
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering (2023) 30:889–915
https://doi.org/10.1007/s11831-022-09820-w

REVIEW ARTICLE

Point Cloud Generation for Meshfree Methods: An Overview

Pratik Suchde1,2 · Thibault Jacquemin2 · Oleg Davydov3

Received: 6 January 2022 / Accepted: 5 September 2022 / Published online: 28 September 2022
© The Author(s) 2022

Abstract
Meshfree methods are becoming an increasingly popular alternative to mesh-based methods of numerical simulation. The
biggest stated advantage of meshfree methods is the avoidance of generating a mesh on the computational domain. However,
even today a surprisingly large amount of meshfree literature ironically uses the nodes of a mesh as the point set that dis-
cretizes the domain. On the other hand, already existing efficient meshfree methods to generate point clouds are apparently
not very well known among meshfree communities, which has led to recent work redeveloping existing algorithms. In this
paper, we present a brief overview of point cloud generation methods for domains and surfaces and discuss their features
and challenges, in particular in the context of applicability to industry-relevant complex geometries.

1 Introduction

Most numerical methods for solving partial differential
equations require the generation of a mesh over the com-
putational domain. Despite advances in mesh generation
technology and computer hardware, the generation and man-
agement of meshes is often the most difficult and time con-
suming part of the simulation procedure on geometrically
complex domains. The efficiency of mesh generation limits
the overall accuracy, robustness and speed of the numerical
simulation process. Moreover, high quality mesh generation
cannot always be entirely automated, and often requires a lot
of manual work for complicated domains [107]. Meshfree
methods arose in the first instance in order to prevent this
need of mesh generation. They have been widely used espe-
cially for applications where the computational domain can
undergo rapid or huge changes in time, such as large defor-
mations and displacements. In such cases, mesh adaptation
or regeneration has to be done automatically and may easily
become a computational bottleneck.

As a result, over the past two decades, meshfree methods
have become a popular alternative to mesh-based simula-
tions. The initial step of mesh generation is replaced by the
generation of a meshfree point cloud that does not need to be
topologically connected, unlike meshes, which is an easier
task per se. There remains, however, a more subtle question
whether good meshfree point clouds are much easier to gen-
erate than good meshes. Most published research articles on
meshfree methods take this for granted and do not discuss
how the point cloud generation should be done. Often they
test proposed meshfree algorithms on point clouds generated
as nodes of meshes which are obtained by a standard mesh
generation method. This may lead to the misconception that
point cloud generation should be as tough as mesh genera-
tion. Therefore it is important to highlight research in which
effort has been made to introduce original meshfree point
cloud generation methods.

A wide variety of meshfree methods have been devel-
oped, based on both weak and strong formulations of the
underlying partial differential equations. We refer to [18,
30, 64, 85, 136, 174] for surveys of various types of mesh-
free methods. The goal of the present paper is to cover the
domain discretization process across the entire spectrum of
meshfree methods, and is not restricted to any particular
subclass of methods. For this, we define meshfree meth-
ods in a very broad sense [106], by including all methods
in which approximations of unknown functions are deter-
mined only from the locations of a scattered set of nodes.
This includes the so-called ‘truly meshfree’ methods which
require no mesh, pre-defined or otherwise, but also includes

 * Pratik Suchde
 pratik.suchde@itwm.fraunhofer.de; pratik.suchde@uni.lu

1 Fraunhofer ITWM, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

2 University of Luxembourg, 2 avenue de l’université,
4365 Esch-sur-alzette, Luxembourg

3 Department of Mathematics, University of Giessen,
Arndtstrasse 2, 35392 Giessen, Germany

http://orcid.org/0000-0002-4807-5322
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-022-09820-w&domain=pdf

890 P. Suchde et al.

1 3

meshfree methods with background grids which could be
either locally or globally defined, and could be used for post-
processing or for integrating weak forms (such that any vol-
ume or surface integration required is done independently of
the approximation procedure [146]). We also cover particle-
based methods such as Discrete Element Methods (DEM)
and molecular dynamics.

Among major techniques for unstructured mesh genera-
tion [63], octree and advancing front methods may serve
as prototypes for purely meshfree versions. While mesh-
free octree-type methods have not been developed yet, the
advancing front technique appears to be very promising. In
fact, automated and efficient meshfree point cloud genera-
tion methods of advancing front type are successfully used
in a few commercial meshfree codes [62, 140], especially
in meshfree fluid solvers. However, these ideas are not very
well known in many meshfree communities, with recent
meshfree literature sometimes redeveloping the same tech-
niques already in use since two decades.

One difficulty for identifying methods for meshfree point
cloud generation in the literature is the variability of the
terminology used for this process. The largely unambiguous
term of mesh generation has several meshfree counterparts.
In addition to the term point cloud generation, which we
shall use in this paper, the same has also been referred to as
‘point cloud distribution’ or ‘initialization’ [43], ‘point gen-
eration’ [115], ‘node placement’ [138, 139], ‘node position-
ing’ [209], ‘point scattering’ [104], ‘point set generation’ or
‘creation’ [101, 102], ‘particle setup methods’ [65], ‘particle
packing’ or ‘sphere packing’ [150], and even ‘model genera-
tion’ [69]. In some meshfree communities like Smoothed
Particle Hydrodynamics (SPH), where node distributions
change with time, it is referred to as the ‘generation of ini-
tial conditions’ [40], while in Radial Basis Functions (RBF)
based methods the term ‘node generation’ is the most com-
mon [59, 179].

