimulation that regulates cell proliferation and 
differentiation [410]. Therefore, computational methods 
(in silico) have been introduced as an effective alternative 
to time-consuming and expensive in  vitro and in  vivo 
experiments [411–415]. Nevertheless, these scenarios 
necessitate multi-FE analyses at microscale. Particularly for 
design optimisation and inverse determination of scaffolding 
parameters, the computational costs of conventional  FE2 
methods can become prohibitive, severely limiting their 
practical applications [409].

To overcome such computational hurdle, several promis-
ing ML studies have taken a significant step toward address-
ing the challenges imposed by conventional  FE2 methods. 
In bone remodelling studies, an ANN model was applied at 
the microscale level. Here, the nominal stress derived from 
macro-FE analyses and cyclic loading frequency served as 
inputs to predict the average bone density, effective damage, 
and bulk Young’s modulus of each representative volume 
element for macro-FE bone remodelling analyses (Fig. 11a) 
[441, 442]. In more detail, a whole bone was analysed using 
a macro-FE model. At the microscopic level, a micro-FE 
model was developed using a trained NN incorporated into 
the FE code Abaqus via a user subroutine UMAT. During 
the FE calculation at the macro level, the NN was invoked 
at every integration point to compute the averaged outputs 
representing the RVE behaviour at the mesoscale.

Regarding mechanobiology-driven bone ingrowth in tissue 
scaffolds, Wu et al. [33] developed an ML-based multiscale 
computational framework to predict bone ingrowth in bulk 
scaffolds, as shown in Fig. 11b. In stage I, the in vivo image 
data were correlated with the ML-based in silico results 
to inversely determine the subject-specific parameters 
(R1, R2, R3, K, s) associated with a mechanobiological 
remodelling algorithm. NN-3 outputs the Pearson correlation 
coefficients (P1, P2) between the in vivo and in silico data. 
In stage II, microscopic bone densities within the scaffold’s 
representative volume element (RVE) were input to NN-2 to 
evaluate the strain energy density (SED). This SED served 
as a mechanical stimulus to update bone densities using 
the Wolff’s law model established with a set of inversely 
identified algorithmic parameters for properly predicting 
bone formation. In stage III, homogenisation of the RVE 
was performed using NN-1 to predict effective mechanical 

properties. Given the heterogeneous nature of tissue 
ingrowth within a scaffold, characterised by spatial–temporal 
variations in mechanical stimuli, the ML techniques were 
employed at the microscopic level. Here, homogenisation and 
strain energy density of RVEs were directly derived using the 
ANN models instead of time-consuming micro-FE analyses 
(Fig. 11b-ii and b-iii). It is noteworthy that the developed 
ML-based multiscale framework significantly reduces 
computational costs and provides new opportunities for both 
inverse determination of different bone ingrowth parameters 
and design optimisation studies that might be prohibitive 
when using the conventional  FE2 approaches.

Regarding the multiscale modelling of tissue mechan-
ics, Pled et al. [443] proposed a ML-based approach for an 
inverse problem, in which an ANN model was employed to 
output the identified effective elastic properties of hetero-
geneous microstructures, as shown in Fig. 12a-i. In their 
study, the heterogeneous microstructure with random com-
pliance field S was parameterised by four hyperparameters 
H1,H2,H3,H4 that represent the dispersion parameter, spa-
tial correlation length, mean bulk modulus and mean shear 
modulus, respectively (Fig. 12a-ii). These four parameters 
can recover any random compliance field S by a nonlinear 
mapping (Fig. 12a-iii). The region of interest (ROI) for a 
given domain was analysed by both the High Fidelity Com-
putational Mechanical Model and Computational Homog-
enisation Model with nine statistic-dependent parameters 
( Q1 to Q9 ) that were taken as the inputs for the ANN model 
to output four apparent elastic properties of a given com-
pliance field S (Fig. 12a-iv). The developed approach was 
applied in a numerical example based on the experimental 
data from real heterogeneous bovine cortical bone, which 
exhibits promising results in terms of both modelling accu-
racy and computational efficiency.

Hashemi et al. [444] proposed a ML-based multiscale 
computational framework for modelling heterogeneous 
liver tissue composed of versatile shapes of vessels and 
surrounding soft tissues with anisotropic properties, as 
illustrated in Fig. 12b. The geometric size of the liver is 
usually substantially larger than that of its vascularisation, 
which hinders proper use of a mono-scale FE model 
that requires extremely fine mesh in some regions with 
vasculature. Homogenised models with relatively coarse 
mesh subject to patient-specific geometry then serve as 
practical solutions, where the homogenised hyperelastic 
properties of arbitrary heterogeneous microstructures could 
be determined by a FE framework [444]. Nevertheless, 
the tedious conventional FE framework may need to be 
established for every patient-specific model at each ROI, 
which severely limits its use. To reduce the computational 
cost and improve the generality, an ANN model trained 
by the observed data was employed to directly determine 
the parameters in the Holzapfel-Gasser-Ogden model for 
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anisotropic hyperelastic material, where the inputs were the 
spatial orientation and diameters of vessels in ROIs. The 
vascularised liver tissue was discretised into segments, and 
the geometric parameters of these segments were input to an 
ANN model to output the homogenised material properties 
for macro-FE modelling. Compared to the conventional  FE2 
framework, the error of ML-based results is at an acceptable 
level but with a substantially lower computational cost.

Homogenisation of microstructures normally relies on 
the assumption of certain material constitutive models (e.g., 
linear elastic, hyperelastic, viscoelastic). Nevertheless, even 
a highly sophisticated constitutive model may fail or not 
be accurate enough to describe the mechanical properties 
of a heterogenous segment at the microscopic level. To 
deal with this issue, Mora-Macias et al. [445] developed a 
data-driven multiscale approach for the mechanical mod-
elling of heterogenous bone, as shown in Fig. 12c. In the 

Fig. 12  Machine learning (ML) in multiscale modelling of tissue/
organ biomechanics. a A statistical inverse problem in multiscale 
biomechanics. Reproduced with permission. Copyright 2020, Else-
vier [443]. b The multiscale modelling of liver using a ML algorithm. 
Reproduced with permission. Copyright 2019, Springer Nature [444]. 
c A multiscale data-driven approach for bone tissue biomechanics. 

Multiscale data-driven results. Top: Macroscopic strain field. Bottom: 
Microscopic strain field in the RVE for the highlighted point of the 
macroscale. Left: longitudinal strain component. Right: transversal 
strain. Reproduced with permission. Copyright 2020, Elsevier [445]
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proposed algorithm, a biaxial compressive test was car-
ried out on a cortical bone sample. A digital image cor-
relation (DIC) system was used to record the strain field 
in the course of loading. For a given microscopic ROI as 
a RVE, the homogenised macro strain �M can be obtained 
using the micro strain �m measuring by the DIC. As a result, 
the experimentally observed dataset contains a pair of macro 
strain and marco stress ( �M(�m),�M ), in which the macro 
strain �M(�m) is composed of the micro strain field informa-
tion �m . As only a limited number of data could be obtained 
through the experimental tests, a data-completion technique 
was proposed to enrich the dataset ( �M(�m),�M ) at both the 
macroscopic and microscopic levels. A data-driven model-
ling approach as an extension of the algorithm presented by 
Kirchdoerfer and Ortiz [446, 447] was then performed by 
searching for the closest stress–strain pair ( �M∗,�M∗) in the 
enriched dataset ( �M(�m),�M ). In the proposed data-driven 
approach, no constitutive model at the microscopic level was 
pre-assumed. The relationship between the micro strain and 
the macro strain was directly obtained from an experimental 
dataset, thereby avoiding the time-consuming homogenisa-
tion analyses and thus improving the accuracy of multiscale 
results at the same time. In contrast to the conventional 
linear orthotropic material behaviour of cortical bone tis-
sue, they identified the non-smooth patterns of macro stress 
and macro strain using the proposed data-driven algorithm, 
demonstrating a potential improvement of a pre-assumed, 
well-defined model by a data-driven approach.

