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Abstract
Viruses have killed and infected millions of people across the world. It causes several chronic diseases like COVID-19, HIV, 
and hepatitis. To cope with such diseases and virus infections, antiviral peptides (AVPs) have been applied in the design of 
drugs. Keeping in view the significant role in pharmaceutical industry and other research fields, identification of AVPs is 
highly indispensable. In this connection, experimental and computational methods were proposed to identify AVPs. How-
ever, more accurate predictors for boosting AVPs identification are highly desirable. This work presents a thorough study 
and reports the available predictors of AVPs. We explained applied datasets, feature representation approaches, classifica-
tion algorithms, and evaluation parameters of performance. In this study, the limitations of the existing studies and the best 
methods were emphasized. Provided the pros and cons of the applied classifiers. The future insights demonstrate efficient 
feature encoding approaches, best feature optimization schemes, and effective classification techniques that can improve the 
performance of novel method for accurate prediction of AVPs.

1  Introduction

A virus is a microscopic agent, that comprises nucleic acid 
within a protein and can multiply itself in the living cells 
of a host. In humans, several painful conditions, terrible 
infections, and diseases such as hepatitis, AIDS, cancer, 
pneumonia or dehydration, measles, mumps, common cold, 
smallpox, and rabies are caused by viruses. Almost every 
perspective of human life including economic, morbidity, 
and mortality is affected by viral infections. Several chronic 
outbreaks caused by zoonotic viruses like COVID-19, Zika, 
and Ebola killed and critically infected millions of people 

across the world. Due to efficient replication, different trans-
mission routes, high genetic variation, prevention of harm-
ful activities of viruses is challenging problem. Therapeutic 
approaches were introduced to tackle viral diseases. How-
ever, due to emergence of novel viruses, available antiviral 
methods are limited. Recently, 90 antiviral drugs were devel-
oped for the treatment of 9 virus families including hepatitis 
B and C viruses, HIV, herpes virus, human papilloma virus, 
respiratory syncytial virus, varicella-zoster virus, and cyto-
megalo virus.

Great progress was achieved in medicines through vac-
cine production for treatment of viral infections like polio 
and small pox. However, the new vaccines are facing sev-
eral challenges in the terms of high cost and time. Recently, 
peptide-based drugs have been proposed which have lower 
cost, possess good tolerability, are relatively safe, and are 
highly selective. Among these peptide-based drugs, antiviral 
peptides (AVPs) have great significance in the development 
of novel drugs. AVPs are a sub-class of antimicrobial pep-
tides that also work as antimicrobial in addition to antiviral 
activities.

To deal with viral infections and diseases, a series of 
antiviral therapeutic activities like replication of viruses, 
prevention of virus’s fusion, blocking virus’s attachments, 
and interruption of viruses signal processing were used. For 
example, protegrin-1 is a cyclical cationic peptide possesses 
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antiviral property against dengue virus. P9 antiviral pep-
tide shows antiviral activity against flu strains. The accurate 
identification of AVPs can help to further explore the AVPs 
activities and perform a great role in the development of 
novel drugs. Initially, the prediction of AVPs was carried 
out by experimental approaches however, these methods 
are slow, expensive, and laborious. With the development 
of advanced technologies, the discovery of novel peptide 
sequences is increasing rapidly in the databases. The experi-
mental methods for such rapid explosive sequences are inef-
ficient. To cover these limitations, machine learning-based 
methods are indispensable for reliable and fast prediction of 
antiviral peptide activities (Fig. 1).

1.1 � Existing Methods for Prediction of Antiviral 
Peptides

Currently, 09 machine learning-based approaches were 
designed for prediction of antiviral peptides. These methods 
were designed from 2012 to till date. Each predictor tried 
to improve the prediction of AVPs. For example, Thakur 
et al. [1] extracted features by AAC and physicochemical 
properties and trained the model using SVM. Chang et al. [2] 
applied aggregation, secondary structure, and physicochemi-
cal properties with RF. Zare et al. [3] only used PseAAC 

