
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2023) 30:4477–4497 
https://doi.org/10.1007/s11831-023-09952-7

REVIEW ARTICLE

A Comprehensive Analysis of Deep Learning‑Based Approaches 
for Prediction and Prognosis of Infectious Diseases

Kavita Thakur1  · Manjot Kaur1 · Yogesh Kumar2

Received: 8 December 2022 / Accepted: 25 May 2023 / Published online: 8 June 2023 
© The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2023

Abstract
Artificial intelligence is the most powerful and promising tool for the present analytic technologies. It can provide real-time 
insights into disease spread and predict new pandemic epicenters by processing massive amount of data. The main aim of 
the paper is to detect and classify multiple infectious diseases using deep learning models. The work is conducted by using 
29,252 images of COVID-19, Middle East Respiratory Syndrome Coronavirus, Pneumonia, normal, Severe Acute Respiratory 
Syndrome, tuberculosis, viral pneumonia, and lung opacity which has been collected from various disease datasets. These 
datasets are used to train the deep learning models such as EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, 
NASNetLarge, DenseNet169, ResNet152V2, and InceptionResNetV2. The images have been initially graphically repre-
sented using exploratory data analysis to study the pixel intensity and find anomalies by extracting the color channels in an 
RGB histogram. Later, the dataset has been pre-processed to remove noisy signals using image augmentation and contrast 
enhancement techniques. Further, feature extraction techniques such as morphological values of contour features and Otsu 
thresholding have been applied to extract the feature. The models have been evaluated on the basis of various parameters, 
and it has been discovered that during the testing phase, the InceptionResNetV2 model generated the highest accuracy of 
88%, best loss value of 0.399, and root mean square error of 0.63.

1 Introduction

Infectious diseases continue to be the leading cause of mor-
tality worldwide. Infectious illnesses are caused due expo-
sure to infectious causing agents such as protozoa, bacteria, 
fungi, viruses, and helminths [1]. Several infections that 
originated in rural areas have adapted to urban conditions, 
while others have originated or reappeared in urban areas. 
Due to the variety in the health of metropolitan residents, 
higher contact rates, and the mobility of individuals, large 
urban populations are at high risk for spreading the disease. 
In fact, infections can swiftly spread to other city regions 

which includes affluent neighborhoods and tourist destina-
tions, even though the prone urban neighborhoods are often 
the first to be impacted [2].

In a globalized world, cities also serve as entry points for 
the global spread of infectious diseases. These challenges 
significantly affect public health, altering chronic and infec-
tious diseases’ epidemiological and global consequences [3]. 
Microorganisms most commonly cause infectious diseases. 
They are significant because of the kind and quantity of 
harm their causal agents cause to organs and systems once 
they enter a host, as shown in Fig. 1. The immune system 
naturally combats and eliminates infectious germs and infec-
tious diseases only occurs when the immune system fails to 
eliminate such infectious pathogens. Consequently, all infec-
tious diseases manifest in a specific population, context, or 
environment at some point [4].

When we comprehend the complexities of infectious dis-
eases and the mechanisms for mitigating them, there are 
various methods to combat, prevent, and manage illness. 
Depending on the pathogenic cycle for a particular condi-
tion, infectious diseases can be prevented on multiple stages. 
In some situations, the infectious diseases can be combated 
using various procedures such as vaccination, medication, 
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vector control strategy and that are already there in the medi-
cal sector [5] while as there are also other diseases where 
such control methods are ineffective, underdeveloped, or 
nonexistent. Researchers are working for developing the new 
tools which are necessary to eradicate such human issues. 
To develop such tools require the study of the pathogen’s 
life processes and interactions with the host, translational 
research to generate new tools, and clinical research to 
assess the safety and effectiveness of these new tools [6].

Quality of the data and facility provided to the patients 
has created new opportunities especially in medical sector. 
These discoveries have lead to a greater understanding to 
improve patient risk management plan, healthcare-related 
illnesses including the risk factor and the detection of intra- 
and inter-facility transmission of infectious diseases which 
enables more targeted preventive measures [7]. But some-
times it also showed some limitations such as the volume 
or the complexity of the data, lack of collection as well as 
storage capabilities of any medical record. Such data are 
typically underutilised and undervalued, but some new and 
improved data collection and storage technologies have been 
studied which has the potential to solve the analysis problem 
[8]. Thusly, it is crucial to establish efficient and effective 
measures to fight against the threat of infectious diseases 
by having the proper data to analyse and minimum time to 
detect as diagnose them.

In this era, Artificial Intelligence (AI) has become such 
a valuable and necessitate tool in the healthcare industry. A 
lot of times artificial intelligence has shown great miracles 
in the medical section to diagnose and interpret complex dis-
eases. Researchers have been aided by artificial intelligence 
to comprehend the capabilities of virus, pathogenicity, and 
genome [9]. It also facilitates the researchers to predict the 
protein structure of virus and their chemical bonding to has-
ten the creation of new antiviral medications and vaccines.

