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Abstract
Water distribution networks are crucial for supplying consumers with quality and adequate water. A water distribution system 
comprises connected hydraulic components which ensure water supply and distribution to meet demand. Optimization of 
water distribution networks is carried out to minimize resource utilization and expenditure or maximize the system’s effi-
ciency and higher benefits. Genetic algorithms signify an effective search technique for non-linear optimization problems 
and have gained acceptance among water resources planners and managers. This paper reviews various developments in 
the optimization of water distribution systems using the technique of genetic algorithms. These developments are pertinent 
to creating novel systems for distributing water and the expansion, reinforcement, and rehabilitation process for prevailing 
water supply mechanisms.
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GA-ILP  Combined genetic algorithm and integer 
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GA-LP/GALP  Combined genetic algorithm and linear 
programming

GAPSO  Genetic algorithm particle swarm 
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GHG  Greenhouse gas (emissions)
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MINLP  Mixed integer nonlinear programming
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ii
OPTIMOGA  Optimized multi-objective genetic 

algorithm
PHSM  Prescreened heuristic sampling method
PSO  Particle swarm optimisation
SMGA  Structured messy genetic algorithm
WDS  Water distribution system
WSMGA  Water system multi-objective genetic 
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1 Introduction

Water is the unique feature of Earth that distinguishes it 
from other known planets. The global water availability is 
ample to meet all present and future demands. However, 
water distribution in time and space is a major constraint 
in water utilization [1, 2]. The availability of fresh water in 
some areas is minimalistic. It is not even adequate to meet 
the population’s basic consumption and sanitation needs [3]. 
Water has become a limiting factor for human health, pro-
ductivity, and, thus far, economic development [4]. This also 
affects maintaining and conserving a clean environment and 
healthy ecosystem.

Further, the present world’s demographic, commercial 
and technological trends have also sped up the modification 
of the environment that sustains life. Human activities are 
the principal drivers of detrimental changes in the environ-
ment. Environmental changes directly impact the quantity 
and timing of precipitation in a watershed [5–7]. With the 
increase in variability in precipitation and landscape modi-
fication due to excessive growth of food and energy sectors 

and migration of people to urban areas, the quality and quan-
tity of freshwater resources have been severely threatened. 
All these factors have immensely pressured the utilization 
and distribution of water [8]. There is also a global acknowl-
edgment that the Water Distribution Systems (WDSs) are 
severely underfunded and thus need to be designed effi-
ciently and economically [9].

One of the most important pieces of societal infrastruc-
ture is the water distribution systems (WDSs), which are 
constantly improving and expanding because of rising water 
needs and population expansion. Designing cost-effective 
WDSs is a challenging undertaking that requires solving 
many nonlinear network equations simultaneously while 
optimizing network elements’ dimensions, locations, and 
operating states like pipes, pumps, tanks, and valves [10]. 
This work gets considerably more difficult when the opti-
mization problem contains more real-world elements, more 
objectives other than the least-cost economic measure (such 
as probable fire damage), and more requirements for the 
developed system to meet (such as water quality) [11]. Tra-
ditional approaches had problems such as dependence on the 
starting point and entanglement in local minima. As a result, 
they could not find solutions that were close to optimal for 
complex, multi-objective pipe network issues [12]. In order 
to avoid local minima, researchers started to use soft com-
puting techniques which employ meta-heuristic algorithms 
(such as genetic algorithms, simulated annealing, etc.) for 
water distribution system design issues [13–16]. The subjec-
tive nature of data cannot be classified or quantified using 
traditional approaches. However, they are often useful in 
other ways. They also fail to formally establish any approach 
for handling missing data. Soft-computing techniques are 
used in various fields where decision-making is vital [17, 
18]. In decision analysis, these help decision-makers make 
wise conclusions that have been well considered.

Evolutionary algorithms (EAs) have gained popularity 
as a method for tackling water resource optimization issues 
over the past three decades [19]. Engineering design, crea-
tion of management strategies, and model calibration are 
just a few of the domains where evolutionary algorithms 
(EAs) have been successfully and extensively employed to 
solve water resources optimization problems. One of the 
most widely utilized EA approaches to handle optimization 
issues is the employment of genetic algorithms [20, 21]. 
The inspiration for GAs was from population genetics and 
the evolution at the scale of population. Additionally, Men-
delian knowledge of genetic structure (like chromosomes, 
genes, and alleles) and mechanisms like mutation and gene 
recombination were also included while developing GAs. 
Based on the binary encoding of the solution parameters, 
Holland [22] developed the fundamental GA. It uses multi-
point crossover and bit-flip mutation to evolve the solutions 
[23, 24]. Later, several GA (binary/real coding) variations 
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with various genetic operators were developed and deployed 
in various water resource applications [25].

Genetic algorithms are based on Charles Darwin’s theory 
of natural selection, which holds that species change and 
adapt to their environments to survive (Darwin) [26, 27]. 
Over time, many GA variations have been created. Although 
most of these variations utilize the same fundamental 
ideas of natural selection and the survival of the fittest, 
they employ various strategies and upgraded processes to 
increase search direction and support the method’s enhanced 
convergence. Using the natural selection and genetics con-
cepts, Goldberg and Kuo presented stochastic approaches 
to optimize water distribution networks. Simpson et al. [28] 
used simple genetic algorithms (GA) and came up with a 
solution that was close to the ideal [29].

The current paper aims to provide an in-depth and organ-
ized assessment of numerous works in WDS design and 
optimization utilizing genetic algorithms. Many types of 
research are pertinent to the strengthening, expansion, and 
rehabilitation of WDS’s design. The paper aims to facili-
tate quick familiarization with various genetic algorithm 
applications for developing new WDSs and reinforcing and 
restoring those that already exist. This study could be seen 
as an effort to update the review of earlier research papers 
on applying GAs to WDS optimization. This paper also adds 
to the existing literature review by providing a thorough and 
systematic assessment of publications for operational opti-
mization of WDSs from the 1990s to the present. Further-
more, it highlights significant historical developments, the 
current research and application status of WDS optimiza-
tion, and some future concerns. In order to serve as a single 
point of reference for quickly locating papers of interest, a 
table has been provided containing an extensive list of pub-
lications on the subject that contain detailed and thorough 
material.

Not all the studies that have been evaluated in this paper 
offer mathematical definitions of the optimization model that 
was employed. Because clear formulation was partially or 
not offered in the articles, the analysis presented in this paper 
is therefore restricted to our interpretation of the informa-
tion provided.

2  Literature Analysis and Limitations 
of the Study

A thorough analysis of all pertinent studies on the optimi-
zation of water distribution systems using genetic algo-
rithms from the 1990s to 2021 was carried out to identify 
the relevant existing literature following the goal of this 
study. Records retrieval began with a subject search for 
“water distribution,” “water distribution systems,” “water 

distribution network,” “water distribution pipe,” “water 
supply system,” “water supply network,” and “water 
supply pipe,” “optimization” and “genetic algorithms” 
[30]. The search was restricted to publications that used 
genetic algorithms to optimize water distribution systems 
[31]. The libraries searched for this study included Sci-
ence Direct, Springer, American Society of Civil Engi-
neering (ASCE), Google Scholar, Wiley Online Library, 
MDPI, IEEE, IWA Publishing, and other relevant libraries. 
The number of documents/research papers published in 
the most reputed journal related to Optimization of Water 
Distribution Systems using Genetic Algorithms and other 
techniques shows in Fig. 1 and 2. Figure 3 shows the col-
laboration map among countries with regard to optimi-
zation of water distribution systems using genetic algo-
rithms and other similar techniques. The co-authorship 
links between countries have been represented in a two-
dimensional space in order to illustrate this. As a result of 
this collaboration, high-impact studies can be generated 
primarily through complementary practices, experiences, 
and skills, which are all of benefit to the research commu-
nity. The most relevant word as a keyword used in Optimi-
zation of Water Distribution Systems is shown in Fig. 4.

This paper is organized following broad categorization 
and design problems addressed in different publications 
(Figs. 1 and 2). The design problems include new sys-
tem design, optimization, pressure management, pipe size 
selection according to slope and pressure head, strengthen-
ing of existing systems, expansion, and considerations for 
performance, time, uncertainty, and recuperation (Fig. 5). 
The table, which lists many publications in chronologi-
cal sequence, comprises a considerable proportion of this 
review work. Figure 6 illustrates relationships between the 
five most relevant author keywords (left field) and the five 
main keywords inferred from optimization (right field). 
Each study is categorized based on the optimization model 
it uses (objective functions and decision variables), the 
water quality parameter(s), the network analysis, the opti-
mization method, and the test network(s) it employs. The 
table also includes the result of each study. The paper aims 
to give readers a complete list of representative publica-
tions on the subject so they can use it as their key source 
of information when looking up relevant articles on the 
optimization of water distribution systems using genetic 
algorithms.

Not all the studies that have been evaluated in this paper 
offer mathematical definitions of the optimization model 
that was employed. Because clear formulation was par-
tially or not offered in the articles, the analysis presented 
in this paper is therefore restricted to our interpretation of 
the information provided.
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Fig. 3  Spatial distribution of 
publications and collabora-
tion network among countries 
related to optimization of water 
distribution systems using 
genetic algorithms and other 
similar techniques
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Fig. 5  Thematic evaluation map regarding optimization of water distribution systems

Fig. 6  Sankey diagram showing the methods (right) employed in the water distribution network and pump selection strategies (left) adopted in 
optimization evaluations
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3  Optimal Design of Water Distribution 
Systems

The mechanism that feeds or distributes water from the water 
source to suit the needs of the consumers is known as a water 
distribution system (WDS). This process is accomplished 
via the pressure-driven operation of pumps, main and ser-
vice pipes, storage tanks or reservoirs, and accompanying 
machinery in a closed system. Water distribution systems are 
described by Ostfeld [32] as the interconnected connection 
of water sources, pipes, and hydraulic control modules, such 
as valves, pumps, regulators, and reservoirs, to supply water 
to the end users with standard pressure (Fig. 7).

Water distribution systems are one of civilized society’s 
most important organizational assets. A system of nonlinear 
equations is used to mimic the hydraulic dynamics inside a 
pressured, looping pipe network. The energy and continuity 
equations are considered simultaneously for obtaining the 
solution to these equations, along with a head loss function 
[33]. The cluster analysis provided by CiteSpace detected 
the cluster labels. The five labels were water distribution 
system, genetic algorithms, optimization, water supply, and 
optimization networks (Fig. 7). Clusters of optimization 
techniques based on the co-occurrence of the keywords show 
that the genetic algorithm was utilized most. The mathemati-
cal description of the optimum design for a generic water 
distribution mechanism is described in Eqs. (1–5).

3.1  Objective Functions

The design of an economical and profitable WDS is a dis-
crete challenge in optimization as each pipe size must be 
chosen from a range of commercial size diameters. The 

number of diameters available commercially, raised to the 
power of the number of pipes in the network, is used to cal-
culate the search space [34]. For instance, if a WDS has 12 
pipelines and six different commercial pipe sizes are avail-
able, the search space size would be 6 12, or 2, 17, 67, 82, 
336 different pipe combinations. Consequently, the search 
space is vast, even for a modest pipe network. A complex 
problem in water distribution network design is the simulta-
neous optimization of pipe sizes and other network elements 
while solving many complicated, nonlinear, and discontinu-
ous hydraulic equations [35, 36].

Figure 8 depicts the objectives of a generic optimization 
model of WDS design. The objectives can be classified into 
four separate groups [37]. The first set of objectives, cat-
egorized under economic objectives, comprises construction 
and rehabilitation expenses and estimated operations and 
maintenance costs for the system. The second set of objec-
tives, the community objectives, consists of various services 
provided to WDS customers. These include the benefit func-
tion’s lack of water quality, deficit pressure at demand nodes, 
possible fire damage, and the system’s hydraulic failure. The 
third set of objectives representing the WDS robustness, 
dependability, and resilience are grouped under performance 
objectives. These objectives represent the service level of the 
WDS to the customer and the overall efficiency of the WDS. 
The final set of objectives is the environmental objectives. 
These relate to the greenhouse gas emissions and emissions 
during the installation and operation of WDS. Under the fol-
lowing restrictions, the objective functions must be reduced 
or maximized.

In order to identify the best pipe sizes for a specified net-
work layout and demand, a water distribution system must be 
optimized. The ideal pipe dimensions that satisfy all implicit 
(conservation of energy and mass) and explicit (hydraulic and 

Fig. 7  TreeMap of keywords used in optimization technique for water distribution systems
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design constraints) constraints are chosen in the final network 
[38].

The entire aim of solving conditions in water distribution 
systems is to determine how much water flows through the 
pipes along with any pumps and valves if any are present) and 
how much water heads at the nodes. The pressures at nodes 
and the velocities in each pipe are typically calculated. In 1988, 
Todini and Pilati [39] delivered a ground-breaking study that 
revolutionized how water distribution systems would be solved 
[40]. Many formulations based on various arrangements of 
the network’s unknowns had previously been proposed. Four 
popular formulations are as follows:

1. Formulation of flow equations or Q-equations using the 
unknown flows (Qs) in each pipe;

2. Formulation of head equations or H-equations using 
unknown heads or HGLs (Hs) at each node;

3. The formulation of loop flow correction equations, also 
known as LFC-equations, in terms of unknown loop 
flow corrections (LFCs), which is a technique close to 
the manual Hardy Cross approach for solving networks;

4. Formulation of the Q-H equations in terms of unknow-
able flows and unknowable heads [39].

The flow rate,qi (flow into and out of the node) and the 
number of pipes n linked at the node, qi and n, are inputted 
into the continuity equation and applied to each node. It is 
written as:

(1)
n
∑

i=1

qi = 0

With hi representing the head loss in each pipe and m 
representing the number of pipes in the loop, the energy 
equation is applied to each loop in the distribution net-
work. The energy equation is given as:

The local head losses and friction head losses add to the 
head loss. The Hazen-Williams equation is employed to 
determine head loss. This equation, which links frictional 
energy loss and the physical characteristics of the pipe 
to the flow of water in a pipe, is empirical. The Hazen-
Williams coefficient, known by its initials C and employed 
in the Hazen-Williams equation [41], is a dimensionless 
quantity. The equation has the following form:

where, hf  is the head loss, Q is the flow rate, C is the 
Hazen–Williams coefficient,D is the pipe inside diameter, 
and L is the pipe length.

The network’s overall cost is the objective function 
in a single-objective optimization paradigm [42]. Net-
work growth, strengthening, and rehabilitation are mostly 
merged into a single least-cost objective in single-objec-
tive models. The assumption is that the pipe’s capital cost 
per unit length is non-linearly linked to its diameter and 
that a single equation may be applied for all sizes. Thus, 
the capital cost of pipes (including laying and jointing) 
may be stated as follows:

(2)
m
∑

i=1

hi = 0

(3)hf = 4.72C−1.85 × Q1.85 × D−4.87 × L

Fig. 8  Classification of WDS’s 
generalized optimization 
model’s aims Economic: Capital Costs, Rehabilitation   

Costs, Expected Operation Costs, Expected 

Maintenance Costs

Community: Hydraulic Failure, Water 

Quality

Possible Fire Damage, Pressure Deficit

Performance: System resilience, System 

Robustness, System Reliability 

Environmental: Greenhouse Gas Emission, 

Operating Emissions
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where c (Dj, Lj) is the cost of the jth pipe having diameter Dj 
and the length Lj, and N is the total number of pipes in the 
system. While as in multi-objective models, the net benefit 
or system running expenses are added as extra objectives. A 
generic multi-objective optimization model for the optimum 
design of the WDS can be written as:

Equation (5) illustrates the choice variables and objec-
tive functions to be reduced (e.g., system capital expenses) 
or maximized (e.g., system resilience). Most studies have 
explored the best design, operation, and rehabilitation of 
WDS at a specific period, regardless of how they are related 
to one another (separately). Optimal WDS design is the 
emphasis of some studies [43, 44], whereas optimal WDS 
operation scheduling [45, 46] is the focus of others. Addi-
tionally, some studies have concentrated on the rehabilitation 
of WDNs [47, 48]. Most multi-objective problems (MOPs) 
used for WDS optimization are described by pairing two or 
more objectives.

