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Abstract
This paper reviews the latest versions and applications of sparrow search algorithm (SSA). It is a recent swarm-based 
algorithm proposed in 2020 rapidly grew due to its simple and optimistic features. SSA is inspired by the sparrow living 
style of foraging and the anti-predation behavior of sparrows. Since its establishment, it has been utilized for a plethora of 
optimization problems in different research topics, such as mechanical engineering, electrical engineering, civil engineer-
ing, power systems, industrial engineering, image processing, networking, environment, robotics, planing and scheduling, 
and healthcare. Initially, the growth of SSA and its theoretical features are highlighted in terms of the number of published 
articles, citations, topics covered, etc. After that, the different extended versions of SSA are reviewed, where the main vari-
ations of SSA are produced to avoid premature convergence and to boost the diversity aspects. These extended versions are 
modifications and hybridization summarized with more focus on the motivations behind establishing these versions. Multi-
objective SSA is also presented as another version to deal with Multi-objective optimization problems. The critical analysis 
of the main research gaps in the convergence behaviour of SSA is discussed. Finally, the conclusion and the possible future 
expansions are recommended based on the research works accomplished in the literature.

1 Introduction

Some real-world problems are ordinarily modeled as opti-
mization problems. Optimization usually means looking 
for specific settings for a set of variables to minimize or 
maximize a defined goal presented as an objective func-
tion [1]. The solutions to these problems are either bounded 
or unbounded, which reside in the problem search space. 
Some of these solutions are infeasible, while others are feasi-
ble. From the set of viable solutions in the search space, the 
ultimate goal is to find the globally optimal solution(s) that 
achieve the fittest value of the objective function. Tradition-
ally, such problems are tackled by calculus-based methods, 
and most recently, they are undertaken by metaheuristic-
based methods. Calculus-based methods are effective when 
the problem search space is small, and the search space is 
easy. However, metaheuristic-based methods are more effec-
tive when working on large-scaled and rugged search spaces.

Metaheuristic-based algorithms can be categorized into 
local search and population-based techniques [2]. Local 
search techniques improve only a single solution at each 
iteration by utilizing neighboring techniques governed 
by specific pivot rules trying to empower the developed 
solution to escape from local optima [3]. Such techniques 
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suffer from poor exploration but exploit the initial solu-
tion’s search space region more rigorously. On the other 
hand, population-based techniques utilize a set of solu-
tions (called population). In each run, these solutions are 
enhanced by producing a “more pleasing” solution(s) 
using recombination, mutation, and selection operators. 
Such techniques are considered to be effective in explor-
ing wider search space, but they cannot exploit a specific 
region deeply in the search space [4]. The population-
based meta-heuristic algorithms can be classified into 
human-based, physical-based, swarm intelligence, and 
evolutionary-based [1].

Swarm intelligence algorithms mimic the animal behav-
ior as a group or a swarm, such as birds, fish, wolves, 
salps, ants, bees, whales, etc. The core idea is that swarm 
members follow the group leader(s) to get the food or catch 
prey. Such algorithms started in 1996 with particle swarm 
optimization (PSO), which imitates the behaviour of a 
group of birds [5]. Other algorithms from this category 
include: ant colony optimization (ACO) [6], grey wolf 
optimizer (GWO) [7], Coronavirus herd immunity opti-
mizer (CHIO) [1], bat optimization algorithm (BOA) [8], 
krill herd optimization (KH) [9], and many others [5].

Sparrow search algorithm (SSA) is a recent swarm 
intelligence algorithm introduced in 2020 by Xue and 
Shen [10]. The SSA mimics the behaviour of the spar-
row population of birds foraging and anti-predation. The 
algorithm formulates the search for better food sources 
by the sparrow population as an optimization algorithm. 
The algorithm shows superiority in the convergence rate, 
search precision, and stability. As a result SSA is applied 
to tackle a wide spectrum of optimization problems, such 
as feature selection [11], energy consumption [12], sched-
uling [13], engineering problems [14], communication 
problems [15], and several other applications presented 
in Table 1.

The no free lunch (NFL) theorem [16] states that one 
algorithm cannot excel in solving all optimization prob-
lems. This led researchers to modify SSA or hybridize it 
with other techniques to enhance its search space explora-
tion and exploitation capabilities [17–20]. These changes are 
the modified SSA with six main modifications that include 
chaotic [21, 22], random walk [12, 23], discrete [24, 25], 
adaptive [26, 27], opposition-based learning [28, 29], Lévy 
flight-based [30, 31], and others [15, 32]. More versions are 
introduced such as multi-objective SSA [33, 34], and utiliz-
ing SSA as a component in other techniques (e.g., neural 
network [35, 36] and support vector machine [37, 38]).

The SSA is investigated in this review to highlight its 
power and deficiency when tackling optimization problems 
as follows:

– The review first examines the SSA adoption by the 
research community in Sect. 2. The growth of its pub-
lication, citation, and application in different domains 
since its development in 2020 is presented.

– Then Sect. 3 demonstrates how it is inspired as a swarm 
intelligence algorithm that mimics the behavior of the 
sparrows’ population. Its mathematical modeling, flow-
chart, and pseudo-code are presented as well.

– The recent variants of the SSA are demonstrated in 
Sect. 4. This includes the original SSA, the modified 
SSA with six main modifications, the multi-objective 
SSA, and the hybridized SSA as a component in other 
techniques.

– Thereafter, the successful utilization of SSA to tackle 
problems in different domains is portrayed in Sect. 5. The 
collected research work is categorized according to the 
tackled problem and the specific problem is defined along 
with the SSA version used to solve the problem.

– The open-source software of SSA and online lectures are 
presented in Sect. 6. Using the provided lectures links, 
this can help other researchers utilize the presented code 
or learn more about the SSA.

– The algorithm shortcoming when solving optimization 
problems is then analyzed in Sect. 7. The SSA explora-
tion and exploitation capabilities are investigated, and 
possible solutions for challenges faced when using the 
algorithm are offered.

– Lastly, the conclusion and possible tracks for future work 
are highlighted in Sect. 8. The available research gaps are 
presented, and new future research directions are recom-
mended.

The review paper can help researchers who are going to 
tackle optimization problems using SSA.

2  The Growth of SSA in the Literature

The emergence of the SSA has attracted the attention of the 
optimization research communities due to its impressive fea-
tures. It is simple to adapt, easy to use, flexible and scalable, 
and sound-and-complete. In addition, SSA can efficiently 
strike the right balance between exploration and exploitation 
during the search through its impressive operators. There-
fore, the SSA has been rapidly grown over the last two years. 
This section provides the research growth of the SSA in 
terms of many aspects: the total number of articles that use 
SSA as their main contribution, the total number of citations 
of SSA articles per year, and the research topics used SSA 
to tackle their optimization problem. Also, the prestigious 
publishers that accept the SSA works, top countries that pub-
lished SSA-related research, top institutions and authors that 
focus on the SSA in their research areas. It should be noted 
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Table 1  Application of SSA algorithm on different domains

Domain Problem Variant References

Networking Network dynamic reconfiguration Multi-objective [34]
Network dynamic reconfiguration Original [53]
Intrusion detection Parallel [11]
Malicious URL classification Modified [70]
Stochastic configuration network Modified [21]

Energy Energy management of micro-grid Original [33]
Control of photovoltaic microgrid Modified [119]
Cost minimization of a hybrid energy storage system Hybrid [117]
Wind and solar power forecasting Hybrid [106]
Optimal dispatch strategy of microgrid energy storage Modified [12]
Control of PV system to harvest energy Original [54]
Optimization of capacity configuration of Wind-Solar-Diesel-Storage Modified [85]
Power load prediction Hybrid [90]
Carbon price forecasting Modified [40]

Mechanical Engineering Prediction of in-cylinder pressure of diesel engine Modified [49]
Fault diagnosis Modified [68]
Fault diagnosis Hybrid [102]
Detection of gear fault severity Hybrid [91]
Hypersonic reentry trajectory Modified [76]
Hypersonic reentry trajectory Modified [76]
Fast trajectory optimization for gliding reentry vehicle Modified [28]
Fault diagnosis of rolling bearings Hybrid [101]
Fault diagnosis of wind turbines Hybrid [38]

Industrial Engineering Position of wind turbine on a wind Farm Original [52]
Position of wind turbine on a wind Farm Original [52]
Load forecasting Hybrid [94]
Time-series production forecasting Hybrid [95]
Short-term load forecasting Hybrid [41]
natural gas pipeline leakage signal denoising Hybrid [105]
prediction of material grinding particle size Modified [98]

Environment Water quality evaluation Hybrid [41, 46]
Atmospheric pm2.5 prediction Modified [65]
Wind speed forecasting Hybrid [36]
Wind speed forecasting Hybrid [36]
Forecasting hydropower generation by GFDL-CM3 climate model Hybrid [96]
Short-term wind power forecasting Hybrid [47]
Peak analysis of soil heavy metal Original [43]
linear source contamination Hybrid [20]
Processing of coal mine water source data Hybrid [100]

Robotics Path planning approach for mobile robots Modified [32]
Parameter identification of robot manipulators Modified [77]
Robot routing problem Modified [69]
Positioning method for UAV swarm Modified [120]
Multi-UAV path planning Hybrid [99]
3d route planning for UAV Modified [56]
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Table 1  (continued)

Domain Problem Variant References

Planing & scheduling Load balancing of IoT tasks Original [50]

Load monitoring and demand side management strategy Hybrid [92]

Capacity planning for coordinated operation of regional energy internet system Original [93]

Resource management in Internet of Things Original [51]

Microgrid operations planning Modified [107]

Load scheduling for cloud computing Modified [29]

Flexible jobshop scheduling Original [13]

Path planning Modified [66]

Dynamic path planning for AGV Modified [79]

Symmetric traveling salesman problem Modified [24]

Substation project cost prediction Modified [97]

Software defects prediction Hybrid [118]

Traveling salesman problem Modified [25]
Machine Learning Manifold p-spectral clustering Original [80]

Computer prediction model Hybrid [35]
Improvement and application of deep belief network based Original [48]

Civil engineering Predicting debonding strain of FRP-strengthened RC beams Hybrid [89]
Concrete strength prediction Modified [110]
Shape optimization of developable Bézier-like surfaces with multiple shape param-

eters
Original [45]

Fault diagnosis of wheelset-bearing Hybrid [42]
Denoising method for fiber optic gyro measurement signal of face slab deflection of 

concrete face rockfill dam
Hybrid [104]

Predicting debonding strain of FRP-strengthened RC beams Hybrid [89]
Image processing Enhancement of long distance iris image Hybrid [74]

Camera calibration Original [86]
Multi-threshold image segmentation Modified [113]
Aero-optical imaging deviation prediction Modified [114]

Healthcare Pulmonary nodule detection Hybrid [37]
Wavefront-shaping focusing Modified [17]
Optimal brain tumor diagnosis Hybrid [88]
Optimal brain tumor detection Modified [87]

Wireless Sensor Networks Routing optimization in wireless sensor networks Modified [83]
Sensor networks coverage optimization of bridge monitoring Modified [81]
WSN node localization Modified [62]
Fault detection of pressure sensor of blast furnace fan Modified [72]
Efficient cluster-based routing for heterogeneous nodes in Wireless Sensor Networks Original [121]
WSN optimization coverage Modified [115]
Node localization algorithm for WSNs Original [44]
DV-Hop localization in WSN Modified [61]
Energy efficient cluster head selection Modified [122]
DV-Hop localization Modified [60]
Indoor positioning model Modified [103]

Electrical engineering Side lobe level reduction of linear antenna array Modified [57]
Optimal configuration of distributed generation Modified [39]
Optimal parameter identification of PEMFC stacks using Modified [26]
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that such information about the growth has been extracted 
from the Scopus index database.

