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Abstract

The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating
proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament
resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization
problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics
have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimiza-
tion algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods
with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm
(AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to
solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit,
and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its per-
formance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy
and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimiza-
tion Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis
entropy rather than with t-entropy in both color standard images and medical pathology images.

Keywords Nature-inspired optimization algorithms - Image segmentation - Optimization - Tsallis - t-entropy - Archimedes
optimization algorithm - Physics inspired optimization algorithms

1 Introduction

As the name suggests, meta-heuristics in computer sci-
ence and mathematics are high-level processes or heuristic
designs used to create algorithms that can nevertheless offer
an adequate solution to an optimization issue, despite the
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ventional methods to optimize some problem takes a long
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time. Therefore compromising somewhat on the quality of
the solution, which may not find the optimal solution, but
we will find a solution that is sufficient for our needs, and
we can do this very efficiently with a meta-heuristic algo-
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rithm. Among the various meta-heuristic algorithm some
are inspired by our nature or mimic some behavior from our
nature. Commonly, nature-inspired algorithms are employed
to solve a variety of optimization challenges. There have
been several meta-heuristics developed in the last three dec-
ades to help solve complicated and real-world problems in
a variety of sectors. These meta-heuristics algorithms draw
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a huge amount of attention to researchers and scientists due
to their complex problem-solving capability. Meta-heuristics
algorithms can be used in many different fields, such as com-
puter science, image processing, control systems, electrical
engineering, different types of classification, etc. According
to the No Free Lunch Theorem, “all optimization algorithms
perform equally well when their performance is averaged
across all possible problems”. That means one can’t say that
one optimization is good for solving all types of optimi-
zation task. It is application dependent. So, the researcher
tries to invent a new algorithm or improve the existing one
according to their requirements. New NIOAs are always a
good thing for the research field, as long as they solve prob-
lems quickly and effectively. One can classify these optimi-
zation problems according to the solution originated or the
behavior of the algorithms. Figure 1 shows the classification
of meta-heuristic algorithms.

Image segmentation is the branch of digital image pro-
cessing which primarily emphasizes on sectionalization
of an image into numerous shares as per their features or
properties basically for easier analysis of imagery. Various
methods of segmentation are extensively employed [1, 2]
namely thresholding-based, boundary-based, region-based,

clustering-based [3, 4], and hybrid technique based, and
amongst all the methods, thresholding-based is the most
popular one. Multi-Level Thresholding (MLT) image seg-
mentation has attained significant attention in quite a lot of
image processing applications [5]. Nevertheless, the usage
of traditional thresholding methods in determining the opti-
mal threshold values (as a part of preprocessing step) is not
just time-consuming but computationally demanding. This
leads to the requirement of extension and attachment of cer-
tain procedures that might resolve the issue thus actuating
the curiosity and interest in several academic scholars. Enor-
mous research attempts are made during recent years toward
solving real-world optimization problems with exceptionally
towering dimensional search space, and rigorous constraints
with nonlinear objective functions. More than a few math-
ematical elucidations rather than traditional optimization
methods have been provided by a variety of researchers to
work out the optimization problems however, the complexity
of such mathematical solutions turned out to be very high
requiring enormous computational time thereby proving to
be ineffective in providing comprehensive solution in such
circumstances. This pursuit consequently leads in the direc-
tion of the requirement for several modern technological
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Fig.2 Year-wise AOA-based research work proposed

optimization processes that would be proficient enough to
accomplish the most favorable general yet thriving solution
bearing in mind time, complexity, and other checks.

In light of this, NIOA [6] and their upgraded varia-
tions and subset whose solutions were based on chemical,
physical, and biological phenomena in nature showed their
usefulness in engineering optimization issues and also in
resolving a number of MLT problems [7]. These nature-
inspired solutions happen to be incredibly trendy as they
offered to a large extent improved solutions in terms of
efficiency and complexity than earlier methods. However,
in recent years methodologies associated with nonlinear
physics have flourished; therefore, across a wide range of
applications, nonlinear procedures-based algorithms are
more effective and versatile than other approaches pub-
lished previously. Numerous global optimization strate-
gies more notably; unique searching strategies based on
various nonlinear physics phenomena are a popular cur-
rent trend in NIOA design leading to the introduction of
the Physics Inspired Optimization Algorithm (PIOA). The
uniqueness of this method is that nonlinear processes [8]
may perhaps be used as a brainwave for building up flour-
ishing search algorithms that principally tag along with
the nonlinear directives originated in natural systems [9].
Such approaches appear to be more challenging to develop
than other search methodologies, since they need not only
the use of a novel, natural nonlinear method as the search-
ing basis, but also modeling an effective adaption of that
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procedure for addressing optimization issues. In order to
build a completely new optimization algorithm following
nonlinear processing modeling, this can be a challenging
task and may require an expensive design method. In addi-
tion, this modeling may demand the tweaking of a set of
algorithm parameters that are often connected with physi-
cal sub-processes inside the primary nonlinear process.
In this paper, a brief study has been performed on the
Archimedes Optimization Algorithm (AOA) [10] which is a
most recent and one of the most promising physics-inspired
algorithm in the domain of optimization. This AOA is moti-
vated by the physics phenomenon and here author evalu-
ated, assessed, documented, and profoundly experimented
with two types of images namely standard color images and
pathology images by employing AOA. This paper mostly
talks about AOA, its variations and improvements, and how
Tsallis and t-entropy can be used to improve MLT image
segmentation. Here, Tsallis and t-entropy are used as objec-
tive functions. Among all PIOA-based algorithms, AOA
gives the best result in both Tsallis and t-entropy. But AOA
with Tsallis entropy outperformed AOA with t-entropy in
most of the cases with 4, 6, and 8 threshold values. Fur-
thermore, we can conclude that AOA with Tsallis entropy
gives superior results for medical pathology images rather
than standard color images. Details discussion done in
results section (Sect. 6) and conclusion section (Sect. 7).
Several recently introduced Physics Inspired Optimization

Table 1 Recently introduced s]
Physics-Inspired Optimization

Algorithms (PIOA)

Name Author Year Citation
1 Archimedes Optimization Algorithm (AOA) [10] Hashim et al. 2021 214
2 Atomic Orbital Search (AOS) [11] Azizi 2021 41
3 Flow Direction Algorithm (FDA) [12] Karami et al. 2021 24
4 Equilibrium Optimizer (EO) [13] Faramarzi et al. 2020 650
5 Henry Gas Solubility Optimization (HGSO) [14] Hashim et al. 2019 359
6 Atom Search Optimization (ASO) [15] Zhao et al. 2019 244
7 Nuclear Reaction Optimization (NRO) [16] Wei et al. 2019 38
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Algorithms (PIOA) have been included in Table 1 with
Google Scholar Citation underlined (Dated: 17.07.2022).

In this paper, the author mainly concentrates on Archi-
medes Optimization Algorithm (AOA). The AOA is one
of the most promising methods among the various PIOA-
based optimization methods which is proposed in recent
years (Fig. 2). This AOA-based method is widely used in
the energy section, especially in the wind energy domain.
The use of the AOA method in the image processing domain
is surprisingly very low, though it performs very well in this
domain. We have evaluated the performance of the AOA
in the multi-level image segmentation domain in this paper
in Sect. 6. Figure 4 represents the details analysis of the
AOA method used in the different research fields. The author
found most of the papers on AOA were published in dif-
ferent journals and only two papers were found which are
published at the conference Fig. 3b.

Consequently, the following are the principal contribu-
tions of the paper:

AOA Work Published By Differernt Publisher

M Elsevier

B Other

 Spinger IEEE

m Hindwai u MDPI

m Intelligent Networks and Systems Society

(a)

A very little effort was done before exploring AOA-
based multi-level thresholding for image segmentation
thereby this paper focuses on a brief study on AOA and
the implementation and application of the seven recently
developed PIOA in multi-level image segmentation
domain.

Only Differential Evolution (DE) has been used with
t-entropy for Multi-Level Thresholding in the original
finding paper of r-entropy [17]. This research work uses
the Tsallis entropy and the newly constructed t-entropy
as objective functions. As per the best of knowledge and
research, #-entropy has not been utilized for Multi-Level
Thresholding particularly with PIOA to date and this
paper focuses on this as one of its main contributions.
To explore the efficacy of the hitherto untested PIOA
with Tsallis and t-entropy, a meticulous comparison
analysis was conducted across two image kinds, namely
standard color images and pathology images.
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The paper’s remaining sections are organized as follows:
The brief discussions on AOA and improvement and appli-
cation area of AOA in recent years (2020-2022). Tsallis and
t-entropy are presented in Sect. 5. Section 6 highlights the
experimental results of recently developed PIOA in the field
of MLT considering Tsallis entropy and 7-entropy as objec-
tive functions. Lastly, Sect. 7 discusses the conclusion and
future directions for study.