The first WDS design challenge to be solved using multi-
objective evolutionary optimization was by Walski et al. 
[49]. They worked on reducing network pressure and costs. 
Todini [40], Costa et al. [50], Prasad and Park [51], Zheng 
et al. [52], Wang et al. [53], Beygi et al. [54], Johns [55], 
and Jafari [56] are just a few of the multi-objective optimiza-
tions for least-cost design (LCD), better water quality and 
maximum resilience of WDSs that have been explored in 
the literature. The advantage of multi-objective optimiza-
tion methods is that they can produce a set of optimal solu-
tions known as a Pareto front [57], illustrating the trade-offs 
between various objectives, particularly those in conflict. 
After these solutions have been analyzed, one or a limited 
number are chosen based on a specific criterion.

The optimal design of WDNs is complicated; hence many 
researchers have used various efficient mathematical tech-
niques to address the issue [58]. The methods and techniques 
for optimization can be divided into two main groups: (1) 
deterministic methods, which primarily rely on calculating 
the objective function gradient and/or function evaluations, 
and (2) heuristic techniques, which primarily rely on an 
exploratory approach, natural phenomena, or even artificial 
intelligence.

In WDN optimization, linear programming (LP) [59–61], 
non-linear programming (NLP) [38, 59–64], integer linear 
programming (ILP) [65], non-linear programming (NLP) 
[66, 67], integer non-linear programming (INLP) [68], and 
(DP) [69] are the most commonly used deterministic tech-
niques. Mixed-integer programming refers to optimization 

(4)f
(

D1,…Dn

)

=

N
∑

j=1

c(Dj, Lj)

(5)Minimize∕maximize
(

f1(x), f2(x), ..., fn(x)
)

issues that involve both continuous and integer data (MIP). 
These algorithms make it possible to pinpoint the precise 
location of an ideal solution [48]. However, they frequently 
reach optimal local outcomes that might not be the global 
best ones. Additionally, the necessity of derivative evalua-
tions may, in some circumstances, make the optimization 
process more difficult.

In the 1990s, WDS optimization changed partly due to 
the emergence of metaheuristics and the advancement of 
personal computers. A metaheuristic in operations research 
is a method created to create a partial search algorithm (heu-
ristic) that may provide the best answer to an optimization 
issue, typically with incomplete or defective data. Because 
they do not try to escape from the local optimum. Meta-heu-
ristics have been introduced as a result of these shortcom-
ings. Meta-heuristic algorithms can be thought of as “higher 
level” heuristics since the word “meta” denotes “upper-level 
methodology.”

A metaheuristic is a sophisticated algorithm created 
to address many difficult optimization problems. The fol-
lowing traits are common to metaheuristics [70]. They are 
derived from nature, i.e., they use physics and biology prin-
ciples. They are stochastic, i.e., incorporate random com-
ponents, and do not require linearizing assumptions. Most 
metaheuristics are population-based, flexible, and capable of 
providing a nearly optimal priority set in a single algorithm 
run when used to address multi-objective optimization prob-
lems. The primary advantage of metaheuristics over deter-
ministic optimization is their ability to resolve complicated 
optimization issues that no deterministic algorithm can.

Genetic algorithms, harmony search, evolutionary algo-
rithms, differential evolution, cross-entropy, simulated 
annealing, cuckoo-search algorithm, honey bee mating 
optimization, tabu search, particle swarm optimization, 
ant-colony optimization, harmony search, shuffled complex 
evolution, mine blast algorithm, and shuffled frog leaping 
algorithm, among others. Some meta-heuristic algorithms 
have been developed and widely used for WDS optimization.

These methods have the benefits of not requiring deriva-
tive calculations and not relying on the original selection of 
decision variable values. The chance of discovering opti-
mal global solutions utilizing these cutting-edge techniques 
is higher than in the case of deterministic methods due to 
the exploratory character of heuristic algorithms. The big-
gest drawback of these methods is the increased computing 
effort.

Initially, different methods were primarily connected to 
the EPANET network simulator to solve network equations; 
for pressurized water distribution networks, EPANET is a 
hydraulic simulator that can do extensive hydraulic and water 
quality simulations [71]. The typical components of a water 
distribution network include pipes (links), pipe junctions 
(nodes), pumps, control valves, and tanks/reservoirs [72]. 



4218 S. Parvaze et al.

1 3

EPANET solves the water distribution network for water 
flow in each pipe, pressure at each junction, water level in 
each tank, and chemical species concentration, among oth-
ers. While performing the hydraulic analysis, EPANET 
resolves the conservation of mass and energy equations of 
the water distribution network. These EPANET simulations, 
particularly water quality studies, require a lot of computer 
work, so ANNs were used in their place because they require 
less computation [73]. In Fig. 6, the Sankey diagram shows 
the methods (right) employed in evaluation strategies (left) 
adopted in optimization evaluations.

3.2  General Constraints

The constraints of a WDS design general optimization 
model can be categorized into four groups shown in Fig. 9.

Hydraulic constraints are stated in terms of physical prin-
ciples that regulate fluid flow inside a pipe network. The 
laws are the conservation of mass (the continuity equation) 
and energy conservation [74].

Except for the source, each junction node must meet the 
following continuity constraint:

where Qin is the flow into the junction, Qout is the flow out 
of the junction, and Qe is the external inflow or demand at 
the junction node. The demands, Qe, are considered positive 
under this convention.

For each basic loop in the network, the energy conserva-
tion constraint is as follows:

where Ep is the energy delivered into the liquid by a pump, 
and the head loss term,  hf, is expressed in formulas of 

(6)
∑

Qin −
∑

Qout = Qe

(7)
∑

hf −
∑

Ep = 0

Hazen-Williams or Darcy-Weisbach. Additional energy con-
servation requirements are provided for pathways between 
any two of the nodes when there are numerous source nodes. 
Thus P-1 independent equations are required for a network 
with P source nodes. For each node, the least head constraint 
in the network is given as:

where, Hk is the head at node k; Hmin
k

 is the minimum 
required head at the same node, and M is the total number 
of nodes in the system.

The energy constraints of Eq. (7) result in the formula-
tion of a non-linear optimization problem. Also, the water 
supply pipes are made in various sizes, further complicating 
the optimization process.

System constraints are a result of the WDS operational 
requirements and limitations. These include pressure at 
demand nodes, water quality at demand nodes, tank water 
level bounds, flow velocity in pipes, and water extrac-
tion limits, for example. Pipe diameter limitations are one 
example of a constraint on choice variables, limits on pipe 
lengths, and pump station capacity constraints.

3.3  Decision Variables

A decision variable is also known as a control variable. An 
optimization model can have one to thirteen different deci-
sion variables. A pipe’s diameter or size or a pipe segment’s 
length with a fixed (known) diameter is the decision vari-
able used in most optimization models. Using two, three, or 
more types of a choice variable is significantly less common 
than using only one type. The decision variables describe 
the properties of each hydraulic component in the design, 
including the pipes [75–78], nodes [79], pumps [80–82], 
tanks [75, 83], and valves [80]. WDS decision variables are 

(8)H
k
≥ H

min

k
; k = 1,… ,M

Fig. 9  A generic optimization 
model’s constraints
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categorized in a broad optimization model based on the ele-
ments or aspects of WDS which drive the optimization pro-
cess. The decision variables grouped according to different 
elements of WDS are given in Fig. 10.

3.3.1  Pipes

The primary goal of the basic optimization model is to 
identify the pipe sizes (or diameters) that have the lowest 
design costs for the network while still meeting nodal pres-
sure requirements. Thus, unlike other network components 
(such as pumps, tanks, and valves), pipes are always consid-
ered when optimizing WDS design. For a specific pipe net-
work structure, two different forms of choice variables exist, 
including pipe sizes/diameters and pipe segment lengths 
with a constant (known) diameter. Single-pipe designs are 
WDS design optimization problems where pipe sizes/diam-
eters are used as decision variables. In contrast, split-pipe 
designs are problems where pipe segment lengths have a 
constant diameter. The design of WDS is a difficult problem 
that necessitates a thorough selection of decision factors in 
order to reduce the search space, even if only pipe diameters 
are optimized. To choose or decide on pipe routes when 
there is no predetermined network topology, for example, 
when developing a new or expanded WDS, additional deci-
sion variables are needed. Pipe closures and openings to 
modify a pressure zone boundary within a WDS are other 
forms of pipe decision variables that may be used.

3.3.2  Pumps

Incorporating pumps into the WDS design optimization has 
two key objectives. The first is the design of the pump or the 
capital cost, and the second is the cost of running the pump 
because of electricity use. The cost of administering WDSs 
is typically dominated by electricity, one of the highest 
marginal costs for water utilities because of the rising price 
of electricity. As a result, pumps necessitate the network’s 

design and operation to be included in the optimization [84]. 
As a result, an optimization model should incorporate the 
minimization of the pump design or capital cost and the 
pump operating cost to obtain the minimum amount of elec-
tricity consumed by pumps.

Three different decision variables in the model are used 
to control pumps. A pump position is the first thing consid-
ered when designing a new or strengthening and updating 
an existing WDS. The second factor is pump size, which 
can be expressed as a pump capacity, pump type, pump-
ing power, pump head/height, pump operating curve/head-
flow, or pump size combined with the number of pumps. The 
third factor is a pumping schedule, which specifies when the 
pump is turned on and off during a scheduling window (e.g., 
24 h). Each choice affects the size of the search space and, 
ultimately, the computing effectiveness of the optimization 
algorithm.

3.3.3  Tanks

Storage tanks, also known as tanks, play an important 
function in WDSs and contribute to their efficiency and 
dependability. However, they are not frequently considered 
in WDS design optimization problems [10]. The literature 
has employed a variety of decision variable types to man-
age the model’s tanks, and a few objectives (or objective 
functions) have been devised to assess tank performance 
primarily. However, there is no established generic frame-
work for modeling tanks. Therefore the usage of those var-
iables and aims appears to vary among studies. Decision 
variables concerning tanks in WDS optimization include 
the location of the tank [83, 85], storage volume of tanks 
[85], levels of operation [86], tank heads [87], tank eleva-
tions [60], the ratio between width and height [88], the 
ratio between emergency volume and total volume [88]. 
A WDS’s hydraulic behavior can change depending on 
whether or not there are pumps and tanks. This is a sig-
nificant challenge for any optimization technique since it 

Fig. 10  Decision variables of a 
general optimization model
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generates a discontinuity (i.e., a significant difference in 
behavior with or without a tank at a certain place), which 
the algorithm must correctly control. The setup of the tank 
inside a simulation model, including its connection to the 
system, how the overflow valve operates, and how upper 
and lower level limits are taken into account, can also 
greatly impact how effectively the optimization run works.

3.3.4  Valves

The inclusion of valves in WDS design optimization prob-
lems is quite random, and explanations of their implemen-
tation are frequently very brief and lacking in specificity. 
The valve numbers and locations play a role in the overall 
system design, especially when the system’s reliability or 
resilience is considered. This is because the shutdown of 
valves used to isolate a portion of the WDS during an 
emergency (e.g., a pipe break or a water quality inci-
dent) creates a change in hydraulic behavior. Utilizing 
the settings of valves to manage the network’s pressure 
distribution (using pressure-reducing valves, or PRVs) 
[51] or to control the timing of flows and flow rate values 
(using either FCVs or PRVs, respectively) [89] is another 
application.

The combined design of the pipe network and isolating 
valve system poses a significant challenge to optimization 
techniques. In addition to the number of decisions grow-
ing exponentially as more valves are added, evaluating the 
effects of different valve system designs requires looking at 
a huge number of (probabilistic) scenarios, which makes the 
entire procedure computationally inefficient. Furthermore, 
when a WDS is broken down into manageable subsystems, 
the placement and status of isolating valves can also consti-
tute decision variables.

3.3.5  Nodes

Node grouping is one of the key elements influencing the 
WDS demand estimation’s accuracy. However, in many 
studies, node groups have either been predetermined or pre-
sumed to exist based on engineering intuition or knowledge 
(e.g., grouping nodes with similar demand patterns or close 
together). Given the intricate hydraulic relationship between 
the pipe flows/nodal pressure at sensor locations and the 
requirement for node groups, especially in large networks, 
identifying appropriate node groups using such methodolo-
gies is challenging (mostly loop-dominated). The decision 
variables associated with nodes in the optimization of water 
distribution systems include flow rates from sources, future 
nodal demands, threshold demands, and hydraulic heads at 
junctions.

3.3.6  Water Quality

When designing WDSs, water quality characteristics should 
not be overlooked, as they might cause several issues with 
how well the systems work. Providing a suitable operat-
ing strategy to satisfy water quality-based requirements in 
other situations would be challenging or impossible. It is 
also noteworthy that, in most research, the only aspect of 
water quality taken into account during the WDS optimi-
zation process is chlorine residual, and water age is rarely 
examined [90].

3.4  Solution Techniques Used for WDS Optimization

Water resources planners and researchers have used several 
analytical methods to design and operate WDSs. The first 
study on the design and optimization of WDSs can be dated 
back to 1895 [91] and is based on the notion of economic 
velocity. Economic velocity was in use until the 1950s [92, 
93]. The design was eventually replaced by the concept of 
the system’s lowest (annual) costs, also referred to as the 
least-cost design [94–96]. The earlier studies involved 
time-intensive and complex manual calculations, and thus 
the field garnered the attention of very few researchers and 
designers.

Rapid progress was witnessed in WDSs optimization dur-
ing the 1960s to 1990s, which began with the introduction of 
computers in network analysis in 1957 [97]. Many iterative 
methods [98, 99] and simulation packages [71, 100] were 
developed after the introduction of computers. The meth-
ods were used to obtain deterministic solutions to non-lin-
ear network equations associated with network design and 
operations. Some of the most common methods using this 
approach include linear programming (LP) [60, 101], and 
non-linear programming (NLP) [64, 102], among others.

Another noteworthy improvement in optimizing WDSs 
was the inclusion of stochastic approaches employing laws 
of biological evolution [103] and genetics [104]. These 
methods gained popularity during the 1990s because these 
methods were capable of overcoming the limitations of 
deterministic methods for solving real-world problems [28]. 
Since the 1990s, various evolutionary algorithms (EAs) have 
been employed for the design optimization of WDSs. These 
include genetic algorithms [28, 105], shuffled leaping frog 
algorithm [106, 107], ant-colony optimization [108, 109], 
particle swarm optimization [110–113], harmony search 
[114, 115], genetic heritage evolution by stochastic trans-
mission [116] and differential evolution [117–119]. Genetic 
algorithms (GAs) have been the most commonly applied 
evolutionary algorithms for water resources [70].

Genetic algorithms are automatic, domain-independent 
approaches for developing solutions to existing models or 
creating new models capable of emulating actual systems 
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[120]. A collection of pipe network designs is considered in 
the GA-based approaches. A string of binary bits represents 
each design. On the other hand, substrings indicate the diam-
eter of a specific pipe segment. An artificial genetic code is 
connected with the pipe network design based on a mapping 
between the coded substrings and the design variables. GAs 
have been created for low-cost, new, and augmentation of 
existing WDSs. Compared with non-linear programming 
methods, the results have proven to be more cost-effective 
and resulted in lower-cost solutions [121].

The type of problem under consideration for WDS opti-
mization determines the solution technique. It also depends 
on the expertise of the specialist and his familiarity with 
software or tool [122]. However, the choices have seldom 
been dependent upon the performance of a model. Rather 
these are based on the expert’s preference, familiarity level, 
and availability of the software [37].