5  Machine Learning in Biofabrication

Additive manufacturing (AM) technologies pave a 
relatively new and solid way for novel biofabrication. 
The advent of ML techniques has generated a substantial 
impact on biomedical engineering without the exception 
in biofabrication due to their distinguished benefits and 
exceptional flexibility for patient-specific strategies 
[448–452]. This section aims to comprehensively review 
the ML techniques involved in biofabrication, focusing 
on the four crucial aspects: structural design, metamaterial 
development, optimisation of processing parameters, 
and in  situ monitoring  of manufacturing. As general 
AM techniques have been well developed, readers who 
are interested in their other generic applications than the 
biomedical fields can refer to some more comprehensive 
review articles [53, 453–456]. The relevant studies 
discussed in this section were identified using keywords 
such as “machine learning” or “data-driven,” combined with 
structural optimisation, topology optimisation, metamaterial 
design, processing parameters, and in situ monitoring of AM 
in the Web of Science Core Collection by 2023.

5.1  Structural Design

Additive manufacturing offers a new technological paradigm 
and exhibits remarkable advantages over conventional 
fabrication processes for producing geometrically 
sophisticated products with desired structural characteristics 
and functions. This capability bridges the gap between novel 
design and effective realisation [457, 458]. Structural design 
signifies a crucial step in the workflow of biofabrication, 
often involving iterative trial-and-error processes and 
various experimental tests that may not be available with 
ease [459]. As a result, the so-called rational design has 
drawn particular interest from the research community and 
industry sector [460, 461], in which one needs to know how 
the structural change can affect desired functionalities so 
as to reasonably tune structural design with an acceptable 
cost. Nevertheless, the largely improved design freedom 
offered by AM may increase the cost of conventional rational 
designs. To this end, ML techniques have been introduced 
to shed new light on the conventional design workflow 
[462–464].

5.1.1  Parametric Optimisation

One of the most commonly used rational design methods is 
parametric optimisation [465, 466]. In contrast to trial-and-
error approaches, desired structural performances are treated 
as objectives and/or constraints with respect to design vari-
ables that parameterise the structural configuration, materi-
als and dimensions in an explicit form. Taking design of 
orthopaedic devices as an example, different types of cellu-
lar structures have been comprehensively investigated, such 
as strut-based lattices [467–469], triply periodic minimal 
surface (TPMS)-based lattices [470], bio-inspired lattices 
[471–474], auxetic structures [475], honeycomb structures 
[476], and origami-inspired structures [477] (as shown in 
Fig. 13a). After generation of these parameterised cellu-
lar structures, computational modelling techniques can be 
involved to calculate the responses of objectives and con-
straints, where the ML techniques, as reviewed in Sect. 4, 
have substantial potential to play active roles, e.g., prediction 
of bone remodelling [33], interactions with the host environ-
ment [389, 402], etc.

In parametric optimisation, surrogate models [478] are 
often employed to approximate the responses of objectives 
and constraints with respect to design parameters. In this 
regard, supervised ML techniques show great benefits in 
parametric optimisation, which vary from the conventional 
surrogate techniques, such as the response surface model, 
Kriging model, and radial basis function model [478], to 
more prevailing ML regression approaches. In literature, 
there have been several studies [479–481] employed NNs as 
surrogate models to predict the micro strain on bone-implant 
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Fig. 13  Machine learning (ML) in parametric optimisation. a Differ-
ent types of cellular structures, including strut-based lattices (Repro-
duced with permission. Copyright 2019, Elsevier [468]), TPMS-
based lattices  (Reproduced with permission. Copyright 2018, 
American Chemical Society [470]), bio-inspired structures  (Repro-
duced with permission. Copyright 2020, Elsevier [472]), auxetic 
structures  (Reproduced with permission. Copyright 2019, Authors 
[475]), Honeycomb-like structures  (Reproduced with permission. 

Copyright 2014, John Wiley and Sons [476]), and Origami-inspired 
structures  (Reproduced with permission. Copyright 2-16, Elsevier 
[477]). b ML design of implants targeting desired strain pattern. 
Reproduced with permission. Copyright 2019, John Wiley and Sons 
[480]. c ML-based design of patient-specific dental implants. Repro-
duced with permission. Copyright 2018, Elsevier [481]
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Table 8  Data-driven and machine learning (ML) techniques for topology optimisation

CNN convolutional neural network, GPR Gaussian process regression, GAN generative adversarial network, ANN artificial neural network, NST 
neural style transfer, IFT invariant feature transform, SVM support vector machine, KNN k-nearest neighbours, VAE variational Autoencoder, 
RNN recurrent neural network, LSTM long short-term memory, LVGP latent-variable Gaussian process, GEP gene expression programming, 
PINN physics-informed neural network, DNN deep learning neural network, SIMP solid isotropic material with penalisation, MMC moving 
morphable components, DMO discrete material optimisation

References ML method Topology method Application

[515, 517, 519] CNN SIMP Real-time response of optimal designs subject to various loading conditions
[520] GPR
[516, 521–523] GAN
[524–526] U-net NN
[527] CNN Real-time response of optimal 2D structures with nonlinearities
[528] ANN Multi-material optimisation
[529] ANN, CNN Real-time response using a three-stage NN framework
[530] NST Real-time responses considering geometric constraints
[531] Deep belief network Discovering higher-order connections between the density values along with their initial outcome
[532] Data-driven Multiscale optimisation with hybrid microstructures
[518, 533] ANN
[534] CNN
[535] ANN Multiscale composite structure design
[536] ANN Two ANN models for predicting response and sensitivity of topological structures
[537] ANN Topology optimisation using isogeometric analysis
[538–541] NN, CNN Establish the mapping relationship between low and high-resolution structures for the topology 

optimisation with Deep super-resolution NN
[542] ANN Parameterise density design variables using ANN
[543] CNN Heat transfer and fluid–structure problems
[544] Data-driven Thermal design of functionally graded cellular structures
[545] CNN Topology optimisation with human design preferences
[546] IFT MMC Accelerating optimisation by classifying undesired solutions (extra-trees) in the MMC framework
[547] SVM, KNN Real-time response of optimal designs subject to various loading conditions
[548] U-net NN
[549] Deep NN
[550] ANN Acoustic topology optimisation
[551] ANN Topology optimisation considering finite deformation
[552] ANN Design phononic higher-order topological insulators
[553] VAE BESO Reduce the dimensionality of the search space for topology optimisation
[554] CNN, RNN, LSTM Real-time response of optimal designs subject to various loading conditions
[555] ANN Level set Level-set function is described by ANN
[556] Data-driven Designing graded cellular structures
[557] ANN DMO Optimisation of fibre-reinforced structures
[558] ANN – Deep learning neural network to model the material behaviour of flexoelectric nanostructures
[559] Problem-independent ML enhanced approach for large-scale structural analysis
[560] Thermal conductors using functionally graded materials
[561] GAN Multiscale topology optimisation with hybrid microstructures
[562] LVGP
[563] VAE
[564] Data-driven Truss structure optimisation dealing with sensitivity analysis for discrete noisy material data
[565] CNN, GAN Inverse design of phononic crystals
[566] GEP Turbulent flow
[567] PINN Topology optimisation based on physics-informed neural network
[568] DNN Optimising functionally graded structure for magnetic reluctivity
[560] Design fibre-reinforced materials
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interfaces, in which the GA was used to optimise the input 
variables for tweaking the shape, size, and porosity of 
implants, thereby achieving the desired micro strain to avoid 
loosening of implants as illustrated in Fig. 13b and c.

Figure 13b-i depicts the internal hollowness of the fem-
oral stems [480]. The ANN model outputs the strain dif-
ference, and the GA tunes the input parameters to achieve 
desired performances and outcomes, including maximum 
composite desirability (Fig. 13b-iii) and optimum aver-
age roof thickness values under different bone conditions 
(Fig. 13b-iv). In Fig. 13c, the FE analyses were performed 
to obtain bone-implant interface micro strain and implant 
stress at different diameters, lengths, and porosities of the 
porous dental implant for various bone conditions, serving 
as independent inputs to two ANN models [482]. The desir-
ability function was used as an index to obtain desired micro 
strain, and the GA optimised these parameters subject to an 
implant stress constraint.