2 Methodology

For several decades, the natural phenomenon has been
constantly borrowed bearing in mind its outstanding facts,
functions, and phenomenon to resolve complex optimization
difficulties. As with the physics-based algorithm, the motiva-
tions derived from physical laws are transformed into work-
able solutions and then evolve over time. To solve various
optimization issues, in the last 3 years (2019 to 2021), some
efficient Physics Inspired Optimization Algorithms (PIOA)
have been introduced and this paper deals with the same,
and also a comparative study has been done in the result
section. The various PIOA have been listed in Table 1 and
this section deals with the discussion on recent PIOA namely
Archimedes Optimization Algorithm (AOA). Algorithm 1 is

Fig.5 General methodology for
multilevel thresholding employ-
ing NIOA

Step 1: Initialization Phase

Step 2: Evaluation Phase

Step 3: Construction Phase

Step 4: Update Phase

Step 5: Decision Phase

a summary of the overall approach to MLT utilizing NIOA,
which is comprised of several phases (Fig. 5).

2.1 Archimedes Optimization Algorithm (AOA)

Archimedes Optimization Algorithm [10] is a population-
based PIOA algorithm that has been built upon the concept
of the law of physics popularly recognized as the Archime-
des principle. Archimedes’ principle basically elucidates
the law of buoyancy which fundamentally elaborates the
association amongst an object immersed in a fluid and
buoyant force that is applied to it. However, if at all the
weight of the object is superior to that of the weight of the
displaced fluid, the object tends to sink else, the object will
float above the fluid taken into consideration. In AOA, the
population individuals of the algorithm are compared and
considered as the immersed objects. Since all the popu-
lation-based NIOA inaugurate its search process with an
initial population known as candidate solutions that are
associated with some random density, volume, and accel-
eration. Similarly, AOA also commences with a similar
concept as that of the other existing population-based
algorithm wherein each of the objects, O, that is immersed,
with total population N is initialized with a random search
space position with lower bound /b; and upper bound ub,

Set algorithm initial
parameters

Generate initial solutions and
evaluate the initial values

Construction of solution
using operators

Termination NO

condition
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which basically is the fluid here as depicted Details algo-
rithm steps are given below.

2.2 Algorithms Steps

In this section, we present the AOA algorithm’s math-
ematical formulations. Theoretically, AOA is a global opti-
mization method because it consists of both exploration
and exploitation phases. Pseudo-code of this algorithm
presents in Sect. 2.3. The following are the AOA’s math-
ematical equation-based steps:

2.3 Step 1:The Initialization Phase

All the parameters of AOA are initialized with help of (1)

O; = rand x (ub; — Ib;) + Ib;;wherei = 1,2,3, ..., N
ey
Here, O; is the ith object within the N (Population size). ub;
and /b, is the upper bound and lower bounds in the search
space respectively.
Each the ith object’s volume (vol) and density (den) are
initialized using the Eq. (2).

vol;, = rand )

den; = rand 3)

rand is a D dimensional vector, that generates random num-
bers between [0, 1] randomly.

Final initializes the acceleration (acc) of the ith object
using (4)

acc; = Ib; + rand X (ubi - lb,-) )]

In the step 2, by analyzing the original population,
the best fitness values are picked and assigned it to
Xbest, den,,,,, vol,,., and accy,,.

2.4 Step 2: Update the Volumes and Densities

For object i the density and volume are updated according
following Eq. (5) in ¢ + 1 iteration.

den!™" = den' + rand X (deny,,,, — den!)

&)

voll*! = vol' + rand X (voly,,, — vol!)

The vol,,, and den,,, represent the best volume and density
value which is found so far, rand is the uniform distribu-
tion value between [0,1]. Transfer operator TF is utilized in
AOA to transform search from exploration to exploitation,
as mentioned by (6).

@ Springer

2.5 Step 3:Transfer Operator and Density Factor

At first, objects bump into each other, and then, after some
time, they try to reach a state of equilibrium. Transfer
operator TF is used in AOA to convert search from explo-
ration to exploitation, as stated by (6)

Al S
linax ©

where transfer TF increases gradually over iteration until it
reaches 1. Here #,,,, represent the maximum iteration and ¢
is iteration number. In the same way, the density decreasing
factor d helps AOA with global-to-local searches (7)

t -t 1
dt+1 — max I
P < Tinax > < Lnax ) @

d'*!is the density of 7 + 1 iteration which decreases over
time, and makes it possible to converge on a point. This
density parameter plays a critical role to balance between
exploitation and exploration in AOA.

TF = exp <

2.6 Step 4.1: Exploration Phase (Collision Between
Objects Occurs)

If the value of transfer operator TF < 0.5 then there is a colli-
sion between object. Then select a random material (mr) and
at iteration ¢ + 1, update the object’s acceleration using (8).

den,,, +vol, X acc,,

acc™ =
i 1 P )
denl. X v01i

Here, acc?“, afen?r1 and vol'™' represent acceleration, density

and volume of ith objectin T + 1iteration. den,,,, acc,,, and
vol,,,. are the density, acceleration and volume of random
material. The value of TF ensure the exploration when it
is £0.5. When the value of TF < 0.5 then one third of the
iteration are in exploration phase.

t+1
li

2.7 Step 4.2: Exploitation Phase (No Collision
Between Objects)

By applying the TF > 0.5 the exploration behavior changes
to exploitation. That means there is no collision between
object. Then the acceleration of ith object in T 4+ 1 iteration
updated using following Eq. (9).

denbest + VOlhest X ACChey;
o ©)
i

t+1 _
o=

acc

t+1
deni

X vo
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accy,, is the best object’s acceleration..
2.8 Step 4.3: Normalize Acceleration

When calculating percentage change, normalize the
acceleration.

1+1

acc;” — min (acc)

. (10)
max (acc) — min (acc)

where u and [ represent the normalization range and are
respectively set to 0.90 and 0.10. The accﬁf}wrm is responsi-
ble for calculating the percentage step change for each agent.
The acceleration value will be high if the item i is far from
the global optimum. That means the object is in the explora-
tion phase; otherwise, it will be in the exploration phase. In
general, the acceleration factor starts with a large value and

decreases with iteration.
2.9 Step 5: Update position

If TF <0.5 (exploration phase), in next ¢ + 1 iteration the ith
object position calculates by following Eq. (11)

t+1

—norm

X§+1

— o 1
=x; + C| X rand X acc X d X (xmnd—xi)

an

Here, C, represent the constant value which is equal to 2.

Fig.6 Pseudo code of AOA

(Step 1: Initialization Phase ]

Otherwise, TF > 0.5 (exploitation) and update the posi-
tion with the Eq. (12)

x§+1

=x  +FXxCyxrand X acc'?!

I—norm

!
rand — %; )

12)

Here, C, represent the constant value which is equal to 6.7

goes up over time and is directly related to transfer operator.
The value of T defined by T = C; X TF.

The flat F indicates a shift in motion direction by employ-

ing (13)

where P = 2 X rand — C,.

Xxdx (Txx

+1ifP < 0.5

F - =
—1ifP > 0.5

13)

2.10 Step 6: Evaluation

Evaluate each item using the objective function f and record
the best solution so far. Assign accy,,, voly,. deny, > Xpou
(Fig. 6).

[Step 2: Evaluation Phase

) |

[Step 3: Construction Phase ]

Set

whilet < ¢,,,, do

for each object i do

iteration counter t=1

Update density and volume of each objective using (5)
Update transfer and density decreasing factors T F and d using (6) and (7)

[Step 4: Exploration Phase ] :

if TF < 0.5 then

i
i
Update acceleration using (8) and normalize acceleration using (10) i
I
i

[Step 5: Exploitation Phase ]

Update acceleration using (9) and normalize acceleration using (10)
Update direction flag F using (13)
Update position using 12)

[Step 5: Decision Phase

|

Evaluate each object and select the one with the best fitness value.

en:

d while

return objective with best fitness value

end

Sett=t+1 '
i
i
i
i
i
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2.11 Pseudo Code of AOA

2.12 Time Complexity of AOA

The time complexity of AOA can be described as given
below: Assuming the population size of the algorithm is n,
the search space dimension is d, and the maximum number
of iterations is 7. O(nd) is the calculation complexity for all
of its components, including density, volume, acceleration,
fitness value, and initialization. The exploration and exploi-
tation phases update complexity are O(T(1 + 2n + 2n log n)).
So, applying the sum to all these complexities can be
expressed as

O(AOA) = 5 x O(nd) + O(T(1 + 2n + 2n log n)) (14)

2.13 Merits and Limitations

Most of the nature-inspired optimization problems have
some shortcomings. They trap into local optima. AOA suf-
fers also same problem and because of that finding, the opti-
mal solution goal is not achieved. This problem increases
gradually when we move from unimodal to a multimodal or
high-dimension complex problem. AOA is renowned for its
efficiency, simplicity, and resilience, but it also has issues
with premature and sluggish convergence, which causes
it to become stuck in local minima. AOA generates a new
solution based on the previous iteration. This phenomenon
may reduce the algorithm coverage rate and might cover the
whole search space effectively and it reduces the algorithm
efficiency. So many researchers introduce various methods
or adapt new parameters to balance between exploration and
exploitation phase. All of the enhanced versions of AOA that
which author found so far are discussed below.