approach for feature encoding and Adaboost as classifier. In 
AVCpred [4] method, authors implemented several features 
like electrostatic, topological, hydrophobic, binary finger-
prints, geometric, constitutional with SVM while AntiVPP 
[5] approach utilized hydropathy index, molecular weight, 
Net charge, and number of hydrogen bond donors in corpo-
ration with RF. FIRM-AVP [6] predictor encoded the feature 
using AAC, DPC, PseAAC, and secondary structure. The 
features are ranked by applying mean decrease of gini index 
(MDGI) technique while the model training and prediction 
were performed by SVM. PandoraGAN [7] carried out the 
model development using GAN in combination of physico-
chemical properties. Onward, AI4AVP [8] also utilized GAN 
with AAC, PseAAC, AA index, DPC, and physicochemical 
properties. Akbar et al. [9] explored numerical patterns from 
primary sequences using PSSM and K-segmentation PSSM. 
They have also considered SHAP as feature selection. The 
classification and prediction were executed by genetic algo-
rithm ensemble learning strategy. List of existing methods 
with applied algorithms is provided in Table 1.

1.2 � Drawbacks of the Past Studies

Each predictor tried to boost identification of AVPs by 
applying diverse features and classifiers. Still, each predictor 

Fig. 1   Different kinds of antiviral peptides with their common name and number of Protein Databank identity number (PDBID) inside parenthe-
sis
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has some deficiencies that degrade the model performance. 
For instance, Thakur et al. [1] method used AAC and phys-
icochemical properties for feature extraction which are una-
ble to extract the discriminative patterns. Chang et al. [2] 
used physicochemical features, AAC, secondary structure 
information, and aggregation. However, in the databanks, 
structural features have not existed for all proteins. Zare et al. 
[3] only utilized PseAAC for extraction of local informa-
tion. However, an individual feature encoder is unable to 
explore informative features. AVCpred [4] extracted fea-
tures by geometric, constitutional, electrostatic, topological, 
hydrophobic, binary fingerprints which are secondary fea-
tures. AntiVPP [5] used number of hydrogen bond donors, 
molecular weight, hydropathy index, and Net charge. The 
best features can improve the performance of a model using 
feature optimization scheme. FIRM-AVP [6] adopted AAC, 
PseAAC, DPC, and secondary features. Feature vector of 
these encoding approaches generate high dimensional space 
that can affect a model performance. The authors also imple-
mented mean decrease of gini index (MDGI) feature selec-
tion approach.

Onward, PandoraGAN [7] applied physicochemical 
properties and AI4AVP [8] used AAC, PseAAC, AA index, 

DPC, and physicochemical properties. Both methods per-
formed the model training using deep learning framework 
named Generative Adversarial Network (GAN). However, 
deep learning models can generate accurate results on large 
datasets. In another work, Akbar et al. [9] used evolution-
ary profile however, one feature descriptor can’t explore the 
important patterns.

This approach also implemented SHAP for selection of 
best features.

The online web server can enrich significance of a model 
and a user can determine class-label for a sequence. How-
ever, most predictors have not implemented web servers. 
More importantly, a brief review can highlight the merits of 
the existing predictors. This study illustrates the employed 
datasets, feature representation methods, and classification 
algorithms. Onward, we discussed performance of all exist-
ing predictors with their merits and demerits, and demon-
strated the best methods for accurate identification of AVPs. 
This study can provide fruitful direction to scientists and 
researchers to select the best AVPs predictor. Furthermore, 
we explore more efficient feature descriptors, and classifi-
ers to design predictors with high precision. The phases of 
model development are shown in Fig. 2.

Table 1   List of available methods for prediction of AVPs

Predictor Feature encoder Feature selection method Classifier

Thakur et al. [1] Amino acid composition (AAC), Physico-
chemical properties

– Support vector machine (SVM)

Chang et al. [2] Amino acid composition 
(AAC),Physicochemical properties

– Random forest (RF)

Zare et al. [3] Pseudo amino acid composition 
(PseAAC)

– Adaboost

AVCpred [4] Geometric, constitutional, electrostatic, 
topological, hydrophobic, binary 
fingerprints

Support vector machine

AntiVPP [5] Net charge, number of hydrogen bond 
donors, molecular weight, and hydropa-
thy index

– Random forest

FIRM-AVP [6] Amino acid composition, pseudo amino 
acid composition, Dipeptide composi-
tion (DPC), secondary structure

Mean decrease of Gini index Support vector machine

PandoraGAN [7] Physicochemical properties – Generative Adversarial Network (GAN)
AI4AVP [8] Amino acid composition, pseudo amino 

acid composition, AA index, and 
dipeptide composition, physicochemical 
properties

