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Abstract
The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating 
proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament 
resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization 
problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics 
have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimiza-
tion algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods 
with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm 
(AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to 
solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit, 
and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its per-
formance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy 
and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimiza-
tion Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis 
entropy rather than with t-entropy in both color standard images and medical pathology images.

Keywords  Nature-inspired optimization algorithms · Image segmentation · Optimization · Tsallis · t-entropy · Archimedes 
optimization algorithm · Physics inspired optimization algorithms

1  Introduction

As the name suggests, meta-heuristics in computer sci-
ence and mathematics are high-level processes or heuristic 
designs used to create algorithms that can nevertheless offer 
an adequate solution to an optimization issue, despite the 
limited processing capability. Most of the time use of con-
ventional methods to optimize some problem takes a long 
time. Therefore compromising somewhat on the quality of 
the solution, which may not find the optimal solution, but 
we will find a solution that is sufficient for our needs, and 
we can do this very efficiently with a meta-heuristic algo-
rithm. Among the various meta-heuristic algorithm some 
are inspired by our nature or mimic some behavior from our 
nature. Commonly, nature-inspired algorithms are employed 
to solve a variety of optimization challenges. There have 
been several meta-heuristics developed in the last three dec-
ades to help solve complicated and real-world problems in 
a variety of sectors. These meta-heuristics algorithms draw 
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a huge amount of attention to researchers and scientists due 
to their complex problem-solving capability. Meta-heuristics 
algorithms can be used in many different fields, such as com-
puter science, image processing, control systems, electrical 
engineering, different types of classification, etc. According 
to the No Free Lunch Theorem, “all optimization algorithms 
perform equally well when their performance is averaged 
across all possible problems”. That means one can’t say that 
one optimization is good for solving all types of optimi-
zation task. It is application dependent. So, the researcher 
tries to invent a new algorithm or improve the existing one 
according to their requirements. New NIOAs are always a 
good thing for the research field, as long as they solve prob-
lems quickly and effectively. One can classify these optimi-
zation problems according to the solution originated or the 
behavior of the algorithms. Figure 1 shows the classification 
of meta-heuristic algorithms.

Image segmentation is the branch of digital image pro-
cessing which primarily emphasizes on sectionalization 
of an image into numerous shares as per their features or 
properties basically for easier analysis of imagery. Various 
methods of segmentation are extensively employed [1, 2] 
namely thresholding-based, boundary-based, region-based, 

clustering-based [3, 4], and hybrid technique based, and 
amongst all the methods, thresholding-based is the most 
popular one. Multi-Level Thresholding (MLT) image seg-
mentation has attained significant attention in quite a lot of 
image processing applications [5]. Nevertheless, the usage 
of traditional thresholding methods in determining the opti-
mal threshold values (as a part of preprocessing step) is not 
just time-consuming but computationally demanding. This 
leads to the requirement of extension and attachment of cer-
tain procedures that might resolve the issue thus actuating 
the curiosity and interest in several academic scholars. Enor-
mous research attempts are made during recent years toward 
solving real-world optimization problems with exceptionally 
towering dimensional search space, and rigorous constraints 
with nonlinear objective functions. More than a few math-
ematical elucidations rather than traditional optimization 
methods have been provided by a variety of researchers to 
work out the optimization problems however, the complexity 
of such mathematical solutions turned out to be very high 
requiring enormous computational time thereby proving to 
be ineffective in providing comprehensive solution in such 
circumstances. This pursuit consequently leads in the direc-
tion of the requirement for several modern technological 
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Fig. 1   Classification of optimization methods
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optimization processes that would be proficient enough to 
accomplish the most favorable general yet thriving solution 
bearing in mind time, complexity, and other checks.

In light of this, NIOA [6] and their upgraded varia-
tions and subset whose solutions were based on chemical, 
physical, and biological phenomena in nature showed their 
usefulness in engineering optimization issues and also in 
resolving a number of MLT problems [7]. These nature-
inspired solutions happen to be incredibly trendy as they 
offered to a large extent improved solutions in terms of 
efficiency and complexity than earlier methods. However, 
in recent years methodologies associated with nonlinear 
physics have flourished; therefore, across a wide range of 
applications, nonlinear procedures-based algorithms are 
more effective and versatile than other approaches pub-
lished previously. Numerous global optimization strate-
gies more notably; unique searching strategies based on 
various nonlinear physics phenomena are a popular cur-
rent trend in NIOA design leading to the introduction of 
the Physics Inspired Optimization Algorithm (PIOA). The 
uniqueness of this method is that nonlinear processes [8] 
may perhaps be used as a brainwave for building up flour-
ishing search algorithms that principally tag along with 
the nonlinear directives originated in natural systems [9]. 
Such approaches appear to be more challenging to develop 
than other search methodologies, since they need not only 
the use of a novel, natural nonlinear method as the search-
ing basis, but also modeling an effective adaption of that 

procedure for addressing optimization issues. In order to 
build a completely new optimization algorithm following 
nonlinear processing modeling, this can be a challenging 
task and may require an expensive design method. In addi-
tion, this modeling may demand the tweaking of a set of 
algorithm parameters that are often connected with physi-
cal sub-processes inside the primary nonlinear process.

In this paper, a brief study has been performed on the 
Archimedes Optimization Algorithm (AOA) [10] which is a 
most recent and one of the most promising physics-inspired 
algorithm in the domain of optimization. This AOA is moti-
vated by the physics phenomenon and here author evalu-
ated, assessed, documented, and profoundly experimented 
with two types of images namely standard color images and 
pathology images by employing AOA. This paper mostly 
talks about AOA, its variations and improvements, and how 
Tsallis and t-entropy can be used to improve MLT image 
segmentation. Here, Tsallis and t-entropy are used as objec-
tive functions. Among all PIOA-based algorithms, AOA 
gives the best result in both Tsallis and t-entropy. But AOA 
with Tsallis entropy outperformed AOA with t-entropy in 
most of the cases with 4, 6, and 8 threshold values. Fur-
thermore, we can conclude that AOA with Tsallis entropy 
gives superior results for medical pathology images rather 
than standard color images. Details discussion done in 
results section (Sect. 6) and conclusion section (Sect. 7). 
Several recently introduced Physics Inspired Optimization 

Fig. 2   Year-wise AOA-based research work proposed

Table 1   Recently introduced 
Physics-Inspired Optimization 
Algorithms (PIOA)

Sl Name Author Year Citation

1 Archimedes Optimization Algorithm (AOA) [10] Hashim et al. 2021 214
2 Atomic Orbital Search (AOS) [11] Azizi 2021 41
3 Flow Direction Algorithm (FDA) [12] Karami et al. 2021 24
4 Equilibrium Optimizer (EO) [13] Faramarzi et al. 2020 650
5 Henry Gas Solubility Optimization (HGSO) [14] Hashim et al. 2019 359
6 Atom Search Optimization (ASO) [15] Zhao et al. 2019 244
7 Nuclear Reaction Optimization (NRO) [16] Wei et al. 2019 38
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Algorithms (PIOA) have been included in Table 1 with 
Google Scholar Citation underlined (Dated: 17.07.2022).

In this paper, the author mainly concentrates on Archi-
medes Optimization Algorithm (AOA). The AOA is one 
of the most promising methods among the various PIOA-
based optimization methods which is proposed in recent 
years (Fig. 2). This AOA-based method is widely used in 
the energy section, especially in the wind energy domain. 
The use of the AOA method in the image processing domain 
is surprisingly very low, though it performs very well in this 
domain. We have evaluated the performance of the AOA 
in the multi-level image segmentation domain in this paper 
in Sect. 6. Figure 4 represents the details analysis of the 
AOA method used in the different research fields. The author 
found most of the papers on AOA were published in dif-
ferent journals and only two papers were found which are 
published at the conference Fig. 3b.

Consequently, the following are the principal contribu-
tions of the paper:

•	 A very little effort was done before exploring AOA-
based multi-level thresholding for image segmentation 
thereby this paper focuses on a brief study on AOA and 
the implementation and application of the seven recently 
developed PIOA in multi-level image segmentation 
domain.

•	 Only Differential Evolution (DE) has been used with 
t-entropy for Multi-Level Thresholding in the original 
finding paper of t-entropy [17]. This research work uses 
the Tsallis entropy and the newly constructed t-entropy 
as objective functions. As per the best of knowledge and 
research, t-entropy has not been utilized for Multi-Level 
Thresholding particularly with PIOA to date and this 
paper focuses on this as one of its main contributions.

•	 To explore the efficacy of the hitherto untested PIOA 
with Tsallis and t-entropy, a meticulous comparison 
analysis was conducted across two image kinds, namely 
standard color images and pathology images.