Machine Learning (ML) and Deep Learning (DL) are 
the most effective weapons that can be used against the 
rapid spread of infectious diseases [10]. Researchers like 
Evalgelista et al. [11] used Convolutional Neural Networks 
to design a computer-aided technique based on intelligent 

pattern identification on chest X-rays. Their project 
employed nine distinct architectures and two ensembles 
to tackle this problem. The highest validated performance 
achieves an accuracy of 88.76%. The experimental data 
originates from publicly available medical databases and 
includes real-life examples of individuals of various ages 
and physical features. Ahsan et al. [12] investigated that 
for classifying medical images, whether convolutional 
neural networks are the viable alternative to decision tree-
based systems. Their objective was to create a generalized 
model that handles all the complicated pre-processing pro-
cedures that a traditional decision tree would take. During 
experimentation, their model obtained the high accuracy 
of 80% without augmentation and 81.25% with augmen-
tation. Similarly, Prasad et al. [13] used a convolutional 
neural network to distinguish parasitized from non-par-
asitized samples (CNN). Pre-trained and custom-built 
models were evaluated to determine which was superior. 
Standard preparation procedures were employed to extract 
different aspects of the data to enhance performance. This 
suggests that an AI is reliable and capable of detecting 
infectious illnesses to reduce the workload of physicians, 
doctors, and clinicians.

In this paper, the dataset of seven infectious diseases like 
covid-19, lung opacity, MERS, Pneumonia, SARS, Tuber-
culosis, and Viral Pneumonia, along with the normal lungs, 
have been taken and applied to various pre-trained models 
such as EfficientNetB0, EfficientNetB1, EfficientnetB2, Effi-
cientNetB3, NASNetLarge, DenseNet169, ResNet152V2, 
and InceptionResNetV2. The models have been assessed 
based on several factors, including accuracy, loss, precision, 
F1 score, RMSE, and recall. When the model was applied to 
a testing dataset, the InceptionResNetV2 model generated 
the highest accuracy by 88%, loss by 0.399, and RMSE by 
0.63. During the training phase, EfficientNetB0 calculated 
the best accuracy, loss, and RMSE values by 89.09, 0.29, 
and 0.54.

The following are the contributions made in this research 
paper:

1. The dataset has been initially taken from the eight 
classes which include seven infectious diseases and one 
normal lung image dataset.

2. Using exploratory data analysis, the images in the data-
set have been graphically visualized to extract their color 
channels in the form of an RGB histogram.

3. Later, the original images are pre-processed by convert-
ing them into grayscale, followed by image augmenta-
tion and contrast enhancement techniques.

4. Using techniques such as contour features and Otsu 
thresholding, features have been extracted and are later 
split into training and testing sets.

Fig. 1  Virus/bacteria into the body [4]
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5. Various deep learning-based models are trained using 
training and testing images to calculate the values for 
different parameters such as accuracy, loss, F1 score, 
recall, precision, and RMSE values, to determine the 
most effective model for detecting the class of infectious 
diseases.

1.1  Organization of the Paper

The research paper has been organized in which Sect. 1 
has already defined as Introduction, where brief informa-
tion about infectious diseases, their impact, and AI methods 
to tackle them have been mentioned. Section 2 defines the 
context to discuss the work done by researchers in the field 
of various infectious disease detection. Section 3 defines 
the dataset, procedures, techniques, and parameters which 
are being used to generate the results mentioned in Sect. 4. 
Finally, in Sect. 5, the entire paper has been summarized and 
concluded, along with a few future directions and challenges.

2  Background

The summarization, enhancements, challenges, classifica-
tion, and potential impact of research papers produced in 
this field are evaluated in depth. In addition, research arti-
cles are categorized based on various characteristics, such 
as technology, employed methodologies, data sets, limita-
tions, and findings. Table 1 lists the multiple papers evalu-
ated for this study. Kamana et al. [14] examined the impact 
of climate on the comeback of malaria in mainland China. 
In comparison to other candidate models, the proposed LST-
MSeq2Seq model reduced the mean RMSE of predictions 
by 19.05% points to 33.93% points, 18.4% points to 33.59% 
points, 17.6% points to 26.67% points, and 13.28% points 
to 21.34% points for P. falciparum, P. vivax, and other plas-
modia, respectively. The LSTMSeq2Seq model showed the 
prediction performance by 87.3%.

Furthermore, more complicated structures were devel-
oped and tested to find the most efficient model. The custom 
model’s accuracy is 97.50%. Cinar et al. [15] used Convo-
lutional Neural Networks (CNN) to distinguish between 
healthy and parasitic malaria images. The original data-
set is then passed through a medium and gauss filter. The 
DenseNet201 architecture has the most remarkable accuracy 
rate of 97.83% when identifying malaria data using gauss-
ian filtered data. To classify the severity of Covid-19, Irmak 
et al. [16] proposed a novel CNN-based method. By tak-
ing chest x-ray images as an input, the researchers hypoth-
esized that an automated CNN model could classify the four 
categories of COVID-19 patients, namely mild, moderate, 
severe, and critical, with an accuracy of 95.52%.

Leblic et al. [17] employed machine learning algorithms 
to anticipate a COVID-19 diagnosis utilizing a cross-testing 
technique. Lack of smell and taste were linked to elevated 
COVID-19 positive probability scores by 6.21 and 2.50, 
respectively. To predict a Covid-19 diagnosis, the ML algo-
rithms achieved 80% accuracy, 82% sensitivity, and 78% 
specificity. Using cough detection during recorded con-
versations, Feng et al. [18] developed a technique for the 
automated diagnosis of COVID-19. The approach collects 
critical elements from the audio stream. It then classifies 
those using AI-based models such as SVM, KNN, and RNN, 
and when applied to the training and test sets separately, the 
highest accuracy obtained was 81.25% (AUC of 0.79).