3 Enhanced AOA Variants

There are a numerous number of physics-inspired based
meta-heuristic algorithms proposed by various researchers.
Each algorithm has its advantages and drawback. AOA is
one of the new physis-inspired algorithms which become
very popular within a very short period. Though it has also
some drawbacks but most of the cases it gives us excel-
lent results in various real-world applications. In the energy
sector, it has made a significant impact. In a few cases, it
is observed that it traps in local optima due to unbalancing
of exploration and exploitation phase. So, some research-
ers tried to make this AOA better and more robust for their

@ Springer

application. Sometimes an extra parameter is added [19] or
a chaotic method is introduced inside the algorithm [21] or
Levy Flight-based method is adopted [24] to avoid trapping
into local optima. In most cases, researchers modified AOA
according to their needs, and also they tried to modify the
algorithm in such a way so that it can perform equally well
for other applications. In this literature survey, we found
that eight improvements to AOA have been proposed so far.
A graph in Fig. 3b shows two things, i.e., the number of
published papers in journals vs conferences and the number
of improvement papers among the total proposed papers.
Details study of all proposed improvement papers is given
in Table 2.

4 Application of AOA

In the last twenty years, the nature-inspired optimization
algorithm (NIOA) has been used in a wild variety of fields
such as the energy sector, network sector, image process-
ing field, artificial intelligence (Al), electronics sector, etc.
In each sector, NIOA has put its remarkable footprint. In
the last two decade, more than two hundred optimization
algorithm has been proposed so far. Each algorithm has its
flavor, which means the performance of these algorithms is
application dependent. As previously said according to the
free lunch theorem one cannot say that one algorithm gives
the best result in all the fields. So, like other NIOA Archi-
medes Optimization Algorithm (AOA) is not the exception.
This AOA has also some drawback which was discussed in
the previous section and it is also been improved by many
researchers. The researcher modifies the AOA according to
its application area which is discussed in Table 2. From the
literature survey of AOA, we can conclude that AOA has
been widely used in the energy sector, especially in the wind
energy domain [20, 26, 29]. AOA is also used in proton
exchange membrane fuel cells [18, 21, 33] for parameter
optimization. The application of AOA in the medical image
domain is very little [34]. Only one paper we found where
AOA has been applied in the medical image domain. In this
paper, the author developed a model to detect and diagnose
disease from chest X-rays. Though we found three papers in
the image processing domain where AOA has been applied.
Apart from medical images, AOA is also used to classify
soybean plant disease [38] and Human facial analysis [35].
This paper AOA use here to determine the ideal facial area
for gender recognition [35]. AOA has also been used in wire-
less sensor networks [22] and 5G cellular networks [46] to
minimize traffic. Details study of the application area of
AOA is discussed in Table 3.
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Table 2 Improvements of AOA

Variant Name Application Results Author (Ref.)

I-AOA I-AOA PEM fuel cell parameter identification This improved I-AOA uses two effi- ~ Housseinet al. [18]
cient strategies namely Orthogonal
learning (OL) and Local escaping
operator (LEO). The performance
of this method was evaluated on
CEC’2020 test suite and also in
three engineering real word problem
namely rolling element bearing,
problems—tension/compression
spring and pressure vessel. Author
claims that this I-AOA method
gives better result than original
AOA

AOA + Length parameter EAOA Feature Selection in Classification In improve EAOA method a new Desuky et al. [19]
parameter M, added, this is deter-
mined by the number of steps taken
by each individual. This parameter
control exploitation and explora-
tion phase. This improves method
tested on twenty-three bench
mark functions. Result shows that
this EAOA improve exploitation
competency for unimodal func-
tion and exploration capability of
multimodal function. Because of its
ability to avoid local optima, EAOA
might outperform traditional AOA
and other state-of-the-art optimiz-
ers.It was shown that the EAOA
algorithm beats other well known
optimizers in a statistically signifi-
cant and comparable manner using
the Wilcoxon rank-sum test

AOA +dimension learning TAOA Optimal Power Flow The dimension learning-based Akdag [20]
method is used in IAOA to enhance
the object's location. For each
iteration, the X i item is moved
from its present location using both
traditional AOA search tactics and
DL strategies. Three separate power
systems, the IEEE 57-bus, IEEE
30-bus, and the 16-bus South Mar-
mara regional transmission systems,
are solved using the JAOA method
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Table 2 (continued)

Variant Name Application Results Author (Ref.)
AOA + 1-dimensional chaotic TAOA Parameters estimation of a proton In this TAOA a new 1- dimensional Yao et al. [21]
exchange membrane fuel cell chaotic is introduced. This mecha-

nism reduces the complexity of
random number generation of tra-
ditional AOA. This improve IJAOA
used on fuel cell which is review-
able energy sources with least
amount of pollution and releases
water as harmless by-product.
Proton-exchange membrane (PEM)
fuel cells are one of the most
well-known types. They have many
advantages over other types. One of
the biggest problems with PEMFCs
is that they are expensive to build
because of their catalyst. Therefore,
developing these fuel cells in the
most efficient way possible could be
a good way to deal with this issue
as much as feasible. The researchers
in this study came up with a new,
slightly modified model just for this
purpose

AOA + chaotic mapping MAOA Wireless Sensor Networks In MAOA, for population initialize Cheng et al. [22]
phase a tent chaotic map is used.
This improved AOA tested on seven
unimodal along with six unimodal
functions. The convergence speed
is better than original AOA method
and it also outperformed AOA, DE,
PSO etc. considering optimization

ability
AOA +Deep Belief Network DBN-IAOA Proton exchange New methods for determining the Sun et al. [23]
membrane fuel cell (PEMFC) optimal model for Proton Exchange

Membrane Fuel Cell (PEMFC)
stacks are developed using an
upgraded Deep Belief Network
(DBN). During the PEMFC simula-
tion, an improved version of AOA
was applied to DBN to reduce the
relative error between network out-
put data and voltage. The proposed
DBN-IAOA approach was superior
to the original DBN method
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Table 2 (continued)

Variant Name Application

Results Author (Ref.)

AOA +Levy Flight LAO

AOA + golden Levy MSAOA Benchmark function

Designing Microstrip Patch Antenna

The main shortcoming of AOA is Singh et al. [24]
it get trapped in local minima and
also it has a slow convergence

rate. To overcome this issue author
proposed a new Levy Flight based
Levy Flight Archimedes optimizer
(LAO). This improves algorithm
exploration efficiency which it

can avoid to trap into local optima
during the search. This proposed
technique tested on CEC 2017 test
function and also compared with
well-known evolutionary algo-
rithms. This algorithm also applied
on real world problem like four
different microstrip patch antenna
issues and established algorithm
efficiency

A Multi-Strategy improved Archi- Chen et al. [25]
medes Optimization Algorithm

(MSAOA) was proposed to address

the shortcomings of the standard

Archimedes Optimization Algo-

rithm (AOA) in solving optimiza-

tion problems, such as its limited

global exploration capability, slow

convergence speed, and poor solu-

tion accuracy

4.1 Paper Sources and Keywords

(A) Sources
The mentioned papers have been collected from the fol-
lowing sources:

(i) SpringerLink—https://www.springerlink.com
(i) Google Scholar—https://scholar.google.com
(iii) IEEE Xplore—https://ieeexplore.ieee.org
(iv) ScienceDirect—https://www.sciencedirect.com
(v) ACM Digital Library—https://dl.acm.org
(vi) DBLP—https://dblp.uni-trier.de
(vii) JOCA —http://www.joca.cn
(viil) WILEY—https://www.wiley.com
(ix) Taylor & Francis—https://www.tandfonline.com

(B) Keywords

Each of these above sources is queried with the following
combinations of keywords:

KW 1: Nature-Inspired Optimization Algorithms.