5.1.2  Topology Optimisation

For rational design of biomedical devices, another widely 
employed approach is topology optimisation [34, 38, 483]. 
This technique allows materials to be freely distributed 
in design domains, facilitating the creation of novel and 
sophisticated configurations. Topology optimisation 
enables the exploration of material potential for desired 
performances by significantly altering structures that notably 
differ from their initial designs. While intricate geometries 
generated by topology optimisation were once a bottleneck 
for fabrication, recent advances in AM technologies have 
relieved this obstacle, thus largely promoting topological 
design in real-life applications [484].

In the field of biomedical engineering, topology 
optimisation has been extensively applied to the design 
of various implantable devices, including tissue scaffolds 
[34, 378, 379, 485–489], dental implants [483, 490–494], 
arterial stents [495–498], bone fixation plates [38, 499, 
500], artificial hips [501, 502], and spinal cages [503, 504]. 

Fig. 14  Machine learning (ML) 
in topology optimisation. a 
Real-time topology optimisation 
using a convolutional neural 
network (CNN) and a condi-
tional generative adversarial 
network (cGAN). Reproduced 
with permission. Copyright 
2018, Springer Nature [515].  b 
Topology optimisation using 
a neural network (NN) model. 
Reproduced with permission. 
Copyright 2020, Springer 
Nature [517]. c Multiscale 
topology optimisation using 
ANN as a surrogate. Repro-
duced with permission. Copy-
right 2019, Elsevier [518]
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Conventional topology optimisation methods typically 
require analytical/numerical sensitivity of objectives 
and constraints with respect to the design variables (e.g., 
density-based methods [505–511] or shape functions (level-
set method [512, 513], moving morphable component 
(MMC) method [514]) to drive topological changes. 
However, the iterative optimisation process involving 
repeated FE and sensitivity analyses may not be ideal for 
achieving real-time responses. To this end, recent studies 
have coupled ML techniques with conventional topology 
optimisation techniques, where conventional topological 
configuration  results were used to train ML models for 
obtaining real-time responses of topology optimisation, as 
summarised in Table 8.

For example, Yu et  al. [515] utilised a CNN-based 
encoder-decoder network and a conditional generative adver-
sarial network (cGAN) to achieve real-time topology opti-
misation without any iteration. In this approach, the CNN 
encoder-decoder predicts some optimal structures subject 
to different load conditions at low resolution, and then the 
cGAN takes low-resolution results as input to predict their 
high-resolution counterparts, as shown in Fig. 14a. Nie et al. 
[516] employed a generative adversarial network (GAN) to 
output optimal structures in a real-time fashion, using initial 
boundary conditions, load magnitude, and desired volume 
fraction as input images to the GAN model.

In addition to achieving real-time topology optimisation, 
Chandrasekhar et al. [517] used a NN model to parameterise 
design variables. In this case, a density function in terms 
of a conventional solid isotropic material with penalisation 
(SIMP) interpolation model is directly parameterised by 
the weights and bias associated with the NN model. Thus, 

the conventional optimisation procedure was modified to 
train the NN model in terms of the loss function from FE 
analyses. Once the NN training is finished, the optimisation 
problem can be solved straightforwardly, as illustrated in 
Fig. 14b.

Another significant application of ML techniques in 
topology optimisation is for design of multiscale structures. 
Many studies have been devoted to various schemes, as 
outlined in Table 8. Notably, White et al. [518] employed 
an ANN model as a surrogate to predict the elastic response 
of microscale unit cells. At a microscale level, the analytical 
sensitivity of elastic response with respect to the design 
parameters controlling micro-unit cells was used to train 
the ANN model, thus enabling the topology optimisation 
at a macro-scale to use the ANN model for both the elastic 
responses and sensitivity information, thereby driving the 
topology optimisation of every single unit cells (Fig. 14c). 
Note that multiscale topology optimisation can be 
extensively useful for metamaterial designs that have broad 
applications in implantable devices.

5.1.3  Manufacturing Constraints

Although AM techniques have demonstrated substantial 
benefits for fabricating intricate products, the integration of 
new manufacturing constraints poses significant challenges 
for real-life structural designs. Notably, the necessity of sup-
port structures for large overhang designs in AM [569] and 
the requirement to avoid self-enclosed cavities in powder-
based AM techniques for the removal of residual powder 
after fabrication [570] are some critical considerations. In 

Table 9  Examples of additive manufacturing (AM) constraints in topology optimisation

References AM constraints Optimisation scheme

[573] Enclosed voids SIMP-based model with nonlinear virtual temperature method to identify the enclosed voids
[574] Level-set-based method using a side constraint scheme identifying structural connectivity
[575] SIMP-based method using Poisson’s equation-based scalar field constraint
[576] SIMP-based method using virtual scalar field method to describe and enforce connectivity constraints
[577] Overhang-free/self-support SIMP-based optimisation considering the minimum allowable self-supporting angle. A support region 

projection ensuring a feature is adequately supported
[573] SIMP-based optimisation. Self-supporting constraint model to identify unsupported regions and 

quantify the degree
[578] Level-set optimisation method using domain integral form to detect violation of overhang constraint. 

Different minimum overhang angles can be taken as constraints
[579] SIMP-based optimisation. Overhang constraint is defined by the maximum allowable inclination angle 

computed by the Smallest Univalue Segment Assimilating Nucleus
[580] Thermal residual stress Level-set-based method coupled with thermal elastic evolution model for selective laser melting
[581] SIMP-based method coupled with a transient heat transfer model for powder-bed-based laser AM
[582–585] SIMP-based method coupled with element birth technique and inherent strain technique for powder-

bed based laser AM, reducing thermal shrinkage and relaxation of thermal stress
[586] Level-set method coupled with inherent strain techniques for reducing thermal distortion
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the context of metal printing, the impact of thermal residual 
stress becomes pivotal, as it can lead to crack-induced failure 
in the fabricated parts [569]. Consequently, the emerging 
field of design for additive manufacturing, which system-
atically accounts for these manufacturing constraints, has 
garnered considerable attention in research communities 
[571, 572]. Table 9 provides a summary of some noteworthy 
studies in topology optimisation design for AM, taking into 
consideration various manufacturing constraints.

To address manufacturing constraints in ML-based topol-
ogy optimisation, Tan et al. [587] proposed a framework 
utilising deep learning for design of microstructures. In 
their approach, a deep learning based Generative Adversarial 
Network (GAN) model is trained to directly learn geometry 
constraints from a database. The architecture of the com-
bined model for inverse design is depicted in Fig. 15, where 
the Generator of Deep Convolutional GAN and CNN are 
represented by a simple neural network structure for clar-
ity. Figure 15 also shows a flowchart of the inverse design 
process using the combined model, represented as a sim-
plified version in the grey-coloured box for clarity. In con-
ventional topology optimisation, geometry-related manu-
facturing constraints such as overhang/self-enclosed holes 
are typically described by certain numerical models, which 
may be difficult to use for other geometries generally. In 
this aspect, their study shed new light on coupling arbitrary 
geometric constraints by directly training the ML models 
to learn the key features in an unsupervised fashion, which 
can be extended to other geometry-related manufacturing 
constraints with ease.

Recently, Weiss et  al. [588] proposed a data-driven 
topology optimisation approach for considering the AM 
constraints, in which a single fixed minimum feature size 
and a maximum overhang angle predicted by a data-driven 
constraint function were integrated with the MMC-based 
topology optimisation framework. The procedural steps 
include: (i) setting up the problem with design domain, 
load, boundary conditions, and an building direction of 

AM as the inputs, (ii) obtaining a SIMP solution with 
fixed minimum feature size, (iii) converting the density 
field into a set of connected morphable components, (iv) 
adjusting the component endpoints and thicknesses using 
the MMC algorithm to optimise the objective, (v) assessing 
the minimum manufacturable thickness for each component 
using the constraint function, (vi) smoothly reducing density 
from fully dense to void, projecting each component to the 
new density field, and (vii) performing FE analysis and 
sensitivity calculations, with the optimiser updating the 
decision variables.