To reliably diagnose TB from chest X-ray images, Rah-
man et al. [19] used imaging data augmentation and seg-
mentation techniques, whereas the X-ray segmentation pro-
cess using two different methods and X-ray classification 
techniques were all part of this work. For segmented lung 
pictures, DenseNet201’s accuracy, F1-score, sensitivity, pre-
cision, and specificity were 98.6%, 98.56%, 98.56%, 98.57%, 
and 98.54%, respectively.

Leo et al. [20] investigated the application of machine 
learning methods to simulate cholera outbreaks associated 
with seasonal weather oscillations while addressing the 
issue of data imbalance. This action was taken to identify 
a solution to these problems. The sensitivity, specificity, 
and overall accurateness of each of the seven models were 
also assessed to assess their overall performance. Based on 
the outcome of the model’s attributes, the XGBoost clas-
sifiers were chosen as the most appropriate choice for the 
research. In general, the findings increased knowledge of 
the crucial functions that machine learning offers in health-
care data analysis. Finally, Midani et al. [21] reported that 
gut microbiota-based ML algorithms and models based on 
known epidemiological and clinical risk indicators correctly 
guessed V. cholerae infection. To discriminate between sick 
individuals and those who were not, researchers looked at 
the gut microbiota of roughly 100 bacterial species. Further-
more, cholera susceptibility has been associated with low 
Bacteroidetes bacteria numbers.

As per Hossain et al. [22], the belief rule-based expert 
system (BRBES) could model uncertain knowledge and 
inference under uncertainty. Furthermore, BRBES findings 
were compared with the numerous data-driven machine-
learning approaches. Verma [23] compared the outcomes 
of the forecasting model in terms of the trend shown and 
the error numbers. According to the findings, the neural net-
work model has the slightest error and is our dataset’s most 
accurate forecast model. When compared, the root means a 
square error of neural net and box cox forecast accuracy is 
6.749 and 27.278, respectively.

Torres et  al. [24] used time-series forecasting meth-
odologies and machine-learning technologies to predict 
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chikungunya mortality trends. The data of chikungunya was 
collected from the year 2007 to 2016 which is mentioned in 
the National Health Centre. The researchers used Rolling-
origin based cross-testing to determine the performance of 
such techniques. Multiple sets of predictive characteristics 
were examined by the Ashari et al. [25] where they deter-
mined the optimal set of 370 characteristics for effector 
prediction. By building three machine learning algorithms, 
they compared their findings to others and generated the best 
results. Their research focused on the most effective tech-
nique for using these ideal traits. Palma et al. [26] worked 
on a data of microbial VOCs (Volatile Organic Compounds) 
which is having pathogen discrimination potential. The 
researchers had used machine learning algorithm such as 
Support Vector Machine and tools to select the feature for 
training classifier [27]. The source data were published stud-
ies between 1977 and 2016 that reported VOCs generated 
by human microbial infections. A sample of 18 VOCs can 
predict the detection of 11 microbiological diseases with 
high accuracy (77%) and precision (62–100%). Furthermore, 
each of the 11 diseases has a unique collection of VOCs 
that may accurately predict the existence of that pathogen. 
Mohammadinia et al. [28–32] used Geographical Weighted 
Regression, Generalized Linear Description, support vec-
tor machine, and Artificial Neural Networks to describe 
and forecast the geographical distribution of leptospirosis. 
The classifier was trained using data from 2009 and 2010, 
then tested and evaluated on data from 2011. Likewise, Park 
et al. [33–40] used chest X-ray images for the detection of 
Mycobacterium Tuberculosis bacteria in it. The researchers 
collected data of 3314 patients who are infected with TB 
bacteria and those who are normal. Deep learning models 
such as EfficientNetB4 and ResNet50 were applied where it 
had been found that the ensemble model obtained the accu-
racy of 85%.

3  Material and Methods

This section discusses the various phases used to conduct the 
research, such as Sect. 3.1 providing information about the 
dataset. Section 3.2 presents the graphical visualization of 
images, Sect. 3.3 explains the techniques to pre-process the 
data, Sect. 3.4 describes the methods to extract the features, 
and Sect. 3.5 briefly explains the models used. In the end, 
Sect. 3.6 provide an overview of the parameters which are 
used for examining the performance of the model. The flow 
of all these phases is shown in Fig. 2.

3.1  Dataset

The datasets for covid 19, lung opacity, MERS, pneumo-
nia, tuberculosis, SARS, normal lung images, and viral 

pneumonia have been compiled from various sources. The 
images of lung opacity, viral pneumonia, covid 19, and nor-
mal lungs are taken from a database of covid-19 radiog-
raphy. The database has images of 1341 normal and 1345 
viral pneumonia chest X-ray (CXR). Later, 3616 COVID-
19-positive cases, 10,192 Normal, 6012 Lung Opacity 
(Non-COVID lung infection), and 1345 Viral Pneumonia 
images and corresponding lung masks were added [41]. The 
pneumonia disease images are acquired from a database of 
chest x-ray images (Pneumonia), which is divided into three 
folders (train, test, and val) and contain subfolders for each 
image category (Pneumonia/Normal). There are 5863 JPEG 
X-Ray images and two types (Pneumonia/Normal) [42]. 
The tuberculosis image dataset has been used to train the 
tuberculosis-based images, which have been extracted from 
a sputum sample. The dataset contains 928 sputum images 
with bounding boxes of 3734 bacilli, and the XML file 
contains image bounding box details [43]. In total, 29,252 
images from the aforementioned classes were used to train 
and test the model, with the image count per class listed in 
Table 2. The model is run on the Jupyter Notebook plat-
form by importing several Python libraries such as pandas, 
NumPy, matplotlib, sklearn, Keras, TensorFlow, seaborn, 
and OpenCV.