KW2: Image segmentation.

KW3: Hierarchical and Partitional clustering based image
segmentation.

KW4: Nature Inspired Optimization Algorithm based
image clustering.

KWS5: Image segmentation medical image.

KW6: Image segmentation pathology image.

KW7: optimization.

KWS8: Physics Inspired Optimization Algorithms.

KW9: Archimedes Optimization Algorithm.

KW10: Image segmentation using Swarm Intelligence
algorithms.

KWI11: Archimedes Optimization Algorithm
improvement.

KW12: Multi-thresholding.

KW13: Archimedes Optimization Algorithm in
Multi-thresholding.

5 AOA-Based Image Multi-level
Thresholding

There are several computer vision applications in which
image segmentation is a fundamental part of the process
and thresholding is regarded as extremely important in
this sector. Based on the number of threshold values one
may classify two types of thresholding, namely bi-level
and multi-level thresholding. From its name, one can say
that when there is two threshold value then it is the bi-level
threshold and when the threshold value is more than two
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it is said multi-level threshold. Multilevel Thresholding
(MLT) segmentation algorithms have limits while looking
for ideal thresholding values comprehensively to enhance
the objective function, which also increases computing cost.
In a nutshell, as the number of thresholds increases, MLT
approaches become increasingly computationally difficult.
Many scholars are drawn to a variety of methods that are
inspired by nature or human behavior or physics phenom-
enon that may be used extensively to address this and other
concerns with MLT.

In addition to that recently designed PIOA has also been
utilized for MLT in the last 2 to 3 years. However, the effort
is too little. For example, Dinkar et al. [S0] suggested an
Opposition-Based Laplacian Equilibrium Optimizer (OB-L-
EO) in Image Segmentation using Multilevel Thresholding
by utilizing Otsu’s interclass variance function over Standard
Gray Scale Images and employing Berkeley Segmentation
Dataset (BSD) and claims that the Proposed OB-L-EO is
capable of exhibiting superior outcome in terms of maxi-
mizing variance and PSNR values thereby outperform other
methods. Basset et al. [51] proposed an Equilibrium Optimi-
zation Algorithm (EOA) for multi-thresholding image seg-
mentation by utilizing Kapur’s entropy over Standard Gray
Scale Images and employing Berkeley Segmentation Dataset
(BSD) and claims proposed EOA is capable of outperform-
ing all other algorithms. However, EO failed to show its
superiority over some algorithms in Standard values, and
CPU time for the large threshold levels. Qi et al. [52] pro-
posed Hybrid Equilibrium Optimizer Algorithm (HEOA)
for multi-level image segmentation utilizing 3D Otsu over
Standard Color Images, and Color Satellite Images using
the CEC2015 dataset and claims that the proposed HEOA is
capable of performing better (has the good optimal ability)
than the other methods. However, it takes enormous time to
iterate in order to find the best solution. On the other hand,
this method has strong performance in wood fiber image
segmentation thereby having a greater scope in the field of
medical image segmentation, forest fire image segmenta-
tion, and so on. Rai et al. [7] also performed a comparative
study among six NIOA called Archimedes Optimization
Algorithm (AROA), Aquila Optimizer (AQO), Arithmetic
Optimization Algorithm (AOA), Rat Swarm Optimization
Algorithm (RSA), Particle Swarm Optimization (PSO), and
Firefly Algorithm (FA) in satellite image MLT domain by
considering Masi entropy as an objective function. Experi-
mental results showed that AROA gave better results than
other tested NIOA in terms of optimization ability, quality
parameters, and execution time. Kurban et al. [53] also per-
formed a comparative study among six novel NIOA such as
Slime Mould Algorithm (SMA), Henry Gas Solubility Opti-
mization (HGSO), turbulent flow of water-based Optimiza-
tion (TFWO), Political Optimizer (PO), Marine Predators
Algorithm (MPA) and Equilibrium Optimization (EO) for
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color image thresholding using Kapur and Otsu as objec-
tive functions. Comprehensive studies showed that MPA
and TFWO produced better results than SMA, EO, PO, and
HGSO for satellite images. Cuckoo search-based multi-level
thresholding for lymphoblastic leukemia image segmenta-
tion proposed by Ray et al. [54]. The next section focuses
mostly on the problem foundation and objective function for
multi-level thresholding.

5.1 Problem Formulation of Multilevel
Thresholding

In image segmentation, based on multiple thresholding [55,
56], the primary objective is to choose threshold values so
that the segmented images possess the required characteris-
tic. Here the threshold values are taken into account while
constructing the objective function. By minimizing or maxi-
mizing of objective function with help of threshold value we
can achieve our goal.

Suppose, an image I have L gray levels and
which can be classified into K number of classes i.e.
(C.Gy, ..., Cy ..., Cp) using (K — 1) number of thresh-
olds which values are (T =1t,,1,,...,t;,...,tx_;), Where
() <t <,...,<t,...,<tg_;). Here, for an 8-bit image,
L =256 and the grayscale levels fall between 0 and 255.
So, a pixel with gray level G belongs to the class C; if
(ty <G<tyfori=1,2,...,K. So, asingle objective func-
tion can be written as

T' = arg max/mingr<; 1 {F(T)} (15)

Here thresholds T" which optimizes the objective function
F(T). To get the segmented image /, the objective function
F(T) must satisfy the desired property. Following is a simple
mathematical implementation of Tsallis entropy as an objec-
tive function in this study.

For multi-objective thresholding, 7"’ optimize the set of
objective functions.

F(T) = (F\(T), F)(T), ..., F_(T). .. ,F,(T)), wheren > 1
(16)

T" = arg max/miny.<;,_{F(T)} (17)

5.2 Objective Function
5.2.1 Tsallis Entropy as Objective Function
Constantin Tsallis introduced the Tsallis entropy as an

extension of the Boltzmann—Gibbs entropy measure [57].
Using the entropy formula given in Eq. (18) Tsallis’ entropy

@ Springer

measure may be expanded to a non-extensive system based
on the idea of multi-fractal theory.

_ 1- Zf:l (Pi)q

qg—1

S,

\ (18)

where, 0 < p; < 1 represents the probability of the state i.
In the case of a gray level image, It indicates the appear-
ance of the ith gray level in a grayscale image. The Tsallis
parameter g represents the system under consideration’s non-
extensivity. Using the pseudo-additivity entropy rule, it may

be expressed as
S, +b) = S,(F) + S,(5) + (1 = 9).8,().S, (b) (19)

Here, the threshold value t separates the image’s foreground
and background classes, which are represented by the, f and b.
Here, classes f and b are used to represent the
image’s foreground and background areas, which are
separated from one another by the image’s threshold
value (t). Suppose, {(pl,pZ, ...... ,pL)|pi >0,i=1,2,..,L;

L = number of discrete gray levels; Z p; = 1} is the probability dis-
i=1

tribution of the image’s gray-level intensities. The following

equation represents the probability distribution of classes f

and b:

_hp o p _Pw P P
=R R and P, = b pb T b (20)
where,
f L
Pl=Yp,and "= ) p, @21)

i=1 i=t+1

Therefore, for each class, Tsallis entropy may be
expressed as follows:

1-X, (p"/Pf)q, SZ(I) = - ZiL:z+1 (pi/Pb)q

S0 = 1 g—1

(22)

Bilevel-thresholding maximizes the total of the informa-
tion measures for the foreground and background. There-
fore, the following formulation may be used to determine
the appropriate threshold:

ton = Arg max|S1(0 + S50+ (L - . S0.550] 23

Subject to the following constraints:

|Pf +P”) —1<S<1- |Pf +P”),
_ _ (24)
where, S(1) = S = s{](z) + Sg(z) +(1- q).qu(t).Sz(t)

The following expression may be used to simply expand
this approach to multi-level thinking:
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(1 tgs e v ty)

= Arg max [S;(t) +82(t) 4 -+ + S (1) + (1= ).SH0.52(1) .. ..s;”(t)]

(25)
where,
1=Y1 (Pi/p1)?
S;(t): Z,;]_(I/Pl) . and
26)
1-%E Pif pm)? (
8, (0= Z'"t(”;_ll( /pv) ,And M =m+1

Subject to the following constraints:
[P+ P —1<s' <1- [P + P[P+ PP - 1< S2 < 1= P24 P
&P Pl =1 < s <1 - [P P
@7n

where P!, P> and P"™*! corresponding to S', S? and S have
been computed using ¢, 7, ... ... ,t,, respectively.