5.1.4  Manufacturing Uncertainty

Apart from these manufacturing constraints, AM-induced 
material and geometric uncertainties are also some crucial 
parameters to be considered. Material uncertainty may 
impact the performance of as-built parts, while geometric 
uncertainty may drastically deviate the geometries of 
as-built parts from their as-designed counterparts, resulting 
in considerable variation in functional performance, as 
reported for development of  porous structures [569]. 
Geometric uncertainty in AM stems from various factors, 
including: (1) thermal residual stress [589], (2) material 
shrinkage [590, 591], (3) distortion [592, 593], and (4) 
manufacturing imperfection [594]. In literature, significant 
efforts have been dedicated to addressing such critical 
issues by either minimising geometric uncertainty or 
simulating the induced sources so as to take into account 
them in design stage, thereby minimising their impact 
on their final performance, or ensuring reliability of 
the built structural systems [580, 595–600]. Table  10 
summarises some typical studies considering AM-induced 
uncertainties in topology optimisation.

Nevertheless, the application of ML techniques is still 
evolving to address these challenges [601–604]. For exam-
ple, Ferreira et al. [605] proposed a compensation scheme 
to reduce deviations between as-built and as-designed 
parts using ML techniques, in which an automated 

Fig. 15  Machine learning (ML) in topology optimisation coupling with manufacturing constraints. Reproduced with permission. Copyright 
2019, Springer Nature [587]
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NN-based modelling method enabled to accurately predict 
the deviations during AM processes.  Huang et al. [606] 
introduced a Shape Deviation Generator (SDG) as an engi-
neering-informed ML framework that learned from the 
AM data to control the shape deviations in AM processes.

5.2  Metamaterial Design

In vivo tissue exhibits inhomogeneous structures with 
notably intricate features ranging from macro to nanoscale. 
Implantable devices, such as orthopaedic implants, are 
expected to share similar structural characteristics and 
material properties with the surrounding host tissues. 
For instance, an appropriate effective stiffness is crucial 
for resisting external loads while avoiding severe stress 
shielding; and an adequate effective permeability ensures 
cell transformation and nutrition/metabolism transportation. 
Given these complex and often competing design 
requirements, metamaterials fabricated using AM techniques 
are particularly favoured in the design of implantable 
biomedical devices [621–624].

Recent studies have introduced innovative approaches 
to topology optimisation for single-unit cell or periodic 
structures using data-driven and ML techniques. These 
approaches offer novel computational tools for design-
ing porous implants with functionally graded micro-
structures [518, 532, 625–631]. For example, Wang et al. 
[626] proposed a multi-response latent-variable Gaussian 
process (MP-LVGP) for creating microstructural librar-
ies of metamaterials with different classes and sizes. The 
MP-LVGP model was integrated with multiscale topology 
optimisation for structures composed of multiple classes of 

microstructures, which are generally demanding for conven-
tional topology optimisation approaches.

In literature, ML for metamaterial design, combined with 
AM, has been employed to mimic soft tissue. Chen et al. 
[632], for example, conducted ML-based design of print-
able polymers to replicate the mechanical responses of soft 
tissue under various stress–strain curves. In their study, the 
functional principal component decomposition approach, 
coupled with Gaussian process modelling, served as a surro-
gate model to predict the mechanical responses (stress–strain 
curves) of simulated metamaterials efficiently. This approach 
enabled the parametric optimisation for controlling metama-
terial structures towards some exceptional material proper-
ties. Table 11 summarises the studies using data-driven and 
ML approaches for metamaterial design, and the structures/
morphologies of metamaterials in each study are illustrated 
in Fig. 16 for clarity and better insights.

5.3  Optimisation of Processing Parameters

The processing parameters in AM can significantly impact 
the properties of as-built parts, particularly when new mate-
rials or new AM techniques are employed [453]. While trial-
and-error experiments are a common approach to address 
this issue, they can be inefficient and costly. For this rea-
son, researchers have turned to physics-based modelling 
to uncover the intricate relationship between processing 
parameters and the outcome of as-built parts [649–651]. 
Nevertheless, establishing suitable physics-based models for 
the complex nonlinear relationships involved can be rather 
demanding as per conventional modelling techniques [454].

To tackle these challenges, ML techniques have been 
introduced to discern and optimise the relationship between 
processing parameters and the performance of as-built parts 

Table 10  Design optimisation 
involving AM-induced 
uncertainties

References Uncertainty Optimisation scheme

[607] Density/composition Robust topology optimisation
[585] Material property Worst-case topology optimisation
[608] Non-probabilistic reliability-based topology optimisation
[609] Reliability-based topology optimisation
[610] Topology optimisation with random field
[611] Robust BESO topology optimisation
[612] Load Evolutionary Level Set Method
[613] geometric uncertainty Monte Carlo-based topology optimisation
[614] Material & load Non-probabilistic reliability-based topology optimisation
[615] Robust topology optimisation
[616] Mechanical properties Robust BESO topology optimisation
[617] Robust multiphase topology optimisation
[618] Reliability-based and robust topology optimisation
[619] Material & geometrical SIMP topology optimisation with stochastic collocation methods
[620] SIMP topology optimisation with stochastic collocation methods
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based on specific requirements. The applications of ML 
techniques in optimising process parameters generally fall 
into two categories. Firstly, ML techniques developed for 
data clustering can be utilised to identify qualitative rela-
tionships between the processing parameters and as-built 
outcome/performance, subsequently determining the most 
crucial parameters for optimisation [651–653]. The dataset 
for this approach can be sourced from existing physics-based 
models or experimental tests. Secondly, given the intrin-
sic nonlinear nature of these relationships, regression ML 
models exhibit significant potential for explicitly quantify-
ing them without relying on physics-based models, enabling 
the optimisation of process parameters for desired perfor-
mances. This flexibility allows coverage of different AM 
techniques, each with its unique set of process parameters 

[654, 655]. Table 12 provides a summary of typical stud-
ies utilising ML approaches to establish the relationships 
between various processing parameters and critical as-built 
structural characteristics and properties with different AM 
techniques.

In the realm of 3D bioprinting, which involves the use 
of bioink containing live cells for tissue engineering, the 
significance of processing parameters becomes even more 
pronounced, affecting both printing accuracy [660] and 
cell viability [658]. The demand for effective solutions to 
enhance the stability and precision of cell injection, while 
simultaneously reducing cell damage, is imperative to the 
outcome. Take 3D extrusion-based bioprinting (EBB) as an 
example; here, cell viability is notably influenced by shear 
stress generated within printing nozzles. This shear stress is, 

Table 11  A summary of data-driven and machine learning (ML) studies on metamaterial design

ANN artificial neural network, CNN convolutional neural network, LVGP latent-variable Gaussian process, VAE variational Autoencoder, F-PCA 
functional principal component decomposition, GAGP globally approximate Gaussian process, DNN deep learning neural network, PINN 
physics-informed neural network, RF random forest

References ML method Shape Highlight method and results

[633] ANN i Concurrent tailoring metamaterial density and anisotropy distributions in lattice structures. ANN as a surrogate 
model to predict homogenised material properties for macro FE analyses

[634] Reinforcement learning, 
ANN

ii Design of one-dimensional periodic and non-periodic acoustic metamaterial combined with genetic algorithm-
based optimisation

[635] CNN iii Design of functional gradients with negative Poisson’s ratio based on auxetic metamaterials. CNN predicting 
deformation behaviour and bypassing complex hyperelastic analytical methods

[636] LVGP – The LVGP model mapping categorical factors of different microstructures into a continuous latent for aperiodic 
microstructures and multiple materials

[627] Laplace–Beltrami (LB) 
spectrum

iv The LB spectrum describing the complex unit cell shapes with a low number of descriptors to reduce design 
dimensionality

[628] VAE v The VAE model mapping metamaterial database into a low dimensional and a regressor to predict unit cell 
properties for multiscale design with heterogeneous properties