3.2  Exploratory Data Analysis

Initially, the image is graphically represented in histograms 
to count and display the intensity distribution in RGB. Such 
visualization also aims to detect anomalies and study an 
image’s pattern. As shown in Fig. 3, the histogram of the 
original images is not equalized, indicating that the images 
either have missing information or have noisy signals. The 
histograms were created with the hist(). After extracting it, 
we flatten the color channel and its array and pass it to the 
hist (). The bins should be 256 for each pixel value (0 being 
completely black and 255 being completely white).

3.3  Pre processing

After assaying the pixel intensities of the infectious disease 
images graphically, it is essential to pre-process to improve 
the quality so that we can analyze them more effectively. 
On the diseases image dataset, two image augmentation 
techniques have been used: a horizontal flip and a vertical 
flip, as shown in Figs. 4 and 5. Flipping an image (and its 
annotations) is a deceptively simple technique that can sig-
nificantly improve model performance. The primary func-
tion of these techniques is to reverse the pixels row-wise or 
column-wise. To manipulate images horizontally, we used 
NumPy functions such as np. flipud() or np.fliplr(). Horizon-
tal flip involves horizontally flipping both rows and columns. 
Vertical flip rotates both rows and columns vertically.
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Here, the original colored images are converted into 
grayscale. Many image processing algorithms require 
grayscale, 2D arrays because the color isn’t the defining 
feature of pictures, and computers can already extract 
enough information without it. From color-to-grayscale, 
function G takes the  Rmxnx3 color image and converts it 
to  Rmxn representation, where all image values are assumed 
to be between 0 and 1. Figure 6 shows the conversion of 
the original images of eight classes into their grayscale 
format. The main advantage of converting the RGB into 

grayscale is simplifying the algorithm and reducing com-
putational requirements.

After converting the RGB images into grayscale, their 
contrast have been enhanced (Fig. 7) so that the darkness 
and brightness of the objects can be adjusted to improve the 
image’s visibility. It has been done through a gray-level trans-
form where the gray levels in the image are mapped to new 
values. The histogram equalization technique has been used to 
enhance the contrast of an image. The module equalize_adap-
thist() is used by importing the sklearn library to perform the 
same.

3.4  Feature Extraction

In this study, feature extraction has been performed by first 
deriving contour features and segmenting the images to obtain 
the desired region from the image. During the contour features 
phase, images from eight classes were used to calculate mor-
phological values for parameters using Eqs. (1) to (17). Table 3 
displays all of the computed values.

(1)area = height * width

Fig. 2  Proposed system to classify infectious diseases

Table 2  Number of images per infectious diseases class

Dataset classes Count of images

COVID 19 3616
Lung opacity 6012
MERS 540
Normal 10,200
Pneumonia 3875
SARS 1134
Tuberculosis 2530
Viral pneumonia 1345
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Fig. 3  Histogram visualization of images ((i) covid 19, (ii) Lung opacity, (iii) MERS, (iv) Normal, (v) Pneumonia, (vi) SARS, (vii) Tuberculo-
sis, (viii) Viral pneumonia)
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(2)perimeter =

√

(
(

x2 − x1
)2

+
(

y2 − y1
)2

(3)epsilon = 0.1 * cv2 * arclength (cnt, True)

(4)width = cv2.boundingRect(cnt)

(5)height = cv2.boundingRect(cnt)

(6)Aspect Ratio =
width

height

(7)Extent =
object area

bounding rectangle area

(8)Equivalent diameter =

√

4 * contour area

π

(9)Minimum value = cv2.min()

(10)Maximum value = cv2.max()

(11)Minimum value Location = cv2.minMaxLo()

(12)Maximum value Location = cv2.minMaxLo()

(13)Mean Color = cv2.mean()

(14)
Extreme Leftmost point = tuple(cnt(cnt[∶, ∶, 0].argmin()[0])

(15)
Extreme Rightmost point = tuple(cnt(cnt[∶, ∶, 0].argmin()[0])

(16)
Extreme Topmost point = tuple(cnt(cnt[∶, ∶, 0].argmin()[0])

Fig. 3  (continued)
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After finding the morphological values of the pre-pro-
cessed images, they were segmented to extract the features 
using the Otsu thresholding technique, as shown in Fig. 8. 
Otsu’s method is also known as the binarization algorithm, 

(17)
Extreme Bottommost point = tuple(cnt(cnt[∶, ∶, 0].argmin()[0])

and a simple as well as effective automatic thresholding 
method. In this technique, two variances, σwc (within class) 
and σbc (between class), are calculated for all possible thresh-
olds. If the pixel luminance is less than or equal to the 
threshold, the pixel value is replaced by 0 (black), else 
it is replaced by 1 (white) to obtain the binary or black/
white image.