4  Genetic Algorithms

Genetic Algorithms (GAs) are randomized search meth-
ods to identify the optimal values of decision variables 
or parameters in pre-existing models. GAs are based on 
replicating evolutionary and natural selection processes 

[22]. Evolution is a process by which a species adapts gen-
eration by generation to fit in its natural habitat. Figure 11 
shows the flow diagram of a basic Genetic Algorithm pro-
cess. A simple evolutionary process model contains the 
following features:

a. Population: the individuals within a population die and 
are replaced by “offspring.”

b. Breeding: the offspring are formed by a combination of 
genes from parents through the process of breeding.

c. Selection: By selection, fitter individuals of a popula-
tion have a greater chance of breeding and raising their 
offspring than less-fit individuals.

These features are retained in the GA optimization pro-
cess. For instance, there is a requirement for the optimal 
design of a scheme. For this, first, a population of various 
designs is considered. Numerical values are then used to 
designate different design parameters [123]. The numeri-
cal values can be integers, real numbers, or Boolean values, 
and the design is encoded into a binary string. This form is 
analogous to a “chromosome.” The population is initially 
selected randomly within the search space described by the 
limiting values of the variables.

In order to select parents for breeding, a comparative fit-
ness assessment of each individual is performed. Fitness 
here refers to how efficiently the proposed design will meet 
its objective. The parents can then be selected by Roulette-
Wheel selection or Tournament selection. The former con-
sists of selecting parents from a population with a prob-
ability of selection proportional to each individual’s fitness. 
The latter chooses two individuals randomly, and the fitter 
individual becomes a parent [27]. The design parameters 
obtained from the two parents are then combined to form 
a better-performing offspring. In a conventional Genetic 
Algorithm, the binary strings of the two parents (the chro-
mosomes) are split at any arbitrary location. The second 
part of the strings is switched over to form offspring. The 
process is known as “crossover.” Therefore, this offspring 
will include some design attributes from each parent. How-
ever, in a more general design, the genetic information of 
the two parents is pooled together, and a feasible offspring 
is then grown from the pool of genetic possibilities [124]. 
One-point, two-point, or k-point crossover, uniform crosso-
ver, shuffle crossover, and three-parent crossover is typical 
crossover approaches used in the WDS optimization prob-
lems. In a one-point crossover, a crossover point is chosen 
randomly along the chromosome’s length. The new child 
is created by adding the genes of the first parent before the 
crossover point and the second parent after the crossover 
point. Genetic material is switched between two or more 
randomly chosen sites along the length of a chromosome 
during two-point or k-point crossover.Fig. 11  Flowchart of a basic GA Process
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Because GAs is problem-specific, the crossover is used 
while treating the chromosomes like a collection of dis-
tribution pipelines. Here, altering even a single gene on a 
chromosome entail removing the existing pipe and install-
ing a new one with a different diameter. In order to find 
the best solution, it is preferable to experiment with and 
test numerous pipe configurations. After experimenting 
with several crossover operators, the k-point crossover was 
chosen as the preferred crossover method. With  Np being 
the total number of pipelines in the distribution system, 
the number of crossover sites is calculated as (0.8 Np) 
rounded to the nearest integer. Crossover points’ posi-
tions are chosen at random. Figure 12 shows single and 

multiple numbers of crossover points for a 6-pipe distribu-
tion network.

Some random changes can also be introduced in the 
breeding process by a mechanism called “mutation.” A 
mutation probability of (1/l) is considered standard in the 
literature. ‘l’ here represents the length of the chromosome. 
In a simple GA, mutation can be induced by replacing a 
binary digit 0 with 1 or vice-versa. A simple example of 
this type of mutation is illustrated in Fig. 13. Some extra 
possibilities are introduced into the genetic material pool 
from which the offspring is grown [125]. Thus, selection and 
breeding procedures are employed to generate a new popu-
lation of solutions. The new solutions replace the original 

Fig. 12  An example of a single and k-point crossover

Before Muta�on 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1

A�er Muta�on 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1

Pipe Diameter

Pipe Diameter

Muta�on

Pipe 1 Pipe 2 Pipe 3 Pipe 4 Pipe 5 Pipe 6

10 20 16 8 16 20

Pipe 5 Pipe 6

8 20 16 14 16 20

Pipe 1 Pipe 2 Pipe 3 Pipe 4

Fig. 13  Mutation in Genetic Algorithms
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ones and contain better individuals than those in the original 
population. Therefore, the process can be applied iteratively 
to produce successive populations, each better than the pre-
ceding one and terminating when no significant improve-
ment is spotted over many generations. This simple and non-
sophisticated mathematical technique works well for large 
and complex systems. However, the method it is based on is 
an efficient and robust natural process of producing designs 
for complex living creatures.

Some implementations of GAs use the concept of elit-
ism. Here, the fittest chromosomes from one generation 
are selected in limited numbers and then copied into the 
next generation. Elitism is employed to shield the fittest 
chromosomes to prevent crossover and mutation. The elite 
chromosomes follow the least expensive distribution net-
works while abiding by every generation’s pressure and 
velocity constraints. Before crossover and mutation for the 
following generation, the two top performers from each gen-
eration are saved.

5  Applications to Water Distribution 
Systems

GAs have been used widely and successfully to handle 
water resource optimization challenges in various fields. 
These include problems with model calibration, engineer-
ing designs, and developing new strategies for management 
[70, 126]. One of the widespread applications of genetic 
algorithms has been in the design of water distribution sys-
tems (WDSs). A water distribution system connects various 
hydraulic components like pipes, tanks, valves, pumps, and 
reservoirs, conveying water from the source to the consumer. 
WDSs is one of the most vital and cost-intensive munici-
pal infrastructure assets crucial to public health [127]. For 
designing an economically efficient WDS, various complex 
mathematical procedures are required. The task involves 
solving many non-linear network equations and optimiz-
ing network components’ size, location, and operational 
statuses, such as pumps, pipes, tanks, and valves [128]. 
The complexity of the task further increases when the sys-
tem design is expected to comply with many requirements 
(for instance, water quality), contains additional purposes 
besides a low-cost economic metric (for example, probable 
fire damage), and incorporates additional real-world ele-
ments (e.g., uncertainty, staging of construction).

In a pipe network optimization problem, the key concept 
of GA is to choose a population of initial solution points 
dispersed randomly in the optimization space, then converge 
them iteratively to better solutions until the requirements are 

fulfilled. A brief description of the steps involved in utilizing 
GA for pipe network optimization is given below:

6  Population Initialization

In the process of a genetic algorithm, population initialization 
is the first step. An initial population of coded strings (binary) 
representing pipe network solutions with a population size of 
N is generated at random by the GA. In the current genera-
tion, the population is a subset of all possible combinations 
of pipe sizes.

7  Calculating the Network Costs

The GA decodes every substring into its associated pipe size 
for each of the N strings in the population before calculat-
ing the total network cost, including the cost of materials and 
construction.

7.1  Hydraulic Analysis of Pipe Networks

For every network design in the population, a steady-state 
hydraulic network solver calculates the heads and discharges 
under the given demand patterns. Any pressure shortfalls are 
noted after comparing the actual nodal pressures to the lowest 
permitted pressure heads. Similar to this, any deviations in 
velocity are recorded when comparing the actual water veloci-
ties at the pipes with the anticipated water distribution network 
velocities.

7.2  Calculating the Penalty Cost

If a pipe network does not adhere to the pressure and velocity 
limits, the GA assesses a penalty cost for each network design 
in the population; for instance, a pressure violation at a spe-
cific node if the node’s pressure is less than or more than the 
desired pressure.

7.3  Calculating the Overall Network Cost

The sum of the network cost (Step 2) and the penalty cost (Step 
4) is then used to determine the cost of each network in the 
present population.

7.4  Calculating the Fitness

It is assumed that the fitness of the coded text is a function 
of the overall network cost. Fitness can be calculated as the 
inverse of the total network cost for each specified pipe net-
work in the current population (Step 5).



4224 S. Parvaze et al.

1 3

7.5  Generation of a New Population

By using a selection process based on the fitness of initial 
members, the GA produces new members for the upcom-
ing generation.

7.6  Crossover Operator

For each pair of parent strings chosen in Step 7, crossover 
happens with a certain probability. A uniform crossover 
operator is frequently employed for pipe network optimi-
zation with a relatively high string size.

7.7  The Mutation Operator

For each bit in the crossover-effected strings, there is a cer-
tain likelihood of mutation. Maintaining genetic diversity 
from one generation of a population to the next is the aim 
of the mutation operator.

7.8  Creation of Subsequent Generations

Using Steps 2 through 9, the three operators mentioned 
above create a new generation of pipe network designs. 
To create the next generations, the GA repeats the process. 
The final costs and pipe network designs are saved, and the 
less expensive cost options that adhere to the necessary 
limits are updated.

GAs are the most frequently applied evolutionary 
algorithm for designing and optimizing WDSs [129]. 
An immense effort has been devoted to developing and 
applying optimization methods to solve problems asso-
ciated with the design optimization of WDS in the last 
three decades. Since the first application of GA in the mid-
1990s [28, 85], much advancement towards this approach 
has been made. These methods utilize the GA approach in 
combination with some other methods to optimize WDS 
designs [130, 131] like fmGA [132], non-crossover dither 
creeping mutation-based GA (CMBGA) [133], adaptive 
locally constrained GA (ALCO-GA) [55], evolutionary 
algorithm (EA) [134]. Some methods use a combination 
of stochastic and deterministic approaches for develop-
ing more efficient solutions. These include a combined 
Genetic Algorithm and Linear Programming method (GA-
LP/GALP) [135, 136] and a combined GA and ILP [137] 
method. Most of these studies exclusively solve a basic 
single-objective, i.e., minimizing the cost of pipe inhibited 
by the nodal pressure requirement. Thus, the number of 
variants of GAs or a combination of GAs with other meth-
ods has been routinely utilized to discover optimal WDS 
solutions. Some important publications employing genetic 

algorithms and their variants for the optimal solution of 
WDSs are given in Table 1.

Initially, GAs were applied to simple benchmark prob-
lems. However, recently GA applications have progressed 
towards more complex and realistic water distribution 
systems. The larger size and complex nature of networks 
demand better quality, near-optimal solutions for these sys-
tems, which should be available in practice. Thus, compu-
tational effectiveness is a crucial concern for the extensive 
acceptance of GAs to optimize large, real-world WDSs. This 
issue has been addressed by many researchers using two 
key approaches. The first approach comprises finding the 
best possible solution inside a genuine computational budget 
rather than finding the universal optimal solution [138]. The 
second approach involves increasing the computational effi-
ciency of the optimizing process [139]. The design problems 
can be broadly classified into two (i) design of new systems; 
and (ii) augmentation of existing systems.

8  Design of New Systems

The design optimization of WDSs consists of determining 
each network component’s size, location, and operational 
statuses, such as pipes, pumps, tanks, and valves, while 
maintaining the lowest possible cost of design and operation 
at their minimum. The design will be based on the type of 
network under consideration, i.e., a branched or looped and 
gravity or pumped system. In a branched or looped network, 
there is an essential distinction in the problem’s complex-
ity at the network analysis stage for defining flows in pipes. 
Nodal demands are used to calculate flow distribution in 
a branched network. On the other hand, in a looped net-
work, the flows can assume alternative and multiple paths 
from source to consumer. For a gravity-based system, the 
design cost of a network concerning specified nodal pres-
sure is minimized, and the only decision variable involved 
is the size or diameter of the pipes. These include widely 
known networks like the two-loop network [60], the Hanoi 
network [99], and the Balerma irrigation network [130]. The 
optimization problem for the pumped WDSs is more com-
plicated than the gravity WDSs. This is because the pumps 
required in this system must be selected based on parameters 
like location, operational status, and operation for extended 
period simulation (EPS) and their size [80, 140].

Goldberg and Kuo [104] pioneered using GAs for pipe 
network optimization. This probabilistic method was used 
to improve a pipeline for steady-state flow. The size of pipes 
supplying a specific amount of water at an acceptable pres-
sure level at the nodes was one of the selection criteria. Mur-
phy and Simpson [141] employed GAs to solve the Gessler 
issue, which consists of two reservoirs connected by 14 pipe-
lines. Davidson and Goulter [142] used GAs to construct 



4225Optimization of Water Distribution Systems Using Genetic Algorithms: A Review  

1 3

Ta
bl

e 
1 

 P
ap

er
s o

n 
w

at
er

 d
ist

rib
ut

io
n 

ne
tw

or
ks

 o
pt

im
iz

at
io

n 
by

 u
si

ng
 g

en
et

ic
 a

lg
or

ith
m

s

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

M
ur

ph
y 

et
 a

l. 
[1

59
]

G
A

1.
 M

in
im

iz
in

g 
th

e 
co

st 
of

 
ne

tw
or

k 
(p

ip
el

in
e)

 d
es

ig
n

1.
 P

ip
e 

di
am

et
er

s
1.

 A
ny

to
w

n 
N

et
w

or
k

W
he

n 
co

m
pa

re
d 

to
 th

e 
ea

rli
er

 
de

si
gn

s, 
th

e 
re

su
lta

nt
 so

lu
tio

n 
pe

rfo
rm

ed
 a

dm
ira

bl
y

D
an

dy
 e

t a
l. 

[1
05

]
G

A
1.

 M
in

im
iz

in
g 

th
e 

to
ta

l c
os

t 
of

 m
at

er
ia

l a
nd

 c
on

str
uc

tio
n 

of
 p

ip
es

,
2.

 M
in

im
iz

in
g 

th
e 

pe
na

lty
 

co
st 

fo
r v

io
la

tio
n 

of
 p

re
ss

ur
e 

co
ns

tra
in

ts

1.
 P

ip
e 

di
am

et
er

s
1.

 N
ew

 Y
or

k 
C

ity
 tu

nn
el

s
Im

pr
ov

ed
 G

A
s p

ro
vi

de
d 

th
e 

le
as

t c
os

t d
is

cr
et

e 
so

lu
tio

n 
fo

r t
he

 N
ew

 Y
or

k 
tu

nn
el

s 
pr

ob
le

m

H
al

ha
l e

t a
l. 

[1
46

]
SM

G
A

1.
 M

ax
im

iz
in

g 
th

e 
be

ne
fit

s 
fro

m
 th

e 
ne

tw
or

k 
in

 te
rm

s o
f 

hy
dr

au
lic

 p
er

fo
rm

an
ce

, p
ip

e 
in

te
gr

ity
, w

at
er

 q
ua

lit
y,

 a
nd

 
sy

ste
m

 fl
ex

ib
ili

ty
2.

 M
in

im
iz

in
g 

th
e 

co
st 

of
 

su
pp

ly
 a

nd
 in

st
al

la
tio

n 
of

 
th

e 
W

D
S

1.
 A

 st
rin

g 
co

nt
ai

ni
ng

 tw
o 

su
bs

tri
ng

s:
 o

ne
 c

om
pr

is
in

g 
pi

pe
 n

um
be

rs
 a

nd
 th

e 
ot

he
r 

co
nt

ai
ni

ng
 d

ec
is

io
ns

 a
ss

oc
i-

at
ed

 w
ith

 th
os

e 
pi

pe
s

1.
 A

 1
5-

pi
pe

 sm
al

l l
oo

pi
ng

 
ne

tw
or

k
2.

 A
n 

ac
tu

al
 n

et
w

or
k 

of
 1

67
 

pi
pe

lin
es

 a
nd

 o
ne

 re
se

rv
oi

r 
fo

r a
 M

or
oc

ca
n 

to
w

n

St
ru

ct
ur

ed
 m

es
sy

 G
A

 d
ev

el
-

op
ed

 p
er

fo
rm

ed
 e

xc
ep

tio
na

lly
 

co
m

pa
re

d 
to

 th
e 

st
an

da
rd

 G
A

 
fo

r t
he

 n
et

w
or

k

Sa
vi

c 
an

d 
W

al
te

rs
 [7

4]
G

A
N

ET
 u

si
ng

 G
A

1.
 M

in
im

iz
in

g 
th

e 
co

st 
of

 
ne

tw
or

k 
(p

ip
el

in
e)

 d
es

ig
n

1.
 P

ip
e 

di
am

et
er

s
1.