[536] ANN vi Design of metamaterials with negative Poisson’s ratio. ANN as a surrogate model to predict stiffness tensor
[637] VAE, ANN vii The VAE model encoding metamaterial designs into latent variables. ANN model predicting the responses for 

inverse optimisation design
[638] CNN viii Design for three-dimensional chiral metamaterials with strong chiroptical responses at predesignated 

wavelengths. Two CNN models for predicting responses and inverse optimisation design, respectively
[639] Quantum Gaussian 

processes
ix Quantum Gaussian processes reducing design parameters of metamaterials,

[630] CNN x CNN as encoder and decoder function for microstructures with randomly generated geometrical features. 
Design for maximising the bulk modulus, maximising the shear modulus, or minimising the Poisson’s ratio

[632] F-PCA xi Design of 3D printed metamaterials mimicking mechanical properties of soft tissue. F-PCA as a surrogate 
model to predict nonlinear mechanical responses

[640] ANN xii Design for zero Poisson’s ratio auxetic metamaterials. ANN predicting the response and the GA model 
optimising input parameters for desired zero Poisson’s ratio

[641] GAGP – GAGP building a collection of independent GPs to predict metamaterial properties in a large dataset
[642] CNN xiii CNN regression model predicting the efficiency from the image of a structure and identifying its functional 

regions
[643] Bayesian xiv Bayesian machine learning approaches for optimising metamaterial design, making structure fragile to super 

compressive
[644] Active learning, DNN – Active learning-based data acquisition framework aiming to guide both diverse and task-aware data generation
[645] PINN xv Inverse design of cellular materials
[646] PINN – Design metamaterials for enhancing optical response reconstruction
[647] RF xvi Extreme RF regression model for absorption prediction
[648] VAE – Metamaterials with targeted nonlinear deformation
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Fig. 16  Data-driven and machine learning based  studies on meta-
material design associated with the index for different structures in 
Table  11.  Reproduced with permission. Copyright 2021, Authors 
[633]. Reproduced with permission. Copyright 2021, Springer Nature 
[634]. Reproduced with permission. Copyright 2020,   John Wiley and 
Sons [635]. Reproduced with permission. Copyright 2020, Springer 
Nature [627]. Reproduced with permission. Copyright 2020, Elsevier 
[628]. Reproduced with permission. Copyright 2020, Springer Nature 
[536]. Reproduced with permission. Copyright 2019, John Wiley and 
Sons [637]. Reproduced with permission. Copyright 2018, American 

Chemical Society [638]. Reproduced with permission. Copyright 2021, 
Authors [639]. Reproduced with permission. Copyright 2020, Authors 
[630]. Reproduced with permission. Copyright 2018, Elsevier [632]. 
Reproduced with permission. Copyright 2022, Elsevier [640]. Repro-
duced with permission. Copyright 2020, Authors [642]. Reproduced 
with permission. Copyright 2019, Authors [643]. Reproduced with per-
mission. Copyright 2023, Authors [645]. Reproduced with permission. 
Copyright 2023, Elsevier [647]
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Table 12  A summary of machine learning (ML) approaches for building relationships between processing parameters and properties of as-built 
parts

References AM Material ML method Processing parameter Properties

[656] DOD Bioink with cell ANN Voltage, the diameter of the 
nozzle, bioink viscosity, and 
surface tension

Droplets state

[657] Ink-jet Bioink with cell (Sodium 
alginate)

ANN Normalised flow rate, nozzle 
speed, alginate concentration, 
Nozzle diameter

As-built errors

[658] Ink-jet Bioink ANN Printing speed, extrusion 
pressure

Cell viability

[659] SLA Bioink with cell KNN, RF UV intensity, UV exposure 
time, gelatin methacrylate 
concentration, and layer 
thickness

Cell viability

[660] EBB Hydrogels SVM Rheological property, nozzle 
gauge, nozzle temperature, path 
height, and ink composition

Printing accuracy

[661] Hydrogels (Alginate-Gelatin) GPR Nozzle radius, nozzle length, and 
the printing material properties

Cell viability

[662] Bioink (gelatin methacryloyl) GPR Ink composition, reservoir 
temperature, pressure, speed, 
platform

Filament formation and layer 
stacking

[663] Hydrogels RF Extrusion pressure, specific 
material concentration, solvent 
choice, nozzle diameter, and 
printing temperatures

Cell viability

[664] DLP Hydrogels CNN light exposure dose Printing accuracy
[665] SLS Polymer ANN Laser power, scan speed, scan 

spacing, layer thickness
Density

[666] Polymer ANN Z-height, part volume, and 
bounding-box volume

Build-time

[667] Polystyrene ANN Laser power, scan speed, hatch 
spacing, layer thickness, scan 
mode, temperature, interval 
time

Shrinkage ratio

[668] Polystyrene ANN Laser power, scan speed, hatch 
spacing, layer thickness, scan 
mode, temperature, interval 
time

Density

[605] SLA Polymer ANN Layer thickness, Illuminating 
time, waiting time

Shape deviation

[669] Polymer ANN Layer thickness, border overcure, 
hatch overcure, fill cure depth, 
fill spacing, hatch spacing

Dimensions

[670] Polymer CNN print orientation, Slice layer Stress distribution
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Table 12  (continued)

References AM Material ML method Processing parameter Properties

[671] FDM ABS polymer ANN Layer thickness, air gap, raster 
angle, build orientation, road 
width, the number of contours

Creep and recovery behaviour

[672] ABS polymer ANN Layer thickness, orientation, 
raster angle, raster width, air 
gap

Compressive strength

[673] Polymer ANN Layer thickness, orientation, 
raster angle, raster width, air 
gap

Wear strength

[674] ABSP400 ANN Layer thickness, orientation, 
raster angle, raster width, air 
gap

Dimensions

[675] ABSP400 ANN Layer thickness, orientation, 
raster angle, raster width, air 
gap

Dimensions

[676] Polymer ANN Orientation, slice thickness Building time
[677] Polymer RF Build plate and extruder 

temperature, vibrations
surface roughness

[678] PLA LSTM Layer height, print temperature, 
speed, extruder vibration, build 
platform vibration

Dimensional deviations

[679] PLA ANN, DT Layer height, infill density, infill 
pattern, bed temperature, and 
nozzle temperature

Surface roughness

[680] FFF ABS LR, DT, RF Infill density, layer thickness, 
print orientation, and raster 
orientation

Hardness

[681] DED 316L stainless steel SVM Laser power0, scan spacing; Depositing height
[682] Copper ANN Wire feed rate, welding speed, 

arc voltage, nozzle to plate 
distance

Bead geometry

[683] 316L Stainless steel CNN Micro morphological and 
crystallographic

Yield strength

[684] 2024 Al Alloy ANN Laser power, scanning speed, 
powder feeding rate

Dimensions

[685] 316L Stainless steel RNN Geometry, build dimensions, 
toolpath strategy, laser power, 
scan speed

Thermal history in melt pool

[686] Cobalt alloy KNN Power, feed rate, travel speed Surface roughness
[687] PBF 316L Stainless steel ANN Laser power, scan speed, layer 

thickness, annealing and hot 
isostatic pressing

High cycle fatigue

[688] 316L Stainless steel Gaussian process Laser power, scan speed, laser 
beam size

Melt pool depth

[689] Ti6Al4V ANN, RF Laser power, scan speed, hatch 
space, powder layer thickness

Fatigue life

[690] AlSi10Mg DT Laser power, laser spot size, 
hatching distance, layer height 
and scanning speed

Density, tensile strength and 
hardness
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in turn, dependent on such factors as pressure drop and the 
shape of the nozzles [656]. To tackle this challenge, vari-
ous ML regression models have been harnessed to predict 
cell viability, providing valuable guidance for selection of 
optimal processing parameters [659, 663], as illustrated 
in Fig. 17a. For inkjet-based bioprinting, a multiobjective 
optimisation framework has been introduced to address the 
complexities associated with this technique. In this frame-
work, ANNs play a pivotal role in modelling satellite forma-
tion concerning different droplet diameters and speeds [656, 
700], as shown in Fig. 17b.