As can be seen in Fig. 1, the SSA, although it was estab-
lished in 2020, it has been considerably published in high-
quality journals and conferences. More than 110 articles 
have been published using SSA as a primary contribution. 
This is indeed solid evidence of the viability and efficiency 
of this algorithm.

As another indication of the SSA efficiency, the citations 
gained by the SSA publications are given in Fig. 2. The 
SSA-based articles have acquired more than 500 citations. 
This heavy usage of SSA research works has proven the 
importance of such an algorithm since it can compete well 
with other well-established algorithms in a short period.

The SSA algorithm has been used as a leading optimizer 
for more than twelve research topics, as shown in Fig. 3. 
Engineering, computer science, and mathematics are the 
most research topics that used SSA, where they represent 
around 60% of the entire research portion. The broad inter-
est in using SSA to tackle different research topics in other 
domains proves its features’ efficiency and success.

Due to its heavy usage during the last two years, the SSA 
based research works have been accepted in prestigious pub-
lishers such as IEEE, Elsevier, Springer, MDPI, Hindawi, 
etc. Figure 4 shows high percentage of the SSA articles 
published in the IEEE publisher. Elsevier and Springer are 
also hosted well-established journals that published high-
quality research. Indeed, SSA-based publications have been 
accepted in such journals due to their effective and qualita-
tive outcomes.

In specific, the IEEE access journal has published 9 
articles, while the Journal of Physics Conference Series 
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has published 8 papers, as shown in Fig. 5. Thus, the pub-
lication in well-reputed journals is solid evidence of the 
convergence strength of SSA performance.

Researchers from China were able to publish more than 
100 SSA-based research articles (Fig. 6), where more than 
100 articles on SSA have been resulting from Chinese 
institutions. India also is the second country to use SSA 
to tackle its optimization problems. Nevertheless, SSA is 
acceptable everywhere around the world.

Therefore, the top 2 institutions that were concerned 
with SSA to tackle their research problems are from China: 
the Ministry of Education China, and Jiangxi University 
of Science and Technology, as shown in Fig. 7. Authors 
from both institutions were able to publish more than 10 
SSA-based articles over the last two years.

The top authors who published SSA-based research arti-
cles are Zhu and Ouyang, the founders of SSA, who have a 
deep knowledge of the SSA theories and concepts (Fig. 8).

3  Basic Concepts of SSA

In this section, the inspiration of the SSA is firstly intro-
duced in Sect. 3.1, while the procedural steps of SSA are 
described in Sect. 3.2.

3.1  Inspiration of SSA

SSA is one of the most recent swarm-based algorithms intro-
duced by Xue and Shen [10]. It mainly mimics the foraging 
and anti-predation behavior of sparrows in the population. 
Sparrows have an intelligent behavior that helps them to 
survive as follows:

– The population is divided into two groups: producers and 
scroungers. The producers are seeking food sources or 
provide directions of food sources, while scroungers find 
the food source that the producers discovered, as shown 
in Fig. 9.
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– Sparrows have an intelligent anti-predation behavior to 
avoid attackers. Therefore, some sparrows are selected 
as Scouters to avoid predators during the foraging pro-
cess. The Scouters produce alarm sounds when they dis-
cover attackers, and thus the producers lead scroungers 
to another safe place.

– The responsibilities of sparrows (producers and scroung-
ers) in the population are exchanged to find better food 
sources. It should be noted that the number of producers 
and scroungers stands unchanged over time.

– The fittest sparrows in the population become produc-
ers, while the other sparrows in the population become 
scroungers. The scroungers can find better food sources 

Fig. 6  The number of SSA publications per country
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by following the producers, and some scroungers con-
stantly monitor producers to find more food sources.

– The sparrows seek to change their positions in case of 
danger. The sparrows on the edge of the population 
quickly move to a better position in searching for safety. 
The sparrows in the middle of the group randomly move 
close to the rest of the group.

3.2  The Procedure Steps of the SSA

This section introduces the mathematical formulation of the 
basic SSA. Figure 10 illustrates the procedural steps of the 
SSA, while its Pseudo-code is presented in Algorithm 1. 
Mathematically, the detailed description of the eight main 
steps of the SSA is given as follows:

Fig. 9  Seeking and finding 
food sources by producers and 
scroungers

Fig. 10  The flowchart of the 
sparrow search algorithm
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Algorithm 1 The pseudo-code of the sparrow search algorithm
1: Initialize the parameters of SSA: N , NP , SC, D, and Gmax

2: for i=1:N do
3: for j=1:D do
4: xi,j = lbj + (ubj − lbj) × U(0, 1) {Construct the initial population}
5: end for
6: Calculate f(xi) {Fitness evaluation}
7: end for
8: g=1
9: while (g ≤ Gmax) do
10: Select the sparrow with the best position xGbest

11: Select the sparrow with the worst position xworst

12: Divide population into producers and scroungers.
13: for i=1:NP do
14: Update the locations of the ith producer using Eq. (2)
15: end for
16: for i=(NP+1):N do
17: Update the locations of the ith scrounger using Eq. (3)
18: end for
19: for i=1:SC do
20: Update the locations of the ith scouter using Eq. (4)
21: end for
22: for i=1:N do
23: if f(xi(g + 1)) < f(xi(g))) then
24: xi(g) = xi(g + 1) {Archives the current locations of sparrows}
25: end if
26: if f(xi(g + 1)) < f(xGbest) then
27: xGbest = xi(g + 1) {Update the position of the best sparrow}
28: end if
29: end for
30: g = g + 1
31: end while
32: Return the best solution xbest

Step 1 Parameters initialization. In the beginning, the 
parameters of the SSA algorithm should be assigned with 
initial values. The SSA has five parameters which are 
classified into two algorithmic and three control param-
eters. The algorithmic parameters are the population size 
(N), and the maximum number of iterations ( Gmax ). The 
control parameters are the number of producers (NP), the 
number of scroungers (NS = N - NP), and the number of 
scouters (SC).
Step 2 Construct the initial population. In this step, the 
population is filled with a constraint number of sparrow 
positions determined by N. The population is mathemati-
cally presented as a two-dimensional matrix of size N × D 
as shown as follows: 

 Each row ( xi = xi,1, xi,2,… , xi,D−1, xi,D ) in the population, 
represents sparrow at the ith position. xi,j is the decision 

(1)Population =

⎡⎢⎢⎢⎣

x1,1 x1,2 ⋯ x1,D−1 x1,D
x2,1 x2,2 ⋯ x2,D−1 x2,D
⋮ ⋮ ⋯ ⋮ ⋮

xN,1 xN,2 ⋯ xN,D−1 xN,D

⎤⎥⎥⎥⎦

variable at the jth location of the ith sparrow, where j ∈
[1,D]. D is the dimension of searching space. Each xi,j 
is assigned a random number between the lower bound 
( lbj ) and the upper bound ( ubj ) limits. Later on, the fit-
ness value or the quality of the positions of each sparrow 
in the population is calculated using the fitness function 
f (xi) , ∀i = (1, 2,… ,N) . Thereafter, the position of the 
best sparrow (i.e., xGbest ) in the population should be 
determined.
Step 3 Divide population into producers and scroungers. 
In this step, the sparrows population is divided into two 
groups: producers and scroungers. The producers are 
the fittest sparrows in the population, which seek food 
sources and guide the movement of the other sparrows. 
While the scroungers find foods according to the produc-
ers.
Step 4 Update the location of sparrows. The position of 
each sparrow in the population is modified iteratively in 
order to enhance the sparrow fitness. Due to the fact the 
sparrows of the population are divided into two groups, 



2840 M. A. Awadallah et al.

1 3

the process of updating the location of each sparrow is 
different according to its responsibilities as follows:

– Update locations of producers The positions of pro-
ducers are modified according to Eq. (2). 

 where g is the current iteration, and Gmax is the max-
imum number of iterations that should be respected 
during the search process. � is a uniform random 
number, where � ∈(0, 1]. r ∈[0,1] and ST ∈[0.5,1] 
are represent the alarm and the safety threshold, 
respectively. Q is a random number that belongs to 
the normal distribution. L is a one-dimensional vec-
tor with the length of D where each element of L is 
assigned with 1. When r < ST  means the producer 
can continue the search with no other producers 
around, while r ≥ ST  means some sparrows have 
been discovered by the producer, and thus all spar-
rows should fly to other safe places.

– Update locations of scroungers The positions of 
scroungers are updated according to Eq. (3). 

 In Eq. (3), xworst is the sparrow with worst position, 
while xPbest is the best location obtained so far for the 
ith producer. A is one-dimensional vector with the 
length of D, each element of A is assigned a value 
between -1 to 1 randomly. A+ = AT (AAT )−1 . When 
i > N∕2 indicates the scrounger at the ith position 
does not get food in its current place and needs to 
fly to other places seeking food sources. On the other 
hand, when i ≤ N∕2 means the scrounger at the ith 
position will fly around the best sparrow xbest in 
order to find food sources.

Step 5 Select scouters and renew the locations of scout-
ers. In this step, to be aware of the dangers, 10% to 20% 
of the population are randomly selected as scouters. The 
positions of these scouters are modified using Eq. (4). 

 where xGbest is the sparrow with the best position in the 
population. xworst is the sparrow with the worst position 
in the population. � is the step size control parameter, 
and it assigned a random number that follows a normal 

(2)

xi,j(g + 1) =

{
xi,j(g) × exp

(
−i

𝛼×Gmax

)
r < ST ,

xi,j(g) + Q × L r ≥ ST .

(3)

xi,j(g + 1) =
⎧

⎪

⎨

⎪

⎩

Q × exp
( xworstj −xi,j(g)

i2

)

i > N∕2,

xPbestj − |xi,j(g) − xPbestj | × A+ × L i ≤ N∕2.