Fig. 3   a AOA-based work published by different publishers. b Number of AOA-based work published in Journal Vs Conference

Fig. 4   Application area of AOA 
Vs number of paper published
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The paper’s remaining sections are organized as follows: 
The brief discussions on AOA and improvement and appli-
cation area of AOA in recent years (2020–2022). Tsallis and 
t-entropy are presented in Sect. 5. Section 6 highlights the 
experimental results of recently developed PIOA in the field 
of MLT considering Tsallis entropy and t-entropy as objec-
tive functions. Lastly, Sect. 7 discusses the conclusion and 
future directions for study.

2 � Methodology

For several decades, the natural phenomenon has been 
constantly borrowed bearing in mind its outstanding facts, 
functions, and phenomenon to resolve complex optimization 
difficulties. As with the physics-based algorithm, the motiva-
tions derived from physical laws are transformed into work-
able solutions and then evolve over time. To solve various 
optimization issues, in the last 3 years (2019 to 2021), some 
efficient Physics Inspired Optimization Algorithms (PIOA) 
have been introduced and this paper deals with the same, 
and also a comparative study has been done in the result 
section. The various PIOA have been listed in Table 1 and 
this section deals with the discussion on recent PIOA namely 
Archimedes Optimization Algorithm (AOA). Algorithm 1 is 

a summary of the overall approach to MLT utilizing NIOA, 
which is comprised of several phases (Fig. 5).

2.1 � Archimedes Optimization Algorithm (AOA)

Archimedes Optimization Algorithm [10] is a population-
based PIOA algorithm that has been built upon the concept 
of the law of physics popularly recognized as the Archime-
des principle. Archimedes’ principle basically elucidates 
the law of buoyancy which fundamentally elaborates the 
association amongst an object immersed in a fluid and 
buoyant force that is applied to it. However, if at all the 
weight of the object is superior to that of the weight of the 
displaced fluid, the object tends to sink else, the object will 
float above the fluid taken into consideration. In AOA, the 
population individuals of the algorithm are compared and 
considered as the immersed objects. Since all the popu-
lation-based NIOA inaugurate its search process with an 
initial population known as candidate solutions that are 
associated with some random density, volume, and accel-
eration. Similarly, AOA also commences with a similar 
concept as that of the other existing population-based 
algorithm wherein each of the objects, Oi that is immersed, 
with total population N is initialized with a random search 
space position with lower bound lbi and upper bound ubi 

Fig. 5   General methodology for 
multilevel thresholding employ-
ing NIOA
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which basically is the fluid here as depicted Details algo-
rithm steps are given below.

2.2 � Algorithms Steps

In this section, we present the AOA algorithm’s math-
ematical formulations. Theoretically, AOA is a global opti-
mization method because it consists of both exploration 
and exploitation phases. Pseudo-code of this algorithm 
presents in Sect. 2.3. The following are the AOA’s math-
ematical equation-based steps:

2.3 � Step 1: The Initialization Phase

All the parameters of AOA are initialized with help of (1)

Here, Oi is the ith object within the N (Population size). ubi 
and lbi is the upper bound and lower bounds in the search 
space respectively.

Each the ith object’s volume (vol) and density (den) are 
initialized using the Eq. (2).

rand is a D dimensional vector, that generates random num-
bers between [0, 1] randomly.

Final initializes the acceleration (acc) of the ith object 
using (4)

In the step 2, by analyzing the original population, 
the best fitness values are picked and assigned it to 
Xbest, denbest, volbest and accbest.

2.4 � Step 2: Update the Volumes and Densities

For object i the density and volume are updated according 
following Eq. (5) in t + 1 iteration.

The volbest and denbest represent the best volume and density 
value which is found so far, rand is the uniform distribu-
tion value between [0,1]. Transfer operator TF is utilized in 
AOA to transform search from exploration to exploitation, 
as mentioned by (6).

(1)
Oi = rand ×

(
ubi − lbi

)
+ lbi;where i = 1, 2, 3, … , N

(2)voli = rand

(3)deni = rand

(4)acci = lbi + rand ×
(
ubi − lbi

)

(5)
dent+1

i
= deni + rand ×

(
denbest − dent

i

)

volt+1
i

= voli + rand ×
(
volbest − volt

i

)

2.5 � Step 3: Transfer Operator and Density Factor

At first, objects bump into each other, and then, after some 
time, they try to reach a state of equilibrium. Transfer 
operator TF is used in AOA to convert search from explo-
ration to exploitation, as stated by (6)

where transfer TF increases gradually over iteration until it 
reaches 1. Here tmax represent the maximum iteration and t 
is iteration number. In the same way, the density decreasing 
factor d helps AOA with global-to-local searches (7)

dt+1 is the density of t + 1 iteration which decreases over 
time, and makes it possible to converge on a point. This 
density parameter plays a critical role to balance between 
exploitation and exploration in AOA.

2.6 � Step 4.1: Exploration Phase (Collision Between 
Objects Occurs)

If the value of transfer operator TF ≤ 0.5 then there is a colli-
sion between object. Then select a random material ( mr ) and 
at iteration t + 1 , update the object’s acceleration using (8).

Here, acct+1
i

 , dent+1
i

 and volt+1
i

 represent acceleration, density 
and volume of  ith object in T + 1 iteration. denmr , accmr and 
volmr are the density, acceleration and volume of random 
material. The value of TF ensure the exploration when it 
is ≤ 0.5. When the value of  TF ≤ 0.5 then one third of the 
iteration are in exploration phase.

2.7 � Step 4.2: Exploitation Phase (No Collision 
Between Objects)

By applying the TF ≥ 0.5 the exploration behavior changes 
to exploitation. That means there is no collision between 
object. Then the acceleration of ith object in T + 1 iteration 
updated using following Eq. (9).

(6)TF = exp

(
t − tmax

tmax

)

(7)dt+1 = exp

(
tmax − t

tmax

)
−

(
1

tmax

)

(8)acct+1
i

=
denmr + volmr × accmr

dent+1
i

× volt+1
i

(9)acct+1
i

=
denbest + volbest × accbest

dent+1
i

× volt+1
i
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accbest is the best object’s acceleration..

2.8 � Step 4.3: Normalize Acceleration

When calculating percentage change, normalize the 
acceleration.

where u and l represent the normalization range and are 
respectively set to 0.90 and 0.10. The acct+1

i−norm
 is responsi-

ble for calculating the percentage step change for each agent. 
The acceleration value will be high if the item i is far from 
the global optimum. That means the object is in the explora-
tion phase; otherwise, it will be in the exploration phase. In 
general, the acceleration factor starts with a large value and 
decreases with iteration.

2.9 � Step 5: Update position

If TF ≤ 0.5 (exploration phase), in next t + 1 iteration the ith 
object position calculates by following Eq. (11)

Here, C1 represent the constant value which is equal to 2.

(10)acct+1
i−norm

= u ×
acct+1

i
−min (acc)

max (acc) −min (acc)
+ l

(11)xt+1
i

= xt
i
+ C1 × rand × acct+1

i−norm
× d ×

(
xrand − xt

i

)

Otherwise, TF ≥ 0.5 (exploitation) and update the posi-
tion with the Eq. (12)

Here, C2 represent the constant value which is equal to 6.T  
goes up over time and is directly related to transfer operator. 
The value of T  defined by T = C3 × TF.

The flat F indicates a shift in motion direction by employ-
ing (13)

where P = 2 × rand − C4.

2.10 � Step 6: Evaluation

Evaluate each item using the objective function f  and record 
the best solution so far. Assign accbest , volbest , denbest , Xbest 
(Fig. 6).

(12)
xt+1
i

= xt
best

+ F × C2 × rand × acct+1
i−norm

× d ×
(
T × xrand − xt

i

)

(13)F =

{
+1ifP ≤ 0.5

−1ifP ≥ 0.5

}

Fig. 6   Pseudo code of AOA
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2.11 � Pseudo Code of AOA

2.12 � Time Complexity of AOA

The time complexity of AOA can be described as given 
below: Assuming the population size of the algorithm is n , 
the search space dimension is d , and the maximum number 
of iterations is T  . O(nd) is the calculation complexity for all 
of its components, including density, volume, acceleration, 
fitness value, and initialization. The exploration and exploi-
tation phases update complexity are O(T(1 + 2n + 2n log n)) . 
So, applying the sum to all these complexities can be 
expressed as

2.13 � Merits and Limitations

Most of the nature-inspired optimization problems have 
some shortcomings. They trap into local optima. AOA suf-
fers also same problem and because of that finding, the opti-
mal solution goal is not achieved. This problem increases 
gradually when we move from unimodal to a multimodal or 
high-dimension complex problem. AOA is renowned for its 
efficiency, simplicity, and resilience, but it also has issues 
with premature and sluggish convergence, which causes 
it to become stuck in local minima. AOA generates a new 
solution based on the previous iteration. This phenomenon 
may reduce the algorithm coverage rate and might cover the 
whole search space effectively and it reduces the algorithm 
efficiency. So many researchers introduce various methods 
or adapt new parameters to balance between exploration and 
exploitation phase. All of the enhanced versions of AOA that 
which author found so far are discussed below.