5.4  In Situ Monitoring

In situ monitoring of the AM process involves the analysis 
of various data from multiple tools, such as cameras, X-rays, 
images, and sensors, to detect and eliminate potential man-
ufacturing defects or undesired properties (e.g., deforma-
tion, missing or excess materials, micro-cracks) [701, 702]. 
In situ monitoring for AM process holds significant prom-
ise for automatically analysing real-time signals without 

laborious human intervention, which enables to provide 
instantaneous feedback to the AM process, thereby forming 
a closed-loop control [703].

Data in the AM process is recorded either in a time-
series fashion or stored as images [704, 705]. ML tech-
niques for processing time-series signals or computer 
vision have exhibited  considerable potential and superior 
performances in identifying abnormal changes across vari-
ous types of information. In this context, many researchers 
have developed computer vision systems with cameras to 
acquire image data during the AM process. Trained Con-
volutional Neural Networks (CNNs) are then utilised to 
extract features from observed images, such as melt pool, 
plume, spatter, and droplet patterns [706–709], as shown 
in Fig. 18. For example, Fig. 18b outlines the steps to pro-
duce a time-integrated image. Each time series of radio-
graphs is segmented and labelled with time, then flattened 
into a time-integrated image. The extracted features are 
classified by the CNN models trained with labelled data 
in different classifications for in situ monitoring of the 
AM process.

Table 12  (continued)

References AM Material ML method Processing parameter Properties

[691] SLM Stainless steel GPR Laser power, laser scanning 
speed

Porosity

[654] Steel GPR; SVM Laser radiation, pressure 
intensity, laser energy density

Porosity

[692] 316L Stainless steel ANN, RF, SVM Laser power, scan speed, hatch 
space, powder layer thickness

Fatigue life

[693] Ti6Al4V ANN Building orientation, Hatch 
distance, Layer thickness, 
Powder size

Defect size distribution

[694] Ti6Al4V ANN Thermal treatments, surface 
treatments, stress amplitude

Fatigue life

[695] SEBM Ti-6Al-4 V ANN Spreader diameter, length, 
spreader translation speed, 
rotation speed

Surface roughness

[696] BJ Stainless steel ANN Layer thickness, printing 
saturation, heater power ratio, 
drying time

Dimensions and surface 
roughness

[697] WAAM Carbon steel ANN Welding speed, wire feed 
speed, overlap ratio, measured 
roughness

Surface roughness

[698] Steel RF Travel speed, wire feed speed, 
weaving wavelength, weaving 
amplitude

surface roughness

[699] Stainless steel ANN Welding current, voltage, 
contact-to-workpiece distance, 
travel speed

deposited shape

DOD drop-on-demand, SLA stereolithography, EBB extrusion-based bioprinting, DLP digital light processing, SLS selective laser sintering, 
FDM fused deposition modelling, DED directed energy deposition, PBF powder bed fusion, SLM selective laser melting, BJ binder jetting, 
WAAM wire arc additive manufacturing, PLA polylactic acid or polylactide, FFF fused filament fabrication, ABS acrylonitrile butadiene styrene, 
ANN artificial neural network, KNN k-nearest neighbors, RF random forest, SVM support vector machine, GPR Gaussian process regression, 
CNN convolutional neural network, LSTM long short-term memory, DT decision tree, LR linear regression, RNN recurrent neural network
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To form the closed-loop control, ML models can estab-
lish relationships between extracted features and real-time 
printing behaviour (e.g., temperature, speed, voltage), as 
reviewed in Sect. 5.3. The differences between real-time 
and desired behaviours can be evaluated, and proper control 
strategies can automatically adjust processing parameters, 
forming positive feedback on real-time printing outcomes. 
Given these promising results, more advanced deep learn-
ing frameworks are anticipated to enable in situ monitoring 
of specific issues occurring in the biofabrication process, 
thereby enhancing bioprinting to be more robust, reliable, 
and accurate. Table 13 summarises some further studies on 

ML techniques for the in situ monitoring of the AM pro-
cesses, which include their inspection objectives, ML algo-
rithms, AM techniques, and data collection approaches.

6  Applications

6.1  Bone Tissue Scaffolds

Bone loss resulting from trauma, tumours, infections, 
or injuries poses a significant healthcare challenge, 
necessitating either temporary or permanent replace-
ment with a suitable functional alternative. Traditional 
treatment approaches, such as allograft and autograft 

Fig. 17  Machine learning (ML) in optimisation of biofabrication process-
ing parameters. a Key components within the Stereolithography-based 
bioprinting system as well as the 2D patterns of a four-branch vascular 
structure under printing.  Reproduced with permission. Copyright 2020, 

Springer Nature [659]. b ML-based optimisation of processing parameters 
in ink-jet-based bioprinting. Four factors (applied voltage, bioink viscos-
ity, surface tension, and nozzle diameter) determine the droplet size and 
state. Reproduced with permission. Copyright 2019, Authors [700]
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transplantations, as well as Masquelet procedures, exhibit 
notable drawbacks, including infection risks, disease trans-
mission, donor site morbidity, and restricted tissue sup-
ply [33]. To overcome these limitations, there has been 
growing interest in synthetic bone scaffolds as a potential 
solution for addressing bone loss in both research commu-
nities and clinical settings (Fig. 19a). These implantable 
scaffolds are specifically designed to replace bony tissues 
in vivo, requiring not only sufficient mechanical support 
but also biologically/chemically inert material properties 
and the ability to facilitate the transport of nutrients and 
metabolism crucial for tissue regeneration [34].

Table  14 provides a summary of some typical ML-
based applications in bone tissue engineering. For example, 
Entekhabi et al. [743] developed a ML model to predict the 
degradation rate of a biodegradable scaffold. In their study, 
the experimental tests were conducted on different samples 
with varying material constituents. The experimental data 
were then utilised to train an ANN model for predicting the 
degradation rate with a fairly low mean squared error (2.68%).

To achieve optimal bone formation in tissue scaffolds, 
structural scrutiny aligned with subject-specific defect sites 
is imperative. Consequently, there is a growing demand to 
efficiently predict bone formation within tissue scaffolds 
through use of computational modelling techniques, mitigat-
ing the need for costly trial-and-error in vivo experimental 
tests. In this regard, Barrera et al. [744] employed the ML 
techniques for design of scaffolds, in which a CNN model 
was employed to directly predict the mechanical properties 
of innovative scaffolds without experimental tests or numeri-
cal models, thereby enabling rapid optimisation of scaffolds 
for desired biomechanical properties. Moreover, ML tech-
niques have also been applied to guide the bioprinting of 
bone scaffolds [662, 745, 746].

6.2  Orthopaedic Implants

Hip fractures persist as a significant health concern, 
particularly in the context of an increasingly ageing 
population. Consequently, hip replacements utilising 
artificial implants have become a golden standard for 
revision surgeries worldwide (Fig. 19b). This widespread 

adoption underscores the urgency of addressing the 
challenges associated with such procedures. To this end, 
several ML-based applications in the realm of hip implants 
are delineated in Table 14. The introduction of hip implants 
presents a transformative mechanical environment to be 
experienced by the host bony tissue. This alteration raises 
the spectre of possible stress shielding issues, prompting 
the necessity for patient-specific design of hip implants. 
Addressing this concern, Cilla et  al. [752] proposed a 
ML-based framework for optimising hip implants. Their 
approach involved the development of a parametric FE 
model, quantifying stress shielding effects by assessing the 
disparity in maximum principal strain between implanted 
and intact bone models. Subsequently, an artificial neural 
network (ANN) model, trained from the FE dataset, provided 
quantified stress shielding values for various parametric 
models. Such information was then integrated with the GA 
to determine the optimal parameters conducive to reduction 
of stress shielding.

Beyond stress shielding, the longevity of hip implants 
is intricately linked to polyethene wear, a pivotal factor 
in determining their overall performance. Addressing this 
concern, Borjali et al. [753] adeptly predicted the polyethene 
wear rate through the ML models applied to pin-on-disc 
(PoD) wear experiments. Their innovative approach paved a 
new avenue for investigating this critical issue by observing 
diverse operating parameters, potentially mitigating 
complications such as osteolysis, implant loosening, and 
mechanical instability.