Covid-19 Lung Opacity MERS Normal

Pneumonia SARS Tuberculosis Viral Pneumonia

Fig. 4  Horizontal flip of original images

Covid-19 Lung opacity MERS Normal

Pneumonia SARS Tuberculosis Viral Pneumonia 

Fig. 5  Vertical flip of original images
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Fig. 6  Grayscale conversion of RGB images (a covid 19, b Lung opacity, c MERS, d Normal, e Pneumonia, f SARS, g Tuberculosis, h Viral 
pneumonia)

Fig. 7  Contrast enhancement of images (a covid 19, b Lung opacity, c MERS, d Normal, e Pneumonia, f SARS, g Tuberculosis, h Viral pneu-
monia)
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Table 3  Morphological values of different infectious images

Parameters Covid 19 Lung opacity MERS Normal Pneumonia SARS Tuberculosis Viral pneumonia

Area 8.0 2.0 8.5 2.0 5.5 3.0 2.0 1.0
Perimeter 11.65 5.65 12.24 5.65 9.07 2.0 5.0 3.69
Epsilon 1.165 0.56 1.22 0.56 0.907 0.2 0.5 0.369
Width 6 3 5 3 4 2 1 1
Height 3 3 4 3 4 1 1 1
Aspect ratio 2.0 1.0 1.25 1.0 1.0 2.0 1.0 1.0
Extent 0.44 0.222 0.425 0.22 0.34 0.38 0.22 0.15
Diameter 3.19 1.59 3.28 1.59 2.64 2.25 1.59 1.02
Minimum value 122.0 127.0 128.0 127.0 127.0 129.0 128.0 129.0
Maximum value 141.0 142.0 237.0 130.0 131.0 131.0 128.0 129.0
Min valuelocation 236,250 23,248 232,297 237,162 269,287 239,296 25,266 257,296
Max value location 283,250 24,248 235,297 237,161 268,287 240,296 25,266 257,296
Mean color 129.9 130.8 164.4 128.8 128.7 130.0 128.0 129.0
Extreme leftmost point 233,250 22,248 232,296 236,162 268,287 239,296 25,266 257,296
Extreme rightmost point 238,250 24,248 236,297 238,162 271,287 240,296 25,266 257,296
Extreme topmost point 234,249 23,247 233,295 237,161 269,286 239,296 25,266 257,296
Extreme bottommost point 237,251 23,249 235,298 237,163 270,289 239,296 25,266 257,296

Fig. 8  Images after applying Otsu technique (a covid 19, b Lung opacity, c MERS, d Normal, e Pneumonia, f SARS, g Tuberculosis, h Viral 
pneumonia)
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3.5  Applied Models

In this section the brief description about the deep learn-
ing models which are being used is shown along with their 
architectural diagrams for the better understanding of the 
model.

EfficientNet: EfficientNets are the baseline network 
designed by researchers using neural architectures to auto-
mate the designs of neural networks. These networks use 
mobile inverted bottleneck convolution and have obtained 
excellent efficiency and accuracy based on floating point 
operations per second compared to simple convolution neu-
ral networks. At present, eight series of efficient Net are 
there, out of which only four are used in this research, i.e., 
EfficientNetB0, EfficientNetB1, EfficientNetB2, and Effi-
cientNetB3 [44]. The architecture of EfficientNet is shown 
in Fig. 9.

NASNetLarge: NASNet is also called a Neural Archi-
tecture search network. It is a convolutional neural network 
trained on millions of images of the ImageNet database. 
This network takes the input image of size 331 by 331. Its 
building block consists of normal and reduction cells. Con-
volutional cells that return a feature map of the same dimen-
sion are referred to as normal cells, while the convolutional 
cells that return a feature where its width and height are 

reduced by two are called reduction cells. The controller 
RNN searches only the structures of (or within) the Normal 
and Reduction Cells (Recurrent Neural Network). The cells 
present in the normal or reduction cells consist of a number 
of blocks, and each block behaves as a CNN model [45]. Fig-
ure 10 shows the architecture of the NASNetLarge model.

DenseNet169: DenseNet is also called the dense convo-
lutional network. It is architecture from one of the DenseNet 
group of models that has [6, 13, 45, 45] layers in the four dense 
blocks for classifying the image. This model has a deeper and 
denser network in which all the layers are connected with 
shorter connections to train and generate results efficiently 
[46]. Figure 11 shows the architecture of the DenseNet169 
model.

ResNet152V2: ResNet152V2 is called a residual network 
having 152 layers. This model is used for extracting the fea-
tures in the image by training the input image based on their 
pre-trained initial weights. The architecture of this model con-
tains various layers such as reshape layer, flatter layer, first 
dense layer, dropout layer, second dense layer, and an activa-
tion layer for predicting the class of an image. Figure 12 shows 
the architecture of ResNet152V2 [47].

InceptionResNetV2: The InceptionResNetV2 model is the 
hybridization of Inception and residual network architecture. 
The combination of this model has the advantage of retain-
ing the unique features of the multi-convolutional core of the Fig. 9  Architecture of EfficientNetB0

Fig. 10  Architecture of NASNetLarge [52]
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Inception network. The hybrid model is the improvised ver-
sion of the Inception model that works on its performance by 
achieving better accuracy. Figure 13 shows the basic block 
diagram of InceptionResNetV2 [48].

3.6  Evaluation Parameters

Accuracy: The parameter evaluates how accurately the 
model has been trained and tested to classify the image 
correctly [49]. It is calculated by the Eq. (18)

Loss: It is the parameter that evaluates the bad predic-
tion of the model when it is not trained or tested with the 

(18)Accuracy =
True Positive + TrueNegative

True Positive + TrueNegative + False Positive + FalseNegative

proper classes of the dataset. When the model is used to 
predict the test image and generates zero loss value, it 
works best, but if it generates more than zero, it means 
the model needs to be trained again [49]. It is calculated 
by the Eq. (19)

(19)Loss =
(Actual − Predicted)2

Total number of observations

Precision: It is the parameter that tests the quality of a 
positive prediction made by the model. It is the ratio of true 

Fig. 11  Architecture of DenseNet169 [53]

Fig. 12  Architecture of ResNet152V2

Fig. 13  Architecture of InceptionResNetV2
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positives to the total number of positive predictions [50]. It 
is calculated by the Eq. (20)