(4)

xi,j(g + 1) =
⎧

⎪

⎨

⎪

⎩

xGbestj + � × |xi,j(g) − xGbestj | f (xi(g)) > f (xGbest),

xi,j(g) + K ×
( xi,j(g)−xworstj

f (xi(g))−f (xworst )+�

)

f (xi(g)) = f (xGbest).

distribution with a mean value between 0 and a variance 
of 1. K is a assigned a random number between − 1 and 
1. � is a small random value to avoid division by zero. 
f (xi(g)) is the fitness value of the ith sparrow at the g 
iteration. f (xworst) is the fitness value of the worst sparrow 
in the population. When f (xi(g)) > f (xGbest) denotes that 
the sparrow at the ith position is at the edge of the group, 
and this is unsafe situation. It should be noted that the 
x
Gbest represents the center of the group, and this the most 

safe situation. f (xi(g)) = f (xGbest) demonstrates that the 
sparrow at the ith position is in the center of the group, 
and thus in safe situation.
Step 6 Archives the current locations of sparrows. In this 
step, the old position of each sparrow xi(g) in the popula-
tion is replaced by the new position xi(g + 1) in the only 
case that the fitness is better (i.e., f (xi(g + 1)) < f (xi(g)) , 
∀i = 1, 2,… ,N).
Step 7 Update the position of the best sparrow. In this 
step, xGbest is replaced with xi(g + 1) , if and only if the 
fitness of xi(g + 1) is better than the fitness of xGbest.
Step 8 Check stopping condition. Step 3 to Step 7 are 
repeated until the maximum number of iterations Gmax 
is reached.

4  Recent Variants of SSA

As aforementioned, the performance of the SSA depends on 
the search space shape and the size of the optimization prob-
lem. Therefore, several variants of SSA have been produced 
to cope with these issues. These SSA versions are reviewed 
in the below subsections.

4.1  Original Versions of SSA

The SSA proved its high and robust performance in 
addressing various optimization problems in different 
domains, such as engineering, computer sciences, math-
ematics, and others. This section summarized most of the 
studies that addressed several optimization problems in 
different research domains using the original version of 
SSA.

Wang and Xianyu [39] adapted the SSA to find the opti-
mal configuration model of distributed generation system 
in a distribution network. The SSA was evaluated based 
on many distribution systems containing 33 systems to 
investigate its optimization performance. The achieved 
results proved the high optimization efficiency of the SSA 
in obtaining the objective compared with several optimiza-
tion methods.

The SSA was utilized by Zhou and Chen [40] to opti-
mize the extreme learning machine model to predict the 
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carbon price and validate and confirm the outputs of the 
proposed prediction system. The simulation results dem-
onstrated the high capabilities of the SSA in optimizing 
the model and achieving the best price in comparison with 
other well-established methods in different 13 models.

Song et al. [41] studied the prediction of water quality 
parameters using an improved machine learning model 
called improved least squares support vector machine. The 
authors utilized the SSA to optimize the parameter values 
for the proposed model. To evaluate the proposed model 
with the SSA, a well known benchmark datasets were 
used. The obtained results proved the efficiency of utiliz-
ing the SSA for the proposed model, where it achieved the 
best results compared with all other methods.

Xing et al. [42] adapted the SSA to extract the com-
ponents of fault diagnosis of wheelset-bearing efficiently 
by adopting the hierarchy thought and the shift-invariant 
structure of the dictionary and optimizing their param-
eters. To investigate the propsoed method performance, 
several comparisons were conducted. The obtained results 
presented the high performance of the proposed methods 
compared with the other methods.

The soil heavy metal content detection problem was 
addressed by Chen et al. [43] by proposing an overlapping 
peak analysis method utilizing the original version of SSA. 
The main aim of adapting the SSA is to optimize the prob-
lem’s parameters. In the evaluation processes for the pro-
posed method, the SSA demonstrated all other compared 
methods, including GA, ACO, PSO, where SSA obtained 
the best results in achieving the objectives.

Zhang et al. [44] addressed a wireless sensor network 
problem by identifying nodes’ positions. SSA was used due 
to its high performance in addressing such problems. The 
simulation results proved the robust performance of the SSA 
in optimizing the objectives, where it outperformed all com-
pared methods and obtained the best results.

To address the shape adjustment and shape control prob-
lems efficiently [45], promoted the development of gen-
eralized developable Bézier-like surfaces by adapting the 
SSA, which is used to construct curves with multiple shape 
parameters. In the stage of evaluating the proposed method, 
the SSA performance was investigated and compared with 
other methods. The SSA showed high-performance behav-
iour in addressing and optimizing the problem compared 
with the other methods.

Song et al. [46] addressed the water environmental qual-
ity management problem by proposing a new model. The 
kernel extreme learning machine was used to enhance the 
proposed model, and the SSA was utilized to optimize the 
model’s parameters. To investigate the performance of the 
proposed model, the obtained results were compared with 
other state-of-the-art- methods. The proposed model showed 

a high performance in addressing the problem and optimiz-
ing the parameters by the SSA compared with all compared 
methods.

A wind power forecasting method was proposed by An 
et al. [47] to address the wind power forecasting problem. In 
their proposed method, the SSA and deep extreme learning 
machine methods were utilized to enhance the performance 
of the proposed forecasting method. The SSA was utilized 
to optimize the parameters and solve the random changes 
problem. A measured data of a specific wind turbine was 
used in the simulation results. The results proved the high 
quality of the proposed model and the SSA compared with 
all compared methods and models.

The SSA was adapted by Xie and Li [48] to efficiently 
enhance the deep belief network model and overcome the 
neuron selection problem. In addition, the SSA was used to 
address the problem of defining neural nodes per layer. In 
the experimental results, the Western Reserve dataset is used 
to investigate and evaluate the performance of the proposed 
method. The proposed method showed a robust performance 
in obtaining the best results in terms of all objectives.

The XGBoost model selecting parameters problem was 
addressed by Song et al. [41] utilizing the SSA for a short-
term load forecasting model. The Zhejiang Province data 
was used in the experimental stage to evaluate the proposed 
method through five experiments. The proposed method 
exhibited and yielded better results than the compared meth-
ods in optimizing the problem.

Sun et al. [49] adapted the SSA to optimize the hyperpa-
rameters of the in-cylinder pressure values of a high-speed 
diesel engine. Such optimization was utilized to optimize 
diesel engine performance. The simulation results proved the 
high performance of the SSA in optimizing the parameters 
and enhancing the engine performance compared with the 
other methods, where the proposed method obtained better 
results than all compared methods.

Abdulhammed [50] utilized the IoT to a healthcare sys-
tem based cloud computing and optimized its load balancing 
utilizing the SSA. The main purpose of using the SSA is 
to achieve the best balance between tasks through differ-
ent virtual machines. The experimental results proved the 
robustness of the SSA performance in addressing the prob-
lem and obtaining the best balance in the comparison study 
with other methods.

The SSA was adapted by Karthick and Gomathi [51] to 
manage the resources in an IoT environment. The main aim 
of using the SSA is to reduce the total data transmission 
cost in the IoT environment. In the simulation results, the 
SSA achieved good outcomes in reducing the cost and time 
with maintaining system performance. Also, the SSA out-
performed all compared methods in terms of addressing the 
problem and optimizing the objectives.
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In the electrical power sector, wind turbines have become 
one of the most effective energy sources in producing clean 
and renewable energy. Therefore, finding the best location 
for wind turbines can significantly enhance energy genera-
tion. Accordingly Kumar and Reddy [52], adapted SSA to 
find the optimal position for the wind turbines to produce 
the maximum energy. The authors evaluate the SSA based 
on two phases, including constant wind speed with variable 
wind direction and variable wind speed with variable wind 
direction. The obtained results presented the high perfor-
mance of the SSA in optimizing the objectives and finding 
the best positioning, where it outperformed all compared 
methods.

The SSA was adapted to optimize individual phase volt-
age regulation strategies [53]. The primary aim of using 
the SSA is to improve voltage variation and unbalance. In 
the simulation results, the SSA was investigated using two 
constraints, including PV power output patterns and unbal-
anced load conditions. The SSA demonstrated its perfor-
mance in achieving the optimal results for the objectives 
compared with the compared methods, where it obtained 
the best results.

Another application for the SSA on optimizing power 
and electrical system was proposed by Zafar et al. [54]. 
The authors adapted the SSA to enhance the PV systems’ 
performance with lower time wastage and oscillations. In 
experimental results, the SSA performance was investigated 
by comparing its obtained results with other methods. The 
SSA showed a high performance in achieving the best results 
for the objectives.

4.2  Modified Versions of SSA

Figure 11 illustrates the percentage of each kind of modifica-
tion introduced by the researchers to the original framework 
of the SSA algorithm. There are six main modified variants 
are presented in the literature such as chaotic, lévy flight, 

adaptive, opposition-based learning, discrete, and random 
walk SSA. It can be observed that the chaotic SSA has a high 
percentage of publications reached 32%, followed by the 
lévy flight, adaptive, and opposition-based learning variants 
each with 14% of publications.

4.2.1  Adaptive SSA

Some adaptive versions of SSA have been introduced to 
overcome the shortcomings of an algorithm when it is 
adopted to solve optimization problems by finding the right 
balance between exploration and exploitation in all phases 
of the search process. Some of the adaptive SSA are sum-
marized as follows:

Zhu et al. [26] proposed an adaptive SSA for optimal 
model parameters identification of the proton exchange 
membrane fuel cell stacks, called ASSA. An adaptive 
learning factor was introduced in the search process rather 
than the random walk strategy to solve the problem of slow 
convergence. The performance of the ASSA was evaluated 
using three real-world datasets (i.e., NedStack PS6, Bal-
lard Mark V 5 kW, and Horizon H-12) and compared with 
the chaotic grasshopper optimization algorithm, the grass 
fibrous root optimization algorithm, and the classical SSA. 
The experimental results demonstrated the effectiveness of 
the ASSA against the other comparative algorithms in terms 
of solution quality and convergence speed.

In the work of Yang [55], another adaptive SSA 
(CWTSSA) based on chaotic mapping mechanism, adaptive 
weighting strategy, and adaptive t-distribution mutation was 
proposed for global optimization. In CWTSSA, the chaotic 
mapping mechanism was used to construct the initial popu-
lation in order to enhance population diversity. Furthermore, 
the adaptive weighting strategy and adaptive t-distribution 
mutation were combined within the framework of SSA to 
avoid the problem of getting stuck on the local optimum and 
finding the right balance between the exploration and exploi-
tation capabilities. The performance of the CWTSSA was 
tested using 15 test functions and compared to the classical 
SSA, and four other algorithms. The experimental results 
illustrated the effectiveness of the CWTSSA compared to the 
other competitors in terms of convergence accuracy, conver-
gence speed, and exploration abilities.

Ouyang et al. [27] proposed an adaptive SSA for robot 
path planning, named ASFSSA. The tent chaotic mapping 
was used in the early stage to generate the initial popula-
tion to improve the population diversity. Then the adaptive 
weight strategy and lévy flight mechanism were utilized in 
the discoverer stage in order to make it flexible and adapt-
able. In addition, the variable spiral search method is used in 
the follower stage to enhance the local search abilities. The 
performance of the ASFSSA was evaluated using 18 classi-
cal test functions and compared with five other algorithms. 

Chaotic (32%)

Lévy flight (16%)

Adaptive (14%)

Opposition based learning (14%)

Discrete (7%)

Random walk (7%)

Others (11%)

Fig. 11  The modified variants of SSA
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Finally, the ASFSSA was applied for robot path planning 
using two different simulation models. It was demonstrated 
that the ASFSSA gives satisfactory results compared to 
other comparative algorithms.