3 � Enhanced AOA Variants

There are a numerous number of physics-inspired based 
meta-heuristic algorithms proposed by various researchers. 
Each algorithm has its advantages and drawback. AOA is 
one of the new physis-inspired algorithms which become 
very popular within a very short period. Though it has also 
some drawbacks but most of the cases it gives us excel-
lent results in various real-world applications. In the energy 
sector, it has made a significant impact. In a few cases, it 
is observed that it traps in local optima due to unbalancing 
of exploration and exploitation phase. So, some research-
ers tried to make this AOA better and more robust for their 

(14)O(AOA) = 5 × O(nd) + O(T(1 + 2n + 2n log n))

application. Sometimes an extra parameter is added [19] or 
a chaotic method is introduced inside the algorithm [21] or 
Levy Flight-based method is adopted [24] to avoid trapping 
into local optima. In most cases, researchers modified AOA 
according to their needs, and also they tried to modify the 
algorithm in such a way so that it can perform equally well 
for other applications. In this literature survey, we found 
that eight improvements to AOA have been proposed so far. 
A graph in Fig. 3b shows two things, i.e., the number of 
published papers in journals vs conferences and the number 
of improvement papers among the total proposed papers. 
Details study of all proposed improvement papers is given 
in Table 2.

4 � Application of AOA

In the last twenty years, the nature-inspired optimization 
algorithm (NIOA) has been used in a wild variety of fields 
such as the energy sector, network sector, image process-
ing field, artificial intelligence (AI), electronics sector, etc. 
In each sector, NIOA has put its remarkable footprint. In 
the last two decade, more than two hundred optimization 
algorithm has been proposed so far. Each algorithm has its 
flavor, which means the performance of these algorithms is 
application dependent. As previously said according to the 
free lunch theorem one cannot say that one algorithm gives 
the best result in all the fields. So, like other NIOA Archi-
medes Optimization Algorithm (AOA) is not the exception. 
This AOA has also some drawback which was discussed in 
the previous section and it is also been improved by many 
researchers. The researcher modifies the AOA according to 
its application area which is discussed in Table 2. From the 
literature survey of AOA, we can conclude that AOA has 
been widely used in the energy sector, especially in the wind 
energy domain [20, 26, 29]. AOA is also used in proton 
exchange membrane fuel cells [18, 21, 33] for parameter 
optimization. The application of AOA in the medical image 
domain is very little [34]. Only one paper we found where 
AOA has been applied in the medical image domain. In this 
paper, the author developed a model to detect and diagnose 
disease from chest X-rays. Though we found three papers in 
the image processing domain where AOA has been applied. 
Apart from medical images, AOA is also used to classify 
soybean plant disease [38] and Human facial analysis [35]. 
This paper AOA use here to determine the ideal facial area 
for gender recognition [35]. AOA has also been used in wire-
less sensor networks [22] and 5G cellular networks [46] to 
minimize traffic. Details study of the application area of 
AOA is discussed in Table 3.
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Table 2   Improvements of AOA

Variant Name Application Results Author (Ref.)

I-AOA I-AOA PEM fuel cell parameter identification This improved I-AOA uses two effi-
cient strategies namely Orthogonal 
learning (OL) and Local escaping 
operator (LEO). The performance 
of this method was evaluated on 
CEC’2020 test suite and also in 
three engineering real word problem 
namely rolling element bearing, 
problems—tension/compression 
spring and pressure vessel. Author 
claims that this I-AOA method 
gives better result than original 
AOA

Housseinet al. [18]

AOA + Length parameter EAOA Feature Selection in Classification In improve EAOA method a new 
parameter Mu added, this is deter-
mined by the number of steps taken 
by each individual. This parameter 
control exploitation and explora-
tion phase. This improves method 
tested on twenty-three bench 
mark functions. Result shows that 
this EAOA improve exploitation 
competency for unimodal func-
tion and exploration capability of 
multimodal function. Because of its 
ability to avoid local optima, EAOA 
might outperform traditional AOA 
and other state-of-the-art optimiz-
ers.It was shown that the EAOA 
algorithm beats other well known 
optimizers in a statistically signifi-
cant and comparable manner using 
the Wilcoxon rank-sum test

Desuky et al. [19]

AOA + dimension learning IAOA Optimal Power Flow The dimension learning-based 
method is used in IAOA to enhance 
the object's location. For each 
iteration, the x i item is moved 
from its present location using both 
traditional AOA search tactics and 
DL strategies. Three separate power 
systems, the IEEE 57-bus, IEEE 
30-bus, and the 16-bus South Mar-
mara regional transmission systems, 
are solved using the IAOA method

Akdag [20]
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Table 2   (continued)

Variant Name Application Results Author (Ref.)

AOA + 1-dimensional chaotic IAOA Parameters estimation of a proton 
exchange membrane fuel cell

In this IAOA a new 1- dimensional 
chaotic is introduced. This mecha-
nism reduces the complexity of 
random number generation of tra-
ditional AOA. This improve IAOA 
used on fuel cell which is review-
able energy sources with least 
amount of pollution and releases 
water as harmless by-product. 
Proton-exchange membrane (PEM) 
fuel cells are one of the most 
well-known types. They have many 
advantages over other types. One of 
the biggest problems with PEMFCs 
is that they are expensive to build 
because of their catalyst. Therefore, 
developing these fuel cells in the 
most efficient way possible could be 
a good way to deal with this issue 
as much as feasible. The researchers 
in this study came up with a new, 
slightly modified model just for this 
purpose

Yao et al. [21]

AOA + chaotic mapping MAOA Wireless Sensor Networks In MAOA, for population initialize 
phase a tent chaotic map is used. 
This improved AOA tested on seven 
unimodal along with six unimodal 
functions. The convergence speed 
is better than original AOA method 
and it also outperformed AOA, DE, 
PSO etc. considering optimization 
ability

Cheng et al. [22]

AOA + Deep Belief Network DBN-IAOA Proton exchange
membrane fuel cell (PEMFC)

New methods for determining the 
optimal model for Proton Exchange 
Membrane Fuel Cell (PEMFC) 
stacks are developed using an 
upgraded Deep Belief Network 
(DBN). During the PEMFC simula-
tion, an improved version of AOA 
was applied to DBN to reduce the 
relative error between network out-
put data and voltage. The proposed 
DBN-IAOA approach was superior 
to the original DBN method

Sun et al. [23]
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4.1 � Paper Sources and Keywords

(A) Sources
The mentioned papers have been collected from the fol-

lowing sources:

	 (i)	 SpringerLink—https://​www.​sprin​gerli​nk.​com
	 (ii)	 Google Scholar—https://​schol​ar.​google.​com
	 (iii)	 IEEE Xplore—https://​ieeex​plore.​ieee.​org
	 (iv)	 ScienceDirect—https://​www.​scien​cedir​ect.​com
	 (v)	 ACM Digital Library—https://​dl.​acm.​org
	 (vi)	 DBLP—https://​dblp.​uni-​trier.​de
	(vii)	 JOCA —http://​www.​joca.​cn
	(viii)	 WILEY—https://​www.​wiley.​com
	 (ix)	 Taylor & Francis—https://​www.​tandf​online.​com

(B) Keywords
Each of these above sources is queried with the following 

combinations of keywords:
KW1: Nature-Inspired Optimization Algorithms.
KW2: Image segmentation.
KW3: Hierarchical and Partitional clustering based image 

segmentation.
KW4: Nature Inspired Optimization Algorithm based 

image clustering.

KW5: Image segmentation medical image.
KW6: Image segmentation pathology image.
KW7: optimization.
KW8: Physics Inspired Optimization Algorithms.
KW9: Archimedes Optimization Algorithm.
KW10: Image segmentation using Swarm Intelligence 

algorithms.
KW11: Archimedes Optimization Algor ithm 

improvement.
KW12: Multi-thresholding.
KW13: Archimedes Optimization Algorithm in 

Multi-thresholding.