Recall: The parameter is obtained by taking the ratio of 
positive samples which are correctly classified to the total 
number of positive samples [50]. It is calculated by the 
Eq. (21)

F1 score: It is the parameter that combines a classifier’s 
recall and precision by calculating their harmonic mean [51]. 
It is represented by Eq. (22)

4  Results and Discussion

This section presents the efficiency of the models, which are 
being evaluated for different disease datasets such as Covid 
19, MERS, SARS, lung opacity, tuberculosis, pneumonia, 
viral pneumonia, and normal lung images using multiple 
evaluative parameters like accuracy, loss recall, precision, 
F1 score, root mean error square (RMSE). In addition, the 
graphical analysis of these models during training and test-
ing phase has also been shown to study their performances. 
Bold signifies the best results for each parameter in Tables 4 
and 5.

Table 4 evaluated the models using training and test-
ing accuracy, loss, and RMSE for each class of the disease 
dataset separately. It can be observed that EfficientNetB0 
and EfficientNetB1 obtain the best accuracy in training and 
predicting the covid disease by 88.09% and 84.91%, respec-
tively. For diseases like Pneumonia, SARS, and Tuberculo-
sis, EfficientNetB0 computed the best testing accuracies by 
89.09%, 99.09%, and 95.37%, respectively. In contrast, the 
training accuracies for the same diseases have been obtained 
by InceptionResNetV2 by 86.59%, 96.59%, and 96.95%, 
respectively. In the case of MERS, the highest training and 
testing accuracies have been obtained by DenseNet169 at 
98.42% and EfficientNetB1 at 88.91%. ResNet152V2 and 
InceptionResNetV2 have obtained the training and testing 
accuracy of classifying viral pneumonia by 89.89% and 
86.59%, respectively. In the end, the accuracy of classify-
ing normal lung images has been shown by EfficientNetB1 
and EfficientNetB2 by obtaining 99.91% and 99.58% for the 
training and testing phase, respectively.

(20)Precision =
True Positive

True Positive + False Positive

(21)Recall =
True Positive

True Positive + FalseNegative

(22)F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall

After evaluating the performance of the models for differ-
ent classes of the disease dataset separately, we combined all 
the datasets into two sub-datasets, i.e., the training dataset 
and a testing dataset containing eight classes each, for ana-
lyzing the performances of the model, as shown in Table 5.

On assaying Table 5, the model trained well by the train-
ing dataset is EfficientNetB0 by computing 89.09% accu-
racy, 0.299 loss, and 0.546 RMSE value. Still, on the other 
hand, while testing the model, the best accuracy, loss, and 
RMSE values were obtained by InceptionResNetV2 by 88%, 
0.399, and 0.631, respectively. NASNetLarge has computed 
the least testing scores with 50.35% accuracy, 1.344 loss, 
and 1.159 RMSE value. The models’ performances have also 
been graphically analyzed, as shown in Fig. 14.

The testing accuracy and loss of NASNetLarge have a flat 
line, indicating that the model cannot learn the testing data-
set. The same flat line has also been generated for loss during 
the training phase by ResNet152 and InceptionResNetV2, 
which means that the model needs to be trained better by 
the dataset. The model accuracy of EfficientNetB1 and 
ResNet152V2 shows a huge gap between both curves, indi-
cating that the training dataset provides insufficient informa-
tion in case of learning the problem. In addition, the testing 
accuracies of the models such as EfficientNetB0, Efficient-
NetB1, EfficientNetB2, EfficientNetB3, and DenseNet169 
show noisy movements around the training curves, indicat-
ing that the testing dataset needs to provide more.

In addition, the performance of the models has also been 
examined based on recall, precision, and F1 score value for 
the complete dataset as shown in Table 6.

In the case of Precision, the highest value has been com-
puted by NASNetLarge by 91%, and InceptionResNetV2 
obtains the least by 68.5%. On the other hand, the highest 
recall value has been obtained by InceptionResNetV2 by 
91.12%, and NASNetLarge has computed the lowest value 
by 83%. In the end, the best value of the F1 score has been 
generated by EfficientNetB0 by 89%, and the lowest is com-
puted by NASNet Large with 64.87% again. Likewise, the 
precision, recall, and F1 score of deep learning models have 
been again computed for various disease dataset classes, as 
shown in Fig. 15.

From the figure, it has been assayed that the highest pre-
cision value has been obtained by efficientNetB0 for viral 
pneumonia with 0.99, efficientNetB1 for MERS and nor-
mal classes with 0.99, EfficientNetB2 for tuberculosis and 
viral pneumonia classes with 0.99 each, EfficientNetB3 for 
pneumonia with 0.97, NASNetLarge for SARS with 0.99, 
DenseNet169 for MERS and tuberculosis classes with 0.95 
each, ResNet152V2 for MERS and viral pneumonia with 
0.95 each and InceptionResNetV2 for MERS with 0.95. 
Likewise, the highest recall value has been obtained by effi-
cient NetB0 for tuberculosis with 0.99, efficientNetB1 for 
pneumonia with 0.99, EfficientNetB2 for tuberculosis and 
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Table 4  Evaluation of models 
for different classes of disease 
dataset