– Generative Adversarial Network

Akbar et al. [9] Position specific scoring matrix (PSSM), 
K-segmentation PSSM

Shapley Additive explanation (SHAP) Genetic algorithm (GA) ensemble learner

Fig. 2   Steps of a model devel-
opment
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2 � Materials and Methods

2.1 � Construction of Datasets

Application of a reliable dataset improve the quality of 
a predictor. In AVPpred method, Thakur et al. [1] con-
structed two training datasets and two validation datasets. 
These datasets were collected from 48 research articles in 
which 91% were retrieved from natural source and rest are 
synthetic source. After elimination of identical peptides, 
final training set-1 contains 544 AVPs and 407 non-AVPs 
peptides. Validation set-1 comprises 60 AVPs and 45 non-
AVPs sequences of peptides. Second training set-2 con-
sists of 544 AVPs and 544 non-AVPs. Similarly, validation 
set-2 contains 60 AVPs and 60 non-AVPs. Chang et al. [2] 
also used the same datasets in their work.

In another work, Zare et al. method applied a novel 
dataset which is downloaded from antiviral peptides data-
base [3]. Initially, dataset was 614 AVPs and 452 non-
AVPs. The similar sequences were removed using CD-HIT 
tool with cut-off value 90%. The final dataset-3 comprises 
342 AVPs and 312 non-AVPs.

During the development of AVCpred [4] method, 
authors used experimentally validated dataset that con-
tains 416 hepatitis B virus (HBV), 1383 human immuno-
deficiency virus (HIV), 803 hepatitis C virus (HCV), 473 
human herpesvirus (HHV), and 26 general AVPs.

AntiVPP [5], FIRM-AVP [6], PandoraGAN [7], 
AI4AVP [8], and Akbar et al. [9] methods implemented 
the datasets constructed by Thakur et al. [1]. In this study, 
we referred training set-1, validation set-1, training set-2, 
validation set-2, and dataset-3 as training dataset-1, valida-
tion dataset-1, training dataset-2, validation dataset-2, and 
training dataset-3, respectively.

2.2 � Features Representation Methods

Machine learning algorithms are unable to directly deal 
with primary sequences datasets of peptides during the 
model development. In this connection, features are 
extracted by descriptors into numerical format. The exist-
ing predictors for identification of AVPs applied different 
feature encoding methods which are explained in the fol-
lowing subsections.

2.2.1 � Amino Acid Composition

A peptide is a combination of two or more residues among 
20 amino acids that possessed properties of that sequence. 
AAC calculates the frequency of each residue and extracts 

the global patterns. AAC is calculated using the equation 
below.

where Ri(i = 1, 2, ...., 20) shows 20 residues frequencies in 
a protein sequence.

AAC is broadly applied for solving diverse biological 
issues such as prediction of membrane protein types [10], 
identification of antiviral peptides [9], identification of anti-
freeze proteins [11], web server for protein/peptide feature 
extraction [12]. AAC features are used by Thakur et al. [1], 
Chang et al. [2], FIRM-AVP [6], and AI4AVP [8] in their 
models for AVPs prediction.

2.2.2 � Physicochemical Properties

Each peptide contains two or more amino acids that are con-
nected by peptide bonds [13]. Due to these peptide bonds, 
AVPs possess different physicochemical properties that 
are highly associated with AVPs activities. These physico-
chemical properties include residue composition, size, over-
all charge, secondary structure, amphiphilic character, and 
hydrophobicity. Keeping in view the crucial role of these 
properties, these are used in the construction of predictive 
models such as prediction of DNA-binding proteins [14], 
allergenic proteins [15], and essential proteins [16].

In the literature, Thakur et al. [1], Chang et al. [2], FIRM-
AVP [6], PandoraGAN [7], and AI4AVP [8] approaches 
designed their models by incorporating these properties.

2.2.3 � Pseudo Amino Acid Composition

AAC is a conventional approach that explores the composi-
tional information regarding amino acids. AAC only com-
putes the frequencies of residues but avoids the sequential 
order and correlation among amino acids [17]. To cover 
these limitations, PseAAC was introduced by Chou’s 
[18]. The PseAAC can be formulated using the following 
equation.

where R1,R2,… .R20 are 20 amino acids and R20+1,….R20+λ) 
are the correlation factors of amino acids [19].