Liu et  al. [56] presented a modified version of SSA 
(CASSA) for the unmanned aerial vehicle (UAV) route plan-
ning problem. Three main modifications are introduced by 
the authors to enhance the performance of the classical SSA 
and to avoid trapping into local optimal solutions. These 
modifications are as follows: (1) the chaotic mapping strat-
egy was utilized to enhance the randomness of the posi-
tions of the initial population, (2) an adaptive inertia weight 
was introduced in order to ensure the right balance between 
the exploration and exploitation abilities during all search 
stages, and (3) the Cauchy-gaussian mutation strategy was 
used to improve the capability to avoid the stagnation cases. 
The performance of the CSSA was evaluated using simula-
tion datasets and compared to the classical SSA, as well as 
four other algorithms. It was demonstrated that the CASSA 
performs better than all comparative algorithms in terms of 
solution quality and convergence behavior.

In another study by Liang et al. [57], they introduced 
an adaptive version of SSA based on adaptive weight and 
improved boundary constraints for unconstrained numeri-
cal optimization. These modifications are introduced by the 
authors in order to solve the problems of falling into local 
optimum and limited convergence speed. The performance 
of their algorithm was evaluated using 9 test functions and 
compared to the classical SSA and three other optimization 
algorithms. Their adaptive SSA performed better than all 
other comparative algorithms in terms of solution quality 
and convergence.

In Chengtian et al. [58], an adaptive chaotic SSA algo-
rithm was presented for continuous optimization problems. 
This algorithm was called ISSA. Firstly, the tent chaotic 
map was utilized to construct the initial population in order 
to enhance the diversity of the population. Then, an adap-
tive local search strategy was adopted to enhance exploita-
tion ability and to avoid getting stuck in the local optimum. 
Finally, the Cauchy mutation method was utilized to update 
the position of the optimal solution. The performance of the 
ISSA was tested using 8 classical test functions and com-
pared with the other three algorithms. The simulation results 
show that the performance of the ISSA performs better than 
the other algorithms in terms of convergence sped and solu-
tion accuracy.

4.2.2  Lévy Flight‑Based SSA

The lévy flight-based concept is popularly used by research-
ers in the optimization domain in order to control the explo-
ration and exploitation capabilities. For SSA, the lévy 

flight-based is combined with the SSA to avoid the problem 
of getting stuck in local optimum by improving the diversity 
and the global search abilities.

Ma and Zhu [31] introduced a new modified version of 
the SSA for global optimization, called ISSA In their algo-
rithm, the sin chaos search schema was used to enhance the 
population initialization mechanism. Furthermore, the lévy 
flight disturbance strategy was combined within the frame-
work of the SSA to improve its diversity. The performance 
of their algorithm was tested using 14 high-dimensional test 
functions. ISSA was demonstrated to outperform the original 
version of SSA and chaotic SSA in terms of solution quality 
and convergence speed.

Ouyang et al. [30] introduced a multi-strategy improved 
SSA for global optimization, called KLSSA. In KLSSA, 
the K-means clustering method is used in the phase of con-
structing the initial population. This is to differentiate the 
positions of the sparrows in a set of clusters. Thereafter, 
the lévy flight mechanism and adaptive local search strategy 
were integrated with the framework of KLSSA in order to 
enhance its global search abilities and thus avoid the prob-
lem of getting stuck in local optimum. The performance of 
the KLSSA is evaluated using 10 classical benchmark func-
tions that are commonly used in the literature. The experi-
mental results demonstrated that the KLSSA has better per-
formance than the improved SSA and the classical version 
of SSA in terms of convergence and solution quality.

Chen et al. [59] proposed another modified version of 
SSA, called LOSSA, based on the integration of lévy flight 
mechanism and opposition-based learning strategy with the 
classical SSA for global optimization. In LOSSA, the lévy 
flight mechanism is used to empower the global search abil-
ity and avoid the problem of local optimum. While the oppo-
sition-based learning strategy is utilized to generate better 
solutions and thus increased the convergence speed. The effi-
ciency of the LOSSA was validated on classical benchmark 
functions. In addition, the LOSSA was utilized for solving 
the hyper-parameter optimization problem of machine learn-
ing algorithms. The experimental results demonstrated the 
efficiency of the LOSSA against the classical SSA and other 
comparative algorithms.

An enhanced SSA (SPISSA) based on reverse learning 
and lévy flight mechanism was introduced in the work of 
Chen et al. [11]. In SPISSA, reverse learning is introduced to 
enhance the diversity and the quality of the initial solutions, 
while the lévy flight mechanism is utilized to enhance the 
global search capabilities. In t heir research, the SPISSA was 
used as a feature-selected method to find the subset features 
on the intrusion detection dataset. The experimental results 
illustrated the efficiency of the SPISSA against the classical 
SSA in finding the optimal subset of features with minimal 
computational times.
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In the work of Lei et al. [60, 61], an improved SSA (ISSA) 
based on lévy flight strategy was proposed for estimating the 
position of unknown nodes in wireless sensor networks. The 
lévy flight strategy is used to enhance the performance of 
their algorithm by avoiding the problem of getting sucked 
in the local optimum. The performance of ISSA is evaluated 
using a simulation dataset with 100 sensor nodes, where 
these nods are randomly arranged in a 100 × 100 m network. 
The superiority of ISSA to other algorithms was demon-
strated in terms of position accuracy. In another study by 
Jiang et al. [62], they applied the same ISSA for solving the 
same problem introduced in [60, 61]. The authors in [62], 
tested the performance of ISSA using a simulation dataset 
with 200 sensors in a 200 × 200 m network with good results 
against the other comparative methods in terms of position 
accuracy. Similarly, Peng et al. [63] used the same method 
presented in [60–62] for the node localization in wireless 
sensor networks with different simulated datasets.

4.2.3  Opposition Based Learning SSA

Opposition-based learning is a new part of machine learning 
that mimics the opposite relationship between entities. The 
opposition-based learning was firstly introduced in 2005. 
Since its foundation, the method is highly attracted research-
ers’ attention. The opposition-based learning is used in the 
optimization domain for several purposes, such as increasing 
population diversity and avoiding local search stagnation. 
The opposition-based learning was also utilized for the SSA 
due to its high performance in enhancing the optimization 
processes [64, 65].

The SSA searching performance was improved by com-
bining its searching behavior with opposition-based learn-
ing, fitness-based learning, and Lévy flight for atmospheric 
concentration prediction [65]. The opposition-based learn-
ing was used to boost the initial population diversification, 
the Lévy flight was employed to alter the producers’ and 
alarmers’ locations, and the fitness-based learning method 
was utilized to improve the search capabilities of the search 
agents. In the experimental results, the proposed method 
was compared with the original SSA and other well-known 
methods. The proposed method proved its high performance 
in predicting the atmospheric concentration, where its results 
excel all comparative methods.

Jiang et al. [28] addressed the reentry vehicle trajectory 
optimization problem by proposing a new SSA version 
based on opposition-based learning, random walk strategy, 
and adaptive T-distribution. The primary aims of the pro-
posed method are to enhance the stability and accuracy of 
the SSA optimization processes and emphasize the explora-
tion capabilities to find better solutions. In the simulation 
phase, the proposed method showed a significant behavior 

in addressing the problem, and it achieved better results than 
the other compared optimization methods.

The load scheduling optimization problem in the cloud 
computing environment was studied and handled by Robert 
Adaikalaraj and Vengattaraman [29]. The authors proposed a 
new optimization method based on the SSA and opposition-
based learning to address such a problem and optimize its 
objectives efficiently by enhancing the convergence rate and 
searchability of the SSA. The obtained results proved the 
high capabilities of the proposed method in finding the best 
load balancing compared with the compared methods.

A random opposition-based Learning was combined with 
the SSA to increase the population diversity and emphasize 
the exploration of the SSA [66]. In addition, a linear decreas-
ing strategy was utilized with the SSA to maintain its explo-
ration and exploitation capabilities. The proposed method 
was introduced to address one of the most popular optimiza-
tion problems called the robot path planning problem. The 
performance of the proposed methods was validated using 
11 datasets. The evaluation results showed the efficiency of 
the proposed method in addressing such a problem.

Ma et al. [67] improved the SSA searching performance 
by combining its components with elite opposition-based 
learning, Lévy flights, Tent chaos, and variable radius. The 
main purpose of the proposed method is to enhance the SSA 
population diversity, exploration, and exploitation capabili-
ties and maintain the balance between them. In the valida-
tion and evaluation stage, the proposed method was tested 
using 31 benchmark test functions and eight real-world 
constrained engineering problems. The obtained results 
were compared with that of 19 state-of-the-art methods. 
The results show the superiority of the proposed method in 
achieving the best results.

Fang et al. [68] proposed a new SSA method utilizing the 
elite opposite learning strategy and orifice imaging opposite 
learning strategy to enhance the quality of the SSA initial 
population and improve its convergence behavior. The pro-
posed method was introduced to optimize the hyper-param-
eters of LightGBM. The proposed method was tested using 
several benchmark functions. The proposed method showed 
a high performance in optimizing the parameters compared 
with all other compared methods.

4.2.4  Discrete SSA

The SSA algorithm is modified by converting from a con-
tinuous version to a discrete one to manipulate the search 
space of the optimization problems with discrete decision 
variables.

The symmetric traveling salesman problem was tack-
led using a discrete SSA called DSSA [24]. In DSSA, the 
roulette-wheel selection was used to construct the initial 
population. The solution feasibility is maintained using 
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sequence-based coding and decoding method. Thereafter, 
the global perturbation mechanism was integrated with 
Gaussian mutation and swap operator to jump out of local 
optimum and enhance convergence speed. Finally, the 2-opt 
procedure is integrated within the framework of DSSA to 
enhance the local searchability. The performance of DSSA 
was validated based on 34 datasets taken from TSPLIB. The 
experimental results illustrated that the performance of the 
DSSA was better than the other comparative algorithms in 
almost all cases in terms of solution quality and robustness.

Wu et al. [25] presented another discrete version of SSA 
for traveling salesman problem, called GGSC-SSA. The 
greedy algorithm is used to generate the solutions for the 
initial population. The crossover and mutation operators are 
integrated within the classical SSA to enhance its global 
and local search abilities. The dynamic adaptive weights are 
utilized to update the position of the producers, while the 
search strategy of the sine-cosine algorithm is utilized to 
increase the scrounger search range. These modifications 
are suggested by the authors in order to avoid the problems 
of falling in local optimum and premature convergence. The 
performance of GGSC-SSA was evaluated using 36 datasets 
from TSPLIB and compared with nine comparative algo-
rithms from the literature. GGSC-SSA was demonstrated to 
outperform all other comparative algorithms in almost all 
cases of this problem area.

In the work of Han and Zhang [69], a discrete SSA was 
proposed for robot routing problems. The local search 
method and genetic algorithm operators are integrated with 
the SSA to find the trade-off between exploration and exploi-
tation capabilities. The obtained results showed the superi-
ority of their algorithm when compared to other heuristic 
methods.