5.2.2 t-Entropy as Objective Function

In 2021, Chakraborty et al. introduced a new measure of
entropy termed t-entropy [17]. Suppose there is an image /
which has a normalized histogram
p= (po,pz,p3, P e ,pL_1)|p,~ >0,i=0,1,2,...,n,..L—1; in where L

is the image’s number of gray levels and Y. p; = 1, then

i=0
t-entropy (Hc) of the image is then calculated as follows:
-1 !
H.p)= Y ptan”' (—) -2 (28)
i=0 P 4

where c is a positive constant.

Assuming that the normalized histogram is divided into
K classes by nt = K — 1 thresholds(t), the entropy for each
class may be determined as follows:

thy—1
i _ 1 Vg
H!(th)) = Li tan! —1-=
1 ; Wl (pl/wl> 4
thy—1 » 1
i — T
ch(ﬂ’lz) = % W—ztan ! W - Z
= ’ Wz) (29)

L-1
Pi _ 1 T
HE () = 3 Pt | L%
i=th,, ' nt <pi )
Wy

where,

thy—1

wy(thy) = Z i (thy)
i=0

thy—1

-1
— z Disee e oo ...,WK(thnt) = Z Pi

i=th; i=thy,

(30)

where, for ease of computation, two dummy thresh-
olds thy=0,th,=L—1 are introduced with
thy < th, < ... <th,_; <th,. Then, the best threshold value
may be determined by using this method.

@(thy,thy, ... ... thy,,)
= Arg max([Hg (thy) +H§(lh2) +... +Hf(thm)])

€29

For image segmentation based on multi-level threshold-
ing-based, the positive constant ¢ had been evaluated over
[0.01,20] and determined to be optimal at ¢ = 0.1.

6 Experimental Result

In this section, the author did a comparative study between
AOA with six other PIOA with help of Tsallis entropy and
t-entropy over standard pathology images and standard color
images. The six PIOA’s experimental results in multi-threshold
domains namely Nuclear Reaction Optimization (NRO), Atom
Search Optimization (ASO), Equilibrium Optimizer (EO),
Henry Gas Solubility Optimization (HGSO), Flow Direction
Algorithm (FDA), Atomic Orbital Search (AOS) are compared
with Archimedes Optimization Algorithm (AOA). The algo-
rithms parameter values used in these seven algorithm are
defined in Table 4. Each NIOA’s specifications are determined
after extensive testing. Tsallis’ and t-entropy are used as objec-
tive functions in the experiment. To make fair comparisons
amongst NIOA techniques, the optimization procedure for
each of the evaluated objective functions uses
NFE(Number of Function Evaluations ) = 1000xd as the
halting condition. This criterion has been established to pro-
mote consistency with earlier published studies. When evaluat-
ing the experiments, the number of threshold values (TH) set
to 4, 6, and 8 is taken into account. In addition, FE is a key
performance metric used to evaluate the NIOA’s efficiency. FE
allows some technical variables, such as the computer system
where experiments are performed and implemented, that affect
CPU time, focusing exclusively on the algorithm’s ability to
explore the solution space. Mean fitness <j_f> and standard

deviation (o) have been used to figure out how well the PIOA
can optimize. A number of other metrics were used to assess
the efficiency of these PIOA-based models segmented data:
the PSNR, QILYV, and Feature Similarity Index, for example
(FSIM). Within the realm of image segmentation, these
parameters have a great deal. The list of segmentation quality
metrics that are being employed is presented in Table 5. [2,
58]. The hardware and software requirements for the
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Table 4 Parameter setting of the PIOA

Algorithms Parameters Description Value initialized
Archimedes Optimization Algorithm (AOA) N Population size 50

(o Control variable, 2

c, Control variable , 6

C Control variable 5 2

C, Control variable 4 0.5
Flow Direction Algorithm (FDA) A Population size 50

B Number of neighbors 1
Equilibrium Optimizer (EO) N Number of particles (population size) 50

GP Generation probability 0.5

a; Constant value to control exploration ability 2

a, Constant value to control exploitation ability 1
Atom Search Optimization (ASO) K Atom population size 50

a Depth weight 50

p Multiplier weight 0.2
Henry Gas Solubility Optimization (HGSO) N Population size 50

j Cluster number 5

C; Constant [Escaping from local optima] 0.1

C, Constant [Escaping from local optima] 0.2

p Constant [Updating Position] 1

a Influence of other gases in a cluster 1

K Constant [Updating Solubility] 1
Atomic Orbital Search (AOS) M Electron population size 50

a Random number [0, 1]

p Random number [0, 1]

y Random number [0, 1]

17/ Random number [0, 1]
Nuclear Reaction Optimization (NRO) N Nuclei population size 50

freq frequency of the sinusoidal function 0.5

Py Nuclear fission probability 0.75

Py p decay Probability 0.1

Table 5 Three well-known performance parameters for the evaluation of the image segmentation methods

S1 Parameters Formulation Remarks

1. Feature Similarity — poppy = Zuca SLO-PC,®

Index (FSIM) Yoea PCL)

2. Peak Signal to Noise
Ratio (PSNR)

3. Structural Similarity

SSIM = ——F————
Index (SSIM) (6)2(+o'§+c2)><(}A+?2+cl)

the outcome, the greater the value

- @-)
PSNR = 10i0gy VMSE high PSNR indicates a favorable outcome

are similar. A higher SSIM score denotes a better outcome

Defines the quality score that measures the significance of a local structure. The better

Represents the ratio between a signal’s highest possible power and the noise power. A

(2><§x?+q )x(zxﬂxﬁcz) Determines whether a segmented image and an uncompressed or distortion-free image

experiment include MatlabR2018b and Windows-10 operating
system, X 64-based personal computer, Ryzen 5 central pro-
cessing unit, and 16 gigabytes of RAM. A standard set of 100
color photos is used to test the suggested methods which are
collected from [59] (https:/lear.inrialpes.fr/~jegou/data.php).

@ Springer

The renal pathology images are taken from [60] (https://tcgad
ata.nci.nih.gov/tcga/). Figure 7 depicts the original color stand-
ard picture and kidney pathology imaging.
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Fig.7 Original image: a Standard Color Image; b Color Renal
Pathology Image

6.1 Experimental Results of Standard Color Images
over Tsallis Entropy

For the standard color picture, Fig. 8 shows the segmented
results of Fig. 7a using Tsallis entropy as an objective func-
tion across 4, 6, and 8 thresholds using different PIOA
(AOA, ASO, HGSO, EO, AOS, FDA and NRO). Table 6
compares numerically the aforementioned PIOAs using
Tsallis entropy as the objective function across 4, 6, and 8
thresholds for a typical color image. Here standard devia-
tion (af), fitness function (f ), Computational time (Time

(sec)), PSNR, FSIM and SSIM used as numerous parameters
for performance evaluation of segmented image. With addi-
tion, the bold value in this table is represented the best per-
formance value. Table 6 reveals that AOA achieves the best
outcome across all threshold values (4, 6, and 8) for every
parameter considered, but NRO achieves the lowest result
across all evaluated PIOAs. From the same table, Table 6,
we can conclude that when the number of thresholds
increases, FSIM, PSNR, and SSIM values similarly increase
for the objective function studied in this situation. The fit-
ness value of AOA is compared to that of other PIOAs stud-
ied (Table 1) using a non-parametric significance test known
as Wilcoxon’s rank test [61] that permits the estimation of
differences between the outcomes of two related approaches.
A p value of less than 0.05 (5 percent significance threshold)
strongly supports the rejection of the null hypothesis, indi-
cating that the results of the best algorithm differ statistically
insignificantly from those of the other peer algorithms and
that the difference is not attributable to random chance.
Table 7 presents the pair-wise comparisons of PIOA (AOA
vs. ASO; AOA vs. FDA; AOA vs. EO; AOA vs. HGSO;
AOA vs. AOS; and AOA vs. NRO) based on Wilcoxon
p-values for Standard Color images for Tsallis Entropy for
4, 6, and 8 thresholds. The fact that all Wilcoxon p-values
collected and projected in Table 7 are less than 0.05 (5 per-
cent significance threshold) with h=1 is evidence against
the null hypothesis, implying that the AOA fitness values for

performance are statistically superior. This suggests that
AOA combined with Tsallis entropy as an objective function
is competent enough to produce consistent solutions regard-
less of the threshold settings.