Due to the effectiveness of PseAAC, it was implemented 
by many researchers like sub-cellular location of proteins 
[20], conotoxin super-family and family classification [21], 
protease types [22], human papillama viruses [23], sub-
mitochondria localization [24], apoptosis protein sub-cellu-
lar localization [25], protein quaternary structure [26, 27], 
and bacterial secreted proteins [28] identification.

To predict AVPs, Zare et al. [3], FIRM-AVP [6], and 
AI4AVP [8] approach adopted PseAAC as feature descriptor.

(1)AAC = (R1,R2,… .R20)

(2)PseAAC = (R1,R2,… .R20,R20+1,….R20+λ,)
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2.2.4 � Dipeptide Composition

DPC is an efficient algorithm that computes the frequencies 
of two consecutive amino acids along a sequence [29]. In 
addition to global patterns, DPC can extract the correlation 
factors of residues [30]. Therefore, it can provide discrimina-
tive motifs regarding a sequence. This approach contributed 
well to the design of several predictors such as prediction of 
extracellular matrix proteins [31], antifungal proteins [32], 
and DNA-binding proteins prediction [14]. This method is 
also adopted for prediction of Antifreeze proteins [33]. DPC 
generates a vector of 400 dimension that can be calculated 
by following equation.

where N is the fraction of dipeptide a and L is the number 
of dipeptides.

FIRM-AVP [6] and AI4AVP [8] methods used DPC for 
identification of AVPs.

2.2.5 � Position Specific Scoring Matrix

Like physicochemical properties, evolutionary features are 
the significant properties of AVPs. Evolutionary features are 
derived using position specific scoring matrix [34]. PSSM 
is computed by PSI-BLAST tool with three iterations and 
0.01 as cut-off value [35]. A PSSM is represented by L × 20 
matrix. L is the number of rows and 20 indicates columns.

PSSM boosted the predictive results of many predictors 
like identification of cancerlectins peptides [36], growth hor-
mone-binding proteins [37], membrane protein types [38], 
druggable proteins [39], antioxidant proteins [40], antituber-
cular peptides [41], antifreeze proteins [11], prediction of 
hormone-binding proteins [42] and antifungal peptides [32].

It is reported by past work that local regions of evolution-
ary profile contain crucial patterns. To capture these local 
patterns, each PSSM was split into k-segmentations. This 
approach was used by Akbar et al. [9]. In this method, each 
PSSM is decomposed into three segments, computed the 
local regions, and finally combined to make one super set. 
KS-PSSM improved the performance of the predictor and 
predicted antiviral peptides more accurately.

2.3 � Feature Selection Approaches

Sometimes feature set contains less informative and noisy 
features that degrade a model performance. To cover this 
limitation, feature selection approaches are applied to fea-
ture set for selection of the best feature set. Using these 
approaches, only informative patterns are selected that boost 

(3)DPC =
N(a)

L

a predictor performance. In this connection, only two meth-
ods i.e., Shapley Additive exPlanation (SHAP) [9] and Mean 
Decrease of Gini Index (MDGI) [6] are used for prediction 
of antiviral peptides. The working strategy of these algo-
rithms is listed below.

2.3.1 � Shapley Additive exPlanation

To select the best feature, Akbar et al. [9] used SHAP algo-
rithm. SHAP examines the participation of each feature 
using aggregations of best shapley instances. It interprets 
the performance of classifier and addresses the model defi-
ciency. Akbar et al. used eXtreme Gradient Boosting classi-
fier to perform classification and prediction tasks[43].

SHAP approach keeps the important features which leads 
to promising performance and avoids the less information 
features [44]. After evaluating each feature, authors selected 
35 high-ranked features for model development. This algo-
rithm was also implemented in other research problems 
including identification of hypoxaemia during surgery [45] 
and dimensionality reduction [46].

2.3.2 � Mean Decrease of Gini Index

MDGI was implemented by FIRM-AVP [6] for enhancing 
the prediction performance of the model. The feature set 
was obtained 649. To reduce the size and improve model 
performance, first authors determined the correlation 
between features using Pearson’s correlation scheme. Fea-
tures with greater correlation value than threshold value was 
eliminated.