4.2.5  Random Walk SSA

The random walk concept was also utilized to overcome the 
shortcomings of the SSA by increasing the randomness and 
thus enhancing the population diversity.

Chen et al. [23] presented an improved SapSA based 
on a chaotic strategy combined with the dynamic adaptive 
search strategy, levy flight mechanism, and random walk 
strategy. The chaotic map strategy is used to generate the 
initial population in order to increase the randomness and 
thus enhance the population diversity. Then, the dynamic 
adaptive weighting strategy and lévy flight were utilized to 
increase the search range. Finally, the random walk strat-
egy was used to avoid the problem of being stuck in local 
optima. The performance of their algorithm was evaluated 
using 6 test functions with good results when compared to 
other algorithms in terms of solution quality and avoiding 
premature convergence.

In the work of Zheng and Liu [12], a modified SSA was 
presented to optimize microgrid energy dispatch. This algo-
rithm is called ISSA. The tent chaotic was utilized to con-
struct the initial population to improve the population diver-
sity. The random walk strategy is adopted to enhance the 
global and local search abilities and thus avoid the problem 
of getting stuck in the local optimum. Experimental results 
demonstrated that ISSA gives better global convergence and 
local search ability compared to the classical SSA and PSO 
algorithms.

Ma et al. [70] introduced an improved version of the SSA 
algorithm, called rSSA, for malicious URL classification. 
In rSSA, the random walk strategy was combined within 
the framework of the classical SSA to avoid falling in the 
local optimum. The optimal solution of the rSSA algorithm 
is fed as the initial weight of the BP neural network. Then, 
the BP neural network was triggered for the classification of 
malicious URLs. The superiority of rSSA was demonstrated 
compared to the classical SSA, WOA, and GWO in terms of 
classification accuracy.

4.2.6  Chaotic SSA

The chaotic map strategies are also integrated with the SSA 
algorithm in order to navigate the search space more widely 
and dynamically, and thus make the right balance between 
exploration and exploitation abilities. Some of the chaotic 
maps are used to control the parameters of SSA, while the 
others are used as a source of randomness to avoid the prob-
lem of local optimum.

Song et al. [22] proposed an enhanced SSA (ISSA) 
based on a chaotic strategy integrated with a non-linear 
decreasing weight and mutation operator for continuous 
optimization problems. The tent chaotic map was used 
to generate the initial population to enhance the popula-
tion diversity. The concept of the non-linear decreasing 
weight was combined with the classical SSA to maintain 
the balance between the exploration and exploitation abili-
ties and thus avoid the trapping in local optimum. Finally, 
the mutation operator was used to change the location of 
fatigue scrounger sparrows, while the chaotic search was 
used to change the location of the fittest scrounger spar-
rows. The ISSA was evaluated using 26 test functions and 
compared to the classical SSA. It was demonstrated that 
the ISSA gives better results than the classical SSA in 
terms of solution quality and convergence behavior.

Zhang and Ding [21] introduced a chaotic sparrow 
search algorithm (CSSA) for stochastic configuration net-
work (SCN), called CSSA-SCN. In CSSA, the logistic cha-
otic mapping, self-adaptive hyper-parameters, and muta-
tion operator are integrated with the classical SSA in order 
to escape local optimum and make a balance between the 
exploration and exploitation abilities. Thereafter, the 
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CSSA was applied to find the best parameters setting of 
SCN automatically. The performance of CSSA was eval-
uated using 13 test functions, while the performance of 
CSSA-SCN was evaluated using three real-world datasets 
taken KEEL. Experimental results illustrated that CSSA 
gives better performance behavior than the classical SSA 
and other six optimization algorithms. In addition, the 
superiority of CSSA-SCN was demonstrated to the SCA 
and other contrast algorithms for the real-world datasets.

Another chaotic version of the SSA algorithm is pro-
posed in Lyu et al. [71], called CSSA. Firstly, the tent 
chaotic map was utilized to generate the initial population 
to enhance the population diversity. Then, the Gaussian 
mutation and tent chaotic map were combined with the 
SSA in order to avoid trapping in local optimum by mak-
ing the right balance between exploring and exploiting the 
search space. The experimental results demonstrated that 
the CSSA performs better than the classical SSA in terms 
of solution quality and convergence behavior when tested 
using 13 test functions.

Zhang et al. [72] integrated the chaotic SSA with a sup-
port vector machine for fault detection of the pressure sensor 
of the blast furnace fan. This algorithm is called the CSSA-
SVM model. The Chebyshev chaotic mapping is used to 
enhance the search process of the classical SSA to avoid 
falling in local optimum. Later on, the CSSA was triggered 
to find the best parameter settings of SVM. Their model was 
evaluated using a real-world dataset collected by the authors. 
The simulation results demonstrated that the CSSA-SVM 
model has better performance than the integration between 
the classical SSA and SVM in terms of convergence behav-
ior and accuracy.

Wang et al. [73] proposed an improved SSA (ISSA) based 
on chaotic strategy, dynamic adaptive weighting, Cauchy 
mutation, and reverse learning. In ISSA, the Bernoulli cha-
otic map was introduced to generate the initial positions of 
the different sparrows, while the dynamic adaptive weight-
ing was used to update the positions of the sparrows. The 
Cauchy mutation and reverse learning were utilized to 
enhance the global search ability of the SSA algorithm. The 
ISSA was evaluated using 12 test functions and compared to 
PSO, chaotic PSO, GA, and the classical SpaSSA. The simu-
lation results illustrated the superiority of the ISSA against 
the others in terms of convergence behavior and solution 
quality. For more validations, the ISSA was applied for 
microgrid cluster optimization problems with good results 
against the other algorithms.

Xiong et al. [74] introduced another chaotic SSA for 
enhancement of long-distance iris image, called CPSSA. 
First, fractional-order chaos was utilized for generating 
the initial population to enhance the population diversity. 
Second, the Pareto distribution strategy was used to modify 
the positions of sparrows in the population. This is to avoid 

trapping in the local optimum and enhance the convergence 
behavior. Finally, the traditional contrast limited adaptive 
histogram equalization (CLAHE) method was used to find 
the best clipping of images. The performance of the CPSSA 
was tested using 12 test functions and compared to the clas-
sical SSA, PSO, and ABC. The experimental results illus-
trated the superiority of the proposed CPSSA against others 
in terms of solution quality and convergence. In addition, the 
CPSSA was applied for the enhancement of long-distance 
iris images using the CASIA-Iris-Distance dataset. The 
experimental results demonstrated that the CPSSA was more 
robust than other algorithms.

In the work of Ma et al. [75], an enhancing SSA (EMSSA) 
according to multi-strategies was presented for solving dif-
ferent optimization problems. These strategies are: (1) an 
adaptive-tent chaos theory was used to construct the initial 
population in order to enhance randomness and population 
diversity; (2) a weighted sine and cosine algorithm was 
adopted to avoid trapping in local optimum situations, and 
(3) perturbation function was utilized to enhance the global 
searchability. The performance of the proposed EMSSA 
was evaluated using 23 classical test functions, and other 
test functions taken from CEC 2014 and CEC 2017. The 
experimental results illustrated the efficiency of the EMSSA 
against some other variants of the SSA algorithm, as well as 
other optimization algorithms. Finally, the authors applied 
EMSSA for the parameter optimization problem of the Den-
sity Peak Clustering (DP) algorithm with satisfactory results.

Liang et al. [18] introduced another modified version 
of SSA (MSSA) for sidelobe level reduction of the linear 
antenna array. The homogeneous chaotic system was used 
to construct the initial population to enhance the popula-
tion diversity. Furthermore, the adaptive inertia weight and 
improved boundary constraint were adopted in order to make 
a balance between the exploration and exploitation abilities. 
The performance of the MSSA was evaluated using 9 test 
functions and compared to five other optimization meth-
ods and the original version of SSA. The numerical results 
demonstrated the effectiveness of the MSSA against the 
other comparative algorithms in terms of solution quality 
and convergence. Finally, the proposed MSSA was applied 
for solving sidelobe level reduction of the linear antenna 
array. The simulation results illustrated the superiority of the 
MSSA compared to other comparative algorithms in terms 
of convergence behavior, robustness, and maximum sidelobe 
level reduction.

Hui et al. [76] introduced another chaotic version of the 
SSA algorithm for hypersonic reentry trajectory optimiza-
tion, called ISSA. The tent chaotic mapping and the golden 
sine update strategy are utilized to generate the initial popu-
lation and enhance the global search ability of the SSA algo-
rithm. The simulation results demonstrated that the ISSA has 
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good robust than the classical SSA and other comparative 
algorithms.

Similarly, an improved chaotic SSA was presented for 
parameter identification of robot manipulators by Li et al. 
[77], called ICSSA. The Kent chaotic mapping, Student’s 
t-distribution, and the lévy flight strategy were corporated 
with the classical SSA to avoid trapping in local optimum 
and make a right balance between the exploration and 
exploitation abilities during all stages of the search process. 
The simulation results demonstrated the effectiveness of 
the ICSSA against the original version of SSA and other 
classical optimization algorithms in terms of convergence 
behavior and solution quality.

Fu and Liu [78] introduced an enhanced version of SSA 
according to multi-strategy as follows: 1) the elite chaotic 
reverse learning strategy was utilized to generate the ini-
tial population to enhance the population diversity; 2) the 
random updating strategy of the chicken swarm algorithm 
was adapted to modify positions of the sparrows in order to 
enhance the global search ability, and 3) the Cauchy-Gauss 
mutation strategy was used to maintaining the population 
diversity and resisting stagnation. Ten classical test func-
tions and two real-world problems were chosen to validate 
the performance of their algorithm in comparison with other 
optimization algorithms and the original SSA. The superi-
ority of their algorithm compared to other algorithms was 
demonstrated in terms of convergence behavior and solution 
quality.

Tang et al. [14] introduced a modified version of SSA for 
global optimization, called CLSSA. Ten chaotic maps were 
used to adjust the main parameters of SSA. The logarithmic 
spiral strategy was adopted to enhance the search schema 
of the SSA algorithm, while the adaptive step strategy was 
utilized to make a balance between the exploration and 
exploitation abilities during the search process. The perfor-
mance of the CLSSA was evaluated using 23 classical test 
functions and three engineering problems and compared to 
11 other optimization algorithms and the classical SSA. The 
simulation results demonstrated that the CLSSA has better 
performance than the other comparative algorithms in terms 
of convergence rate and solution quality.

Yang et al. [79] introduced another modified SSA, called 
TCSSA, based on the integration of tent chaotic mapping 
and adaptive weight for dynamic path planning for auto-
matic guided vehicles. These modifications were suggested 
to enhance the population diversity and convergence behav-
ior. Simulation results showed that TCSSA has a better per-
formance compared to the original SSA algorithm.

In the work of Wang et al. [80], a manifold p-spectral 
clustering was integrated with an enhanced SSA, called 
SSA-MpSC. The chaotic sequence strategy was used to 
adjust the parameter of the SpSA algorithm. The SSA-
MpSC was evaluated using 3 simulated datasets, as well as 

6 datasets taken from the UCI repository. The experimental 
results demonstrated the effectiveness of the SSA-MpSC 
compared to other comparative approaches in terms of clas-
sification accuracy and robustness.