6.2 Experimental Results of Pathology Images
over Tsallis Entropy

For the pathology images, Fig. 9 shows the segmented
results of Fig. 7(b) using Tsallis entropy as an objective
function across 4, 6, and 8 thresholds using different PIOA
(AOA, ASO, HGSO, EO, AOS, FDA and NRO). Tsallis
entropy is used as the objective function in the numerical
comparison of various PIOAs for pathology images with 4,
6, and 8 thresholds in Table 8. Here standard deviation (o, ),
fitness function <j_f>, Computational time (sec), PSNR, FSIM

and SSIM used as numerous parameters for performance
evaluation of segmented image. With addition the bold value
in this table is represented the best performance value.
Table 8 reveals that AOA achieves the best outcome across
all threshold values (4, 6, and 8) for every parameter con-
sidered, but NRO achieves the lowest result across all evalu-
ated PIOAs. Table 8 further shows that when the number of
thresholds increases, values for PSNR, FSIM, and SSIM
likewise increase for the objective function studied in this
situation. Table 9 displays the pair-wise comparisons of
PIOA (AOA vs. ASO; AOA vs. FDA; AOA vs. EO; AOA
vs. HGSO; AOA vs. AOS; and AOA vs. NRO) based on
Wilcoxon p-values for Pathology images for Tsallis Entropy
for 4, 6, and 8 thresholds. All of the Wilcoxon p-values
found and shown in Table 9 are less than 0.05, which is the
5 percent significance level. This seems to show that the null
hypothesis is not true, which means that the AOA fitness
values for performance are statistically better. Lastly, it can
be concluded that the AOA algorithm is better for both
standard color images and pathology images in terms of the
different performance parameters and takes less time to run.

6.3 Results over t-Entropy for Standard Color
Images

For the standard color images, Fig. 10 shows the seg-
mented results of Fig. 7a using t-entropy as an objective
function across 4, 6, and 8 thresholds using different
PIOA (AOA, ASO, HGSO, EO, AOS, FDA and NRO).
t-entropy is used as the objective function in the numerical
comparison of various PIOAs for standard images with 4
and 8 thresholds in Table 10. Here standard deviation (af),
fitness function (f), Computational time (sec), PSNR,

FSIM and SSIM used as numerous parameters for perfor-
mance evaluation of segmented image. With addition the
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Fig.8 Segmented results of
PIOA using Tsallis entropy over
4, 6, and 8 thresholds for Fig. 7a

ASO

HGSO

EO

AOS

FDA

NRO

bold value in this table is represented the best performance  parameters except for o;. In terms of characteristics such
value. Table 10 shows clearly that AOA gets the best as PSNR and SSIM, NRO is the poorest of the studied
results over the threshold values of 4, 6 and 8 for all PIOAs, but it has the best standard deviation (qf) value. In
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Table6 Numerical comparison  Nymperof — PIOA 7 o Time(s) FSIM  PSNR  SSIM
of PIQA for nglhs Entropy as thresholds (f) ’
objective function over standard
color image 4 AOA 59,685.72 1.06E—08  2.3936 0.8974 1686  0.6736
ASO 59,678.44 1.28E-05 2.4776 0.8971 16.48 0.6690
HGSO 59,666.07 1.94E—-08 2.4396 0.8968 16.36 0.6589
EO 59,652.02 1.39E-07 2.4733 0.8961 16.32 0.6582
AOS 59,539.12 1.34E-06 2.4983 0.8953 16.11 0.6531
FDA 58,991.16 1.65E—08 2.6786 0.8911 1591 0.6501
NRO 58,863.94 1.76E-07 2.6998 0.8881 15.72 0.6409
6 AOA 1,608,896.19 5.22E-07 3.3978 0.9339 21.41 0.8591
ASO 1,608,847.59 4.33E-06 3.4878 0.9334 21.32 0.8588
HGSO 1,608,842.19 9.64E—-07 3.4478 0.9333 21.30 0.8584
EO 1,608,735.34 4.93E-05 3.4978 0.9325 21.11 0.8579
AOS 1,608,642.75 3.87E-05 3.5977 0.9324 21.08 0.8571
FDA 1,608,547.96 1.18E-06 3.6878 0.9320 21.01 0.8561
NRO 1,608,524.24 5.59E-06 3.7954 0.9314 20.58 0.8540
8 AOA 31,588,982.11 6.25E—-06 4.3274 0.9544 23.79 0.8934
ASO 31,586,680.81 6.85E—06 4.4237 0.9540 23.78 0.8931
HGSO 31,586,527.05 7.87E-06 4.4234 0.9539 23.66 0.8932
EO 31,584,744.77 8.78E—05 4.4274 0.9531 23.61 0.8929
AOS 31,573,136.42 4.59E—05 4.5279 0.9524 23.58 0.8927
FDA 31,567,620.49 9.65E-06 4.6234 0.9519 23.48 0.8921
NRO 31,563,879.07 9.99E-06 4.7908 0.9511 23.15 0.8914
Best results are highlighted in bold
Table7 Comparison among Pair of PIOA Tsallis Entropy over Standard Color Image
PIOA depending on Wilcoxon
p values over Standard Color nt=4 nt=6 nt=38
image for Tsallis Entropy —_— —
p h p h P h
AOA vs. AOS <0.05 1 <0.05 1 <0.05 1
AOA vs. FDA <0.05 1 <0.05 1 <0.05 1
AOA vs. EO <0.05 1 <0.05 1 <0.05 1
AOA vs. HGSO <0.05 1 <0.05 1 <0.05 1
AOA vs. ASO <0.05 1 <0.05 1 <0.05 1
AOA vs. NRO <0.05 1 <0.05 1 <0.05 1

addition, for a given threshold value, NRO requires the
most computational time. On the other hand, threshold
value 8, NRO imparts the worst result amongst all the
tested PIOA’s for the parameters namely computational
time and FSIM whereas HGSO achieves the best standard
deviation (O'f) value. Consequently, for threshold value 6,
AOA achieves the best results for all parameters consid-
ered, whereas FDA achieves the poorest results among all
examined PIOAs for the parameters FSIM, PSNR, and
SSIM. Additionally, for the same, NRO requires the most
computational time. Table 11 displays the pair-wise

comparisons of PIOA (AOA vs. ASO; AOA vs. FDA;
AOA vs. EO; AOA vs. HGSO; AOA vs. AOS; and AOA
vs. NRO) based on Wilcoxon p-values for Standard Color
images with t-entropy for 4, 6, and 8 thresholds. The
Wilcoxon p-values obtained and projected in Table 11 for
threshold number 8 are less than 0.05 (5 percent signifi-
cance level) with h=1, which is an evident proof against
the null hypothesis, implying that the AOA fitness values
for performance are statistically superior. Nonetheless, this
is not the case for threshold values 4 and 6, since the Wil-
coxon p-values obtained are more than 0.05 (5 percent
significant level) in a few instances, as seen in the table.
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Fig.9 Segmented results of Method
PIOA using Tsallis entropy over AOA

4, 6, and 8 thresholds for Fig. 7b

ASO

HGSO

EO

AOS

FDA

NRO
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Table8 Numerical comparison — Nymperof — PIOA 7 o Time(s) FSIM  PSNR  SSIM
of PIOAA for.Tsalhs eptropy thresholds (n7) ’
as an objective function over
Pathology Image 4 AOA 48,954.63 2.42E-09 3.3815 0.9529 20.78 0.8756
ASO 48,723.18 3.01E-07 3.4848 0.9524 20.75 0.8756
HGSO 48,582.67 3.24E-08 3.4381 0.9520 20.68 0.8751
EO 48,399.59 3.01E-08 3.4795 0.9514 20.51 0.8711
AOS 48,196.82 4.18E-07 3.5103 0.9511 20.48 0.8708
FDA 47,971.37 5.29E-08 3.7320 0.9501 20.42 0.8702
NRO 47,843.13 5.54E—-08 3.7581 0.9498 20.29 0.8702
6 AOA 1,330,965.12 3.54E-07 4.6167 0.9737 24.05 0.9319
ASO 1,330,950.62 9.29E—-06 4.7274 0.9734 23.98 0.9315
HGSO 1,330,938.83 6.20E-07 4.6782 0.9732 23.88 0.9311
EO 1,330,929.24 7.69E—-06 4.7397 0.9730 23.84 0.9309
AOS 1,330,897.88 1.12E-06 4.8626 0.9724 23.81 0.9308
FDA 1,330,781.67 1.44E-06 4.9735 0.9718 23.77 0.9301
NRO 1,330,711.65 8.53E-06 5.1058 0.9714 23.76 0.9298
8 AOA 24,692,789.31 5.10E—-06 5.7602 0.9911 26.54 0.9578
ASO 24,680,419.73 5.41E-05 5.8787 0.9904 26.52 0.9575
HGSO 24,671,330.66 3.95E-05 5.8783 0.9899 26.48 0.9574
EO 24,670,834.45 1.57E-05 5.8832 0.9895 26.45 0.9571
AOS 24,665,568.45 7.21E-05 6.0069 0.9887 26.39 0.9567
FDA 24,663,457.67 7.07E-05 6.1243 0.9884 26.34 0.9561
NRO 24,651,842.25 9.24E—-05 6.2303 0.9882 26.28 0.9557
Best results are highlighted in bold
Table 9 Comparison among Pair of PIOA Tsallis Entropy over Color Pathology Image
PIOA depending on Wilcoxon
p values over Color Pathology nt=4 nt=6 nt=8§
Image for Tsallis Entropy _— —
p h p h P h
AOA vs. AOS <0.05 1 <0.05 1 <0.05 1
AOA vs. FDA <0.05 1 <0.05 1 <0.05 1
AOA vs. EO <0.05 1 <0.05 1 <0.05 1
AOA vs. HGSO <0.05 1 <0.05 1 <0.05 1
AOA vs. ASO <0.05 1 <0.05 1 <0.05 1
AOA vs. NRO <0.05 1 <0.05 1 <0.05 1