 G
ra

vi
ty

-s
up

pl
ie

d 
tw

o-
lo

op
 

ne
tw

or
k

2.
 T

he
 H

an
oi

 n
et

w
or

ks
3.

 T
un

ne
ls

 in
 N

ew
 Y

or
k 

C
ity

A
 m

od
ifi

ed
 G

A
 u

si
ng

 G
ra

y 
co

de
s r

es
ul

te
d 

in
 e

ffe
ct

iv
e 

de
si

gn
s w

ith
ou

t n
ee

dl
es

s 
lim

ita
tio

ns
 b

ro
ug

ht
 o

n 
by

 
sp

lit
-p

ip
e 

or
 li

ne
ar

iz
in

g 
as

su
m

pt
io

ns
G

up
ta

 e
t a

l. 
[1

21
]

G
A

1.
 M

in
im

iz
in

g 
th

e 
co

st 
of

 
ne

tw
or

k 
(p

ip
el

in
e)

 d
es

ig
n

2.
 P

en
al

ty
 fo

r v
io

la
tio

n 
of

 
m

in
im

um
 re

si
du

al
 h

ea
d

1.
 P

ip
e 

di
am

et
er

s
1.

 N
et

w
or

k 
w

ith
 3

8 
pi

pe
s

2.
 N

et
w

or
k 

w
ith

 5
2 

pi
pe

s
3.

 N
et

w
or

k 
w

ith
 2

8 
pi

pe
s

U
si

ng
 e

ng
in

ee
rin

g 
ju

dg
m

en
t, 

th
e 

te
st 

ne
tw

or
ks

 a
re

 d
iv

id
ed

 
in

to
 u

pp
er

, m
id

dl
e,

 a
nd

 lo
w

er
 

di
am

et
er

s, 
w

hi
ch

 h
el

p 
na

rr
ow

 
th

e 
se

ar
ch

 sp
ac

e 
an

d 
sp

ee
d 

up
 

co
nv

er
ge

nc
e 

to
 th

e 
id

ea
l

M
on

te
si

no
s e

t a
l. 

[1
51

]
G

A
1.

 M
in

im
iz

in
g 

th
e 

co
st 

of
 

ne
tw

or
k 

(p
ip

el
in

e)
 d

es
ig

n
1.

 P
ip

e 
si

ze
1.

 N
ew

 Y
or

k 
C

ity
 tu

nn
el

s
C

om
pa

re
d 

to
 e

ar
lie

r G
A

 a
lg

o-
rit

hm
s, 

th
e 

up
da

te
d 

G
A

 id
en

-
tifi

ed
 th

e 
be

st-
kn

ow
n 

so
lu

tio
n 

fo
r t

he
 te

st 
ne

tw
or

k 
in

 a
 le

ss
er

 
nu

m
be

r o
f e

va
lu

at
io

ns
W

al
te

rs
 e

t a
l. 

[8
5]

SM
G

A
1.

 M
ax

im
iz

in
g 

th
e b

en
efi

ts 
by

 
re

ha
bi

lit
at

io
n 

an
d 

str
en

gt
he

ni
ng

 
th

e w
at

er
 d

ist
rib

ut
io

n 
sy

ste
m

2.
 M

in
im

iz
in

g 
th

e 
co

st 
of

 
su

pp
ly

 a
nd

 in
st

al
la

tio
n 

of
 th

e 
W

D
S

3.
 M

in
im

iz
in

g 
th

e 
en

er
gy

 c
on

-
su

m
ed

 fo
r o

pe
ra

tio
n 

du
rin

g 
a 

pe
rio

d

1.
 T

w
o 

su
bs

tri
ng

s m
ak

e 
up

 th
e 

fo
llo

w
in

g 
str

in
g:

 (1
) l

oc
at

io
n 

su
bs

tri
ng

: p
ip

es
, p

um
ps

, 
ta

nk
s;

 (2
) d

ec
is

io
n 

su
bs

tri
ng

 
(e

xp
an

si
on

/re
ha

bi
lit

at
io

n 
op

tio
ns

): 
pi

pe
s, 

pu
m

ps
, 

ta
nk

s

1.
 A

ny
to

w
n 

ne
tw

or
k

Th
e 

ch
ea

pe
st 

pr
ac

tic
al

 so
lu

tio
n 

an
d 

th
e 

m
os

t o
pe

ra
tio

na
lly

 
eff

ec
tiv

e 
ap

pr
oa

ch
 w

er
e 

th
e 

tw
o 

op
tio

ns
 o

ffe
re

d.
 T

he
se

 
so

lu
tio

ns
 to

 th
e 

A
ny

to
w

n 
pr

ob
le

m
 a

re
 4

–5
%

 le
ss

 e
xp

en
-

si
ve

 th
an

 a
ny

 o
th

er
s p

ub
lis

he
d 

ea
rli

er



4226 S. Parvaze et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

D
an

dy
 a

nd
 H

ew
its

on
 [1

54
]

G
A

1.
 M

in
im

iz
in

g 
th

e 
co

st 
of

 n
ew

 
el

em
en

ts
 o

f w
at

er
 d

ist
rib

u-
tio

n 
ne

tw
or

ks
2.

 M
in

im
iz

in
g 

th
e 

co
st 

of
 

en
er

gy
 in

vo
lv

ed
 in

 p
um

pi
ng

3.
 M

in
im

iz
in

g 
th

e 
co

st 
of

 
di

si
nf

ec
tio

n 
at

 c
om

m
un

ity
 

le
ve

ls

1.
 N

ew
 a

nd
 d

up
lic

at
e 

pi
pe

 
si

ze
s,

2.
 N

ew
 p

um
p 

an
d 

ta
nk

 si
ze

s
3.

 N
ew

 p
um

p 
an

d 
ta

nk
 lo

ca
-

tio
ns

4.
 D

ec
is

io
n-

m
ak

in
g 

ru
le

s f
or

 
th

e 
sy

ste
m

’s
 o

pe
ra

tio
n,

5.
 C

hl
or

am
in

e/
ch

lo
rin

e 
do

si
ng

 
ra

te
s a

t v
ar

io
us

 p
oi

nt
s

1.
 T

he
 Y

or
ke

 P
en

in
su

la
 is

 a
 

ru
ra

l a
re

a 
w

es
t o

f A
de

la
id

e,
 

A
us

tra
lia

Th
e 

be
ne

fit
s o

f c
om

bi
ni

ng
 

de
si

gn
, o

pe
ra

tio
ns

, a
nd

 
w

at
er

 q
ua

lit
y 

in
to

 a
 u

ni
fie

d 
fr

am
ew

or
k 

w
er

e 
ill

us
tra

te
d.

 
Re

du
ci

ng
 re

si
de

nc
e 

tim
es

 
w

er
e 

co
ns

id
er

ed
 in

 th
e 

pl
an

-
ni

ng
 p

ro
ce

ss
, i

m
pr

ov
in

g 
w

at
er

 
qu

al
ity

Va
ira

va
m

oo
rth

y 
an

d 
A

li 
[1

65
]

G
A

1.
 R

ed
uc

e 
th

e 
ca

pi
ta

l c
os

t o
f 

th
e 

ne
tw

or
k 

(p
ip

es
)

2.
 R

ed
uc

e 
th

e 
pe

na
lty

 fo
r 

ex
ce

ed
in

g 
pr

es
su

re
 li

m
ita

-
tio

ns

1.
 P

ip
e 

di
am

et
er

s
1.

 H
an

oi
 n

et
w

or
k

2.
 N

ew
 Y

or
k 

C
ity

 tu
nn

el
s

Th
e 

so
lu

tio
ns

 o
bt

ai
ne

d 
by

 re
al

 
co

di
ng

 in
 p

la
ce

 o
f b

in
ar

y 
an

d 
G

ra
y 

co
de

s w
er

e 
fa

vo
ra

bl
e 

fo
r 

de
si

gn
 o

pt
im

iz
at

io
n

W
u 

an
d 

Si
m

ps
on

 [1
53

]
fm

G
A

1.
 R

ed
uc

e 
th

e 
ca

pi
ta

l c
os

t o
f 

th
e 

ne
tw

or
k 

(p
ip

es
)

2.
 R

ed
uc

e 
th

e 
pe

na
lty

 fo
r 

ex
ce

ed
in

g 
pr

es
su

re
 li

m
ita

-
tio

ns

1.
 P

ip
e 

di
am

et
er

s
1.

 N
ew

 Y
or

k 
C

ity
 tu

nn
el

s
Th

e 
su

gg
es

te
d 

fa
st 

m
es

sy
 

ge
ne

tic
 a

lg
or

ith
m

 (f
m

G
A

) 
ou

tp
er

fo
rm

s a
 G

A
 w

ith
ou

t t
he

 
bo

un
da

ry
 se

ar
ch

 st
ra

te
gy

 in
 

fin
di

ng
 th

e 
le

as
t-c

os
t s

ol
ut

io
n

B
ro

ad
 e

t a
l. 

[1
52

]
G

A
1.

 R
ed

uc
e 

th
e 

ca
pi

ta
l c

os
t o

f 
th

e 
ne

tw
or

k 
(p

ip
es

);
2.

 R
ed

uc
e 

th
e 

pe
na

lty
 fo

r 
ex

ce
ed

in
g 

pr
es

su
re

 li
m

ita
-

tio
ns

3.
 R

ed
uc

in
g 

th
e 

pe
na

lty
 fo

r 
no

nc
om

pl
ia

nc
e 

w
ith

 c
hl

o-
rin

e 
re

si
du

al
s

1.
 P

ip
e 

di
am

et
er

s,
2.

 C
hl

or
in

e 
do

si
ng

 ra
te

s
1.

 N
ew

 Y
or

k 
C

ity
 tu

nn
el

s
A

 c
om

bi
na

tio
n 

of
 A

N
N

 a
nd

 G
A

 
en

ab
le

d 
tim

e-
sa

vi
ng

 o
f u

p 
to

 
21

%
 fo

r n
et

w
or

k 
tra

in
in

g.
 It

 
w

as
 7

00
 fa

ste
r t

ha
n 

th
e 

pr
ev

i-
ou

s n
et

w
or

ks

Fa
rm

an
i e

t a
l. 

[1
73

]
N

SG
A

-I
I a

nd
 S

PE
A

2 
w

er
e 

co
m

pa
re

d
1.

 M
in

im
iz

in
g 

th
e 

ne
tw

or
k’

s 
ca

pi
ta

l c
os

t (
pi

pe
s)

;
2.

 M
in

im
iz

in
g 

th
e 

gr
ea

te
st 

in
di

vi
du

al
 h

ea
d 

in
su

ffi
ci

en
cy

 
at

 n
et

w
or

k 
no

de
s

1.
 P

ip
e 

di
am

et
er

s
1.

 T
un

ne
ls

 in
 N

ew
 Y

or
k 

C
ity

2.
 T

he
 H

an
oi

 n
et

w
or

k
3.

 S
im

pl
ifi

ed
 E

X
N

ET
 w

at
er

 
ne

tw
or

k

N
SG

A
-I

I a
nd

 S
PE

A
2 

w
er

e 
ca

pa
bl

e 
of

 id
en

tif
yi

ng
 P

ar
et

o-
op

tim
al

 so
lu

tio
ns

 to
 W

D
S 

de
si

gn
 is

su
es

. T
he

 re
su

lts
 fu

r-
th

er
 d

em
on

str
at

ed
 th

at
 S

PE
A

2 
ou

tp
er

fo
rm

ed
 N

SG
A

-I
I i

n 
bo

th
 M

O
 o

pt
im

iz
at

io
n 

is
su

es
A

tiq
uz

za
m

an
 e

t a
l. 

[1
72

]
N

SG
A

-I
I

1.
 M

in
im

iz
in

g 
th

e 
ne

tw
or

k’
s 

ca
pi

ta
l c

os
t (

pi
pe

s)
;

2.
 M

in
im

iz
in

g 
th

e 
ov

er
al

l 
pr

es
su

re
 d

efi
ci

t a
t n

et
w

or
k 

no
de

s

1.
 C

om
m

er
ci

al
ly

 av
ai

la
bl

e 
pi

pe
 d

ia
m

et
er

s
1.

 G
ra

vi
ty

-s
up

pl
ie

d 
tw

o-
lo

op
 

ne
tw

or
k

M
or

e 
th

an
 o

ne
 so

lu
tio

n 
w

as
 

ob
ta

in
ed

 u
si

ng
 N

SG
A

-I
I w

ith
 

th
e 

sa
m

e 
ne

tw
or

k 
co

st 
bu

t 
va

ry
in

g 
to

ta
l p

re
ss

ur
e 

de
fic

its



4227Optimization of Water Distribution Systems Using Genetic Algorithms: A Review  

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

K
ee

dw
el

l a
nd

 K
hu

 [1
66

]
CA

M
O

G
A

 a
nd

 N
SG

A
-I

I i
s 

co
m

pa
re

d
1.

 M
in

im
iz

in
g 

th
e 

ne
tw

or
k’

s 
de

si
gn

 c
os

t (
pi

pe
s)

2.
 M

in
im

iz
in

g 
th

e 
ov

er
al

l 
he

ad
 d

efi
ci

t a
t n

et
w

or
k 

no
de

s

1.
 P

ip
e 

di
am

et
er

s
1.

 N
et

w
or

k 
A

: a
 g

en
ui

ne
 n

et
-

w
or

k 
w

ith
 a

 si
ng

le
 re

se
rv

oi
r 

an
d 

63
2 

pi
pe

s i
n 

th
e 

U
ni

te
d 

K
in

gd
om

2.
 N

et
w

or
k 

B
: a

 g
en

ui
ne

 n
et

-
w

or
k 

w
ith

 a
 si

ng
le

 re
se

rv
oi

r 
an

d 
12

77
 p

ip
es

: C
A

M
O

G
A

 su
rp

as
se

s N
SG

A
-

II
 in

 th
e 

eff
ec

tiv
en

es
s o

f p
ro

-
du

ci
ng

 si
m

ila
r P

ar
et

o 
fro

nt
s 

an
d 

ca
n 

pr
od

uc
e 

go
od

 so
lu

-
tio

ns
 w

ith
 a

 m
in

im
al

 n
um

be
r 

of
 n

et
w

or
k 

si
m

ul
at

io
ns

B
ab

ay
an

 e
t a

l. 
[7

8]
N

SG
A

-I
I

1.
 M

in
im

iz
in

g 
th

e 
de

si
gn

 
co

st 
of

 th
e 

ne
w

 n
et

w
or

k/
 

re
ha

bi
lit

at
io

n
2.

 M
ax

im
iz

in
g 

th
e 

le
ve

l o
f 

ne
tw

or
k 

ro
bu

stn
es

s

1.
 D

es
ig

n/
re

ha
bi

lit
at

io
n 

op
tio

n 
in

de
x

1.
 N

ew
 Y

or
k 

C
ity

 tu
nn

el
s

Th
e 

ac
qu

ire
d 

re
su

lts
 sh

ow
 th

at
 

“c
ho

os
in

g 
to

 ig
no

re
 u

nc
er

-
ta

in
ty

 in
 th

e 
de

si
gn

 p
ro

ce
ss

 
m

ay
 le

ad
 to

 su
bs

ta
nt

ia
l u

nd
er

-
de

si
gn

 o
f w

at
er

 d
ist

rib
ut

io
n 

ne
tw

or
ks

” 
co

m
pa

re
d 

to
 

de
te

rm
in

ist
ic

 so
lu

tio
ns

 fr
om

 
th

e 
lit

er
at

ur
e

Jin
 e

t a
l. 

[1
56

]
N

SG
A

-I
I w

ith
 A

IM
1.