Further important features were selected by MDGI using 
the RF model. With MDGI algorithm, each feature is meas-
ured with respect to homogeneity to leaves and nodes of RF 
model. The feature is considered more important if MDGI 
is closer to 0. After completion of feature selection process, 
169 were considered the best set. This best set was provided 
to the classifier and achieved progressive performance.

2.4 � Model Training and Prediction

After feature extraction and best feature selection, the next 
phase is the application of appropriate classifier. A classifier 
is used to train the model and predict the unlabel sample. 
Considering this, different existing methods of AVPs uti-
lized different classifiers which are explained in the follow-
ing sections.

2.4.1 � Support Vector Machine

SVM is considered a promising classifier for both regres-
sion and classification problems [47–49]. It was first pro-
posed by Vapnik [50]. SVM transforms the dataset samples 
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into high-dimensional feature space into classes. A separa-
tor called hyperplane is drawn between classes and margin 
lines parallel to hyperplane [51]. These marginal lines are 
called support vectors. SVM uses four kernel functions for 
transformation of data namely sigmoid, linear, polynomial, 
and radial basis function (RBF) [52, 53]. Linear function is 
used for linear separable problems while other functions are 
applied to solve non-linear issues [54].

SVM implements grid search approach to find the best 
values for C and γ parameters to improve the model predic-
tion. Due to promising performance of SVM, it was used for 
solving many research challenging tasks like protein remote 
homology detection [55], protein structure prediction [56], 
identification of antifreeze protein [57], identification of 
DNA-binding proteins [14], protein fold recognition, and 
prediction of promoter [58]. SVM was applied by Thakur 
et al. [1], AVCpred [4], and FIRM-AVP [6] for prediction 
of antiviral peptides.

2.4.2 � Random Forest

RF is an ensemble classifier that was established by Breiman 
[59, 60]. It can be utilized for clustering, feature selection, 
regression, and classification tasks [61, 62]. RF consists of 
many trees like a forest. Each tree is trained by training sam-
ple of dataset. After training phase, a class label is assigned 
to new sample using majority voting scheme.

Keeping in view the majority voting benefits, the high 
variance or bias of a single tree can’t affect the overall per-
formance of a model [63]. Onward, RF uses the weighting 
scheme that assigns a low weight if a tree has high error rate 
and boosts the tree performance[43]. RF is mostly favora-
ble for large datasets, handling efficiently missing data, and 
detecting of outlier issues [64]. For identification of AVPs, 
Chang et al. [2] and AntiVPP [5] predictors used RF in their 
models.

2.4.3 � Generative Adversarial Network

GAN is one of the most popular networks of deep learn-
ing [65]. GAN is a generative framework where a model is 
trained by adversarial process. GAN comprises two models 
which are trained at the same time i.e., discriminative model 
and generative model [66]. Discriminative model estimates 
the probability of a sample in the training set and genera-
tive model captures the distribution of data. During training 
phase, generative model looks for maximization of prob-
ability of discriminative model [67].

Generative model produces images from random noise 
and seeks to produce realistic images [43]. To complete this 
process, random noise is provided to generator that yields 
fake images. These images are provided to discriminative 
model that differentiates between real and fake images [68].

GAN has many real applications in different fields of 
life. For instance, improving cybersecurity [69], predictors 
in healthcare [70], stock market prediction [71], produc-
ing animation models[72], editing photographs, and image 
translation are popular applications [73, 74].

2.4.4 � Adaboost

Adaboost stands for Adaptive Boosting which was con-
structed by Schapire and Freund [75]. Adaboost concat-
enates many weak classifiers to construct one strong clas-
sifier. Because a single classifier cannot generate accurate 
results. Therefore, grouping multiple weak classifiers learn 
from each other wrong classification of samples which made 
a strong one.

Weak classifiers are decision trees having a single split, 
called decision stumps. Decision stumps are not fully 
grown that have one node and two leaves. Adaboost assigns 
more weights to high error rate classifier while putting low 
weights to a less error rate classifier. Zare et al. [3] used 
adaboost in the design of the proposed model for identifying 
antiviral peptides.

Adaboost has several advantages like less prone to overfit-
ting, boosting the accuracies of weak classifiers, and being 
usable for image and text classification instead of binary 
classification problems [76].