6.4 Results over t-entropy for Pathology Images

Figure 11 illustrates the visual segmentation results of
Fig. 7(b) utilizing several PIOA (AOA, ASO, HGSO, EO,
AOS, FDA, and NRO) using t-entropy as the objective func-
tion across thresholds of 4, 6, and 8 for the Pathology pic-
ture. f-entropy is used as the objective function in the numer-
ical comparison of various PIOAs for pathology images with
4 and 8 thresholds in Table 12. Here standard deviation (af),
fitness function <f), Computational time (sec), PSNR, FSIM

and SSIM used as numerous parameters for performance
evaluation of segmented image. With addition the bold value

in this table is represented the best performance value. For
every parameter considered, results in Table 12 clearly show
that AOA achieves the greatest results over threshold values
of 6. NRO, on the other hand, is the worst PIOA in terms of
all criteria except for PSNR, whereas FDA is the worst in
terms of PSNR. On the other hand for threshold values 4
and 8, AOA accomplishes the best result for every param-
eter taken into account except for that of the standard devia-
tion (af) .FDA and NRO achieves the best standard deviation
(o) values for threshold values 4 and 8 respectively. FDA
performs worst for threshold values 4 and 8 in terms of
FSIM, PSNR and SSIM nonetheless; NRO consumes the
most computation time. Table 13 tabulates the pair-wise
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Fig. 10 Segmented results of Method

PIOA using t-entropy over 4, 6, AOA

and 8 thresholds for Fig. 7a

ASO

HGSO

EO

AOS

FDA

NRO

comparisons of PIOA (AOA vs. ASO; AOA vs. FDA; AOA  t-entropy for 4, 6, and 8 thresholds. The Wilcoxon p-values
vs. EO; AOA vs. HGSO; AOA vs. AOS; and AOA vs. NRO) obtained and predicted in Table 13 for threshold number 8
based on Wilcoxon p-values for Standard Color images with  are less than 0.05 (5 percent significance level) with h=1,
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Table 10 Numerical Numberof ~ PIOA 7 o Time(s) ~FSIM  PSNR  SSIM
comparison of PI(?A .for thresholds (f) ’
t-entropy as an objective
function over a standard color 4 AOA 0.585824  121E-20  4.0010 0.8422 1535  0.7021
image ASO 0585823  2.02E-20  4.1414 08418 1515  0.6998
HGSO 0.585823 1.24E-20 4.0779 0.8413 15.12 0.6998
EO 0.585823 1.09E-20 4.1343 0.8413 15.13 0.6995
AOS 0.585823 1.67E-20 4.1760 0.8412 15.13 0.6992
FDA 0.585822 1.08E—-20 4.4774 0.8401 14.86 0.6899
NRO 0.585822 1.34E-20 4.5129 0.8402 14.84 0.6895
6 AOA 0.880116 1.23E-19 5.6796 0.9088 19.59 0.8271
ASO 0.880115 3.23E-18 5.8300 0.8989 19.52 0.8270
HGSO 0.880115 4.17E-19 5.7632 0.8989 19.53 0.8268
EO 0.880115 2.67E—-19 5.8468 0.8988 19.48 0.8261
AOS 0.880114 3.93E-19 6.0137 0.8985 19.49 0.8259
FDA 0.880114 5.01E-19 6.1644 0.8981 19.46 0.8258
NRO 0.880114 3.25E—-19 6.3442 0.8978 19.45 0.8255
8 AOA 1.126865 1.77E-19 7.2335 0.9289 21.98 0.8657
ASO 1.126851 1.64E—19 7.3945 0.9281 21.58 0.8622
HGSO 1.126849 1.39E-19 7.3940 0.9279 21.53 0.8619
EO 1.126846 5.47E—-19 7.4006 0.9278 21.52 0.8619
AOS 1.126834 2.51E-18 7.5686 0.9271 21.48 0.8611
FDA 1.126817 2.46E—19 7.7283 0.9269 21.41 0.8608
NRO 1.126799 3.58E—-19 8.0081 0.9270 21.40 0.8604
Best results are highlighted in bold
Table 11 Corpparison among Pair of PIOA t-Entropy over Standard Color Image
PIOA depending on Wilcoxon
p values over Standard Color nt=4 nt=6 nt=38
image for t-entropy » Y » h ﬁ
AOA vs. AOS >0.05 0 >0.05 0 <0.05 1
AOA vs. FDA <0.05 1 <0.05 1 <0.05 1
AOA vs. EO >0.05 0 >0.05 0 <0.05 1
AOA vs. HGSO >0.05 0 >0.05 0 <0.05 1
AOA vs. ASO >0.05 0 >0.05 0 <0.05 1
AOA vs. NRO <0.05 1 <0.05 1 <0.05 1

indicating that the AOA performance fitness values are sta-
tistically better. Nonetheless, this is not the case for thresh-
old values 4 and 6, since the Wilcoxon p-values obtained
are more than 0.05 (5 percent significant level) in a few
instances, as seen in the table.

6.5 Discussion on the Performance Comparison
Among Objective Functions

According to Table 6 and Table 10, it is clear that Tsallis and
t-entropy, two famous objective functions for standard color
pictures, outperform for every PIOA over characteristics
such as fitness function (f), standard deviation (o), com-

putational time (sec), FSIM, and PSNR for all PIOAs. Tsal-
lis entropy, on the other hand, surpasses t-entropy in terms
of SSIM for nt=6 and 8; nevertheless, for nt=4, t-entropy
yields superior results. When utilizing Tsallis entropy to seg-
ment standard color images, different PIOA’s require almost
half the computation time for different threshold values than
using t-entropy as an objective function. It can be concluded
and inferred from the experimental results that every PIOA
combination with Tsallis entropy surpasses the PIOA com-
bination with t-entropy in almost all circumstances and in
almost all parameters. While this is true, the PIOA in com-
bination with Tsallis entropy yields better results and is
clearly superior as an objective function for any threshold
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Fig. 11 Segmented results of Method
PIOA using -entropy over 4, 6, AOA
and 8 thresholds for Fig. 7b