 L
ow

er
in

g 
th

e 
co

st 
of

 n
et

-
w

or
k 

re
ha

bi
lit

at
io

n 
re

qu
iri

ng
 

pi
pe

 re
pl

ac
em

en
t;

2.
 L

ow
er

in
g 

th
e 

co
st 

of
 p

um
p-

in
g 

en
er

gy
3.

 R
ed

uc
in

g 
th

e 
to

ta
l v

el
oc

ity
 

vi
ol

at
io

ns
 w

ei
gh

te
d 

by
 p

ip
e 

flo
w

4.
 R

ed
uc

in
g 

th
e 

to
ta

l n
um

be
r 

of
 p

re
ss

ur
e 

vi
ol

at
io

ns
 

(e
xc

es
se

s)
 b

y 
w

ei
gh

tin
g 

th
em

 b
y 

no
de

 d
em

an
d

1.
 P

ip
e 

di
am

et
er

s
1.

 N
et

w
or

k 
re

se
m

bl
in

g 
th

e 
EP

A
N

ET
Th

e 
pe

rfo
rm

an
ce

 o
f N

SG
A

-
II

 w
ith

 A
IM

 su
rp

as
se

s t
ha

t 
of

 N
SG

A
-I

I w
ith

ou
t A

IM
 

re
ga

rd
in

g 
co

nv
er

ge
nc

e 
sp

ee
d 

an
d 

th
e 

qu
al

ity
 o

f t
he

 so
lu

-
tio

ns
 p

ro
du

ce
d

K
ad

u 
et

 a
l. 

[1
31

]
G

A
-W

A
T 

pr
og

ra
m

 u
si

ng
 G

A
1.

 R
ed

uc
e 

th
e 

ca
pi

ta
l c

os
t o

f 
th

e 
ne

tw
or

k 
(p

ip
es

);
2.

 R
ed

uc
e 

th
e 

pe
na

lty
 fo

r 
ex

ce
ed

in
g 

pr
es

su
re

 li
m

ita
-

tio
ns

1.
 P

ip
e 

di
am

et
er

s
1.

 S
in

gl
e 

so
ur

ce
 n

et
w

or
k 

w
ith

 
se

ve
n 

lin
ks

2.
 H

an
oi

 n
et

w
or

k
3.

 A
 tw

o-
re

se
rv

oi
r n

et
w

or
k 

w
ith

 3
4 

co
nn

ec
tio

ns

In
 p

ar
tic

ul
ar

, t
he

 im
pr

ov
ed

 G
A

 
w

ith
 se

ar
ch

 sp
ac

e 
re

du
c-

tio
n 

pe
rfo

rm
s b

et
te

r f
or

 b
ig

 
ne

tw
or

ks

D
an

dy
 e

t a
l. 

[8
9]

G
A

1.
 R

ed
uc

in
g 

w
as

te
w

at
er

, r
ec

y-
cl

in
g,

 a
nd

 p
ot

ab
le

 n
et

w
or

k 
de

si
gn

 c
os

ts

2.
 W

as
te

w
at

er
 sy

ste
m

1.
 H

um
e/

Ep
pi

ng
 c

or
rid

or
, 

no
rth

 M
el

bo
ur

ne
, A

us
tra

lia
A

n 
in

te
gr

at
iv

e 
ap

pr
oa

ch
 to

 th
e 

pl
an

ni
ng

 is
su

e 
un

de
r c

on
si

d-
er

at
io

n 
w

as
 sh

ow
n 

to
 b

e 
fe

as
i-

bl
e.

 T
hi

s s
tra

te
gy

 w
as

 a
nt

ic
i-

pa
te

d 
to

 in
cr

ea
se

 th
e 

ap
pe

al
 o

f 
th

ird
 p

ip
e 

sy
ste

m
s a

nd
 re

su
lt 

in
 si

gn
ifi

ca
nt

 sa
vi

ng
s i

n 
us

in
g 

sc
ar

ce
 w

at
er

 su
pp

lie
s.”



4228 S. Parvaze et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

G
iu

sto
lis

i e
t a

l. 
[1

78
]

O
PT

IM
O

G
A

1.
 M

in
im

iz
in

g 
th

e 
l d

es
ig

n 
co

st 
of

 n
et

w
or

ks
2.

 R
ed

uc
in

g 
th

e 
pr

es
su

re
 

de
fic

it 
at

 th
e 

cr
iti

ca
l n

od
e 

as
 

m
uc

h 
as

 p
os

si
bl

e

1.
 P

ip
e 

di
am

et
er

s
2.

 F
ut

ur
e 

no
da

l d
em

an
ds

3.
 F

ut
ur

e 
pi

pe
 ro

ug
hn

es
s

1.
 A

pu
lia

n 
ne

tw
or

k,
 S

ou
th

er
n 

Ita
ly

U
si

ng
 a

 tw
o-

ph
as

e 
ap

pr
oa

ch
, 

th
e 

su
gg

es
te

d 
op

tim
iz

ed
 

m
ul

ti-
ob

je
ct

iv
e 

G
A

 (O
PT

I-
M

O
G

A
) s

av
ed

 si
gn

ifi
ca

nt
 

co
m

pu
tin

g 
tim

e
K

ra
pi

vk
a 

an
d 

O
stf

el
d 

[1
35

]
C

om
bi

ne
d 

G
A

-L
P

1.
 M

in
im

iz
in

g 
th

e 
l d

es
ig

n 
co

st 
of

 n
et

w
or

ks
1.

 P
ip

e 
se

gm
en

t l
en

gt
hs

 w
ith

 
kn

ow
n 

di
am

et
er

s
1.

 G
ra

vi
ty

-s
up

pl
ie

d 
tw

o-
lo

op
 

ne
tw

or
k

Th
e 

su
gg

es
te

d 
ap

pr
oa

ch
, w

hi
ch

 
em

pl
oy

s a
 h

yb
rid

 o
f t

he
 

ge
ne

tic
 a

lg
or

ith
m

 a
nd

 li
ne

ar
 

pr
og

ra
m

m
in

g 
(G

A
-L

P)
 in

 a
 

tw
o-

ph
as

e 
pr

oc
ed

ur
e,

 o
ut

pe
r-

fo
rm

s t
he

 re
gu

la
r G

A
C

ist
y 

[1
36

]
G

A
LP

1.
 M

in
im

iz
in

g 
th

e 
l d

es
ig

n 
co

st 
of

 n
et

w
or

ks
1.

 T
he

 le
ng

th
s o

f p
ip

e 
se

g-
m

en
ts

 o
f v

ar
io

us
 d

ia
m

et
er

s
1.

 H
an

oi
 n

et
w

or
k

2.
 H

an
oi

 n
et

w
or

k 
do

ub
le

d
3.

 T
he

 H
an

oi
 T

rip
le

 N
et

w
or

k

G
A

 a
nd

 L
P 

in
te

gr
at

io
n 

m
et

ho
d 

re
gu

la
rly

 y
ie

ld
s b

et
te

r r
es

ul
ts

 
th

an
 p

re
vi

ou
sly

 re
po

rte
d 

m
et

ho
ds

W
u 

et
 a

l. 
[8

3]
W

SM
G

A
1.

 R
ed

uc
in

g 
th

e 
ne

tw
or

k’
s 

ca
pi

ta
l c

os
t, 

in
cl

ud
in

g 
pi

pe
s 

an
d 

pu
m

ps
2.

 R
ed

uc
in

g 
th

e 
cu

rr
en

t v
al

ue
 

of
 p

um
p 

re
pl

ac
em

en
t/r

ef
ur

-
bi

sh
m

en
t e

xp
en

se
s a

s m
uc

h 
as

 p
os

si
bl

e
3.

 R
ed

uc
in

g 
th

e 
cu

rr
en

t v
al

ue
 

of
 p

um
p 

ru
nn

in
g 

ex
pe

ns
es

 
as

 m
uc

h 
as

 p
os

si
bl

e 
(i.

e.
, 

el
ec

tri
ci

ty
 c

on
su

m
pt

io
n)

4.
 R

ed
uc

in
g 

G
H

G
 e

m
is

si
on

s

1.
 P

ip
e 

si
ze

s
2.

 P
um

p 
se

le
ct

io
n

3.
 T

an
k 

lo
ca

tio
n 

se
le

ct
io

n

1.
 A

 st
ra

ig
ht

fo
rw

ar
d 

ne
tw

or
k 

w
ith

 a
 si

ng
le

 so
ur

ce
, n

in
e 

pi
pe

lin
es

, a
nd

 a
 si

ng
le

 ta
nk

 
pl

ac
em

en
t

Pr
es

en
t V

al
ue

 A
na

ly
si

s (
PV

A
) 

ac
co

un
ts

 fo
r f

ut
ur

e 
co

sts
 a

nd
 

em
is

si
on

s
PV

A
 e

m
pl

oy
s a

 w
id

e 
ra

ng
e 

of
 

di
sc

ou
nt

 ra
te

s t
o 

as
se

ss
 o

bj
ec

-
tiv

e 
fu

nc
tio

ns
Th

e 
ch

oi
ce

 o
f d

is
co

un
t r

at
es

 
si

gn
ifi

ca
nt

ly
 in

flu
en

ce
s t

he
 

de
ci

si
on

’s
 o

ut
co

m
e 

be
ca

us
e 

it 
is

 d
is

co
ve

re
d 

th
at

 th
e 

Pa
re

to
 

fro
nt

 is
 h

ig
hl

y 
se

ns
iti

ve
 to

 
th

em
H

ag
hi

gh
i e

t a
l. 

[1
37

]
G

A
-I

LP
1.

 R
ed

uc
in

g 
th

e 
ov

er
al

l c
os

t o
f 

th
e 

ne
tw

or
k,

 in
cl

ud
in

g 
pi

pe
s

1.
 P

ip
e 

di
am

et
er

-r
el

at
ed

 z
er

o-
un

ity
 v

ar
ia

bl
es

1.
 H

an
oi

 n
et

w
or

k
2.

 T
w

o-
re

se
rv

oi
r n

et
w

or
k 

w
ith

 
34

 li
nk

s

D
ue

 to
 IL

P’
s a

bi
lit

y 
to

 p
re

ve
nt

 
tim

e-
in

te
ns

iv
e 

an
d 

bl
in

d 
se

ar
ch

es
 in

 th
e 

G
A

 a
nd

 to
 

ad
va

nc
e 

ea
ch

 c
hr

om
os

om
e 

to
 

a 
cl

os
e 

to
 o

pt
im

al
 d

es
ig

n,
 th

e 
G

A
-I

LP
 a

pp
ro

ac
h 

id
en

tifi
es

 
th

e 
op

tim
al

 so
lu

tio
n 

ve
ry

 
qu

ic
kl

y 
an

d 
eff

ec
tiv

el
y



4229Optimization of Water Distribution Systems Using Genetic Algorithms: A Review  

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

A
rti

na
 e

t a
l. 

[7
5]

N
SG

A
-I

I
1.

 R
ed

uc
e 

th
e 

ca
pi

ta
l c

os
t o

f 
th

e 
ne

tw
or

k 
(p

ip
es

)
2.

 R
ed

uc
e 

th
e 

pe
na

lty
 fo

r 
ex

ce
ed

in
g 

pr
es

su
re

 li
m

ita
-

tio
ns

1.
 P

ip
e 

di
am

et
er

s
1.

 H
an

oi
 n

et
w

or
k

2.
 M

od
en

a 
ne

tw
or

k,
 It

al
y

Th
e 

gl
ob

al
 a

nd
 is

la
nd

 m
od

el
s 

ar
e 

ru
n 

si
m

ul
ta

ne
ou

sly
Th

e 
gl

ob
al

 m
od

el
 sp

ee
ds

 u
p 

co
m

pu
ta

tio
n.

 O
n 

th
e 

ot
he

r 
ha

nd
, t

he
 is

la
nd

 m
od

el
 ra

is
es

 
th

e 
qu

al
ity

 o
f s

ol
ut

io
ns

 
by

 in
tro

du
ci

ng
 si

gn
ifi

ca
nt

 
m

od
ifi

ca
tio

ns
 to

 th
e 

al
go

rit
hm

 
ex

pl
or

at
io

n 
te

ch
ni

qu
e

Fu
 e

t a
l. 

[1
60

]
ε-

N
SG

A
-I

I
1.

 M
in

im
iz

in
g 

th
e 

ca
pi

ta
l c

os
t 

of
 th

e 
ne

tw
or

k 
ex

pa
ns

io
n 

an
d 

re
ha

bi
lit

at
io

n
2.

 M
in

im
iz

in
g 

th
e 

co
st 

of
 

op
er

at
io

n 
of

 W
D

S
3.

 M
in

im
iz

in
g 

th
e 

hy
dr

au
lic

 
fa

ilu
re

 o
f t

he
 sy

ste
m

4.
 M

in
im

iz
in

g 
th

e 
fir

e 
flo

w
 

de
fic

it
5.

 M
in

im
iz

in
g 

th
e 

to
ta

l l
ea

k-
ag

e 
of

 th
e 

sy
ste

m
6.

 M
in

im
iz

in
g 

th
e 

w
at

er
 a

ge

1.
 D

ia
m

et
er

s o
f n

ew
 p

ip
es

2.
 E

xi
sti

ng
 p

ip
e 

op
tio

ns
 

in
cl

ud
e 

cl
ea

ni
ng

 a
nd

 li
ni

ng
 

or
 d

up
lic

at
in

g 
w

ith
 a

 p
ar

al
-

le
l p

ip
e

3.
 T

an
k 

po
si

tio
ns

 (i
nt

eg
er

)
4.

 T
he

 n
um

be
r o

f p
um

ps
 th

at
 

ar
e 

op
er

at
io

na
l 2

4 
h 

a 
da

y

1.
 A

ny
to

w
n 

ne
tw

or
k

M
an

y-
ob

je
ct

iv
e 

vi
su

al
 a

na
ly

tic
s 

us
in

g 
ε-

N
SG

A
-I

I w
as

 u
se

d 
to

 a
ch

ie
ve

 st
re

ng
th

en
in

g,
 

ex
pa

ns
io

n,
 re

ha
bi

lit
at

io
n,

 a
nd

 
op

er
at

io
n,

 e
m

br
ac

in
g 

di
ffe

re
nt

 
lo

ad
in

g 
si

tu
at

io
ns

 a
nd

 w
at

er
 

qu
al

ity
Th

e 
ad

va
nt

ag
es

 o
f a

 m
ul

ti-
ob

je
ct

iv
e 

op
tim

iz
at

io
n 

m
et

ho
d 

w
er

e 
hi

gh
lig

ht
ed

 
in

 th
is

 re
se

ar
ch

 in
 o

rd
er

 to
 

fa
ci

lit
at

e 
m

or
e 

tra
ns

pa
re

nt
 

an
d 

w
el

l-i
nf

or
m

ed
 d

ec
is

io
n-

m
ak

in
g 

du
rin

g 
th

e 
W

D
S 

de
si

gn
 p

ro
ce

ss
K

an
g 

an
d 

La
ns

ey
 [8

0]
N

SG
A

-I
I

1.
 M

in
im

iz
in

g 
th

e 
or

ig
in

al
 

co
ns

tru
ct

io
n 

co
st 

of
 th

e 
sy

ste
m

 (p
ip

es
, p

um
ps

, t
an

ks
, 

an
d 

w
as

te
w

at
er

 tr
ea

tm
en

t 
fa

ci
lit

ie
s)

2.
 R

ed
uc

in
g 

pr
ed

ic
te

d 
op

er
at

io
n 

an
d 

m
ai

nt
en

an
ce

 
ex

pe
ns

es
;

3.
 R

ed
uc

in
g 

th
e 

co
st 

of
 a

da
p-

tiv
e 

co
ns

tru
ct

io
n 

to
 e

xt
en

d 
th

e 
sy

ste
m

 if
 n

ec
es

sa
ry

;
4.