5 � AOA‑Based Image Multi‑level 
Thresholding

There are several computer vision applications in which 
image segmentation is a fundamental part of the process 
and thresholding is regarded as extremely important in 
this sector. Based on the number of threshold values one 
may classify two types of thresholding, namely bi-level 
and multi-level thresholding. From its name, one can say 
that when there is two threshold value then it is the bi-level 
threshold and when the threshold value is more than two 

Table 2   (continued)

Variant Name Application Results Author (Ref.)

AOA + Levy Flight LAO Designing Microstrip Patch Antenna The main shortcoming of AOA is 
it get trapped in local minima and 
also it has a slow convergence 
rate. To overcome this issue author 
proposed a new Levy Flight based 
Levy Flight Archimedes optimizer 
(LAO). This improves algorithm 
exploration efficiency which it 
can avoid to trap into local optima 
during the search. This proposed 
technique tested on CEC 2017 test 
function and also compared with 
well-known evolutionary algo-
rithms. This algorithm also applied 
on real world problem like four 
different microstrip patch antenna 
issues and established algorithm 
efficiency

Singh et al. [24]

AOA + golden Levy MSAOA Benchmark function A Multi-Strategy improved Archi-
medes Optimization Algorithm 
(MSAOA) was proposed to address 
the shortcomings of the standard 
Archimedes Optimization Algo-
rithm (AOA) in solving optimiza-
tion problems, such as its limited 
global exploration capability, slow 
convergence speed, and poor solu-
tion accuracy

Chen et al. [25]

https://www.springerlink.com
https://scholar.google.com
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://dl.acm.org
https://dblp.uni-trier.de
http://www.joca.cn
https://www.wiley.com
https://www.tandfonline.com
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it is said multi-level threshold. Multilevel Thresholding 
(MLT) segmentation algorithms have limits while looking 
for ideal thresholding values comprehensively to enhance 
the objective function, which also increases computing cost. 
In a nutshell, as the number of thresholds increases, MLT 
approaches become increasingly computationally difficult. 
Many scholars are drawn to a variety of methods that are 
inspired by nature or human behavior or physics phenom-
enon that may be used extensively to address this and other 
concerns with MLT.

In addition to that recently designed PIOA has also been 
utilized for MLT in the last 2 to 3 years. However, the effort 
is too little. For example, Dinkar et al. [50] suggested an 
Opposition-Based Laplacian Equilibrium Optimizer (OB-L-
EO) in Image Segmentation using Multilevel Thresholding 
by utilizing Otsu’s interclass variance function over Standard 
Gray Scale Images and employing Berkeley Segmentation 
Dataset (BSD) and claims that the Proposed OB-L-EO is 
capable of exhibiting superior outcome in terms of maxi-
mizing variance and PSNR values thereby outperform other 
methods. Basset et al. [51] proposed an Equilibrium Optimi-
zation Algorithm (EOA) for multi-thresholding image seg-
mentation by utilizing Kapur’s entropy over Standard Gray 
Scale Images and employing Berkeley Segmentation Dataset 
(BSD) and claims proposed EOA is capable of outperform-
ing all other algorithms. However, EO failed to show its 
superiority over some algorithms in Standard values, and 
CPU time for the large threshold levels. Qi et al. [52] pro-
posed Hybrid Equilibrium Optimizer Algorithm (HEOA) 
for multi-level image segmentation utilizing 3D Otsu over 
Standard Color Images, and Color Satellite Images using 
the CEC2015 dataset and claims that the proposed HEOA is 
capable of performing better (has the good optimal ability) 
than the other methods. However, it takes enormous time to 
iterate in order to find the best solution. On the other hand, 
this method has strong performance in wood fiber image 
segmentation thereby having a greater scope in the field of 
medical image segmentation, forest fire image segmenta-
tion, and so on. Rai et al. [7] also performed a comparative 
study among six NIOA called Archimedes Optimization 
Algorithm (AROA), Aquila Optimizer (AQO), Arithmetic 
Optimization Algorithm (AOA), Rat Swarm Optimization 
Algorithm (RSA), Particle Swarm Optimization (PSO), and 
Firefly Algorithm (FA) in satellite image MLT domain by 
considering Masi entropy as an objective function. Experi-
mental results showed that AROA gave better results than 
other tested NIOA in terms of optimization ability, quality 
parameters, and execution time. Kurban et al. [53] also per-
formed a comparative study among six novel NIOA such as 
Slime Mould Algorithm (SMA), Henry Gas Solubility Opti-
mization (HGSO), turbulent flow of water-based Optimiza-
tion (TFWO), Political Optimizer (PO), Marine Predators 
Algorithm (MPA) and Equilibrium Optimization (EO) for Ta

bl
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color image thresholding using Kapur and Otsu as objec-
tive functions. Comprehensive studies showed that MPA 
and TFWO produced better results than SMA, EO, PO, and 
HGSO for satellite images. Cuckoo search-based multi-level 
thresholding for lymphoblastic leukemia image segmenta-
tion proposed by Ray et al. [54]. The next section focuses 
mostly on the problem foundation and objective function for 
multi-level thresholding.

5.1 � Problem Formulation of Multilevel 
Thresholding

In image segmentation, based on multiple thresholding [55, 
56], the primary objective is to choose threshold values so 
that the segmented images possess the required characteris-
tic. Here the threshold values are taken into account while 
constructing the objective function. By minimizing or maxi-
mizing of objective function with help of threshold value we 
can achieve our goal.

Suppose, an image I  have L gray levels and 
which can be classified into K  number of classes i.e. 
( C1,C2,… ,Ci,… ,Ck ) using ( K − 1 ) number of thresh-
olds which values are ( T = t1, t2,… , ti,… , tK−1 ), where 
( t1 < t2 <,… ,< ti,… ,< tK−1 ). Here, for an 8-bit image, 
L = 256 and the grayscale levels fall between 0 and 255. 
So, a pixel with gray level G belongs to the class Ci if 
( ti+1 < G < ti ) for i = 1, 2,… ,K . So, a single objective func-
tion can be written as

Here thresholds T′ which optimizes the objective function 
F(T) . To get the segmented image I , the objective function 
F(T) must satisfy the desired property. Following is a simple 
mathematical implementation of Tsallis entropy as an objec-
tive function in this study.

For multi-objective thresholding, T ′′ optimize the set of 
objective functions.

5.2 � Objective Function

5.2.1 � Tsallis Entropy as Objective Function

Constantin Tsallis introduced the Tsallis entropy as an 
extension of the Boltzmann–Gibbs entropy measure [57]. 
Using the entropy formula given in Eq. (18) Tsallis’ entropy 

(15)T � = arg max∕min0≤T≤L−1{F(T)}

(16)
F(T) =

(
F1(T),F2(T),… ,Fj−1(T),… ,Fn(T)

)
,where n > 1

(17)T �� = arg max∕min0≤T≤L−1{F(T)}

measure may be expanded to a non-extensive system based 
on the idea of multi-fractal theory.

where, 0 ≤ pi ≤ 1 represents the probability of the state i. 
In the case of a gray level image, It indicates the appear-
ance of the ith gray level in a grayscale image. The Tsallis 
parameter q represents the system under consideration’s non-
extensivity. Using the pseudo-additivity entropy rule, it may 
be expressed as

Here, the threshold value t separates the image’s foreground 
and background classes, which are represented by the, f  and b.

Here, classes f  and b are used to represent the  
image’s foreground and background areas, which are 
separated from one another by the image’s threshold  
value ( t  ). Suppose, {(

p1, p2,…… , pL
)

|pi ≥ 0, i = 1, 2, ..., L.;

L = number of discrete gray levels;
n
∑

i=1
pi = 1 } is the probability dis-

tribution of the image’s gray-level intensities. The following 
equation represents the probability distribution of classes f  
and b:

where,

Therefore, for each class, Tsallis entropy may be 
expressed as follows:

Bilevel-thresholding maximizes the total of the informa-
tion measures for the foreground and background. There-
fore, the following formulation may be used to determine 
the appropriate threshold:

Subject to the following constraints:

The following expression may be used to simply expand 
this approach to multi-level thinking:

(18)Sq =
1 −

∑k

i=1

�
pi
�q

q − 1

(19)Sq(f + b) = Sq(f ) + Sq(b) + (1 − q).Sq(f ).Sq(b)

(20)Pf =
p1

Pf
,
p2

Pf
,… .,

pt

Pf
and Pb =

pt+1

Pb
,
pt+2

Pb
,… .,

pL

Pb

(21)Pf =

t1∑
i=1

pi, and Pb =

L∑
i=t+1

pi

(22)

Sf
q
(t) =

1 −
∑t

i=1

�
pi
�
Pf
�q

q − 1
, Sb

q
(t) =

1 −
∑L

i=t+1

�
pi
�
Pb

�q
q − 1

(23)topt = Arg max
[
Sf
q
(t) + Sb

q
(t) + (1 − q).Sf

q
(t).Sb

q
(t)
]

(24)
|

|

|

Pf + Pb|
|

|

− 1 < S < 1 − |

|

|

Pf + Pb|
|

|

,

where, S(t) = S = Sfq(t) + Sbq(t) + (1 − q).Sfq(t).S
b
q(t)
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where,

Subject to the following constraints:

where P1,P2 and Pm+1 corresponding to S1, S2 and SM have 
been computed using t1, t2,…… , tm respectively.