In clinical applications, ML techniques have found 
notable utility in the identification of hip implants from plain 
radiography images owing to their robust performance in 
imaging analysis [754–758]. This highlights the versatility 
of ML methodologies in enhancing clinical diagnostics 
and underscores their potential in augmenting traditional 
imaging analysis techniques.

6.3  Dental Implants

The prevalence of tooth loss, a consequential issue in oral 
health, is exacerbated by the ageing population. Apart from 
impairing masticatory function, missing teeth can signifi-
cantly compromise dental bone and surrounding tissues. 
Dental implantation treatment (Fig. 19c), a leading pros-
thetic technology, has witnessed rapid development over the 
past five decades and stands as a primary recourse when 
the application of dental bridges is precluded by adjacent 
teeth. A multitude of studies in the literature have leveraged 
ML techniques to explore dental implants comprehensively 
[772–781], as catalogued in Table 14.

The failure of dental implants is subject to a myriad of 
complex factors, encompassing patient-specific variables, 
implant positioning, surrounding bony tissue condition, 

Fig. 18  In situ monitor of the additive manufacturing process using 
machine learning techniques. a In  situ monitoring using high-speed 
and high-energy X-ray imaging techniques in the laser powder bed 
fusion process. Reproduced with permission Copyright 2018, Elsevier 
[706]. b In situ X-ray imaging detection of defects. Reproduced with 
permission. Copyright 2018, Authors [707]. c In situ droplet monitor 
for liquid metal jet printing. Reproduced with permission. Copyright 
2018, Elsevier [708]. d In situ monitor of melt pool in powder-based 
fusion processes using support vector machine and convolutional neu-
ral network models for processing images. Reproduced with permis-
sion. Copyright 2018, Elsevier [709]

◂
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fixture characteristics, surgical procedures, and implant 
timing. Conventional statistical methods encounter 
limitations due to the diverse types of data, whereas 
physics-based models addressing these intricate factors are 
often impractical. Consequently, researchers have turned 

to ML-based regression models, constituting a dynamic 
domain in dental implant research [762, 782, 783]. Notably, 
fracture emerges as a common failure mode for dental 
implants. Lee et al. [763] utilised a convolutional neural 
network (CNN) model to detect and classify fractured dental 

Table 13  A summary of in situ monitoring of AM process using machine learning (ML) techniques

FDM fused filament fabrication, DED directed energy deposition, PBF powder bed fusion, SLM selective laser melting, SLS selective laser 
sintering, RF random forest, PCA principal component analysis, CNN convolutional neural network, SVM support vector machine, SOM self-
organisation map, CFSFDP clustering by fast search and finding of density peaks, KNN k-nearest neighbour, GPR Gaussian process regression, 
LSTM long short-term memory, VAE variational Auto-Encoder, XGBoost eXtreme gradient boosting

References AM process Monitor objective ML method Data monitor/collection approach

[710] FDM Surface roughness RF Sensor: temperature of build plate, extruder, 
deposited material; ambient temperature, vibration 
of the build plate, the extruder

[711] PCA Illumination and microscope module
[677] RF Sensor: thermocouples, infrared temperature sensors, 

and accelerometers
[712] Interlayer imperfections CNN Camera images
[713] Layer inspection SVM, CNN Camera
[714] Part defects SOM Acoustic emission sensor
[715] CFSFDP Sensor: acoustic emission
[716] ANN, CNN Vibration sensor
[717] SVM Camera
[718] DED Surface quality KNN, SVM, GP, ANN Robot joint data from the robot controller
[719] Part defects LSTM-Autoencoder, k-means Emission spectroscopy
[720] CNN Acoustic emission
[721] PBF Surface topographies Autoencoder neural network Scattered light captured by a screen and recorded by 

a camera
[722] Laser track welds CNN Camera/video clips
[723] hot-spot defects k-means, SVM, ANN Camera: video-imaging data
[724] microscopic pores Autoencoders, PCA, k-means Optical emission spectra signals
[725] Porosity Graph Fourier coefficients X-ray Computed Tomography
[726] Melt pools Bag of Words High-speed camera
[727] Anomaly detection CNN Camera
[728] k-means, CNN/filter bank Camera
[729] VAE High-speed camera
[730] CNN Camera
[712] Part defects XGBoost Sensor
[731] Reinforce learning algorithm Fibre Bragg grating: acoustic emission
[732] CNN Fibre Bragg grating: acoustic emission
[733] CNN Fibre Bragg grating: acoustic emission
[734] SVM High-resolution digital camera
[735] CNN Camera
[736] CNN Multi-modal sensor fusion
[737] PCA, Gaussian Mixture Model, VAE Acoustic emission sensor
[738] Cracks PCA Acoustic emission (AE) signal
l[739] SLM Part defects K-Means, KNN Optical tomography monitoring
[740] CNN Camera
[741] Porosity ANN. SVM High-speed camera
[742] SLS Part defects CNN Camera



Machine Learning in Biomaterials, Biomechanics/Mechanobiology, and Biofabrication: State…

implants through radiograph images, presenting a potential 
real-time clinical application.

In order to address another critical issue that peri-implant 
bone loss leads to implant loosening, Cha et  al. [764] 
employed a CNN model to measure peri-implant bone loss 
from radiographs, offering an in situ assessment of marginal 
bone loss severity. Additionally, Zhang et al. [765] identified 
trabeculae microstructure parameters as effective indicators 
for marginal bone loss. Comparative studies employing 
various regression models, including SVM, ANN, logistic 
regression (LR), and RF, revealed the superior accuracy of 
SVM in predicting marginal bone loss.

ML approaches have also found applications in the 
patient-specific design of dental implants. For instance, 
Hsu et al. [168] utilised the deep learning U-net neural 
networks and an ANN model for mechanobiological 
design, consider ing per i-implant bone healing, 
remodelling, and cell proliferation to optimise designs and 
prevent potential failures due to bone loss.

6.4  Arterial Stents

Stent treatment stands as a favoured therapeutic strategy for 
numerous cardiovascular patients seeking to restore blood 
vessel circulation. These miniature mesh-like mechani-
cal devices, known as stents (Fig. 19d), compress plaque 

against vessel walls, opening obstructed arteries and offer-
ing substantial benefits by minimising surgical risks and 
reducing hospitalisation periods. Several studies have 
investigated the applications of ML techniques in arte-
rial stents, as outlined in Table 14. Typically crafted from 
biomaterials such as stainless steel, Ni–Ti alloy, cobalt-
chromium, titanium, and its alloys, stents are intricately 
shaped through laser cutting techniques. Maudes et al. 
[766] developed a ML-based model to establish the highly 
nonlinear relationship between processing parameters and 
geometrical characteristics during the manufacturing pro-
cess. This approach holds promise for reducing the high 
costs associated with experimental tests.

Stent expansion in arteries is pivotal for ensuring clini-
cal outcomes, where inadequate expansion and malposi-
tion can lead to chronic complications such as restenosis 
and thrombosis. Dong et al. [767] integrated ML models 
with FE methods to predict stent expansion in a calcified 
coronary artery. Patient-specific optical coherence tomog-
raphy (OCT) images were employed to reconstruct the FE 
models, in which the cross-sectional images of pre- and 
post-stenting were used as a training dataset. Eight dif-
ferent features extracted from pre-stenting images served 
as inputs for the support vector regression (SVR) model, 
predicting lumen area from post-stenting images.