 R
ed

uc
in

g 
th

e 
pe

na
lty

 c
os

t 
fo

r b
re

ak
in

g 
co

ns
tra

in
ts

5.
 R

ed
uc

e 
th

e 
va

ria
bi

lit
y 

of
 

re
al

 c
os

ts
, m

ea
su

re
d 

as
 th

e 
st

an
da

rd
 d

ev
ia

tio
n 

ac
ro

ss
 

di
ffe

re
nt

 d
es

ig
n 

po
ss

ib
ili

tie
s

1.
 P

ip
e 

si
ze

s
2.

 C
ap

ac
ity

 o
f p

um
p 

st
at

io
ns

3.
 C

ap
ac

ity
 o

f w
as

te
w

at
er

 
tre

at
m

en
t p

la
nt

s
4.

  +
 R

ed
uc

e 
(a

) t
he

 o
rig

in
al

 
co

ns
tru

ct
io

n 
co

st 
of

 th
e 

sy
ste

m
 (p

ip
es

, p
um

ps
, t

an
ks

, 
an

d 
w

as
te

w
at

er
 tr

ea
tm

en
t 

fa
ci

lit
ie

s)
, (

b)
 a

nt
ic

ip
at

ed
 

op
er

at
in

g 
an

d 
m

ai
nt

en
an

ce
 

ex
pe

ns
es

, (
c)

 th
e 

co
st 

of
 

ad
ap

tiv
e 

co
ns

tru
ct

io
n 

to
 

ex
te

nd
 th

e 
sy

ste
m

 if
 n

ec
es

-
sa

ry
, a

nd
 (d

) t
he

 p
en

al
ty

 c
os

t 
fo

r b
re

ak
in

g 
th

e 
co

ns
tra

in
ts

1.
 W

at
er

 sy
ste

m
 p

la
nn

in
g 

in
 

so
ut

he
as

t T
uc

so
n,

 A
riz

on
a 

(w
at

er
 su

pp
ly

 a
nd

 re
us

e 
w

at
er

 n
et

w
or

ks
)

Sc
en

ar
io

-B
as

ed
 M

ul
ti-

O
bj

ec
-

tiv
e 

Ro
bu

st 
O

pt
im

iz
at

io
n 

(S
M

O
RO

)o
ffe

re
d 

a 
str

on
g 

an
d 

ad
ap

ta
bl

e 
sy

ste
m

 d
es

ig
n 

th
ro

ug
h 

a 
ba

la
nc

ed
 a

pp
ro

ac
h 

to
 b

ot
h 

th
e 

in
iti

al
 o

ut
la

y 
an

d 
an

y 
fu

tu
re

 ri
sk

. I
t w

as
 e

st
ab

-
lis

he
d 

th
at

 th
e 

m
os

t i
m

po
rta

nt
 

un
ce

rta
in

ty
 in

 sy
ste

m
 d

es
ig

n 
is

 sy
ste

m
 d

em
an

d



4230 S. Parvaze et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

M
cC

ly
m

on
te

t a
l. 

[1
79

]
N

SG
A

-I
I a

nd
 S

PE
A

2 
in

te
-

gr
at

ed
 w

ith
 M

C
H

H
1.

 M
in

im
iz

in
g 

th
e 

co
st 

of
 

ne
tw

or
k 

(p
ip

el
in

e)
 d

es
ig

n
2.

 M
in

im
iz

in
g 

th
e 

de
fic

it 
of

 
to

ta
l h

ea
d 

at
 n

od
es

3.
 M

in
im

iz
in

g 
th

e 
ris

k 
of

 
w

at
er

 d
is

co
lo

ra
tio

n
4.

 M
in

im
iz

in
g 

th
e 

pe
na

lty
 

fo
r b

re
ak

in
g 

th
e 

pr
es

su
re

 
co

ns
tra

in
t, 

an
d

5.
 M

in
im

iz
in

g 
th

e 
pe

na
lty

 
fo

r b
re

ac
hi

ng
 th

e 
ve

lo
ci

ty
 

co
ns

tra
in

t

1.
 P

ip
e 

si
ze

1.
 A

ny
to

w
n 

ne
tw

or
k

2.
 R

ea
l-w

or
ld

 n
et

w
or

k 
w

ith
 

tw
o 

so
ur

ce
s

It 
w

as
 sh

ow
n 

th
at

 M
C

H
H

 
va

ria
tio

ns
 o

ut
pe

rfo
rm

 th
e 

or
ig

in
al

 a
lg

or
ith

m
s i

n 
te

rm
s 

of
 p

er
fo

rm
an

ce
. I

t i
s d

em
on

-
str

at
ed

 th
at

 M
C

H
H

 c
an

 fi
nd

 
a 

br
oa

de
r v

ar
ie

ty
 o

f s
ol

ut
io

ns
 

ac
ro

ss
 th

e 
ne

tw
or

ks
 c

om
pa

re
d 

w
ith

 S
im

pl
e 

R
an

do
m

 a
nd

 
TS

Ro
ul

W
he

el

Ro
sh

an
i a

nd
 F

ili
on

 [1
80

]
N

SG
A

-I
I

1.
 R

ed
uc

in
g 

th
e 

cu
rr

en
t v

al
ue

 
of

 th
e 

ne
tw

or
k’

s c
ap

ita
l 

ex
pe

ns
es

, s
uc

h 
as

 re
pa

ir 
or

 
re

pl
ac

em
en

t, 
pi

pe
 d

up
lic

a-
tio

n,
 p

ip
e 

lin
in

g,
 a

nd
 n

ew
 

pi
pe

 in
st

al
la

tio
n

2.
 R

ed
uc

in
g 

th
e 

pr
es

en
t v

al
ue

 
of

 ru
nn

in
g 

ex
pe

ns
es

 su
ch

 
as

 w
at

er
 lo

ss
 d

ue
 to

 le
ak

s, 
br

ea
ka

ge
 re

pa
ir,

 a
nd

 e
le

c-
tri

ci
ty

 fo
r w

at
er

 p
um

pi
ng

1.
 T

im
e,

 lo
ca

tio
n,

 a
nd

 k
in

d 
of

 
re

ha
bi

lit
at

io
n

2.
 T

he
 d

ia
m

et
er

 o
f a

 p
ip

e 
be

in
g 

re
pl

ac
ed

 o
r d

up
li-

ca
te

d,
 th

e 
di

am
et

er
 o

f a
 n

ew
 

pi
pe

 in
 a

n 
ar

ea
 e

xp
ec

te
d 

to
 

ex
pe

rie
nc

e 
fu

tu
re

 g
ro

w
th

, 
an

d 
th

e 
ty

pe
 o

f l
in

in
g 

te
ch

-
no

lo
gy

 e
m

pl
oy

ed

1.
 F

ai
rfi

el
d 

ne
tw

or
k 

in
 

A
m

he
rs

tv
ie

w
 a

nd
 O

de
ss

a,
 

O
nt

ar
io

, C
an

ad
a

Th
e 

stu
dy

 sh
ow

ed
 th

at
 b

ud
ge

t 
re

str
ic

tio
ns

 p
re

ve
nt

 e
ar

ly
 a

nd
 

si
gn

ifi
ca

nt
 in

ve
stm

en
ts

 in
 p

ip
e 

re
ha

bi
lit

at
io

n.
 T

he
 d

el
ay

 in
 

pi
pe

 re
ha

bi
lit

at
io

n 
in

cr
ea

se
s 

op
er

at
in

g 
ex

pe
ns

es
 si

nc
e 

un
de

ve
lo

pe
d 

pi
pe

lin
es

 le
ak

 
m

or
e,

 b
re

ak
 m

or
e 

ea
si

ly
, a

nd
 

re
qu

ire
 m

or
e 

en
er

gy

B
as

up
i a

nd
 K

ap
el

an
 [1

81
]

N
SG

A
-I

I
1.

 M
in

im
iz

in
g 

to
ta

l i
nt

er
ve

n-
tio

n 
co

st 
of

 re
ha

bi
lit

at
io

n 
an

d 
op

er
at

io
n

2.
 M

ax
im

iz
in

g 
th

e 
sy

ste
m

 
re

si
lie

nc
e 

fo
r t

he
 e

nd
-

of
-p

la
nn

in
g 

ho
riz

on
 b

y 
em

pl
oy

in
g 

a 
re

si
lie

nc
e 

in
de

x

1.
 In

st
al

la
tio

n 
of

 n
ew

 p
ip

es
2.

 P
ip

e 
du

pl
ic

at
io

n/
cl

ea
ni

ng
/

lin
in

g 
of

 e
xi

sti
ng

 p
ip

es
3.

 T
he

 in
st

al
la

tio
n 

an
d 

si
zi

ng
 

of
 n

ew
 ta

nk
s,

4.
 P

um
pi

ng
 sc

he
du

le
s

5.
 C

rit
er

io
n 

re
qu

ire
m

en
ts

1.
 N

ew
 Y

or
k 

C
ity

 tu
nn

el
s

2.
 A

ny
to

w
n 

ne
tw

or
k

In
 te

rm
s o

f c
os

t a
nd

 ro
bu

st-
ne

ss
, t

he
 id

ea
l fl

ex
ib

le
 d

es
ig

n 
su

rp
as

se
s t

he
 c

om
pa

ra
bl

e 
op

tim
al

 d
et

er
m

in
ist

ic
 d

es
ig

n 
un

de
r f

ut
ur

e 
de

m
an

d 
un

ce
r-

ta
in

ty
It 

al
lo

w
s t

he
 sy

ste
m

 to
 a

da
pt

 
an

d 
de

la
y 

in
te

rv
en

tio
ns

B
i e

t a
l. 

[1
62

]
G

A
 u

si
ng

 th
e 

pr
e-

sc
re

en
ed

 
he

ur
ist

ic
 sa

m
pl

in
g 

m
et

ho
d 

(P
H

SM
)

1.
 M

in
im

iz
in

g 
th

e 
ne

tw
or

k 
de

si
gn

 c
os

t (
pi

pe
s)

;
2.

 M
in

im
iz

in
g 

th
e 

pe
na

lty
 c

os
t 

fo
r e

xc
ee

di
ng

 th
e 

pr
es

su
re

 
lim

ita
tio

ns

1.
 P

ip
e 

di
am

et
er

s
1.

 H
an

oi
 n

et
w

or
k

2.
 E

xt
en

de
d 

H
an

oi
3.

 Z
hi

 Ji
an

g 
(Z

J)
 n

et
w

or
k,

 
C

hi
na

4.
 B

al
er

m
a 

irr
ig

at
io

n 
ne

tw
or

k,
 

A
lm

er
ia

, S
pa

in
5.

 R
ur

al
 n

et
w

or
k

6.
 F

os
s_

po
ly

_1
, I

ta
ly

7.
M

od
ifi

ed
 K

an
g 

an
d 

La
n-

se
y’

s n
et

w
or

k 
(K

Lm
od

)

Th
e 

co
m

pu
ta

tio
na

l e
ffe

ct
iv

e-
ne

ss
 a

nd
 so

lu
tio

n 
qu

al
ity

 o
f 

PH
SM

 w
er

e 
su

pe
rio

r t
o 

th
os

e 
of

 o
th

er
 sa

m
pl

in
g 

te
ch

ni
qu

es
, 

an
d 

th
is

 a
dv

an
ta

ge
 g

ro
w

s w
ith

 
th

e 
ne

tw
or

k 
si

ze



4231Optimization of Water Distribution Systems Using Genetic Algorithms: A Review  

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

C
re

ac
o 

et
 a

l. 
[1

82
]

M
od

ifi
ed

 N
SG

A
-I

I
1.

 K
ee

pi
ng

 th
e 

ne
tw

or
k’

s t
ot

al
 

co
st 

to
 a

 m
in

im
um

2.
 Im

pr
ov

in
g 

ne
tw

or
k 

de
pe

nd
-

ab
ili

ty

1.
 P

ip
e 

di
am

et
er

s
1.

 N
et

w
or

k 
of

 a
 to

w
n 

in
 

no
rth

er
n 

Ita
ly

Th
e 

ne
tw

or
k 

w
as

 si
ze

d 
m

or
e 

co
ns

er
va

tiv
el

y 
(b

ig
ge

r p
ip

e 
si

ze
s a

re
 se

en
 m

os
tly

 d
ur

in
g 

th
e 

fir
st 

bu
ild

in
g 

ph
as

es
), 

m
ak

in
g 

it 
m

or
e 

ad
ap

ta
bl

e 
to

 c
ha

ng
in

g 
de

m
an

d 
gr

ow
th

 
si

tu
at

io
ns

 o
ve

r t
im

e
A

nd
ra

de
 e

t a
l. 

[1
83

]
G

A
1.

 K
ee

pi
ng

 th
e 

ne
tw

or
k’

s t
ot

al
 

co
st 

to
 a

 m
in

im
um

1.
 P

ip
e 

di
am

et
er

s
2.

 D
os

e 
of

 c
hl

or
in

e 
at

 th
e 

w
at

er
 so

ur
ce

1.
 H

an
oi

 n
et

w
or

k 
(in

cl
. 3

2 
no

de
s)

2.
 M

od
ifi

ed
 K

an
g 

an
d 

La
n-

se
y’

s n
et

w
or

k

Th
e 

pe
rfo

rm
an

ce
 o

f a
n 

offl
in

e 
A

N
N

 a
pp

lie
d 

to
 W

D
S 

de
si

gn
 

is
su

es
 w

as
 e

nh
an

ce
d 

in
 te

rm
s 

of
 a

rc
hi

te
ct

ur
e 

an
d 

tra
in

in
g 

da
ta

, i
m

pa
ct

in
g 

sp
ee

d 
an

d 
ac

cu
ra

cy
Zh

en
g 

et
 a

l. 
[1

84
]

N
SG

A
-I

I
1.

 K
ee

pi
ng

 th
e 

ne
tw

or
k’

s t
ot

al
 

co
st 

to
 a

 m
in

im
um

2.
 Im

pr
ov

in
g 

ne
tw

or
k 

re
si

l-
ie

nc
y

1.
 P

ip
e 

di
am

et
er

s
1.

 N
ew

 Y
or

k 
C

ity
 tu

nn
el

s
2.

 H
an

oi
 n

et
w

or
k

3.
 F

os
so

lo
 n

et
w

or
k,

 It
al

y
4.

 P
es

ca
ra

 n
et

w
or

k,
 It

al
y

5.
 M

od
en

a 
ne

tw
or

k,
 It

al
y

6.
 B

al
er

m
a 

irr
ig

at
io

n 
ne

tw
or

k,
 

A
lm

er
ia

, S
pa

in

It 
es

ta
bl

is
he

d 
a 

fu
nd

am
en

ta
l 

kn
ow

le
dg

e 
of

 th
e 

w
or

ki
ng

 
pr

oc
es

se
s o

f m
ul

ti-
ob

je
ct

iv
e 

ev
ol

ut
io

na
ry

 a
lg

or
ith

m
s 

(M
O

EA
s)

. W
ith

 re
co

m
m

en
-

da
tio

ns
 o

n 
ho

w
 to

 c
ho

os
e 

ap
pr

op
ria

te
 a

lg
or

ith
m

s 
(o

pe
ra

to
rs

) f
or

 sp
ec

ifi
c 

op
ti-

m
iz

at
io

n 
ta

sk
s

W
he

n 
co

m
pu

tin
g 

re
so

ur
ce

s a
re

 
re

str
ic

te
d,

 N
SG

A
-I

I i
s a

 g
oo

d 
ch

oi
ce

 fo
r fi

nd
in

g 
so

lu
tio

ns
 

th
at

 c
ov

er
 a

 b
ig

 p
or

tio
n 

of
 

th
e 

Pa
re

to
 fr

on
t. 

A
t t

he
 sa

m
e 

tim
e,

 B
or

g 
is

 a
 g

oo
d 

ch
oi

ce
 

fo
r o

bt
ai

ni
ng

 so
lu

tio
ns

 th
at

 
co

ve
r a

 sm
al

l p
or

tio
n 

of
 th

e 
Pa

re
to

 fr
on

t
C

ist
y 

et
 a

l. 
[1

85
]

N
SG

A
-I

I
1.