5.2.2 � t‑Entropy as Objective Function

In 2021, Chakraborty et al. introduced a new measure of 
entropy termed t-entropy [17]. Suppose there is an image I 
w h i c h  h a s  a  n o r m a l i z e d  h i s t o g r a m 
p =

(

p0, p2, p3,… , pn,… , pL−1
)

|pi ≥ 0, i = 0, 1, 2,… , n, ...L − 1; in where L 

is the image’s number of gray levels and 
L−1∑
i=0

pi = 1 , then 

t-entropy 
(
Hc

)
  of the image is then calculated as follows:

where c is a positive constant.
Assuming that the normalized histogram is divided into 

K classes by nt = K − 1 thresholds(t), the entropy for each 
class may be determined as follows:

where,

(25)

(

t1, t2,…… , tm
)

= Arg max
[

S1q(t) + S2q(t) +⋯ + SMq (t) + (1 − q).S1q(t).S
2
q(t)… ..SMq (t)

]

(26)
S1q(t) =

1 −
∑t1

i=1
(pi

/

P1
)q

q − 1
, and

SMq (t) =
1 −

∑L
i=tm+1

(pi
/

PM
)q

q − 1
, And M = m + 1

(27)

|

|

|

P1 + P2|
|

|

− 1 < S1 < 1 − |

|

|

P1 + P2|
|

|

, ||
|

P2 + P3|
|

|

− 1 < S2 < 1 − |

|

|

P2 + P3|
|

|

&|

|

|

Pm + Pm+1|
|

|

− 1 < SM < 1 − |

|

|

Pm + Pm+1|
|

|

(28)Hc(p) =

L−1∑
i=0

pi tan
−1

(
1

pc
i

)
−

�

4

(29)

H1
c

�
th1

�
=

th1−1�
i=0

pi

w1

tan−1

⎛
⎜⎜⎜⎝

1�
pi
�
w1

�c

⎞
⎟⎟⎟⎠
−

�

4

H2
c

�
th2

�
=

th2−1�
i=th1

pi

w2

tan−1

⎛⎜⎜⎜⎝
1�

pi
�
w2

�c

⎞⎟⎟⎟⎠
−

�

4

⋮

⋮

HK
c

�
thnt

�
=

L−1�
i=thnt

pi

wnt

tan−1

⎛⎜⎜⎜⎝

1�
pi
�
wnt

�c

⎞⎟⎟⎟⎠
−

�

4

where, for ease of computation, two dummy thresh-
o l d s  th0 = 0, thnt = L − 1 a r e  i n t r o d u c e d  w i t h 
th0 < th1 < … < thn−1 < thnt . Then, the best threshold value 
may be determined by using this method.

For image segmentation based on multi-level threshold-
ing-based, the positive constant c had been evaluated over 
[0.01, 20] and determined to be optimal at c = 0.1.

6 � Experimental Result

In this section, the author did a comparative study between 
AOA with six other PIOA with help of Tsallis entropy and 
t-entropy over standard pathology images and standard color 
images. The six PIOA’s experimental results in multi-threshold 
domains namely Nuclear Reaction Optimization (NRO), Atom 
Search Optimization (ASO), Equilibrium Optimizer (EO), 
Henry Gas Solubility Optimization (HGSO), Flow Direction 
Algorithm (FDA), Atomic Orbital Search (AOS) are compared 
with Archimedes Optimization Algorithm (AOA). The algo-
rithms parameter values used in these seven algorithm are 
defined in Table 4. Each NIOA’s specifications are determined 
after extensive testing. Tsallis’ and t-entropy are used as objec-
tive functions in the experiment. To make fair comparisons 
amongst NIOA techniques, the optimization procedure for 
each of the evaluated objective functions uses 
NFE(Number of Function Evaluations ) = 1000∗d  as the 
halting condition. This criterion has been established to pro-
mote consistency with earlier published studies. When evaluat-
ing the experiments, the number of threshold values (TH) set 
to 4, 6, and 8 is taken into account. In addition, FE is a key 
performance metric used to evaluate the NIOA’s efficiency. FE 
allows some technical variables, such as the computer system 
where experiments are performed and implemented, that affect 
CPU time, focusing exclusively on the algorithm’s ability to 
explore the solution space. Mean fitness 

(
f
)
 and standard 

deviation (�) have been used to figure out how well the PIOA 
can optimize. A number of other metrics were used to assess 
the efficiency of these PIOA-based models segmented data: 
the PSNR, QILV, and Feature Similarity Index, for example 
(FSIM). Within the realm of image segmentation, these 
parameters have a great deal. The list of segmentation quality 
metrics that are being employed is presented in Table 5. [2, 
58]. The hardware and software requirements for the 

(30)
w1

(

th1
)

=
th1−1
∑

i=0
pi,w2

(

th2
)

=
th2−1
∑

i=th1

pi,… … … … ,wK
(

thnt
)

=
L−1
∑

i=thnt

pi

(31)
�
(

th1, th2,…… , thnt
)

= Arg max
([

H1
c
(

th1
)

+ H2
c
(

th2
)

+…+ HK
c
(

thnt
)])



2564	 K. G. Dhal et al.

1 3

experiment include MatlabR2018b and Windows-10 operating 
system, × 64-based personal computer, Ryzen 5 central pro-
cessing unit, and 16 gigabytes of RAM. A standard set of 100 
color photos is used to test the suggested methods which are 
collected from [59] (https://​lear.​inria​lpes.​fr/​~jegou/​data.​php). 

The renal pathology images are taken from [60] (https://​tcgad​
ata.​nci.​nih.​gov/​tcga/). Figure 7 depicts the original color stand-
ard picture and kidney pathology imaging.

Table 4   Parameter setting of the PIOA

Algorithms Parameters Description Value initialized

Archimedes Optimization Algorithm (AOA) N Population size 50
C1 Control variable1 2
C2 Control variable 2 6
C3 Control variable 3 2
C4 Control variable 4 0.5

Flow Direction Algorithm (FDA) Α Population size 50
Β Number of neighbors 1

Equilibrium Optimizer (EO) N Number of particles (population size) 50
GP Generation probability 0.5
a1 Constant value to control exploration ability 2
a2 Constant value to control exploitation ability 1

Atom Search Optimization (ASO) K Atom population size 50
a Depth weight 50
β Multiplier weight 0.2

Henry Gas Solubility Optimization (HGSO) N Population size 50
j Cluster number 5
C1 Constant [Escaping from local optima] 0.1
C2 Constant [Escaping from local optima] 0.2
β Constant [Updating Position] 1
α Influence of other gases in a cluster 1
K Constant [Updating Solubility] 1

Atomic Orbital Search (AOS) M Electron population size 50
α Random number [0, 1]
β Random number [0, 1]
� Random number [0, 1]
� Random number [0, 1]

Nuclear Reaction Optimization (NRO) N Nuclei population size 50
freq frequency of the sinusoidal function 0.5
PFi Nuclear fission probability 0.75
Pβ β decay Probability 0.1

Table 5   Three well-known performance parameters for the evaluation of the image segmentation methods

Sl Parameters Formulation Remarks

1. Feature Similarity
Index (FSIM)

FSIM =
∑

x∈Ω SL(x).PCm(x)∑
x∈Ω PCm(x)

Defines the quality score that measures the significance of a local structure. The better 
the outcome, the greater the value

2. Peak Signal to Noise
Ratio (PSNR) PSNR = 10log

10

(2b−1)
2

√
MSE

Represents the ratio between a signal’s highest possible power and the noise power. A 
high PSNR indicates a favorable outcome

3. Structural Similarity
Index (SSIM) SSIM =

(
2×X×Y+c

1

)
×(2×�XY+c2)

(�2

X
+�2

Y
+c

2)×
(
X
2

+Y
2

+c
1

)
Determines whether a segmented image and an uncompressed or distortion-free image 

are similar. A higher SSIM score denotes a better outcome

https://lear.inrialpes.fr/~jegou/data.php
https://tcgadata.nci.nih.gov/tcga/
https://tcgadata.nci.nih.gov/tcga/
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6.1 � Experimental Results of Standard Color Images 
over Tsallis Entropy