2.4.5 � Ensemble Learning

Ensemble learning is the combination of several algorithms 
that construct one optimal classification algorithm. This 
strategy was used by researchers due its effective generali-
zation power and high prediction rate. Ensemble learning is 
considered more fruitful as it decreases bias and variance 
of a model [77]. Considering these merits, many scientists 
applied it in the development of models including nucleo-
some positioning [78], anticancer peptides [79], antifreeze 
proteins [80], enhancers types [81].

Akbar et al. [9] used K-Nearest Neighbor (KNN), SVM, 
Extremely Randomized Tree (ERT), and eXtreme Gradient 
Boosting (XGB) classifiers are provided to genetic algorithm 
ensemble learning approach. The Ensemble learning signifi-
cantly improved the model performance and achieved the 
highest success rate for identification of antiviral peptides.

The pros and cons of each classifier are reported in 
Table 2.

2.5 � Model Validation Methods

After construction of a novel model, its effectiveness is vali-
dated. For this purpose, tenfold test is widely used by exist-
ing methods [14, 37, 82]. In tenfold test, dataset is decom-
posed into 10-folds. ninefold are used for model training 



4039Recent Advances in Machine Learning‑Based Models for Prediction of Antiviral Peptides﻿	

1 3

and onefold is assigned for model validation. This process 
continues up to ten times so that each fold is used as test-
ing. The mean of all folds is considered the final value [83]. 
Further, the model is validated by four evaluation parameters 
like accuracy (Acc), sensitivity (Sn), specificity (Sp), and 
Mathew correlation coefficient (MCC) [60]. These param-
eters can be formulated as

AV+ indicates positive (antiviral) samples, AV− represents 
negative (non-antiviral) samples. AV−

+
 are the negative sam-

ples predicted mistakenly as positive and AV+

−
 are positive 

samples that are incorrectly predicted as negative.

3 � Results and Discussion

In this section, we analyzed the performance of existing 
methods and elaborate the best method for prediction of 
AVPs. We performed a comparison of all methods and point 
out the best predictor in the literature. The performance of 
all existing studies dataset-wise is discussed in the follow-
ing sections.

3.1 � Comparison of Existing Studies on Training 
Dataset‑1 (544 + 407)

AVPpred, Change et al., AntiVPP, FIRM-AVP, Meta-iAVP, 
and Akbar et al. used training dataset-1. The results of Acc, 
Sn, Sp, and MCC are listed in Table 3. These methods 
deployed different feature descriptors and classifiers in their 
models. AVPpred achieved an accuracy of 85.00%, sensi-
tivity of 82.20%, specificity of 88.20%, and MCC of 0.70. 
The same accuracy and MCC were secured by Chang et al. 
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Table 3   Comparison of previous models using training dataset-1

Predictor Acc (%) Sn (%) Sp (%) MCC

AVPpred 85.00 82.20 88.20 0.70
Chang et al 85.10 86.60 83.00 0.70
AntiVPP - - - -
FIRM-AVP 92.40 93.30 91.10 0.84
Meta-iAVP 88.20 89.20 86.90 0.76
Akbar et al 97.33 92.36 98.85 0.89
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However, Chang et al. improved the sensitivity to 86.60% 
and decreased it to 83.00%. AntiVPP predictor was not used 
the training dataset-1, while FIRM-AVP boosted the per-
formance by yielding 92.40% Acc, 93.30% Sn, 91.10% Sp, 
and 0.84 MCC. Meta-iAVP method outperformed AVPpred 
and Chang et al. However, lower performance is obtained 
by Meta-iAVP than FIRM-AVP. The best performance was 
achieved by Akbar et al. model with Acc of 97.33%, Sn of 
92.36%, Sp of 98.85%, and MCC of 0.89. The performance 
of existing predictors in terms of accuracy has been provided 
in Fig. 3.

3.2 � Comparison of Existing Studies on Training 
Dataset‑2 (544 + 544)

Training dataset-2 was used only by three methods namely 
AVPpred, Chang et al., and Meta-iAVP. The Acc, Sn, Sp, 
and MCC of AVPpred are 90.00%, 89.70%, 90.30%, and 
0.80, respectively as listed in Table 4. Chang et al. predic-
tor improved accuracy, specificity, and MCC, however, 
generated slightly lower sensitivity than AVPpred. On 
training dataset-2, Meta-iAVP achieved remarkable per-
formance and produced 93.20% Acc, 89.00% Sn, 97.40% 
Sp, and 0.87 MCC. These results are also higher than both 
AVPpred and Chang et al. methods. The performance of 
FIRM-AVP and Akbar et al. is promising on training data-
set-1, however, they do not implement training dataset-2 

to evaluate their models. On training dataset-2, the best 
performance was shown by Meta-iAVP approach. Accu-
racy comparison is depicted in Fig. 4.