ASO

HGSO

EO

AOS

FDA

NRO

value, it is clear by looking at Tables 8 and 12, which show  t-entropy is a recently proposed notion that is rarely used in
that this is also true for every parameter evaluated in the  image segmentation, Tsallis entropy as an objective function
scenario. This demonstrates that, despite the fact that  gives an intriguing and unorthodox option for regular color
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Table 12 Numerical Number of PIOA 7 o Time(s) FSIM  PSNR  SSIM
comparison of HOA. fort- . thresholds (n7) k
entropy as an objective function
over Pathology Image 4 AOA 0.572714 2.63E-20 4.4582 0.8851 15.35 0.7218
ASO 0.572714 8.35E-20 4.6146 0.8849 15.34 0.7217
HGSO 0.572714 5.34E-20 4.5438 0.8850 15.31 0.7215
EO 0.572714 2.06E—-20 4.6067 0.8846 13.25 0.7214
AOS 0.572714 3.16E-20 4.6531 0.8845 13.21 0.7213
FDA 0.572713 2.04E-20 4.9890 0.8841 13.14 0.7211
NRO 0.572713 6.53E-20 5.0285 0.8838 13.11 0.7208
6 AOA 0.856319 2.32E-19 6.3285 0.9622 21.22 0.8876
ASO 0.856318 6.11E—18 6.4961 0.9621 21.22 0.8875
HGSO 0.856318 5.89E—-19 6.4217 0.9618 21.15 0.8873
EO 0.856318 5.05E—-19 6.5148 0.9615 21.12 0.8871
AOS 0.856318 3.43E-19 6.7008 0.9614 21.11 0.8871
FDA 0.856316 9.19E-19 6.8687 0.9611 21.08 0.8867
NRO 0.856317 6.13E-19 7.0691 0.9608 21.10 0.8867
8 AOA 1.102992 4.34E-19 8.0600 0.9851 24.42 0.9384
ASO 1.102982 3.13E-19 8.2394 0.9845 24.33 0.9381
HGSO 1.102964 4.23E-19 8.2388 0.9842 24.32 0.9378
EO 1.102959 1.06E—-18 8.2462 0.9840 24.28 0.9377
AOS 1.102957 6.56E—18 8.4334 0.9836 24.19 0.9375
FDA 1.102949 4.65E—19 8.6113 0.9834 24.15 0.9371
NRO 1.102941 2.77E-19 8.9231 0.9833 24.14 0.9368
Best results are highlighted in bold
Table 13 Corpparison among Pair of PIOA t-entropy over Color Pathology Image
PIOA depending on Wilcoxon
p values over Color Pathology nt=4 nt=6 nt=8§
Image for r-entropy _— —
p h p h P h
AOA vs. AOS >0.05 0 >0.05 0 <0.05 1
AOA vs. FDA <0.05 1 <0.05 1 <0.05 1
AOA vs. EO >0.05 0 >0.05 0 <0.05 1
AOA vs. HGSO >0.05 0 >0.05 0 <0.05 1
AOA vs. ASO >0.05 0 >0.05 0 <0.05 1
AOA vs. NRO <0.05 1 <0.05 1 <0.05 1

image segmentation problems. Both Tsallis entropy and
t-entropy as objective functions in association with various
PIOA are more suited for pathology pictures than ordinary
color images in general, according to this analysis. Accord-
ing to the tables described above, a further examination
shows that the processing time rises, but the values for FSIM
and PSNR and SSIM also increase as the number of thresh-
olds grows for the objective function under consideration.
For a typical color image and a pathologic image, Figs. 12
and 13 provide a visual comparison between Tsallis and
t-entropy in terms of processing time, FSIM, PSNR, and
SSIM. The average values of the computational time, FSIM,
PSNR, and SSIM for the graphs have been computed by

averaging the results of all the seven tested PIOA over all the
tested standard color images and pathology images.

7 Conclusion

In this paper, the author conducted a depth review of AOA
which is a recent physics-inspired optimization problem.
Along with AOA the author also presents several optimiza-
tion techniques inspired by the non-linear physics phenom-
ena applied over standard color and pathology images for
MLT image segmentation problems. In this study, the author
considers two significant objective functions i.e. Tsallis and
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Fig. 12 Comparison among Tsallis and #-entropy over Standard Color Images

t-entropy. An intense experiment has been carried out to
demonstrate the significance of different PIOA in the field
of MLT image segmentation and the comparison among the
different methods namely AOA, ASO, HGSO, EO, AOS,
FDA, and NRO has been carried forward to identify the
appropriate one for the same. The performance of AOA
along with several other PIOA are evaluated here with help
of PSNR, FSIM, SSIM, standard deviation, fitness function,
etc. Quite a few contributions have been projected in this
paper as highlighted in the introduction section out of which,
t-entropy for MLT predominantly with PIOA marks the key
contribution. The results and core proclamation of this paper
have been recapitulated as follows:

(a) Itis evident from the numerical results that AOA has
shown its competence and accuracy above other PIOA’s
signifying that AOA is the most suitable PIOA for the
MLT image segmentation process of the standard color
images as well as pathology images over the entire
threshold’s values (4, 6, and 8) for every parameter
taken into account with Tsallis’ entropy as objective
function thus paving its way towards other realms of
image processing with fastest execution time. On the
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other hand, NRO for the same scenario displayed the
worst result.

(b) Further, using r-entropy as the objective function, the
experimental result generated showcased that for differ-
ent performance parameters different PIOA has its own
significance. Also, the performance of PIOA varied as
per the different threshold values taken into account.
However, from the overall analysis, it can be stated that
AOA in most of the cases outperforms other PIOA’s
considered in this paper.

(c) In addition, every PIOA generates better results in
terms of computational effort and quality parameters
every time Tsallis’ entropy as the objective function
is taken into account for both variants of imagery in
comparison to that of the t-entropy taken under similar
circumstances.

(d) Each PIOA’s considered in this paper and highlighted
in Table 1, consumes almost half of the computation
time for different threshold values considering Tsallis
entropy to segment the standard color images as com-
pared to segmentation using #-entropy as an objective
function. However, in general, it can be stated that the
computation time consumed by different PIOA using
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Fig. 13 Comparison among Tsallis and #-entropy over Color Pathology Images
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Tsallis entropy is much lesser than consumed using
t-entropy.

The experimental conclusion demonstrates that both
objective functions studied in this research in relation
to various PIOA are better suited for pathology images
than the usual color image.

Even though as mentioned earlier that r-entropy is the
newly established concept rarely employed in image
segmentation, Tsallis entropy as an objective func-
tion proves its way towards flattering the researcher
by becoming an interesting and unconventional pref-
erence/choice for standard color image and pathology
image segmentation tasks.

As the number of thresholds rises, it is also shown that
computation time increases, and PSNR and the other
SSIM metrics do as well for both the objective func-
tion.

The experimental analysis unquestionably draws atten-

tion to the researcher to explore and examine AOA for
MLT based image segmentation and broadly in the image
processing domain [62]. This in turn leads to several

Number of Thresholds

M Tsallis ™ t-entropy

(d

research directions and challenges and the same has been
brought to light below:

()

(b)

©

(d)

Two-Dimensional (2D) objective functions [7] like
2D Cross, 2D-Renyi, 2D Tsallis, 2D Otsu, etc., could
be considered and applied over diverse PIOA in the
domain of image segmentation making it a challenging
task.

Other variants of images such as standard grayscale,
satellite images, and other medical images such as
MRI, CT, histology, etc., could be considered using
the numerous PIOA experimented in this paper.

In addition, an improved variant of #-entropy or 2D
t-entropy needs to be initiated and further applied in the
domain of image segmentation to yield an exceptional
outcome.

Last but not the least, initiating hybrid AOA or a hybrid
PIOA to explore multi-objective MLT could be a strik-
ing work for the future (Table 14).
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Table 14 Nomenclature

N Population size PID Proportional-integral-derivative
O, ith object within the N AVRs Automatic voltage regulators
ub; Upper bound in the search space FA-LS Firefly algorithm-based least square
Ib, Lower bounds in the search space PSOPC-LS passive congregation based least square
vol; Volume of ith object ABC-LS Artificial bee colony based least square
den; Density of ith object AOA-LS Archimedes optimization algorithm-based least square
acg; Acceleration (acc) of the ith object AOADBN-MTP  Archimedes Optimization Algorithm with Deep Belief
Network-based mobile network traffic prediction
TF Transfer operator TF is used in AOA to convert search BSO Bus splitting optimization
from exploration to exploitation
bnax Maximum iteration FSIM Feature Similarity Index
t Iteration number PSNR Peak Signal to Noise Ratio
d! Density in ¢ + 1 iteration SSIM Structural Similarity index
acc?“ Acceleration of ith object in T + 1 iteration PEMFC Proton Exchange Membrane Fuel Cell
denffl Density of ith object in T' + 1 iteration SOFC Solid Oxide Fuel Cell
vol:*'1 Volume of ith object in T + 1 iteration SSOA Slap Swarm Optimization Algorithm
acc,,. Acceleration of random material ASO Atom search Optimizer
den,,, Density of random material LAO Levy Flight Archimedes optimizer
vol,,, volume of random material PSO Particle swarm optimization
ACChyyy Acceleration of best object MAPE Mean absolute percentage error
x;“ Position of ith object in T’ + 1 iteration SMES Superconducting magnetic energy storage
F Direction of motion CHB Cascaded H-bridge
I-AOA  Improve Archimedes Optimization Algorithm MLI Multilevel inverter
EAOA  Enhanced Archimedes Optimization Algorithm SHE Selective harmonic elimination
MAOA  Modified Archimedes Optimization Algorithm RMSE Root mean square error
DFOES Decomposition—forecasting—optimization ensemble CFNN Cascade-forward neural network
system
DG Distributed Generation DTDNN Distributed time-delay neural network
MPPT Maximum power point tracker STSA-NN Sine Tree-Seed Algorithm neural network
PEMFC Proton exchange membrane fuel cell AOA-NN Archimedes Optimization Algorithm with Neural
Network
SOPs Soft open points FFNN feed-forward neural network
HC Hosting capacity
PV Photovoltaic
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