For the standard color picture, Fig. 8 shows the segmented 
results of Fig. 7a using Tsallis entropy as an objective func-
tion across 4, 6, and 8 thresholds using different PIOA 
(AOA, ASO, HGSO, EO, AOS, FDA and NRO). Table 6 
compares numerically the aforementioned PIOAs using 
Tsallis entropy as the objective function across 4, 6, and 8 
thresholds for a typical color image. Here standard devia-
tion 

(
�f

)
 , fitness function 

(
f
)
 , Computational time (Time 

(sec)), PSNR, FSIM and SSIM used as numerous parameters 
for performance evaluation of segmented image. With addi-
tion, the bold value in this table is represented the best per-
formance value. Table 6 reveals that AOA achieves the best 
outcome across all threshold values (4, 6, and 8) for every 
parameter considered, but NRO achieves the lowest result 
across all evaluated PIOAs. From the same table, Table 6, 
we can conclude that when the number of thresholds 
increases, FSIM, PSNR, and SSIM values similarly increase 
for the objective function studied in this situation. The fit-
ness value of AOA is compared to that of other PIOAs stud-
ied (Table 1) using a non-parametric significance test known 
as Wilcoxon’s rank test [61] that permits the estimation of 
differences between the outcomes of two related approaches. 
A p value of less than 0.05 (5 percent significance threshold) 
strongly supports the rejection of the null hypothesis, indi-
cating that the results of the best algorithm differ statistically 
insignificantly from those of the other peer algorithms and 
that the difference is not attributable to random chance. 
Table 7 presents the pair-wise comparisons of PIOA (AOA 
vs. ASO; AOA vs. FDA; AOA vs. EO; AOA vs. HGSO; 
AOA vs. AOS; and AOA vs. NRO) based on Wilcoxon 
p-values for Standard Color images for Tsallis Entropy for 
4, 6, and 8 thresholds. The fact that all Wilcoxon p-values 
collected and projected in Table 7 are less than 0.05 (5 per-
cent significance threshold) with h = 1 is evidence against 
the null hypothesis, implying that the AOA fitness values for 

performance are statistically superior. This suggests that 
AOA combined with Tsallis entropy as an objective function 
is competent enough to produce consistent solutions regard-
less of the threshold settings.

6.2 � Experimental Results of Pathology Images 
over Tsallis Entropy

For the pathology images, Fig.  9 shows the segmented 
results of Fig. 7(b) using Tsallis entropy as an objective 
function across 4, 6, and 8 thresholds using different PIOA 
(AOA, ASO, HGSO, EO, AOS, FDA and NRO). Tsallis 
entropy is used as the objective function in the numerical 
comparison of various PIOAs for pathology images with 4, 
6, and 8 thresholds in Table 8. Here standard deviation 

(
�f

)
 , 

fitness function 
(
f
)
 , Computational time (sec), PSNR, FSIM 

and SSIM used as numerous parameters for performance 
evaluation of segmented image. With addition the bold value 
in this table is represented the best performance value. 
Table 8 reveals that AOA achieves the best outcome across 
all threshold values (4, 6, and 8) for every parameter con-
sidered, but NRO achieves the lowest result across all evalu-
ated PIOAs. Table 8 further shows that when the number of 
thresholds increases, values for PSNR, FSIM, and SSIM 
likewise increase for the objective function studied in this 
situation. Table 9 displays the pair-wise comparisons of 
PIOA (AOA vs. ASO; AOA vs. FDA; AOA vs. EO; AOA 
vs. HGSO; AOA vs. AOS; and AOA vs. NRO) based on 
Wilcoxon p-values for Pathology images for Tsallis Entropy 
for 4, 6, and 8 thresholds. All of the Wilcoxon p-values 
found and shown in Table 9 are less than 0.05, which is the 
5 percent significance level. This seems to show that the null 
hypothesis is not true, which means that the AOA fitness 
values for performance are statistically better. Lastly, it can 
be concluded that the AOA algorithm is better for both 
standard color images and pathology images in terms of the 
different performance parameters and takes less time to run.

6.3 � Results over t‑Entropy for Standard Color 
Images

For the standard color images, Fig. 10 shows the seg-
mented results of Fig. 7a using t-entropy as an objective 
function across 4, 6, and 8 thresholds using different 
PIOA (AOA, ASO, HGSO, EO, AOS, FDA and NRO). 
t-entropy is used as the objective function in the numerical 
comparison of various PIOAs for standard images with 4 
and 8 thresholds in Table 10. Here standard deviation 

(
�f

)
 , 

fitness function 
(
f
)

 , Computational time (sec), PSNR, 
FSIM and SSIM used as numerous parameters for perfor-
mance evaluation of segmented image. With addition the 

(a) (b) 

Fig. 7   Original image: a Standard Color Image; b Color Renal 
Pathology Image
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bold value in this table is represented the best performance 
value. Table 10 shows clearly that AOA gets the best 
results over the threshold values of 4, 6 and 8 for all 

parameters except for �f  . In terms of characteristics such 
as PSNR and SSIM, NRO is the poorest of the studied 
PIOAs, but it has the best standard deviation 

(
�f

)
 value. In 

Fig. 8   Segmented results of 
PIOA using Tsallis entropy over 
4, 6, and 8 thresholds for Fig. 7a

Method nt = 4 nt = 6 nt = 8
AOA

ASO

HGSO

EO

AOS

FDA

NRO
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addition, for a given threshold value, NRO requires the 
most computational time. On the other hand, threshold 
value 8, NRO imparts the worst result amongst all the 
tested PIOA’s for the parameters namely computational 
time and FSIM whereas HGSO achieves the best standard 
deviation 

(
�f

)
 value. Consequently, for threshold value 6, 

AOA achieves the best results for all parameters consid-
ered, whereas FDA achieves the poorest results among all 
examined PIOAs for the parameters FSIM, PSNR, and 
SSIM. Additionally, for the same, NRO requires the most 
computational time. Table  11 displays the pair-wise 

comparisons of PIOA (AOA vs. ASO; AOA vs. FDA; 
AOA vs. EO; AOA vs. HGSO; AOA vs. AOS; and AOA 
vs. NRO) based on Wilcoxon p-values for Standard Color 
images with t-entropy for 4, 6, and 8 thresholds. The 
Wilcoxon p-values obtained and projected in Table 11 for 
threshold number 8 are less than 0.05 (5 percent signifi-
cance level) with h = 1, which is an evident proof against 
the null hypothesis, implying that the AOA fitness values 
for performance are statistically superior. Nonetheless, this 
is not the case for threshold values 4 and 6, since the Wil-
coxon p-values obtained are more than 0.05 (5 percent 
significant level) in a few instances, as seen in the table.

Table 6   Numerical comparison 
of PIOA for Tsallis Entropy as 
objective function over standard 
color image

Best results are highlighted in bold

Number of 
thresholds (nt)

PIOA f �f Time (s) FSIM PSNR SSIM

4 AOA 59,685.72 1.06E−08 2.3936 0.8974 16.86 0.6736
ASO 59,678.44 1.28E−05 2.4776 0.8971 16.48 0.6690
HGSO 59,666.07 1.94E−08 2.4396 0.8968 16.36 0.6589
EO 59,652.02 1.39E−07 2.4733 0.8961 16.32 0.6582
AOS 59,539.12 1.34E−06 2.4983 0.8953 16.11 0.6531
FDA 58,991.16 1.65E−08 2.6786 0.8911 15.91 0.6501
NRO 58,863.94 1.76E−07 2.6998 0.8881 15.72 0.6409

6 AOA 1,608,896.19 5.22E−07 3.3978 0.9339 21.41 0.8591
ASO 1,608,847.59 4.33E−06 3.4878 0.9334 21.32 0.8588
HGSO 1,608,842.19 9.64E−07 3.4478 0.9333 21.30 0.8584
EO 1,608,735.34 4.93E−05 3.4978 0.9325 21.11 0.8579
AOS 1,608,642.75 3.87E−05 3.5977 0.9324 21.08 0.8571
FDA 1,608,547.96 1.18E−06 3.6878 0.9320 21.01 0.8561
NRO 1,608,524.24 5.59E−06 3.7954 0.9314 20.58 0.8540

8 AOA 31,588,982.11 6.25E−06 4.3274 0.9544 23.79 0.8934
ASO 31,586,680.81 6.85E−06 4.4237 0.9540 23.78 0.8931
HGSO 31,586,527.05 7.87E−06 4.4234 0.9539 23.66 0.8932
EO 31,584,744.77 8.78E−05 4.4274 0.9531 23.61 0.8929
AOS 31,573,136.42 4.59E−05 4.5279 0.9524 23.58 0.8927
FDA 31,567,620.49 9.65E−06 4.6234 0.9519 23.48 0.8921
NRO 31,563,879.07 9.99E−06 4.7908 0.9511 23.15 0.8914