3.3 � Comparison of Existing Studies on Validation 
Dataset‑1 (60 + 45)

In addition to training datasets, model performance can 
be evaluated by independent/testing datasets. In this con-
nection, several existing methods determined the gener-
alization power of their models by validation dataset-1 
and validation dataset-2. The Acc, Sn, Sp, and MCC pro-
duced by AVPpred predictor on validation dataset-1 are 
85.70%, 88.30%, 82.20%, and 0.71, respectively as shown 
in Table 5. Chang et al. boosted the prediction values of 
Acc, Sn, Sp, and MCC which are 3.8%, 3.4%, 4.5%, and 
0.8, respectively higher than AVPpred. Compare with 
AVPpred and Chang et al. methods, FIRM-AVP model 
also secured better performance by attaining 92.40% Acc, 
93.30% Sn, 91.10% Sp, and 0.84 MCC. Among all meth-
ods, the highest results are generated by Meta-iAVP. It 
means that this method can discriminate AVPs from non-
AVPs more efficiently. AntiVPP and Akbar et al. models 
have not assessed their proposed predictors by validation 
dataset-1. Graphical representation of accuracies of exist-
ing methods has shown in Fig. 5.

85 85.1

92.4

88.2

97.33

AVPPRED CHANG ET AL. FIRM-AVP META-IAVP AKBAR ET AL.

Acc (%)

Fig. 3   Accuracy comparison of predictors on training dataset-1

Table 4   Comparison of previous models using training dataset-2

Predictor Acc (%) Sn (%) Sp (%) MCC

AVPpred 90.00 89.70 90.30 0.80
Chang et al 91.50 89.00 94.10 0.83
AntiVPP – – – –
FIRM-AVP – – - –
Meta-iAVP 93.20 89.00 97.40 0.87
Akbar et al – – – –

90

91.5

93.2

AVPPRED CHANG ET AL. META-IAVP

Acc (%)

Fig. 4   Accuracy comparison on predictors on training dataset-2

Table 5   Comparison of previous models using validation dataset-1

Predictor Acc (%) Sn (%) Sp (%) MCC

AVPpred 85.70 88.30 82.20 0.71
Chang et al 89.50 91.70 86.70 0.79
AntiVPP – – – –
FIRM-AVP 92.40 93.30 91.10 0.84
Meta-iAVP 95.20 96.70 93.20 0.90
Akbar et al – – – –
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3.4 � Comparison of Existing Studies on Validation 
Dataset‑2 (60 + 60)

Several methods including AVPpred, Chang et al., Meta-
iAVP, and Akbar et al. approaches examined their proposed 
studies using validation dataset-2. The comparative predic-
tion results are summarized in Table 6. AVPpred yielded 
an accuracy of 92.50%, sensitivity of 93.30%, specificity 
of 91.70%, and MCC of 0.85. Chang et al. improved the 
performance on all evaluation parameters i.e., 93.30% Acc, 
91.70% Sn, 95.00% Sp, and 0.87 MCC. AntiVPP and FIRM-
AVP have not examined their methods by validation data-
set-2. With the same dataset, values of accuracy, sensitivity, 
specificity, and MCC boosted by Meta-iAVP are 94.90%, 
91.70%, 98.20%, and 0.90, respectively. Akbar et al. further 
enhanced the performance using all evaluation parameters. 
Among all methods, Akbar et al. model is superior to all 
existing predictor on validation dataset-2. A comparative 
view of the past studies is drawn in Fig. 6.