4.2.7  Other Modifications

Other modified versions of the SSA algorithm is introduced 
by the researchers in the literature to overcome its shortcom-
ings or/and to be compatible with the nature of the problem 
search space as follows:

Zhang et al. [32] presented a modified SSA (ISSA) for 
A bioinspired path planning approach for mobile robots. A 
new neighboring search strategy was utilized to enhance the 
quality of the obtained solution, while a new position update 
function was suggested to enhance the convergence behav-
ior. The performance of the proposed ISSA was evaluated 
using two maps and compared to ACO, Hybrid ACO, and 
the original SSA. Simulation results demonstrated that ISSA 
has a better convergence rate and shorter path than the other 
comparative algorithms.

An improved variant of the SSA algorithm based on the 
combination of the good point set theory and weighting fac-
tor strategy in the classical SSA was presented by Peng et al. 
[81]. The good point set theory was utilized to construct the 
initial population to improve its diversity, while the weight 
factor strategy was introduced to enhance the convergence 
behavior. Their algorithm was adopted for optimizing bridge 
monitoring wireless sensor networks coverage using simula-
tion datasets. Experimental results illustrated that the pro-
posed improved SSA gives superior results compared to the 
original SSA and PSO algorithms.

Thenmozhi et  al. [15] introduced an improved SSA, 
called SSA-DE, for node localization in wireless networks. 
In SSA-DE, the Doppler Effect (DE) was integrated within 
the framework of the SapSA algorithm in order to enhance 
the node localization performance. The performance of the 
proposed SSA-DE was evaluated using a simulation data-
set and compared to other comparative algorithms from the 
literature. It was demonstrated that the SSA-DE achieved 
superior results against the other algorithms.

In the work of Yan et al. [82], an efficient variant of 
the SSA algorithm (ISSA) was introduced for continuous 
optimization problems. An improved iterative local search 
strategy was utilized in the local search phase of the SSA to 
enhance its search accuracy. In addition, a dimension lens 
learning strategy was adopted to avoid trapping in local 
optimum. The performance of ISSA was evaluated using 
23 classical test functions, CEC 2017 test functions, and 
two engineering problems. The evaluation proves that the 
proposed ISSA outperforms the classical SSA and other 
comparative algorithms.
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Ning et al. [83] proposed an improved SSA using the 
integration of the reverse elite concept into SSA for routing 
optimization in wireless sensor networks. The performance 
of their algorithm was tested using simulation datasets and 
compared to other comparative algorithms. Numerical 
results demonstrated the effectiveness of their algorithm 
against the other algorithms in terms of node energy con-
sumption, and data forwarding round numbers.

4.3  Multi‑objective SSA

The optimization problems in different domains can be for-
mulated as multi-objective optimization problems to opti-
mize several objectives simultaneously [84]. Such objectives 
are usually conflicting with each other, where the improve-
ment for objectives may decrease the quality for others. 
Accordingly, addressing such kinds of optimization prob-
lems may achieve the best results for an objective and not 
for others. In this section, the essential studies that addressed 
different multi-objective optimization problems using the 
multi-objective SSA are discussed and summarized.

Fathy et al. [33] reformulate the original SSA as a multi-
objective optimization method to deal with and address the 
multi-objective microgrid operation management optimiza-
tion problems. The multi-objective SSA was used in this 
study to optimize the values of two objectives, including 
total operating cost or the total emission. In the evaluation 
results, the SSA was validated as a single and multi-objec-
tive to effectively investigate its search behavior. In addi-
tion, the performance of the proposed method was compared 
with that of other well-known optimization methods. The 
proposed method exhibited better results than all compared 
methods.

Another multi-objective SSA was proposed by Li et al. 
[34] to deal with the multiple objectives of the active distri-
bution network problem. In the evaluation results, the multi-
objective SSA was tested using multi-scenario tests. The 
obtained results were compared with other multi-objective 
optimization methods. The multi-objective SSA achieved 

better results than the compared methods in addressing such 
a problem.

Dong et  al. [85] addressed a multi-objective power 
generation problem by formulating the original SSA as a 
multi-objective SSA to deal with its all objectives, includ-
ing generators capacity and stability, economic operations, 
and total cost. In addition, the multi-objective SSA search-
ing performance was improved to avoid stagnation in local 
optima by combining its search agents with the Levy flight 
strategy. The conducted experiments validated the proposed 
method searching capabilities in addressing such a problem, 
where it obtained significant results compared with the other 
methods.

The calibration camera problem was addressed by Hong-
feng et al. [86] utilizing the multi-objective SSA to optimize 
three objectives, including accuracy and repeatability. In 
the validation step, the obtained results using the proposed 
method are compared with other multi-objective optimiza-
tion methods. The comparison evaluation proved the high 
performance of the proposed method compared with the 
compared methods.

4.4  Hybridized Versions of SSA with Other 
Components

Six intelligent components are integrated with the SSA algo-
rithm by researchers to enhance its performance as shown 
in Fig. 12. Neural networks are the main components in the 
hybrid SSA algorithm with a high percentage of publica-
tions reached to 44%. The support vector machine (SVM) 
is the second intelligent component with the second-highest 
number of publications, while the variational mode decom-
position, birds swarm algorithm, and sine cosine algorithm 
ranked third, each with 8% of publications in a hybrid 
framework.

4.4.1  SSA with Neural Network

Guo and Liu [35] proposed a BP neural network optimiza-
tion model using the sparrow search algorithm (SSA-BP) to 
predict stocks. Their results demonstrated that the proposed 
model mitigated the issue (failing in the local optimum prob-
lem) faced by the traditional BPNN and PSO-BPNN algo-
rithms. The accuracy of the SSA-BP was better than BPNN, 
PSO-BPNN, and LSTM models.

Liu et al. [87] developed a computer-aided method that 
can automatically diagnose brain tumors. Their approach 
includes pre-processing, segmentation, feature extraction, 
and final categorization. The characteristics of the MR 
images were extracted using two methods: Gray-level co-
occurrence matrix (GLCM) and Discrete Wavelet Transform 
(DWT). The images were then loaded into an optimized 
CNN model for diagnosis. Their model is named ESSA, a 

Neural Network (44%)

Support Vector Machine (13%)

Variational Mode Decomposition (8%)

Sine Cosine Algorithm (8%)

Bird Swarm Algorithm (8%)

Firefly Algorithm (5%)

Others (15%)

Fig. 12  The hybrid variants of SSA
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novel SpaSSA variation used to optimize the CNN. The pro-
posed system outperformed the state-of-the-art approaches. 
Liu et al. [88] also developed a model to enhance the effi-
ciency of the CNN using a balanced SSA. Their model also 
demonstrated better results than the competing methods.

Li et al. [89] used the SSA algorithm to build a BP Neural 
Network model. Their model aims to improve the accuracy 
of debonding strain predictions in FRP-strengthened RC 
beams. According to the experiments, the longitudinal rein-
forcement ratio, concrete strength, and stirrup reinforcement 
ratio are the key factors determining debonding strains.

Huo and Zhou [90] presented a model for forecasting the 
power load. They employed the SSA as an optimizer for the 
initial weights of an ANN model called LSTM. This unique 
combination has improved the accuracy and convergence of 
the suggested model.

Gear fault diagnosis is a severe issue that is complicated 
by the harshness of defect detection. Gai et al. [91] pre-
sented an SSA-based deep belief network (DBN). The SSA 
tuned the DBN model’s learning rate and batch size, which 
improved the model’s stability and accuracy.

Zhang et al. [36] proposed a multi-layer extreme learn-
ing machine MLELM with the use of SSA and weighted 
mean filter WMF to forecast the wind speed better. Their 
model is considered an ensemble model, named WMF-
SSA-MLELM. The WMF helped remove the noise in the 
wind data, and the SSA algorithm was used as an optimizer. 
WMF-SSA-MLELM performed better than all one-step and 
multi-step wind speed forecasting models.

Fan et al. [92] presented the proposal of an Elman neural 
network model based on an SSA algorithm to forecast the 
change in power consumption and distribution trend of busi-
nesses in the future production cycle. Their model improved 
forecast accuracy and calculation efficiency.

Due to the importance of the Energy Internet and the 
shortage in analyzing the root causes that affect its effi-
ciency, Zhao et  al. [93] introduced a Regional Energy 
Internet system (REI). They applied an SSA algorithm and 
weighted coefficient method as an optimization approach. 
REI was compared against the distributed energy system 
(DES) used to reduce carbon emission. The results dem-
onstrated a decrease in the maintenance cost by 15% and a 
performance increase by 14.41%. This has led to meet the 
energy-saving and a reduction in carbon emissions.

The linear source contamination recognition issue in 
groundwater was addressed by Pan et al. [20]. They pro-
posed a novel stacked chaos gated recurrent unit (SCGRU) 
to simulate the sequential relationship of the running simu-
lation model, which solved the situation of high calculation 
and high dimensional search space. They adopted a mixed-
integer programming approach to solve the dimensionality 
problem, which reduced the number of unknown variables. 
The local-optimum problem was also solved using a hybrid 

sparrow search algorithm (HSSA). The SCGRU-HSSA 
approach was described as stable and consistent in recog-
nizing features of linear source contamination.

Liao [94] proposed a load forecasting model via the intro-
duction of an improved variant of SSA and a Long Short-
Term Memory Neural Network (ILSTM-NN) to solve the 
Load Forecasting (LF) problem. The SSA was used to opti-
mize the ILSTM-NN parameters, including weights and 
bais. The proposed model showed an apparent reduction 
in the forecasting error and the superiority in the domestic 
power system. Li et al. [95] proposed a model that used 
a Bidirectional Gated Recurrent Unit (Bi-GRU) and SSA 
algorithm to enhance the accuracy of oil rate forecasting. 
SSA was used to tune the hyperparameters of the Bi-GRU. 
The proposed model outperformed other methods.

A hydrological-neural network hybrid system for flow 
prediction was proposed by Wang et  al. [96] using an 
Improved SSA algorithm. Using such a model showed that 
there will be a decrease in the average annual electricity that 
is generated by hydropower under many scenarios.

In Xu et al.  [97], the SSA algorithm was used to optimize 
the BP Neural Network parameters to improve the prediction 
accuracy of the power gride engineering cost. The results 
showed that the proposed model SSA-BP was a practical 
solution for such a problem. Zhang et al. [98] proposed a 
TCSSA-BP model that enhanced the SSA search ability 
to solve the local optimum problem when predicting the 
particle size challenges in the common material grinding 
industry. SSA was combined with a BP Neural Network to 
tune the BP-NN parameters. Results demonstrated apparent 
enhancement in the regression prediction of the particle size 
and the material grinding.