Disease Models Training Testing

Acc Loss RMSE Acc Loss RMSE

Covid19 EfficientNetB0 88.09 0.399 0.631 82.76 0.856 0.925
EfficientNetB1 84.91 0.507 0.712 84.91 0.446 0.667
EfficientNetB2 86.58 0.442 0.664 82.46 0.895 0.946
EfficientNetB3 78.81 0.948 0.973 78.95 1.085 1.041
NASNetLarge 50.34 1.660 1.288 50.35 1.375 1.172
DenseNet169 81.06 0.558 0.746 80.46 0.695 0.833
ResNet152V2 81.89 0.851 0.922 81.84 0.523 0.723
InceptionResNetV2 83.61 0.435 0.659 86.00 0.300 0.547

Lung opacity EfficientNetB0 81.37 0.853 0.923 99.09 0.199 0.446
EfficientNetB1 94.23 0.464 0.681 94.91 0.307 0.554
EfficientNetB2 75.58 1.532 1.237 73.58 0.342 0.584
EfficientNetB3 95.96 0.262 0.511 89.81 0.448 0.669
NASNetLarge 40.35 1.954 1.397 63.34 1.360 1.166
DenseNet169 92.42 0.758 0.870 72.06 0.389 0.623
ResNet152V2 75.05 0.464 0.681 92.89 0.342 0.584
InceptionResNetV2 86.59 0.599 0.773 96.61 0.441 0.664

MERS EfficientNetB0 98.37 0.863 0.928 88.09 0.807 0.898
EfficientNetB1 96.23 0.954 0.976 88.91 0.399 0.631
EfficientNetB2 90.58 0.528 0.726 86.58 0.442 0.664
EfficientNetB3 80.96 1.562 1.249 70.81 0.948 0.973
NASNetLarge 66.35 1.594 1.262 50.34 1.660 1.288
DenseNet169 98.42 0.262 0.511 89.06 0.958 0.978
ResNet152V2 96.05 0.474 0.688 89.89 0.951 0.975
InceptionResNetV2 90.59 0.539 0.734 83.61 0.435 0.659

Pneumonia EfficientNetB0 82.37 0.853 0.923 89.09 0.299 0.546
EfficientNetB1 84.23 0.874 0.934 84.91 0.407 0.637
EfficientNetB2 82.58 0.442 0.664 83.58 0.442 0.664
EfficientNetB3 78.96 1.092 1.044 79.81 0.548 0.740
NASNetLarge 50.35 1.344 1.159 53.34 1.460 1.208
DenseNet169 80.42 0.628 0.792 82.06 0.489 0.699
ResNet152V2 81.05 0.574 0.757 82.89 0.442 0.664
InceptionResNetV2 86.59 0.399 0.631 86.61 0.341 0.583

SARS EfficientNetB0 92.37 0.753 0.867 99.09 0.199 0.446
EfficientNetB1 94.23 0.774 0.879 94.91 0.307 0.554
EfficientNetB2 92.58 0.342 0.584 93.58 0.342 0.584
EfficientNetB3 88.96 1.002 1.001 89.81 0.448 0.669
NASNetLarge 60.35 1.244 1.115 63.34 1.360 1.166
DenseNet169 90.42 0.528 0.726 92.06 0.389 0.623
ResNet152V2 91.05 0.474 0.688 92.89 0.342 0.584
InceptionResNetV2 96.59 0.299 0.546 96.61 0.241 0.490

Tuberculosis EfficientNetB0 92.37 0.753 0.867 95.37 0.853 0.923
EfficientNetB1 94.23 0.774 0.879 79.23 0.764 0.874
EfficientNetB2 92.58 0.342 0.584 91.58 0.692 0.831
EfficientNetB3 88.96 1.002 1.001 75.96 1.762 1.327
NASNetLarge 60.35 1.244 1.115 59.35 1.854 1.361
DenseNet169 90.42 0.528 0.726 90.42 0.758 0.870
ResNet152V2 91.05 0.474 0.688 84.05 0.764 0.874
InceptionResNetV2 96.95 0.284 0.546 87.59 0.859 0.926
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normal classes with 0.94 each, EfficientNetB3 for normal 
and pneumonia with 0.99, NASNetLarge for normal with 
0.94, DenseNet169 for MERS with 0.96, ResNet152V2 
for Covid-19 and normal classes with 0.95 each and Incep-
tionResNetV2 for SARS and tuberculosis with 0.99 each. 
In the end, the highest F1 score has been obtained by effi-
cient NetB0 for viral pneumonia with 0.99, efficientNetB1 
for pneumonia and viral pneumonia with 0.95, Efficient-
NetB2 for Pneumonia, and SARS classes with 0.99 each, 
EfficientNetB3 for SARS and viral pneumonia with 0.94, 
NASNetLarge for lung opacity, normal, and viral pneu-
monia with 0.68, DenseNet169 for viral pneumonia with 
0.99, ResNet152V2 for tuberculosis with 0.91, and Incep-
tionResNetV2 for normal, pneumonia, and viral pneumonia 
classes with 0.99 each.

Moreover, the computational time taken by the models 
has also been computed to understand which model took 
the maximum time to get trained by the complete dataset. 
EfficientNetB0 took 16 h 20 min, while EfficientNetB1, 
EfficientNetB2, and EfficientNetB3 took 12 h 10 min, 10 h, 
and 3 h 60 min, respectively. NASNetLarge took 10 h to 
get trained by the dataset, while DenseNet169 was trained 
in 1 h and 50 min. On the other hand, ResNet152V2 took 
5 h 46 min, and InceptionResNetV2 got trained only in 8 h.

After computing the results of these applied deep learning 
models, their performance has been differentiated with the 
existing techniques, as shown in Table 7. The comparison 
has been made based on accuracy only, while the details 
regarding the dataset and techniques that have been used to 
detect and classify infectious diseases are also provided to 
understand it in a better way.