 M
in

im
iz

in
g 

th
e 

de
si

gn
 c

os
t 

of
 th

e 
ne

tw
or

k 
(p

ip
es

)
2.

 M
in

im
iz

in
g 

th
e 

to
ta

l h
ea

d 
de

fic
it 

in
 th

e 
ne

tw
or

k

1.
 P

ip
e 

di
am

et
er

s
1.

 B
al

er
m

a 
irr

ig
at

io
n 

ne
tw

or
k,

 
A

lm
er

ia
, S

pa
in

In
 te

rm
s o

f c
os

t a
nd

 c
om

pu
tin

g 
eff

or
t, 

th
e 

pr
op

os
ed

 te
ch

ni
qu

e 
pe

rfo
rm

ed
 so

m
ew

ha
t b

et
te

r 
th

an
 p

re
vi

ou
sly

 e
m

pl
oy

ed
 

si
m

ila
r m

et
ho

ds
M

uh
am

m
ed

 e
t a

l. 
[1

86
]

N
SG

A
-I

I
1.

 R
ed

uc
in

g 
th

e 
ov

er
al

l c
ap

ita
l 

co
st 

of
 d

up
lic

at
ed

 p
ip

el
in

es
2.

 R
ed

uc
in

g 
th

e 
to

ta
l n

um
be

r 
of

 d
em

an
d 

no
de

s w
ith

 
pr

es
su

re
s l

ow
er

 th
an

 th
e 

m
in

im
um

 re
qu

ire
d

1.
 P

ip
e 

di
am

et
er

s
1.

 E
X

N
ET

 w
at

er
 n

et
w

or
k

Th
e 

ap
pr

oa
ch

 p
er

fo
rm

ed
 

be
tte

r t
ha

n 
th

e 
se

ar
ch

 sp
ac

e 
(a

ll 
pi

pe
s u

til
iz

ed
 a

s d
es

ig
n 

va
ria

bl
es

) a
nd

 e
ng

in
ee

rin
g 

ju
dg

m
en

t-b
as

ed
 o

pt
im

iz
at

io
n 

pr
oc

ed
ur

es



4232 S. Parvaze et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
ut

ho
r/Y

ea
r (

Re
fe

re
nc

e)
O

pt
im

iz
at

io
n 

M
et

ho
d

O
bj

ec
tiv

es
D

ec
is

io
n 

Va
ria

bl
es

Te
st 

ne
tw

or
ks

Re
su

lts

M
ar

tín
ez

-B
ah

en
a 

et
 a

l. 
[8

6]
G

A
1.

 R
eh

ab
ili

ta
tio

n 
an

d 
str

en
gt

h-
en

in
g 

of
 th

e 
w

at
er

 d
ist

rib
u-

tio
n 

sy
ste

m
2.

 M
in

im
iz

in
g 

th
e 

co
st 

of
 su

p-
pl

y 
an

d 
in

st
al

la
tio

n 
of

 n
ew

 
co

m
po

ne
nt

s o
f t

he
 W

D
S

1.
 O

pt
im

um
 lo

ca
tio

n 
of

 th
e 

va
lv

es
2.

 P
ro

pe
r c

on
fig

ur
at

io
n 

of
 th

e 
sto

ra
ge

 ta
nk

s
3.

 P
ip

e 
di

am
et

er
s

1.
 F

ra
cc

io
na

m
ie

nt
o 

Re
al

 
M

on
te

ca
si

no
” 

(F
R

M
), 

in
 

H
ui

tz
ila

c,
 M

or
el

os
, M

ex
ic

o

Th
e 

fin
di

ng
s o

f t
he

 e
vo

lu
tio

n-
ar

y 
al

go
rit

hm
 fo

r t
he

 F
R

M
 

ne
tw

or
k 

de
m

on
str

at
ed

 th
at

 
ap

pr
op

ria
te

 a
nd

 b
al

an
ce

d 
pr

es
su

re
s m

ig
ht

 b
e 

pr
od

uc
ed

 
by

 m
ak

in
g 

lit
tle

 c
ha

ng
es

 to
 

th
e 

cu
rr

en
t n

et
w

or
k 

at
 a

 lo
w

 
co

st
So

ro
us

h 
an

d 
A

be
di

ni
 [1

87
]

G
A

1.
 M

in
im

iz
in

g 
th

e 
de

si
gn

 c
os

t 
of

 a
n 

op
tim

al
 p

re
ss

ur
e 

se
n-

so
r n

et
w

or
k

1.
 S

en
so

r p
la

ce
m

en
t

1.
 A

ny
to

w
n 

ne
tw

or
k

2.
 A

 re
al

-li
fe

 W
D

S 
of

 C
-T

ow
n

Th
e 

su
gg

es
te

d 
te

ch
ni

qu
e 

al
lo

w
s 

pl
an

ne
rs

, w
at

er
 u

til
iti

es
, 

an
d 

m
an

y 
ot

he
rs

 e
ng

ag
ed

 in
 

de
ci

si
on

-m
ak

in
g 

to
 b

et
te

r 
in

ve
st 

an
d 

m
an

ag
e 

re
str

ic
te

d 
bu

dg
et

s b
y 

im
pl

ic
itl

y,
 if

 n
ot

 
ex

pl
ic

itl
y,

 a
dd

re
ss

in
g 

cu
m

ul
a-

tiv
e 

co
sts

 in
 c

re
at

in
g 

an
 

op
tim

al
 n

et
w

or
k

M
in

ae
e 

et
 a

l. 
[1

88
]

G
en

et
ic

 A
lg

or
ith

m
, P

ar
tic

le
 

Sw
ar

m
 O

pt
im

iz
at

io
n 

(G
A

-
PS

O
)

1.
 R

ed
uc

in
g 

th
e 

su
m

 o
f 

sq
ua

re
 e

rr
or

s a
nd

 th
e 

ro
ot

 
m

ea
n 

sq
ua

re
 e

rr
or

s b
et

w
ee

n 
ob

se
rv

ed
 a

nd
 si

m
ul

at
ed

 
ch

lo
rin

e 
co

nc
en

tra
tio

ns

1.
 W

al
l d

ec
ay

 c
oe

ffi
ci

en
t

1.
 M

ira
j r

ea
l-w

or
ld

 w
at

er
 

ne
tw

or
k

A
s a

 h
yb

rid
 o

f G
A

 a
nd

 P
SO

, 
G

A
PS

O
 re

du
ce

d 
th

e 
co

n-
str

ai
nt

s o
f t

he
 c

om
po

ne
nt

 
al

go
rit

hm
s, 

re
su

lti
ng

 in
 a

 
hy

br
id

 a
lg

or
ith

m
 th

at
 w

as
 

m
or

e 
eff

ec
tiv

e 
in

 fi
nd

in
g 

th
e 

gl
ob

al
ly

 o
pt

im
al

 so
lu

tio
n

M
on

se
f e

t a
l. 

[1
89

]
N

SG
A

-I
I, 

M
O

D
E 

an
d 

M
O

PS
O

1.
 R

ed
uc

in
g 

th
e 

ne
tw

or
k 

co
st

2.
 Im

pr
ov

in
g 

ne
tw

or
k 

re
li-

ab
ili

ty

1.
 P

ip
e 

si
ze

1.
 N

ew
 Y

or
k 

tu
nn

el
 w

at
er

 
ne

tw
or

k 
an

d
2.

 H
an

oi
 w

at
er

 n
et

w
or

k
3.

 P
es

ca
ra

 w
at

er
 n

et
w

or
k

4.
 M

od
en

a 
w

at
er

 n
et

w
or

k

In
 th

e 
H

an
oi

 n
et

w
or

k 
de

si
gn

, 
th

e 
Pa

re
to

 F
ro

nt
s p

ro
du

ce
d 

by
 M

O
D

E 
an

d 
N

SG
A

-I
I w

er
e 

ne
ar

ly
 e

qu
al

 a
nd

 o
ut

pe
r-

fo
rm

ed
 M

O
PS

O
 (l

ay
ou

t 
de

si
gn

). 
H

ow
ev

er
, u

nl
ik

e 
th

e 
ot

he
r t

w
o 

al
go

rit
hm

s, 
M

O
D

E 
to

ok
 le

ss
 ti

m
e 

to
 c

om
pl

et
e 

th
e 

ta
sk

Zh
an

g 
et

 a
l. 

[1
90

]
N

SG
A

-I
I

1.
 M

in
im

iz
in

g 
th

e 
av

er
ag

e 
pr

es
su

re
2.

 M
in

im
iz

in
g 

th
e 

av
er

ag
e 

w
at

er
 a

ge
3.

 M
in

im
iz

in
g 

th
e 

tra
ns

fo
rm

-
in

g 
co

sts
4.

 M
ax

im
iz

in
g 

th
e 

nu
m

be
r o

f 
se

ct
or

s

1.
 P

ip
e 

co
nd

iti
on

 (o
pe

n 
or

 
cl

os
ed

)
1.

 N
et

w
or

k 
N

2
Th

e 
stu

dy
 d

is
cu

ss
ed

 th
e 

id
en

tifi
ca

tio
n 

of
 m

ai
n 

pi
pe

lin
es

 c
on

si
de

rin
g 

na
tu

ra
l 

an
d 

ad
m

in
ist

ra
tiv

e 
bo

rd
er

s. 
In

ste
ad

 o
f l

ea
vi

ng
 a

ll 
va

lv
es

 
cl

os
ed

, t
he

 c
on

ne
ct

in
g 

pi
pe

s 
be

tw
ee

n 
se

ct
or

s a
re

 a
dd

i-
tio

na
lly

 a
dj

us
te

d 
to

 e
ns

ur
e 

th
e 

de
pe

nd
ab

ili
ty

 o
f w

at
er

 
de

liv
er

y



4233Optimization of Water Distribution Systems Using Genetic Algorithms: A Review  

1 3

a branched pipe network to identify the best configuration 
for a network with a single source and several nodes. Wal-
ters and Lohbeck [143] used GAs to identify the best pipe 
diameters in a branching pipe network. Simpson et al. [28] 
applied a GA search to identify the pipe network optimiza-
tion problem alternatives. Earlier, single-objective models 
were used to optimize WDS design problems. Different 
objectives were grouped into one, i.e., the most economical 
design [144]. A multi-objective optimization approach using 
genetic algorithms was first used in the late 1990s [145], 
which considered electricity cost and a pump as objectives. 
In recent times, multiple objectives are considered in addi-
tion to the cost reduction, including pressure deficit [146, 
147] or excess pressure [148] at network nodes, the penalty 
cost for violating the pressure constraint [147], greenhouse 
gas (GHG) emissions [83, 149] and water quality [150].

9  Augmentation of Existing Systems

The increase in water demands due to rapid population 
growth coupled with the development and expansion of 
urban areas stresses that the WDSs be upgraded continu-
ously. The upgradation involves strengthening (pipe par-
alleling), rehabilitation (pipe cleaning and relining), and 
expansion.

9.1  Strengthening

System strengthening refers to enhancing an existing WDS 
to meet future needs. This is accomplished by laying dupli-
cated pipes parallel to the existing water mains. As a result, 
it is often referred to as parallel network growth or pipe 
paralleling [74]. The strengthening of existing WDs has 
been achieved using GA [105, 151], or GA in combination 
with Artificial Neural Networks (ANNs) [152], fast messy 
genetic algorithms (fmGA) [153], and non-dominated sort-
ing genetic algorithm II [78]. The complexity of network 
strengthening problems can increase by including water 
quality considerations. These applications include decision 
variables of water quality in addition to pipe size optimiza-
tion [154].

9.2  Rehabilitation

An existing network that is not working satisfactorily can 
also be rehabilitated using the basic algorithm of pipe siz-
ing. There are many options for network rehabilitation, 
including pipe removal, replacing old pipes with pipes of 
any set of existing diameters, inserting pipes with the same 
size or smaller inserts, duplication of pipes of any diameter, 
pipelining, pipe cleaning, or taking no action. Simpson et al. 
[28] studied a water distribution system consisting of two 

reservoirs and 14 pipes. Five new pipes were added to the 
system, and three pipes were rehabilitated using GAs. Sup-
pose adequate money is available to upgrade the entire net-
work to a reasonable standard. In that case, the optimization 
can be specified as minimizing the expenditure of upgrad-
ing subject to satisfactory network performance [155]. This 
approach works well for a small to medium-sized network. 
However, numerous problems arise for larger networks when 
the approach is applied to these. The first problem is that less 
finance would be available than required for rehabilitation. 
Secondly, the number of variables becomes extremely large, 
posing difficulties in implementing numerical techniques. In 
practice, with limited capital, it is expected that only a minor 
subset of the network pipes will be selected for rehabilita-
tion [156].

On the one hand, using a variable for expressing each 
pipe in the network is inefficient. Conversely, selecting a 
set of candidate pipes in advance for improvement is unrea-
sonably restrictive. These problems can be overcome using 
a multi-objective approach [157]. The multi-objective 
approach finds all-possible solutions for a range of costs up 
to the maximum amount of money available. It also involves 
developing a set of non-inferior solutions, i.e., solutions 
that any other solution cannot improve on both conditions 
[158]. For the generation of multi-objective optimal solu-
tions, applied GAs include structured messy genetic algo-
rithms (SMGA) [157] and non-dominated sorting genetic 
algorithm-II (NSGA-II) [156].

9.3  Expansion

The expansion of a WDS involves developing or extending 
an existing system beyond its original boundaries. The pri-
mary objective of expansion is to reduce the cost of design 
and operation. The expansion comprises two interdepend-
ent design problems: first, the newly constructed network 
is linked to the current one; and secondly, the existing sys-
tem’s strengthening, rehabilitation, and up-gradation to 
convey increased water demands. Thus, expanding a WDS 
is a complicated process involving designing new and exist-
ing systems. An example of expanding an existing water 
distribution network is the Anytown network problem. The 
Anytown water distribution system, set up by Walski et al. 
[49], has characteristics and complications typical of those 
realized in most real systems. The network is considered a 
realistic benchmark for comparison and testing optimization 
software. Several solutions involving genetic algorithms for 
design optimization were applied to the network from time 
to time. Murphy et al. [159] obtained a standard genetic 
algorithm (SGA) to control the tanks and pumps as added 
design variables. The design of the “Anytown” water dis-
tribution network was significantly improved using struc-
tured messy genetic algorithms (SMGA) [85]. The proposed 
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design had improved capabilities and was more cost-effec-
tive than the earlier attempts. In the succeeding years, some 
more aspects were added to the original design, including 
water quality [160], the expense of building and operating 
treatment facilities [32], and new tank size [81, 88].

Despite the developments in network optimization, devel-
oping new designs for the system or rehabilitation of an 
existing one using a fully automatic optimization technique 
remains challenging. This is especially true for large and 
complex systems where numerous elements are involved 
in the design. In order to overcome the limitations faced 
during the design of large systems, many designers divide 
the problems associated with complex designs into multiple 
phases [161]. These are then solved individually to reduce 
the search space and speed the simulation process [162].

10  Problem Elements in Design

10.1  Pipe Sizing

The simplest application of GA is the determination of 
pipe diameters of a WDS. A set of pipes is selected from 
commercially available sizes, which minimizes the con-
struction cost for a given layout plan network and main-
tains sufficient pressure at all network nodes. Using the 
GA approach, an integer value is assigned to different pipe 
sizes, 1,2,3 [130]. The network design is thus defined by a 
“chromosome,” which can be a binary or integer string of 
these numbers. A network solver (simulation routine) anal-
yses each candidate design for node pressure, and another 
routine determines the construction cost. Many solutions 
which do not have satisfactory nodal pressures are gener-
ated during evolution. These solutions are not discarded 
for being infeasible. However, they are designated feasible 
and add a penalty function to the cost, penalizing insuf-
ficient pressures. Judicious selection of penalty function 
will enable the GA to converge on an optimum solution 
in which all pressures are adequate [163]. Besides aiding 
new network designs, GA can also be employed to design 
extensions of existing networks.