Table 7   Comparison among 
PIOA depending on Wilcoxon 
p values over Standard Color 
image for Tsallis Entropy

Pair of PIOA Tsallis Entropy over Standard Color Image

nt = 4 nt = 6 nt = 8

p h p h p h

AOA vs. AOS  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. FDA  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. EO  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. HGSO  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. ASO  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. NRO  < 0.05 1  < 0.05 1  < 0.05 1
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Fig. 9   Segmented results of 
PIOA using Tsallis entropy over 
4, 6, and 8 thresholds for Fig. 7b

Method nt = 4 nt = 6 nt = 8
AOA

ASO

HGSO

EO

AOS

FDA

NRO
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6.4 � Results over t‑entropy for Pathology Images

Figure 11 illustrates the visual segmentation results of 
Fig. 7(b) utilizing several PIOA (AOA, ASO, HGSO, EO, 
AOS, FDA, and NRO) using t-entropy as the objective func-
tion across thresholds of 4, 6, and 8 for the Pathology pic-
ture. t-entropy is used as the objective function in the numer-
ical comparison of various PIOAs for pathology images with 
4 and 8 thresholds in Table 12. Here standard deviation 

(
�f

)
 , 

fitness function 
(
f
)
 , Computational time (sec), PSNR, FSIM 

and SSIM used as numerous parameters for performance 
evaluation of segmented image. With addition the bold value 

in this table is represented the best performance value. For 
every parameter considered, results in Table 12 clearly show 
that AOA achieves the greatest results over threshold values 
of 6. NRO, on the other hand, is the worst PIOA in terms of 
all criteria except for PSNR, whereas FDA is the worst in 
terms of PSNR. On the other hand for threshold values 4 
and 8, AOA accomplishes the best result for every param-
eter taken into account except for that of the standard devia-
tion 

(
�f

)
. FDA and NRO achieves the best standard deviation (

�f

)
 values for threshold values 4 and 8 respectively. FDA 

performs worst for threshold values 4 and 8 in terms of 
FSIM, PSNR and SSIM nonetheless; NRO consumes the 
most computation time. Table 13 tabulates the pair-wise 

Table 8   Numerical comparison 
of PIOA for Tsallis entropy 
as an objective function over 
Pathology Image

Best results are highlighted in bold

Number of 
thresholds (nt)

PIOA f �f Time (s) FSIM PSNR SSIM

4 AOA 48,954.63 2.42E−09 3.3815 0.9529 20.78 0.8756
ASO 48,723.18 3.01E−07 3.4848 0.9524 20.75 0.8756
HGSO 48,582.67 3.24E−08 3.4381 0.9520 20.68 0.8751
EO 48,399.59 3.01E−08 3.4795 0.9514 20.51 0.8711
AOS 48,196.82 4.18E−07 3.5103 0.9511 20.48 0.8708
FDA 47,971.37 5.29E−08 3.7320 0.9501 20.42 0.8702
NRO 47,843.13 5.54E−08 3.7581 0.9498 20.29 0.8702

6 AOA 1,330,965.12 3.54E−07 4.6167 0.9737 24.05 0.9319
ASO 1,330,950.62 9.29E−06 4.7274 0.9734 23.98 0.9315
HGSO 1,330,938.83 6.20E−07 4.6782 0.9732 23.88 0.9311
EO 1,330,929.24 7.69E−06 4.7397 0.9730 23.84 0.9309
AOS 1,330,897.88 1.12E−06 4.8626 0.9724 23.81 0.9308
FDA 1,330,781.67 1.44E−06 4.9735 0.9718 23.77 0.9301
NRO 1,330,711.65 8.53E−06 5.1058 0.9714 23.76 0.9298

8 AOA 24,692,789.31 5.10E−06 5.7602 0.9911 26.54 0.9578
ASO 24,680,419.73 5.41E−05 5.8787 0.9904 26.52 0.9575
HGSO 24,671,330.66 3.95E−05 5.8783 0.9899 26.48 0.9574
EO 24,670,834.45 1.57E−05 5.8832 0.9895 26.45 0.9571
AOS 24,665,568.45 7.21E−05 6.0069 0.9887 26.39 0.9567
FDA 24,663,457.67 7.07E−05 6.1243 0.9884 26.34 0.9561
NRO 24,651,842.25 9.24E−05 6.2303 0.9882 26.28 0.9557

Table 9   Comparison among 
PIOA depending on Wilcoxon 
p values over Color Pathology 
Image for Tsallis Entropy

Pair of PIOA Tsallis Entropy over Color Pathology Image

nt = 4 nt = 6 nt = 8

p h p h p h

AOA vs. AOS  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. FDA  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. EO  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. HGSO  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. ASO  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. NRO  < 0.05 1  < 0.05 1  < 0.05 1
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comparisons of PIOA (AOA vs. ASO; AOA vs. FDA; AOA 
vs. EO; AOA vs. HGSO; AOA vs. AOS; and AOA vs. NRO) 
based on Wilcoxon p-values for Standard Color images with 

t-entropy for 4, 6, and 8 thresholds. The Wilcoxon p-values 
obtained and predicted in Table 13 for threshold number 8 
are less than 0.05 (5 percent significance level) with h = 1, 

Fig. 10   Segmented results of 
PIOA using t-entropy over 4, 6, 
and 8 thresholds for Fig. 7a

Method nt = 4 nt = 6 nt = 8
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FDA

NRO
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indicating that the AOA performance fitness values are sta-
tistically better. Nonetheless, this is not the case for thresh-
old values 4 and 6, since the Wilcoxon p-values obtained 
are more than 0.05 (5 percent significant level) in a few 
instances, as seen in the table.

6.5 � Discussion on the Performance Comparison 
Among Objective Functions

According to Table 6 and Table 10, it is clear that Tsallis and 
t-entropy, two famous objective functions for standard color 
pictures, outperform for every PIOA over characteristics 
such as fitness function 

(
f
)
 , standard deviation 

(
�f

)
 , com-

putational time (sec), FSIM, and PSNR for all PIOAs. Tsal-
lis entropy, on the other hand, surpasses t-entropy in terms 
of SSIM for nt = 6 and 8; nevertheless, for nt = 4, t-entropy 
yields superior results. When utilizing Tsallis entropy to seg-
ment standard color images, different PIOA’s require almost 
half the computation time for different threshold values than 
using t-entropy as an objective function. It can be concluded 
and inferred from the experimental results that every PIOA 
combination with Tsallis entropy surpasses the PIOA com-
bination with t-entropy in almost all circumstances and in 
almost all parameters. While this is true, the PIOA in com-
bination with Tsallis entropy yields better results and is 
clearly superior as an objective function for any threshold 

Table 10   Numerical 
comparison of PIOA for 
t-entropy as an objective 
function over a standard color 
image

Best results are highlighted in bold

Number of 
thresholds (nt)

PIOA f �f Time (s) FSIM PSNR SSIM

4 AOA 0.585824 1.21E−20 4.0010 0.8422 15.35 0.7021
ASO 0.585823 2.02E−20 4.1414 0.8418 15.15 0.6998
HGSO 0.585823 1.24E−20 4.0779 0.8413 15.12 0.6998
EO 0.585823 1.09E−20 4.1343 0.8413 15.13 0.6995
AOS 0.585823 1.67E−20 4.1760 0.8412 15.13 0.6992
FDA 0.585822 1.08E−20 4.4774 0.8401 14.86 0.6899
NRO 0.585822 1.34E−20 4.5129 0.8402 14.84 0.6895

6 AOA 0.880116 1.23E−19 5.6796 0.9088 19.59 0.8271
ASO 0.880115 3.23E−18 5.8300 0.8989 19.52 0.8270
HGSO 0.880115 4.17E−19 5.7632 0.8989 19.53 0.8268
EO 0.880115 2.67E−19 5.8468 0.8988 19.48 0.8261
AOS 0.880114 3.93E−19 6.0137 0.8985 19.49 0.8259
FDA 0.880114 5.01E−19 6.1644 0.8981 19.46 0.8258
NRO 0.880114 3.25E−19 6.3442 0.8978 19.45 0.8255