Table 4  (continued) Disease Models Training Testing

Acc Loss RMSE Acc Loss RMSE

Viral pneumonia EfficientNetB0 85.09 0.869 0.932 82.37 0.853 0.923

EfficientNetB1 84.91 0.407 0.637 84.23 0.874 0.934

EfficientNetB2 86.58 0.592 0.769 82.58 0.442 0.664

EfficientNetB3 79.81 0.548 0.740 78.96 1.092 1.044

NASNetLarge 59.34 1.860 1.363 50.35 1.344 1.159

DenseNet169 82.06 0.489 0.699 80.42 0.628 0.792

ResNet152V2 89.89 0.4862 0.697 81.05 0.574 0.757

InceptionResNetV2 85.61 0.943 0.971 86.59 0.399 0.631
Normal EfficientNetB0 99.09 0.867 0.931 91.37 0.953 0.976

EfficientNetB1 99.91 0.209 0.457 75.23 0.864 0.929
EfficientNetB2 98.58 0.952 0.975 99.58 0.592 0.769
EfficientNetB3 78.81 0.868 0.931 70.96 1.862 1.364
NASNetLarge 53.34 1.850 1.360 50.35 1.954 1.397
DenseNet169 91.06 0.869 0.932 91.42 0.858 0.926
ResNet152V2 93.89 0.912 0.954 86.05 0.864 0.929
InceptionResNetV2 86.61 0.861 0.927 86.59 0.959 0.979

Table 5  Analysing the models 
during training and testing 
phase

Models Training Testing

Acc Loss RMSE Acc Loss RMSE

EfficientNetB0 89.09 0.299 0.546 82.37 0.853 0.923
EfficientNetB1 84.91 0.407 0.637 84.23 0.874 0.934
EfficientNetB2 83.58 0.442 0.664 82.58 0.442 0.664
EfficientNetB3 79.81 0.548 0.740 78.96 1.092 1.044
NASNetLarge 53.34 1.460 1.208 50.35 1.344 1.159
DenseNet169 82.06 0.489 0.699 80.42 0.628 0.792
ResNet152V2 82.89 0.442 0.664 81.05 0.574 0.757
InceptionResNetV2 86.61 0.341 0.583 88 0.399 0.631
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5  Conclusion

Artificial intelligence based deep learning techniques have 
shown great potential by detecting and diagnosing infectious 
diseases. With the increasing availability of medical imaging 

data and the development of deep learning algorithms, the 
accuracy and efficiency of disease detection have signifi-
cantly improved. However, there are also challenges to the 
use of deep learning in infectious disease detection, such as 
the need for large amounts of high-quality data, the risk of 

Fig. 14  Graphical analysis of 
models’ performance

(a) EfficientNetB0 (b) EfficientNetB1 

(c) (d) EfficientNetB3EfficientNetB2
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overfitting, and the lack of interpretability of some models. 
Nevertheless, the potential benefits of deep learning in infec-
tious disease detection make it a promising area for further 
research and development. In this research, eight pre-trained 

models such as EfficientNetB0, EfficientNetB1, Efficient-
NetB2, EfficientNetB3, NASNetLarge, DenseNet169, 
ResNet152V2, and InceptionResNetV2 have been trained 
using the dataset of infectious diseases. After features were 

(e) NASNetLarge (f) DenseNet169

InceptionResNetV2(h)ResNet152V2(g)

Fig. 14  (continued)
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extracted, the dataset was split into training and testing data 
in a ratio of 75:25, and the models performed admirably in 
both phases. After the research was done, some limitations 
were noted, such as NASNetLarge did not learn the testing 
dataset very well and pre-processing the data and obtaining 
the ROI required a significant amount of computational time. 
In addition, overfitting has also been seen in the performance 
of specific models, which needs to be taken care in future. 
Despite the use of 29,252 images for training and testing 
the model, the accuracy of the deep learning models could 
be improved. Therefore, the hyperparameters of the models 
should be optimised in order to improve their performance 

Table 6  Performance evaluation of models

Bold denotes the best results for each parameter out of all results

Models Precision Recall F1 score

EfficientNetB0 73.5 88 89
EfficientNetB1 90 81 84.75
EfficientNetB2 88.8 81.8 79.62
EfficientNetB3 81.2 86.5 82.75
NASNetLarge 91 63 64.87
DenseNet169 83.6 79.5 79
ResNet152V2 85.2 83 82.62
InceptionResNetV2 68.5 91.12 88.37

Fig. 15  Performance testing of models

Table 7  Comparison of the 
current work with the existing 
techniques

References Dataset Techniques Accuracy (%)

[26] Legionellosis dataset Support vector machine 77
[17] Covid 19 dataset Random forest 80
[12] Tuberculosis dataset VGG16 81.25
[14] Malaria dataset LSTM 87.3
[11] Cholera dataset CNN, Ensemble learning 52.4
[28] Data of 3314 patients Ensemble deep learning model 85
Our study 29,252 images of various 

diseases
Inception ResNetV2 88
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accuracy. In fact, researchers can develop a unified platform 
capable of detecting all infectious diseases in the future. 
With the help of it, Public health officials will also respond 
more quickly and effectively to outbreaks of infectious dis-
eases. In addition to this, by using this AI-based prediction 
and classification system, the analysis of data from multiple 
sources will help public health officials to predict the spread 
of infectious diseases and informs their response in a mini-
mum time.
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