The GA approach has been utilized to design several 
water distribution systems, enabling considerable cost 
savings compared to conventional schemes. The impor-
tance of GAs in designing pipeline distribution systems 
is reflected by the extensive use by various researchers 
and engineers for decades. Goldberg and Kuo [164] used 
GA for the steady-state optimization of the liquid pipe-
line. Savic and Walters [74] developed a computer model 
known as GANET that involved applying GA to optimize 
the least-cost design of water distribution networks. Vaira-
vamoorthy and Ali [165] used GA, including a variable 
penalty coefficient depending on the degree of violation 

of the pressure constraints, to optimize pipeline designs. 
Keedwell and Khu [166] combined the GA approach 
with a local representative cellular automata approach to 
improve water distribution networks’ economics. Many 
researchers and planners reflect on other significant GA 
applications for pipeline system designs [129, 156] [156, 
167, 168].

10.2  Layout

The simple method described above necessitates that all 
pipelines have at least the least diameter in any solution. 
A problem in which at least one pipe has zero diameters 
(i.e., be omitted from the design) cannot be managed without 
substantial modifications to the algorithm, as the elementary 
topology of the network is changed by excluding links [75]. 
This needs reorganization of the input data to the solver for 
network analysis. More primarily, it will lead to the creation 
of disconnected networks (networks in which one or more 
nodes are isolated from the source). With the increase in 
the network size, there is a rapid decrease in the chance of 
forming a connected network using a random set of diam-
eters. The chance becomes zero or negligible for a network 
involving hundreds of pipes [169]. In such a case, the simple 
GA approach becomes obsolete, and other methods must be 
adopted. The method used should be capable of simultane-
ously identifying the optimal layout and size of non-zero 
pipes. Cembrowicz [170] discusses many approaches using 
different GA coding and applying them to real problems. 
Walters and Smith [124] explained that a very effective 
genetic design algorithm that generates the least cost tree-
like networks could be the foundation for a looped distribu-
tion network.

A single-pipe design refers to challenges connected with 
WDS designs that use pipe widths or diameters as decision 
variables. In contrast, a split-pipe design refers to prob-
lems associated with pipe segment lengths of a specified 
diameter [136, 171]. Single-pipe designs provide better 
quality results than the split-pipe design as no redundant 
restrictions are imposed by split-pipe designs [146]. Extra 
decision variables are required to construct or pick pipe 
routes in the case of an undetermined network configura-
tion (for example, while establishing a new or extending 
an existing WDS). These variables can be expressed as a 
binary selection of a link that should be incorporated into 
the pipe route [65].

10.3  Pressure Regulation

One of the significant worries that water distribution organi-
zations face is leakage from water distribution systems. A 
decrease in pressure affects leakage substantially. One eco-
nomical method for executing pressure decrease is changing 
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the system design by resetting stop valves, along with most 
system links [172]. This can partly separate higher-level 
zones from low-lying ones, diminishing the latter’s pres-
sures. A stop valve in the on/off setting is signified by a 
binary digit, giving a direct GA coding. Nonetheless, the 
standard GA administrators are ineffective because crossover 
and mutation frequently lead to disconnected and infeasi-
ble systems [173]. The problem was overcome by a more 
efficient evolution package in which connected and feasible 
networks are produced from the pooled designs of parents.

10.4  Calibration

A primary tool for the efficient design and operation of water 
distribution systems is the mathematical simulation of the 
system [32, 153]. In any case, models constantly require the 
integration of numerical parameters whose exact values are 
unknown. For example, pipe roughness can only be assessed. 
There may be a lack of precision or certainty in recording 
pipe diameters [78]. Network calibration is a technique for 
selecting the values of unknown parameters. It is also an 
optimization process where the difference between the set of 
observed and modeled values is minimized. GAs improves 
network calibration accuracy significantly compared to the 
traditional trial-and-error method [174].

10.5  Pump Scheduling

The cost of pumping water is one of the most important 
operational aspects of water supply distribution systems 
that requires optimization. Ordinarily, a water supply sys-
tem is fed by several electric pumps, most likely from a few 
independent sources, which feed water to various reservoirs 
dispersed throughout the system. The optimization issue is 

determining which pumps to operate at what times of day to 
fulfill the anticipated demand for water at the least electric-
ity expense [85].

The solution to the problem is worked out using GAs. The 
decision on which pump to operate and when to operate is 
coded as a binary signal corresponding to off and on. The 
comprehensive schedule for 24 h is specified by a string with 
24 bits for every pump in the network. Software is required 
to simulate the pipework, pump, and reservoir system for 
24 h for each schedule created [175]. Suppose variable speed 
pumps are used in place of fixed speed pumps. In that case, 
several bits are required for defining operating speed, and 
thus longer strings are also needed [80, 176].

The limitations on the schedule should be consciously 
dealt with. The volume in any reservoir cannot be negative. 
It cannot be allowed to drop below the minimum safe level 
at any point in time. Also, a reservoir cannot store more 
than the full volume and overspill because over-pumping 
is undesirable [148]. Further, the total volume delivered to 
each reservoir should be equivalent to the amount of water 
withdrawn from each reservoir over 24 h. For the above limi-
tations, penalty functions must be developed to ensure the 
practicability of the final optimum schedule.

10.6  Test Networks

Several test networks have been used in the optimization 
of WDS. These networks have different sizes, complexity, 
and components. Small gravity-based WDSs with a single 
source and a limited number of nodes and pipelines [50] or 
those networks comprising a single source, single pump, 
single pipe, and single tank [132] are the simplest of WDS 
networks. An example of a large network is EXNET [177], 
which consists of two sources, nearly 2500 pipes and control 

Table 2  Commonly used test networks for WDS optimization

Name of Test Network Nodes No. of 
sources

Gravity-
based or 
pumped

Optimization Problem Network Modified Versions

Anytown Network (Walski et al. [49]) 19 1 Pumped Strengthening, expan-
sion, and rehabilita-
tion of the existing 
system

Added source and tank (Ostfeld [32]
Added tank (Dziedzic and Karney [191])

Balerma irrigation network (Reca and 
Martínez, [130])

447 4 Gravity Design of new system Not Available

Hanoi Network (Fujiwara and Khang [99]) 32 1 Gravity Design of new system Double Hanoi network, triple Hanoi 
network (Cisty [136])

New York City tunnels (Schaake [69]) 20 1 Gravity Strengthening, expan-
sion and rehabilita-
tion of the existing 
system

Double New York City tunnels (Zecchin 
et al. [191])

Two-loop network [60] 7 1 Gravity Design of new system Designed to strengthen and expand the 
system over a planned horizon [182]
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valves. The real-world optimization problems of WDS 
design include complex, large networks with several ele-
ments. The most commonly used test networks for WDS 
optimization are given in Table 2.

The type of problem under consideration, the analyst’s 
level of knowledge, and familiarity with the particular 
method/tool all influence the solution technique chosen. 
However, frequently there is no explicit explanation given 
as to why one methodology was chosen over another or why 
a different methodology was not used. The analyst’s pref-
erence, level of familiarity, and software accessibility are 
frequently taken into consideration while making this deci-
sion rather than a comparison of the tests run utilizing two 
or more different solution techniques.

11  Present Status and Challenges

Since the 1970s, much effort has been put into applying and 
developing optimization techniques to address WDS design 
optimization problems. The first techniques utilized were 
deterministic and included LP, NLP, and MINLP. After the 
first widely used GA applications in the mid-1990s, there 
was a shift towards stochastic approaches, which subse-
quently came to dominate the area. To date, a wide variety 
of those techniques have been used to optimize the design of 
WDSs. Most of those studies examine the suggested optimi-
zation approach using a limited set of benchmark networks, 
such as the Hanoi network, New York City tunnels, and the 
two-loop network, and only address a simple single-objec-
tive of least-cost design issue (i.e., pipe cost minimization 
constrained by the nodal pressure requirement). Without 
elaborating on why the chosen method worked better for 
a given test network, the typical result was an improved or 
equivalent optimal solution that was attained more quickly 
than by techniques previously employed in the literature. 
As a result, research has been somewhat constrained by the 
need to apply novel metaheuristic optimization techniques 
to relatively straightforward design issues without knowing 
the fundamentals of how algorithms work.

Despite the many benefits, a few issues must be handled 
before genetic algorithms may grow and evolve to help solve 
WDS optimization problems. Genetic algorithms are always 
assumed to work best with a certain initial population. The 
population size has an impact on the solution’s quality as 
well. The algorithm requires more processing time when 
a huge population is considered. The smaller population, 
though, could result in inadequate solutions. Finding the 
right population size is, therefore, a constant challenge. For 
GA, premature convergence is a frequent problem. It may 
result in allele deletion, making it challenging to identify a 
gene. Premature convergence states that the solution will 
be suboptimal if the optimization problem coincides too 

early. Convergence property must be addressed effectively 
to obtain a globally optimal solution rather than a locally 
optimal one (Shirajuddin et al. 2022).

The driving force, or fitness function, determines the fit-
test individual in each algorithm iteration. A costlier fitness 
function can be altered if there are not many iterations. The 
cost of computation may rise as the number of iterations 
rises. The fitness function choice is based on its applicability 
and computing cost. GAs must include both crossover and 
mutation operators. The presence of these operators has a 
significant impact on how GAs performs. The right balance 
between these operators is necessary to guarantee global 
optima. The probabilistic nature cannot determine the pre-
cise degree required for an efficient and ideal solution. For 
a particular issue, GAs need a certain encoding technique. 
There is no overarching process for determining if a specific 
encoding system is appropriate for any real-world issue. Two 
different encoding systems are needed if there are two dis-
tinct challenges. Furthermore, little attention has been paid 
to understanding why some algorithm variations perform 
better than others for particular case studies [162]. With 
more effective optimization techniques, WDS simulations 
might still be computationally prohibitive, especially as the 
model’s accuracy and the number of its decision variables 
increases.

However, despite numerous attempts, there is not yet a 
technique that has been widely accepted for comparing or 
evaluating algorithm performance for both single- and multi-
objective WDS design challenges. A method for evaluating 
the best solution obtained, the speed of convergence, and 
the spread and consistency of the solutions are used to com-
pare the performance of various single-objective algorithms 
[161]. A method has also been devised to assess an algo-
rithm’s success by determining the efficacy of its parameters 
(like crossover and mutation) using their various values. Per-
formance measures were proposed and are frequently used 
in multi-objective optimization to compare the effectiveness 
of different algorithms in terms of the quality of the Pareto 
fronts produced). As no single performance metric is com-
patible and comprehensive, comparing solutions is far more 
difficult than in single-objective optimization. This may be 
why several WDS design studies have restricted their analy-
sis to a two-objective Pareto front.

12  Future Research Directions

Future research challenges for optimization of WDS design 
are linked to model inputs, algorithm and solution tech-
niques, search space and computing efficiency, and solution 
post-processing. The optimum approach to represent differ-
ent forms of uncertainties in the optimization process must 
be investigated concerning model inputs. The planning for 
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ideal WDSs may be impacted by future uncertainties, such 
as climate change, population shifts, and economic develop-
ment, making flexible design one of the interesting research 
fields over the coming decades.

In terms of algorithm and solution approach, a significant 
study area shows development in understanding algorithm 
performance and search behavior. Changing the fundamen-
tal structure of GAs has been used extensively to optimize 
water distribution systems. The optimality of a GA-derived 
solution can be improved by resolving the present difficul-
ties. The proper number of crossover and mutation opera-
tors should be selectable. Self-Organizing GA, for instance, 
modifies the crossover and mutation operators following the 
given issue. It can speed up computation by saving time. 
Additional research may be considered to minimize prema-
ture convergence in GAs. Genetic algorithms imitate the 
course of natural evolution. There may be room to simulate 
aspects of natural evolution, like how the human immune 
system reacts and how viruses mutate.

The search space and computing efficiency have recently 
been noted to be important. Dynamic (i.e., staged and flex-
ible) design and real-world WDS optimization problems are 
predicted to remain essential and promising study areas in 
the future because both the decrease in the search space and 
a gain in computational efficiency are relevant. How respon-
sive the generated solution(s) are to the optimization model 
used is an unresolved question concerning solution post-
processing. The selection of a practical and representative 
subset of the non-dominated solutions that could be helpful 
to the decision-makers when using a multi-objective optimi-
zation approach is still a challenge. As a result, techniques 
need to find a few practical solutions, such as when a slight 
improvement in one target results in a significant deteriora-
tion in at least one other objective. The research community 
would be benefited from a comprehensive comparison of 
the various available approaches for optimization of water 
distribution systems concerning decision variables, search 
space reduction, and enhancement of computing efficiency, 
which may use a variety of benchmark instances of different 
sizes and complexity. Future studies must incorporate the 
comparison because it can help to enhance choice variable 
coding further.

13  Summary and Conclusions

This paper deals with optimizing WDS genetic algorithms 
using Gas from the 1990s to the present. The review fea-
tures articles covering various topics, including the design 
of new systems, improvement and enhancement of exist-
ing systems, time, parameter uncertainty, water quality, and 
operational considerations. The importance of this paper 
comes from the fact that it compiles a significant number of 

research papers on the application of GAs for WDS design 
optimization over the recent past. As a result, it might make 
it possible for researchers to locate their articles of inter-
est quickly. The review evaluates the present status, field-
specific limitations, future trends, and requirements of WDS 
optimization models using genetic algorithms.

The study highlights that GAs have been utilized to solve 
many water engineering optimization challenges. GAs dis-
plays their accurate worth when applied to very large search 
spaces. They normally need hundreds or thousands of gen-
erations to be formed before converging on the best solution. 
The enumeration of all solutions will be more efficient for 
smaller problems. One of the major advantages of the GA 
technique over other optimization methods is that it tends to 
converge onto the global optimum, other than a local opti-
mum. Another advantage stemming from using a population 
of solutions is that a variety of near-optimal solutions can be 
obtained and saved. GAs was found to work better for vari-
ables with discrete values rather than continuous variables. 
However, continuous variables can be discretized before 
applying GAs to obtain solutions. GAs have been considered 
a valuable tool for optimizing engineering designs of water 
distribution systems. A substantial increase in efficiency 
can be achieved by coupling GAs with other techniques, 
especially for large and complex engineering systems. The 
role of genetic operators, such as crossover, mutation, and 
selection in optimal design, is also detailed in the paper. 
It has been highlighted how GA and its variations can be 
used to optimize WDS and its components. The difficulties 
and problems highlighted in this study will aid practition-
ers in conducting their studies. The goal of this study is to 
not only present the source of current research on the GAs 
application in WDS optimization but also to highlight the 
limitations and future scope of the research. It will encour-
age scholars to comprehend GA’s fundamentals and apply 
that understanding to their research challenges.

It was shown in this study that there is still a lack of con-
sensus among researchers and practitioners regarding the 
best way to construct a WDS design optimization model, 
how to include all pertinent objectives and constraints, and 
whether and how to take into account different sources of 
uncertainty, while still enabling an effective search for the 
best solution to be achieved. There is no agreement on which 
optimization technique is best for a specific design prob-
lem, whether a single or multiple-phase optimization con-
cept is to be used, or how engineering judgment can be best 
incorporated into the process. However, various generic and 
problem-specific optimization methods have been developed 
and applied over the years.

In order to create techniques for objectively comparing 
and validating various optimization algorithms and concepts 
on substantial, real-world issues, the research community 
must work together. Using WDS design problems of various 
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sizes and complexity, it is also necessary to analyze the cur-
rently available methods for narrowing the search space, 
improving computational efficiency, and choosing efficient 
Pareto non-dominated solutions that represent a useful sub-
set for decision-makers. Despite the vast quantity of material 
written about the design optimization of WDSs over the past 
three decades, there will be many research challenges in the 
years to come.
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