3.5 � Comparison of Existing Studies on Training 
Dataset‑3 (342 + 312)

The training dataset-3 was only implemented by Zare et al. 
In this method, authors extracted features by PseAAC and 
model training and classification were performed by Ada-
boost (RBF), Adaboost (Naive Bayes), Adaboost (J48), Ada-
boost (Decision Stump), and Adaboost (REFTree). Among 

all models, Adaboost (J48) achieved the highest results in 
terms of 93.26% Acc, 0.926 Sn, 0.939 Sp, and 0.86 MCC. 
The second-best (87.59%) accuracy was attained by Ada-
boost (REFTree) and Adaboost (Naive Bayes) showed the 
third-best (78.87%) accuracy. Although, the performance of 
this predictor is promising, however, it is not compared with 
other existing studies due to application of different datasets. 
Moreover, this method was not validated by a testing dataset 
to determine its generalization capacity for unseen samples. 
Therefore, the use of one training dataset can’t explore its 
reliability and can’t be considered an effective model.

3.6 � Advantages of the Past Studies

Keeping in view the crucial utilization and implementation 
of antiviral peptides in diverse fields of life, identification 
with high precision is indispensable. However, identification 
of antiviral peptides via experimental methods is a challeng-
ing task due to annotative peptides being multiplied rapidly 
in the databanks. To overcome the limitations, researchers 
designed computational methods using machine learning 
techniques. These computational predictors are more effi-
cient than experimental approaches in terms of fast and 
accurate prediction. The performance of these methods 
can be boosted by applications of efficient feature encoding 
approaches, appropriate feature optimization schemes, and 
deep learning approaches.

3.7 � Limitations of the Past Studies

Although machine learning methods surpassed the experi-
mental methods. However, limitations of the existing meth-
ods can degrade a method’s performance. For instance, most 
predictors encoded features by AAC, physicochemical fea-
tures, PseAAC, DPC, and AA index which avoids important 
patterns of antiviral peptides. Selection of effective features 
can boost a model’s performance. However, only two exist-
ing predictors FIRM-AVP [6] and Akbar et al. [9] consid-
ered these schemes. Further, these methods did not use deep 
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Fig. 5   Graphical view of accuracies using validation dataset-1

Table 6   Comparison of previous models using validation dataset-2

Predictor Acc (%) Sn (%) Sp (%) MCC

AVPpred 92.50 93.30 91.70 0.85
Chang et al 93.30 91.70 95.00 0.87
AntiVPP – – – –
FIRM-AVP – – – –
Meta-iAVP 94.90 91.70 98.20 0.90
Akbar et al 95.57 93.64 98.72 0.89

92.5
93.3

94.9
95.57

AVPPRED CHANG ET AL. META-IAVP AKBAR ET AL.

Acc (%)

Fig. 6   Accuracy comparison of past studies using validation dataset-2
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learning frameworks that lead to lower performance. An 
online web server is useful prediction of AVPs and enriches 
significance of a model. However, existing approaches were 
not designed web servers.

4 � Conclusion

Antiviral peptides are significant for development of vaccine 
as they have lower costs, possess good tolerability, are rela-
tively safe, and are highly selective. Many predictors were 
introduced to enhance prediction of AVPs. Among these 
predictors, Akbar et al. method secured the highest results 
on training dataset-1 and validation dataset-2. However, this 
method has not been implemented training dataset-2 and 
validation dataset-1. Meta-iAFP predictor also achieved the 
second-best results on all four datasets.

In the literature, other approaches used some of the data-
sets and did not train and validated their models by all data-
sets. Therefore, it is concluded that Meta-iAFP could be reli-
able predictor for discrimination of AVPs from non-AVPs.

5 � Future direction

Accurate identification of AVPs is a challenging task in bio-
informatics and drug designing fields. The predictors can 
identify AVPs. However, it is still highly desirable to pre-
dict AVPs with high precision. The prediction results can 
be boosted by implementations of effective descriptors like 
biological sub-words, fastText, and bidirectional encoder 
representations from transformers (BERT). The heteroge-
neous patterns can be extracted by incorporating segmen-
tation strategies, bigram, PseAAC, and DPC into PSSM. 
Compression techniques including discrete wavelet trans-
form and discrete cosine transform into PSSM can explore 
discriminative features.

Advance technologies like multi-headed convolutional 
neural network (MHCNN), ensembles of convolutional neu-
ral networks (ECNN), transfer learning, gated recurrent units 
(GRU), bidirectional long short-term memory (BiLSTM), 
and recurrent neural network (RNN) can be implemented 
for model training and prediction. The efficacy of a model 
can be enhanced using efficient feature selection algorithms. 
Integration of different features can boost the performance 
of the model.
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