Liu et al. [99] established a model that combined the 
Bioinspired Neural Network (BINN) and a fusion of SSA 
algorithm to solve the problem of low stability of path 
planning and the issue of avoiding dynamic obstacles for 
unmanned aerial vehicles (UAV) in a mountainous environ-
ment. The proposed solution was compared to the Artificial 
Bee Colony Algorithm (ABC) and Dragonfly Algorithm 
(DA). The results showed that tendency to avoid dynamic 
obstacles is an excellent feature of the proposed model.

Yan et al. [100] introduced a model based on the usage 
of BP Neural network and SSA algorithm to identify water 
inrush type of coal mine water source. The model demon-
strated excellent results in classifying the coal mine water 
sources.

4.4.2  SSA with Support Vector Machine

In the problem of fault diagnosis for rolling bearing, Lv et al. 
[101] used the SSA model to identify the optimal parameters 
for the SVM classifier. Their model identified the fault types 
quickly efficiently. Also, Wu et al. [102] proposed another 
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fault diagnosis method using sparse stack autoencoder to 
extract the features, and they used SSA to improve the SVM 
ability. Their SSAE-SSA-SVM showed outperformed other 
classifiers in identifying faults.

Zhang et al. [37] proposed a model that used a semi-
supervised AdaBoost classifier using an improved SSA 
(AdaBoost-ISSA-S4VM) to enhance the pulmonary nod-
ule detection in CT images. The findings showed that the 
proposed model was better at labeling unlabeled lung CT 
images.

Tuerxun et al. [38] used the SSA with SVM to enhance 
the accuracy of diagnosing the wind turbine fault detection. 
The results showed that the SSA-SVM model was better 
than state-of-the-art models in the convergence and detec-
tion accuracy.

Because indoor positioning of WiFi technology is in high 
demand, Li et al. [103] proposed a model using SSA, which 
was optimized using the logistics chaos mapping. In addi-
tion, they used SSA to optimize the SVR to obtain better pre-
diction results for indoor positioning. Their model showed 
better performance in comparison with other well-known 
methods.

4.4.3  SSA with Variational Mode Decomposition

Xu et al. [104] proposed a method that conquers the noise 
in the measurement signal of face slab deflection of con-
crete face rockfill dam (CFRD) by fiber optic gyro (FOG). 
Their method combined the SSA and variational mode 
decomposition (VMD). The SSA optimized the k and � of 
VMD, and the proposed model showed great superiority 
over traditional methods. Wang et al. [105] introduced an 
algorithm to remove the noise interference in the pipeline 
leakage detection and signal denoising using an improved 
variational mode decomposition model (VMD). They used 
two-dimensional SSA to find the k and � of the VDM. The 
results were compared against the same model using other 
optimization algorithms, such as firefly, PSO, and WOA. 
A significant improvement in the signal-to-noise ratio was 
obtained when using SSA.

Wu and Wang [106] designed an ensemble neural net-
work ENN framework consisting of LSTM, SVM, ELM, 
and BP neural networks for solar and wind power predic-
tion in China. The VDM was used to reduce the unwanted 
effect from the original series. The results showed that 
ENN provided the best forecasting accuracy in comparison 
with other models.

4.4.4  SSA with Firefly Algorithm

In Nguyen et al. [107], an improved variant of SSA is 
introduced, based on an elite reverse learning strategy 

and the mutation strategy of the firefly algorithm, to have 
proper planning for the power microgrid optimal opera-
tion. Such a planning strategy offered high performance 
and viability in resolving microgrid operation planning 
problems.

Shi et al. [108] shed light on the intelligent manufac-
turing problem by proposing an algorithm based on the 
usage of SSA, Firefly, and BP models (FASSA-BP). Firefly 
was used to solve the local optimum issue of SSA. As for 
the BP parameters, the SSA was used to tune them. As a 
result, the FASSA-BP accurately advanced the company’s 
intelligent manufacturing proficiencies.

4.4.5  SSA with Sine Cosine Algorithm

Ouyang et al. [109] proposed an SSA variant based on the 
usage of K-means to properly distribute the population to 
enhance the efficiency at the beginning. After that, they 
used the sine-cosine search and local search strategies to 
solve the SSA local optimum problem. These strategies 
were also used to optimize the SVM parameters. The pro-
posed model showed better optimization capability and 
stability. Similar results were proven from the work of 
Ouyang et al. [110].

A learning SSA (LSSA) was introduced by Ouyang 
et al. [111] to tackle the problem of large randomness and 
local optimum. This was obtained by using the lens reverse 
learning strategy during the discoverer stage. In addition, an 
enhanced sine and cosine supervision mechanism was used 
to expand the algorithm search capabilities. LSSA demon-
strated high stability and safety in path planning.

4.4.6  SSA with Bird Swarm Algorithm

An enhanced variant of SSA was proposed by Tang et al. 
[112] to tackle the early local extremum and the later stage 
low precision. The idea of birds’ swarm algorithm was 
used with SSA to have a diverse population and reduce the 
chance of falling into local optimum. Also, novel crossover 
and mutation techniques were used with SSA for a better 
next generation. These ideas added significant enhancement 
to SSA.

Lyu et al. [113] solved the issue of the low accuracy 
of multi-threshold image segmentation by improving the 
SSA. This was performed using the birds’ swarm algorithm 
(BSA). The proposed model showed better search capabili-
ties and significant enhancement in the segmentation.

Predicting the aero-optical imaging deviation helps a lot 
in having proper navigation, positioning, and homing of air-
craft, Xu et al. [114] proposed an improved SSA together 
with BP-NN to enhance the prediction approach. They used 
the birds’ swarm algorithm (BSA) to overcome the entrant 
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problem, leading to quick algorithm convergence. The SSA-
BP model demonstrated accurate and timely prediction for 
the aero-optical imaging deviation.

4.4.7  SSA with Other Algorithms

This section summarizes many algorithms that emerged as 
variants of the original SSA, where exciting problems were 
tackled.

Zhou et al. [17] came up with an exciting method that 
focuses on wavefront-shaping based on phase modulation. 
They used a crossover and mutation with the original SSA to 
achieve a better convergence rate. Their results showed that 
the proposed model outperformed other algorithms.

Jianhua and Zhiheng [19] worked on the local conver-
gence and convergence stagnation of the original SSA. The 
Circle chaos map was used with the SSA, where the results 
showed that the model had a more vital global optimiza-
tion ability and higher precision in convergence. Wang et al. 
[115] developed an SSA variation to improve node cover-
age in wireless sensor networks (WSN). The local optimum 
and the randomness issue were tackled using another variant 
of SSA based on lens learning, named LLSSA, by Ouyang 
et al. [116].

Tian et al. [117] introduced a new hybrid SSA algorithm 
to mitigate the enormous cost of the hybrid photovoltaic, 
battery energy, and diesel generator storage system in China. 
They analyzed their new model in different seasons and 
found out that weekends cost more than weekdays.

Another interesting problem is related to the software 
defects prediction that was undertaken using a hybrid model 
consisting of Particle Swarm Optimization and Sparrow 
Search Algorithm (SSA-PSO) by Yang et al. [118]. Their 
algorithm demonstrated better convergence speed and 
stability.

The wireless sensor networks’ energy efficiency problem 
is addressed by proposing a new hybrid SSA-based method 
with the components of the differential evolution method. 
The proposed method was introduced to improve the exploi-
tation capabilities of the SSA and obtain better results. The 
experimental results proved the high and robust performance 
of the proposed method in achieving the best results.

5  Applications of SSA

From the time of establishment, the SSA has been applied 
and tested against several optimization problems from differ-
ent research domains such as networking, energy, mechani-
cal engineering, industrial engineering, environment, robot-
ics, scheduling and planning, machine learning, wireless 
sensor networks, electrical engineering, image processing, 
and health care. The SSA algorithm application in different 

domains is demonstrated in Table 1. The table classifies the 
applications based on the domain, the problem name, and 
the type of SSA algorithm (i.e., original, modified, hybrid, 
and multi-objective).

The following is a summary of these applications. The 
SSA is applied to solve different networking and communi-
cation problems. This include establish active distribution 
network dynamic reconfiguration integrated optimization 
[34], optimal individual phase voltage regulation strategies 
in active distribution networks with high PV penetration 
[53], feature selection for intrusion detection [11], malicious 
URL classification model [70], and stochastic configuration 
network [21].

Optimizing energy is tackled by SSA and its variants. 
The following are some examples: power load prediction 
model [90], optimal energy management of micro-grid [33], 
DMPPT control of photovoltaic microgrid [119], cost mini-
mization of a hybrid photovoltaic, diesel generator, and bat-
tery energy storage system [117], wind and solar power fore-
casting [106], optimal dispatch strategy of microgrid energy 
storage [12], harvest energy under uniform and non-uniform 
irradiance for PV system [54], and optimization of capacity 
configuration of wind-solar-diesel-storage [85].

Mechanical engineering have different problems which 
are solved by SSA such as prediction of in-Cylinder pressure 
of diesel engine [49], fault diagnosis [68, 102], detection of 
gear fault severity [91], hypersonic reentry trajectory opti-
mization [76], fast trajectory optimization [28], fault diag-
nosis of rolling bearings [101], and fault diagnosis of wind 
turbines [38].

Industrial engineering is another domain that applies to 
SSA. This include utilizing the algorithm to solve the prob-
lems natural gas pipeline leakage signal [105], intelligent 
manufacturing [108], optimum position of wind turbine on 
a wind farm [52], load forecasting [94], time-series produc-
tion forecasting [95], and short-term load forecasting [41].

The environment is another vital area that is tackled by 
SSA with the following solutions proposed processing of 
coal mine water source data [100], recognition of a linear 
source contamination [20], comprehensive water qual-
ity evaluation [41, 46], atmospheric pm2.5 prediction [65], 
short-term multi-step wind speed forecasting [36], forecast-
ing hydropower generation by GFDL-CM3 climate model 
[96], and short-term wind power forecasting [47].

Developing robust robotic systems requires solving many 
optimization problems. Some of the solutions proposed by 
SSA and its variations are path planning approach for mobile 
robots [32], parameter identification of robot manipulators 
with unknown payloads [77], robot routing problem [69], 
cooperative positioning method for unmanned aerial vehicle 
(UAV) swarm [120], multi-UAV path planning [99], and 3d 
route planning for UAV [56].
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Scheduling and planning problems are considered com-
plex with several constraints that must be handled. The SSA 
are successfully applied to tackle several problems in this 
domain including load balancing of IoT tasks in the cloud 
computing [50], load monitoring and demand-side manage-
ment [92], optimization strategy and capacity planning for 
coordinated operation of regional energy internet system 
[93], resource management in Internet of Things (IoT) [51], 
microgrid operations planning [107], load scheduling tech-
nique for cloud computing environment [29], flexible job 
shop scheduling [13], path planning [66, 79], and symmetric 
traveling salesman problem [24].

Normally, some machine learning tasks also can be 
boosted by optimization algorithms. The SSA is utilized 
with a manifold p-spectral clustering to improve the clus-
tering process [80]. The prediction accuracy of the back-
propagation neural network is also improved by injecting 
SSA [35]. The application of the Deep Belief Network is 
enhanced by SSA [48]. Finally, the Back Propagation neu-
ral network is also enhanced using the SSA optimization 
process for FRP-Strengthened RC Beams prediction [89].