8 AOA 1.126865 1.77E−19 7.2335 0.9289 21.98 0.8657
ASO 1.126851 1.64E−19 7.3945 0.9281 21.58 0.8622
HGSO 1.126849 1.39E−19 7.3940 0.9279 21.53 0.8619
EO 1.126846 5.47E−19 7.4006 0.9278 21.52 0.8619
AOS 1.126834 2.51E−18 7.5686 0.9271 21.48 0.8611
FDA 1.126817 2.46E−19 7.7283 0.9269 21.41 0.8608
NRO 1.126799 3.58E−19 8.0081 0.9270 21.40 0.8604

Table 11   Comparison among 
PIOA depending on Wilcoxon 
p values over Standard Color 
image for t-entropy

Pair of PIOA t-Entropy over Standard Color Image

nt = 4 nt = 6 nt = 8

p h p h p h

AOA vs. AOS  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. FDA  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. EO  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. HGSO  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. ASO  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. NRO  < 0.05 1  < 0.05 1  < 0.05 1
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value, it is clear by looking at Tables 8 and 12, which show 
that this is also true for every parameter evaluated in the 
scenario. This demonstrates that, despite the fact that 

t-entropy is a recently proposed notion that is rarely used in 
image segmentation, Tsallis entropy as an objective function 
gives an intriguing and unorthodox option for regular color 

Fig. 11   Segmented results of 
PIOA using t-entropy over 4, 6, 
and 8 thresholds for Fig. 7b

Method nt = 4 nt = 6 nt = 8
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image segmentation problems. Both Tsallis entropy and 
t-entropy as objective functions in association with various 
PIOA are more suited for pathology pictures than ordinary 
color images in general, according to this analysis. Accord-
ing to the tables described above, a further examination 
shows that the processing time rises, but the values for FSIM 
and PSNR and SSIM also increase as the number of thresh-
olds grows for the objective function under consideration. 
For a typical color image and a pathologic image, Figs. 12 
and 13 provide a visual comparison between Tsallis and 
t-entropy in terms of processing time, FSIM, PSNR, and 
SSIM. The average values of the computational time, FSIM, 
PSNR, and SSIM for the graphs have been computed by 

averaging the results of all the seven tested PIOA over all the 
tested standard color images and pathology images.

7 � Conclusion

In this paper, the author conducted a depth review of AOA 
which is a recent physics-inspired optimization problem. 
Along with AOA the author also presents several optimiza-
tion techniques inspired by the non-linear physics phenom-
ena applied over standard color and pathology images for 
MLT image segmentation problems. In this study, the author 
considers two significant objective functions i.e. Tsallis and 

Table 12   Numerical 
comparison of PIOA fort-
entropy as an objective function 
over Pathology Image

Best results are highlighted in bold

Number of 
thresholds (nt)

PIOA f �f Time (s) FSIM PSNR SSIM

4 AOA 0.572714 2.63E−20 4.4582 0.8851 15.35 0.7218
ASO 0.572714 8.35E−20 4.6146 0.8849 15.34 0.7217
HGSO 0.572714 5.34E−20 4.5438 0.8850 15.31 0.7215
EO 0.572714 2.06E−20 4.6067 0.8846 13.25 0.7214
AOS 0.572714 3.16E−20 4.6531 0.8845 13.21 0.7213
FDA 0.572713 2.04E−20 4.9890 0.8841 13.14 0.7211
NRO 0.572713 6.53E−20 5.0285 0.8838 13.11 0.7208

6 AOA 0.856319 2.32E−19 6.3285 0.9622 21.22 0.8876
ASO 0.856318 6.11E−18 6.4961 0.9621 21.22 0.8875
HGSO 0.856318 5.89E−19 6.4217 0.9618 21.15 0.8873
EO 0.856318 5.05E−19 6.5148 0.9615 21.12 0.8871
AOS 0.856318 3.43E−19 6.7008 0.9614 21.11 0.8871
FDA 0.856316 9.19E−19 6.8687 0.9611 21.08 0.8867
NRO 0.856317 6.13E−19 7.0691 0.9608 21.10 0.8867

8 AOA 1.102992 4.34E−19 8.0600 0.9851 24.42 0.9384
ASO 1.102982 3.13E−19 8.2394 0.9845 24.33 0.9381
HGSO 1.102964 4.23E−19 8.2388 0.9842 24.32 0.9378
EO 1.102959 1.06E−18 8.2462 0.9840 24.28 0.9377
AOS 1.102957 6.56E−18 8.4334 0.9836 24.19 0.9375
FDA 1.102949 4.65E−19 8.6113 0.9834 24.15 0.9371
NRO 1.102941 2.77E−19 8.9231 0.9833 24.14 0.9368

Table 13   Comparison among 
PIOA depending on Wilcoxon 
p values over Color Pathology 
Image for t-entropy

Pair of PIOA t-entropy over Color Pathology Image

nt = 4 nt = 6 nt = 8

p h p h p h

AOA vs. AOS  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. FDA  < 0.05 1  < 0.05 1  < 0.05 1
AOA vs. EO  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. HGSO  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. ASO  > 0.05 0  > 0.05 0  < 0.05 1
AOA vs. NRO  < 0.05 1  < 0.05 1  < 0.05 1
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t-entropy. An intense experiment has been carried out to 
demonstrate the significance of different PIOA in the field 
of MLT image segmentation and the comparison among the 
different methods namely AOA, ASO, HGSO, EO, AOS, 
FDA, and NRO has been carried forward to identify the 
appropriate one for the same. The performance of AOA 
along with several other PIOA are evaluated here with help 
of PSNR, FSIM, SSIM, standard deviation, fitness function, 
etc. Quite a few contributions have been projected in this 
paper as highlighted in the introduction section out of which, 
t-entropy for MLT predominantly with PIOA marks the key 
contribution. The results and core proclamation of this paper 
have been recapitulated as follows:

(a)	 It is evident from the numerical results that AOA has 
shown its competence and accuracy above other PIOA’s 
signifying that AOA is the most suitable PIOA for the 
MLT image segmentation process of the standard color 
images as well as pathology images over the entire 
threshold’s values (4, 6, and 8) for every parameter 
taken into account with Tsallis’ entropy as objective 
function thus paving its way towards other realms of 
image processing with fastest execution time. On the 

other hand, NRO for the same scenario displayed the 
worst result.

(b)	 Further, using t-entropy as the objective function, the 
experimental result generated showcased that for differ-
ent performance parameters different PIOA has its own 
significance. Also, the performance of PIOA varied as 
per the different threshold values taken into account. 
However, from the overall analysis, it can be stated that 
AOA in most of the cases outperforms other PIOA’s 
considered in this paper.

(c)	 In addition, every PIOA generates better results in 
terms of computational effort and quality parameters 
every time Tsallis’ entropy as the objective function 
is taken into account for both variants of imagery in 
comparison to that of the t-entropy taken under similar 
circumstances.

(d)	 Each PIOA’s considered in this paper and highlighted 
in Table 1, consumes almost half of the computation 
time for different threshold values considering Tsallis 
entropy to segment the standard color images as com-
pared to segmentation using t-entropy as an objective 
function. However, in general, it can be stated that the 
computation time consumed by different PIOA using 
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Tsallis entropy is much lesser than consumed using 
t-entropy.

(e)	 The experimental conclusion demonstrates that both 
objective functions studied in this research in relation 
to various PIOA are better suited for pathology images 
than the usual color image.

(f)	 Even though as mentioned earlier that t-entropy is the 
newly established concept rarely employed in image 
segmentation, Tsallis entropy as an objective func-
tion proves its way towards flattering the researcher 
by becoming an interesting and unconventional pref-
erence/choice for standard color image and pathology 
image segmentation tasks.

(g)	 As the number of thresholds rises, it is also shown that 
computation time increases, and PSNR and the other 
SSIM metrics do as well for both the objective func-
tion.

The experimental analysis unquestionably draws atten-
tion to the researcher to explore and examine AOA for 
MLT based image segmentation and broadly in the image 
processing domain [62]. This in turn leads to several 

research directions and challenges and the same has been 
brought to light below:

(a)	 Two-Dimensional (2D) objective functions [7] like 
2D Cross, 2D-Renyi, 2D Tsallis, 2D Otsu, etc., could 
be considered and applied over diverse PIOA in the 
domain of image segmentation making it a challenging 
task.

(b)	 Other variants of images such as standard grayscale, 
satellite images, and other medical images such as 
MRI, CT, histology, etc., could be considered using 
the numerous PIOA experimented in this paper.

(c)	 In addition, an improved variant of t-entropy or 2D 
t-entropy needs to be initiated and further applied in the 
domain of image segmentation to yield an exceptional 
outcome.

(d)	 Last but not the least, initiating hybrid AOA or a hybrid 
PIOA to explore multi-objective MLT could be a strik-
ing work for the future (Table 14).
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