Fig. 19  Applications of biomed-
ical implants. a Bone scaffold. 
Reproduced with permission. 
Copyright 2019, John Wiley 
and Sons [784]. b Hip implants. 
Reproduced with permission. 
Copyright 2017, Authors [752]. 
c Dental implants. Reproduced 
with permission. Copyright 
2021, Authors [763]. d Coro-
nary stents. Reproduced with 
permission. Copyright 2016, 
Elsevier [41]



 C. Wu et al.

Table 14  Representative machine learning (ML)-based applications in implantable devices

References Application Method Main idea

[747] Bone scaffold ANN Scaffolds made from electrospun fibres mimic extracellular 
matrix of tissue. Fibre diameter, orientation, and 
polymeric compositions were taken as the input for the 
ANN model to predict elastic modulus

[743] ANN Predicting degradation rate of scaffolds
[744] CNN Predicting scaffold mechanical properties using the CNN 

model based on scaffold configurations
[748] ANN Design optimisation of 3D printed scaffolds. ANN was 

used as a surrogate model, in which layer thickness, delay 
time between spreading each layer, and print orientation 
were taken as inputs to predict compressive strength of 
printed scaffolds. A GA-based algorithm was employed to 
optimise the parameters

[749] ANN The effect of Hydroxyapatite Dicalcium Phosphate 
Anhydrous (HA/DCPA) ratio on compressive strength, 
elastic modulus, calcium dilution, density, porosity, and 
weight change of fabricated biodegradable scaffolds

[181] RF, Logistic function Estimating osteocyte growth in collagen scaffolds and 
collagen degradation. RF was used to classify images and 
extracted features. Logistic function using the features to 
estimate osteocyte growth and collagen degradation

[746] RF Optimising AM processing parameters to improve printing 
quality

[745] ANN Optimisation of 3D printed scaffolds for a controlled drug 
release over 20 days

[750] RF RF was used as a regression model to investigate the 
effect of fibre diameter, scaffold pore diameter, water 
contact angle, and Young’s modulus of materials on cell 
proliferation on scaffolds

[662] ANN Optimisation of 3D printing processing parameters
[751] ANN Inverse design of Triply periodic minimal surface bone 

scaffolds
[752] Hip implant ANN Parametric optimisation of hip implants to achieve optimal 

mechanical conditions to avoid stress shielding
[753] RF, LR, GB Predicting the polyethene wear rate of Pin-on-disc for hip 

implants
CNN The CNN model identifying hip implants from plain film 

radiographs
[754] ANN Shape optimisation of hip implants to reduce stress 

shielding. ANN, GA, and FE analyses were combined in 
the optimisation framework

[755] ANN Shape and geometry optimisation of hip implants to 
minimise post-operative micromotion

[756, 757] CNN Identification of hip implants from X-ray images
[758] SVM Estimating corrosion severity
[759] DT, LR, RR (Ridge Regression), LSR(Lasso 

Regression), EN (Elastic Nets), MLP (Multilayer 
Perceptron)

Predicting Mechanical Performance of Semi-Porous Hip 
Stems

[760] LR Building the relationship between parameters of lattice 
structures and their properties
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7  Challenges and Perspectives

ML techniques present unprecedented opportunities for 
exploring novel biomaterials, modelling biomechanics and 
mechanobiology, and designing and controlling biofabri-
cation processes due to their robust capabilities in han-
dling significantly large and complex datasets. The inte-
gration of ML approaches in the biomedical engineering 
field holds significant promise for the entire framework, 
encompassing biomaterials design, in silico biomechanical 
or mechanobiological modelling, and the fabrication of 
real-life products, thereby facilitating the development of 
novel patient-specific treatments with minimal side effects 
for clinical applications. However, several key challenges 
and perspectives in integrating ML approaches for bio-
medical engineering issues need to be addressed:

(1) Data collection and preparation: The availability 
of useful and comprehensive datasets is paramount 
for training ML models. While training data can be 
sourced from either experimental tests or compu-
tational simulations, experimental tests are often 
expensive, and simulations for novel materials based 
on universal physical laws can often be demanding. 
Moreover, data labelling for supervised learning may 
incur significant costs. Therefore, the collection and 
preparation of reliable data without sacrificing crucial 
information are essential for the effective implementa-
tion of ML techniques.

(2) ML-based design approaches: Conventional 
approaches for biomaterials design often rely on 
physical/chemical intuition. In contrast, ML-based 
design approaches can learn from data, unravelling 
the relationship between material structures and 
mechanical/biological behaviours. This offers an 

Table 14  (continued)

References Application Method Main idea

[168] Dental implant ANN, U-net NN Optimisation design of dental implants considering time-
dependent peri-implant cell proliferation and bone healing 
and remodelling

[761] ANN Optimisation design of Ti alloy and hydroxyapatite 
composites used for dental implants, aiming to achieve 
low elastic modulus and high yield strength biomaterials

[482] ANN The ANN model combined with the GA algorithm to 
design patient-specific dental implants

[333] ANN Inverse identifying elastic modulus of interfacial tissue 
around dental implants

[762] ANN, KNN, SVM, NB, DT Predicting success of dental implants subject to different 
gender, age, systemic, smoking, location, placement, 
loading, diameter, length, system, type, platform, 
connection, parallel taper over-denture, and sinus lift 
factors

[763] CNN Detection of fracture from image data
[764] CNN Estimating peri-implant bone loss from radiographs
[765] ANN, SVM ML models were used as surrogate models to predict 

marginal bone loss subject to trabeculae microstructure 
parameters

[766] Arterial stent RF Predicting stent dimensions in laser-based microfabrication 
processes. Different cutting conditions (pulse duration, 
laser power, and cutting speed) were used as input 
parameters for the RF models

[767] SVM Predicting stent expansion in a calcified coronary artery
[768] CNN Stent detection in intravascular optical coherence 

tomography
[769, 770] RF, LR, GB, SVM Predicting stent restenosis using daily demographic, clinical 

data, and angiographic characteristics
[771] SVM, LR, RF, ANN Predicting periprocedural myocardial infarction by using 

routine data

ANN artificial neural network, CNN convolutional neural network, RF random forest, LR linear regression, GB gradient boosting, SVM support 
vector machine, DT decision tree, RR ridge regression, LSR lasso regression, EN elastic nets, MLP multilayer perceptron, KNN K-nearest 
neighbour, NB Naïve Bayes
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efficient method enabling brute force design, which 
is often prohibitive in conventional approaches due to 
excessive computational costs.

(3) Data-driven modelling for Biomechanics and 
Mechanobiology: Data-driven and ML-based 
modelling for biomechanics and mechanobiology 
create new opportunities for the development of digital 
twins. These twins can precisely replicate in vitro and/
or in vivo behaviours of biological systems in silico, 
offering a supplementary yet important approach to 
in vitro and/or in vivo tests or guidelines for practical 
clinics.

(4) Integration of physics laws in ML models: 
Embedding physics laws in ML models could 
enhance the learning process from data, especially in 
mechanics-related fields. Conversely, ML approaches 
are expected to discover new physical laws behind data 
and integrate them into conventional frameworks for 
more reliable and more realistic solutions.

(5) ML-based approaches in bioprinting: The design 
for bioprinting is still in its early stages. ML-based 
approaches illuminate the design optimisation of 
biomedical devices, potentially overcoming challenges 
associated with conventional optimisation methods. 
Additionally, ML-based techniques provide a feasible 
way to establish a closed-loop fabrication process with 
minimal human intervention.

(6) Interdisciplinary knowledge in biomedical 
engineering: Biomedical engineering involves complex 
multidisciplinary knowledge and methodologies, 
commonly posing great challenges and high cost for the 
development and implementation of novel treatments 
for critical healthcare issues. Advanced ML-based 
methods are expected to create a comprehensive 
framework in  futuristic studies—from the design of 
novel biomaterials to modelling biomechanical and 
mechanobiological behaviours, to the fabrication of 
real-life products.

8  Conclusion

This paper provides an overview of the state-of-the-art of 
ML approaches in the biomedical engineering field. It begins 
with a brief review of various ML approaches, followed 
by discussions on their applications in biomaterials, 
biomechanics, mechanobiology, and biofabrication, 
respectively. The review emphasises their advantages, such 
as superior data processing and data mining capabilities, 
development of digital twins, and innovative design of 
biomaterials. The exploration extends from hard tissue 
to soft tissue, monoscale to multiscale perspectives. The 

current status of ML techniques in biofabrication is also 
reviewed, shedding light on structural and metamaterial 
design, process optimisation, and in situ monitoring for 
AM processes. The paper concludes by exemplifying 
typical biomedical applications using ML-based approaches, 
broadening the horizon for future work, and addressing 
challenges and perspectives. This review aims to provide 
valuable information and lighten key perspectives for 
researchers, engineers, and clinicians, navigating this rapidly 
emerging multidisciplinary field of ML in biomedical 
engineering.
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