The applications of the optimization problems in wire-
less sensor networks are very promising and the growth of 
their applications is very widely used. The routing optimi-
zation process in wireless sensor networks is tackled by an 
enhanced version of SSA [83]. The sensor networks cover-
age optimization of bridge monitoring in wireless sensor 
networks is tackled by SSA [81]. The node localization of 
wireless sensor networks is solved by SSA [44, 62]. Also, 
SSA has provided a promising solution for fault detection 
of the pressure sensor of blast furnace fan in wireless sen-
sor networks [72]. For heterogeneous nodes, SSA is used to 
tackle by SSA [121]. The wireless sensor networks’ Optimi-
zation Coverage is improved by SSA [115]. DV-Hop Locali-
zation in wireless sensor networks is tacked in [60, 61] using 
SSA. The energy-efficient cluster head selection in wireless 
sensor networks has been tackled [122]. Finally, the indoor 
Positioning Model in wireless sensor networks is designed 
using improved SSA [103].

In electrical engineering, several optimization problems 
have been tackled using SSA such as sidelobe level reduc-
tion of linear antenna array [18], configuration of distrib-
uted generation [39], and parameter identification of PEMFC 
stacks [26]. In civil engineering, the Concrete strength pre-
diction [110], Shape optimization of develop-able Bézier-
like surfaces with multiple shape parameters [45], fiber optic 
gyro measurement signal of face slab deflection of concrete 
face rockfill dam [104]. The hybrid SSA and shift-invariant 
impulsive dictionary matching pursuit are used to find an 
optimized solution for multi-component fault diagnosis of 
wheelset-bearing [42].

The applications of SSA for the image processing domain 
have also gained substantial attention from different research 

teams. The image segmentation is the problem addressed 
by a new SSA version by Lyu et al. [113]. The SSA is also 
used to assess the BP neural networks to address the imaging 
deviation prediction [114]. The long-distance iris image is 
enhanced using a chaotic version of SSA [74]. Finally, the 
Camera calibration is optimized using the original version 
of SSA [86].

The last domain tackled by SSA is health care and bio-
informatics. For this domain, the SSA and its versions have 
been utilized and adapted. The pulmonary nodule detec-
tion is tackled by SSA hybridized with a semi-supervised 
ensemble classifier [37]. The wavefront-shaping focus 
is also addressed by Zhou et al. [17]. Finally, the optimal 
brain tumor diagnosis is tackled by SSA with deep learning 
method [87, 88].

6  Open Source Software of SSA and Online 
Lectures

In order to provide a comprehensive survey that helps other 
researchers theoretically or/and practically, the open-source 
code of the SSA that was introduced by the founder of SSA 
and the other researchers are listed as follows:

– The original version of SSA coded using Matlab pro-
gramming language available at URL: https:// www. 
mathw orks. com/ matla bcent ral/ filee xchan ge/ 88788- sparr 
ow- search- algor ithm- ssa (Access date: 11/03/2022)

– Multi-objective SSA coded using Python programming 
language available at URL: https:// github. com/  thieu 
1995/ IFCB (Access date: 11/03/2022)

– SSA for Mobile robot path planning coded using Matlab 
programming language available at URL: https:// github. 
com/ herry Cccc/ Mobile- robot- path- plann ing (Access 
date: 11/03/2022)

Similarly, there are many lectures that are publicly available 
to describe the procedure of the original SSA algorithm as 
follows:

– Lecture 1 This lecture is introduced by Ritika xRay Pixy 
which teaches the original procedure of the SSA algo-
rithm using Matlab programming language. It can be 
accessed using the URL of Part 1: https:// www. youtu 
be. com/ watch?v= Yxy0k szRzdY, while the URL of Part 
2:https:// www. youtu be. com/ watch?v= Ifbqi nNyPo8. 
(Access date: 23/03/2022)

– Lecture 2 This lecture is introduced by Ritika xRay Pixy 
which teaches the adaption of the SSA algorithm for 
constrained engineering optimization problems. It can 
be found at URL:https:// www. youtu be. com/ watch?v= 
Tq3FD sGJHHs (Access date: 23/03/2022).

https://www.mathworks.com/matlabcentral/fileexchange/88788-sparrow-search-algorithm-ssa
https://www.mathworks.com/matlabcentral/fileexchange/88788-sparrow-search-algorithm-ssa
https://www.mathworks.com/matlabcentral/fileexchange/88788-sparrow-search-algorithm-ssa
https://github.com/%20thieu1995/IFCB
https://github.com/%20thieu1995/IFCB
https://github.com/herryCccc/Mobile-robot-path-planning
https://github.com/herryCccc/Mobile-robot-path-planning
https://www.youtube.com/watch?v=Yxy0kszRzdY
https://www.youtube.com/watch?v=Yxy0kszRzdY
https://www.youtube.com/watch?v=IfbqinNyPo8
https://www.youtube.com/watch?v=Tq3FDsGJHHs
https://www.youtube.com/watch?v=Tq3FDsGJHHs
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7  Critical Analysis of SSA

The SSA has yielded promising results in versions research 
domains and topics due to its impressive features over other 
swarm intelligence methods such as it is simple in concepts, 
easy for adaptation, parameter-less, not required mathemati-
cal derivations in the initial search, and has self-learning 
operators able to strike a suitable balance between explora-
tion and exploitation during the search. Therefore, it has 
been successfully adapted to a wide variety of optimization 
applications. However, it is still suffering the chronic pre-
mature convergence dilemma when dealing with the opti-
mization problem of large-scaled and rugged search space. 
Hence, researchers have suggested different ideas to boost 
the performance of the SSA.

Concerning the SSA convergence behavior, it is affected 
by the optimization problem size, the landscape shape, and 
ruggedness. Therefore, several variants of SSA have been 
introduced to boost its search capability. These variants are 
established to be in line with the search space complexity of 
the problem. The SSA variants are either improved or hybrid 
versions designed to find the right balance between explora-
tion and exploitation during the search process. The main 
motivation for producing these versions is to fill the gap in 
the performance and thus improve the “endgame” outcomes.

It appears from the literature that the big dilemma of SSA 
convergence behavior is related to diversity. The SSA has 
divided the swarms into two groups: producers and scroung-
ers. The producers are the leaders while the scroungers are 
the follower. These two groups are updated based on the 
best solution found. However, the other paths in the search 
space are not well explored. Several suggestions have been 
proposed to improve the diversity of the SSA such as chaotic 
mapping [27, 55, 56], inertia weight and cauchy-gaussian 
mutation [58], sin chaos search schema ([31]), lévy flight 
[31, 59], reverse learning [11], opposition based learning 
[28, 29, 65], and random walk [23, 70].

The SSA is initially established to deal with optimization 
problems in the continuous domain. However, the decision 
variables of the optimization problems can binary, discrete, 
permutation, and hierarchical graphs. Therefore, several ver-
sions of SSA have been introduced to deal with such search 
space nature such as the discrete version of SSA [24], per-
mutation version of SSA [25], and binary version of SSA 
[11].

Another research challenge faced by the researchers using 
SSA is the complexity of the search space of large-scaled, 
non-convex, constrained, multimodal optimization prob-
lems. The scheduling problems are the typical challenges 
that face SSA since it has a rugged search space. Differ-
ent versions of SSA have been proposed to deal with such 
problems [13, 29]. To deal with large-scale complicated 

problems the multiobjective [33, 34] and the hybrid SSA 
[19, 20, 117] versions are introduced.

8  Conclusion and Future Work

The variations of the swarm-based algorithm named SSA 
and its application to tackle different problems are demon-
strated in this review paper. The increment use of SSA by the 
research community shows its effectiveness when solving 
different problems. The total number of citations each year, 
the number of publications each year, the top institutions 
and authors utilized the algorithm, and the topics tackled 
using SSA.

The SSA inspiration and its mathematical modeling are 
presented. It mimics the foraging and anti-predation behav-
ior of sparrows in the population as the population is divided 
into producers and scroungers. The scouters’ sparrows are 
selected to avoid predators during the foraging process by 
generating alarm sounds when attackers discovered them. 
The producers are the fittest sparrows in the population and 
they can find better food sources. The SSA has three control 
parameters the number of producers (NP), the number of 
scroungers (NS = N - NP), and the number of scouters (SC). 
The small number of parameters makes the algorithm a good 
choice as an optimizer.

The SSA variants and their application domains are dis-
cussed. The algorithm is mostly applied to scheduling and 
engineering problems. This shows the efficiency and robust-
ness of SSA when applied on non-convex, multi-modal, 
highly-constrained, combinatorial, and non-linear prob-
lems. The algorithm is applied to tackle problems in other 
domains including networking, machine learning, environ-
ment, healthcare, and image processing. The SSA applica-
tion to a wide spectrum of domains shows the viability of 
the algorithm when tackling different problems.

The SSA convergence is affected by different factors 
including the problem search space complexity. As the algo-
rithm can do very well exploring and exploiting search space 
for some problems. This is expected and mentioned by the 
No Free Lunch theorem (NFL). The good selection of the 
SSA parameters requires investigating and tuning them to 
have a good performance of the algorithm. As the algorithm 
focuses on the fittest solution, sometimes it loses the good 
attributes from the neglected solutions which may lead to 
being stuck in local optima.

The following are some future directions that can help 
researchers in developing SSA research:

• Empowering exploitation of SSA Looking in neighbor-
ing search space during solutions evolution is a chal-
lenge that faces SSA researchers. This challenge can be 
mitigated using different techniques such as applying 
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a structured population to increase solutions diversity 
[123], investigating other selection techniques [124], and 
hybridizing the SSA with local search techniques [125].

• Adaptive parameters tuning  The performance of the 
SSA is highly affected by the selected values of its three 
control parameters. Several techniques can be used to 
automatically do that such as self-adaptive, deterministic, 
or adaptive [126]. This can help in developing a black 
box SSA optimizer that can be used effectively to solve 
different optimization problems.

• Tackling multi-objective problems  There is a small num-
ber of researchers who applied the SSA to tackle multi-
objective problems [34]. The SSA can be applied with 
popular multi-objective optimization frameworks such 
as NSGA II and MOEA/D [127]. The stopping criterion 
selection affects the performance and the final solution of 
the algorithm drastically. The selection of the appropri-
ate technique can impact the algorithm behavior [128]. 
This can be another research direction to enhance the 
algorithm outcome.

•  Robust and Dynamic optimization Dynamic optimization 
is tackling an optimization problem with a local optimum 
that changes, while robust optimization is tackling an 
optimization problem in which one cannot ensure achiev-
ing a reliable solution [129]. To the best of our knowl-
edge, no research work is applied using the SSA to tackle 
dynamic and robust optimization. Going in that direction 
can be a promising future track.

•  Tackle wide spectrum of domains Most of the solved 
problems using the SSA are engineering and scheduling 
problems. Many other domains can be tackled using this 
algorithm such as business-related problems, biomedical, 
security, and bioinformatics.
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