In this paper, we present a brief survey of different meth-
ods used for point cloud generation in meshfree research
and software. We also consider initial domain discretization
procedures for time dependent problems. The generation of
point clouds of varying spatial resolutions is also covered.
However, methods for modification of point clouds during
simulations, for example those used to maintain regularity of
moving point clouds are out of scope of this paper, despite
the overlap of techniques with point cloud generation. The
selection of local sets of influence is not considered either.

Another question we do not touch in this paper is how to
facilitate visualization of the results of numerical simula-
tions when they are given in the form of values on a point
cloud. The problem of approximate evaluation of functions
known at scattered locations in more than one variable has
its own extensive literature, see e.g. [217].

Until recently, no open-source point cloud generators
have been available, but this has changed in the last few
years, so that many of the methods presented in this paper
may be checked by the reader using open-source software.
Milewski introduced a MATLAB point generator in two
spatial dimensions [125, 126]. Mishra developed another
MATLAB toolbox for two-dimensional point generators
[128, 129], based on [59]. In the last three years, three open-
source three-dimensional point generators have been devel-
oped by Slak and Kosec [88, 184], Negi and Ramachandran
[133, 135], and van der Sande and Fornberg [210, 211].
Some simple tools for point cloud generation are avail-
able with the package mFDlab for meshfree finite differ-
ence methods [34]. We note that for the present work, the
terms point, node, and particle are equivalent, and are used
interchangeably.

We start discussing the topic at hand with the two most
popular methods: mesh generation for meshfree methods in
Sect. 2, and uniform lattice structures in Sect. 3. We then
consider random and quasi-random generators for point
clouds in Sect. 4. In Sect. 5, we talk about the use of initially
over- and under-sampled point clouds followed by a thin-
ning or filling procedure respectively. Section 6 discusses
the use of iterative methods, pre-simulations and so-called
relaxation phases. We then present advancing front tech-
niques for point cloud generation in Sect. 7. Point cloud
discretizations for boundaries and surfaces are discussed
in Sect. 8. In Sect. 9, we give a brief comparison between
the different methods, discuss how they could be applied
to complex examples and present a numerical solution to a
Poisson problem on point clouds generated with different
methods. A short conclusion is given in Sect. 10.

2 Mesh Generation for Point Cloud
Generation

Across meshfree literature, it is quite common to see mesh-
free simulations that begin with mesh generation on the
computational domain, see for example [24, 72, 82, 121,
144, 153, 160, 219]. Then the vertices of the mesh are used
as the global point cloud on which simulations are per-
formed. Alternatively, instead of the vertices, mesh element
barycenters may also be used as the nodes of the desired
point cloud. Any of the huge variety of existing mesh gener-
ating methods can be used for this. An overview of different
mesh generators falls outside the scope of the present work,
and we refer the reader to the books and surveys [22, 31,
50, 63, 113, 151]. While the use of a mesh generator seem-
ingly defeats the main reason for the existence of meshfree
methods, this can be justified in certain circumstances as
explained below.

891Point Cloud Generation for Meshfree Methods: An Overview

1 3

First, using the nodes of a mesh as the point cloud serves
as an easy approach for comparing the results between mesh-
free and mesh-based methods, which has naturally been an
essential part in the validation of many meshfree techniques.
This is especially relevant for literature that focuses on spe-
cific aspects of meshfree techniques development or on the
numerical validation of theoretical work. Indeed, a large
number of commercial and open-source mesh-based simu-
lation software packages exist that include mesh genera-
tors. On the other hand, there are few meshfree point cloud
generators, commercial or open-source, none of which were
available until recently. As a result, mesh generation for the
creation of point clouds has the least overhead in terms of
implementation, when compared to other point cloud gen-
eration methods.

Second, it is generally expected that the quality require-
ments of a mesh generated to create a point cloud for a
meshfree method is much lower than when the actual
mesh is used in the mesh-based simulation. Qualities of
the mesh such as skewness, orthogonality, or shape regu-
larity of the elements do not play a very important role in
order to obtain a well distributed point cloud. For example,
since only the nodes of the mesh are being used, the pres-
ence of degenerate mesh elements can often be permitted.
A two-dimensional example of this is illustrated in Fig. 1.
This advantage is even more relevant in three dimensional
domains, where even Delaunay meshes may contain near
flat tetrahedra, referred to as slivers [31], as illustrated
in Fig. 2. As a result, using an efficient but crude mesh

generator, without subsequent post-processing or optimi-
zation may already significantly reduce the cost of point
cloud generation as compared to the cost of generating a
good mesh. That said, quantifying this advantage remains
an open problem, in particular because the quality require-
ments on a point cloud remain unclear.

Mesh quality is pretty well understood in particular for
the finite element method (see, for example, [51, 70, 92,
180]), with criteria like shape regularity of elements moti-
vated in part by theoretical error bounds and confirmed in
numerical experiments. Contrary to this, meshfree litera-
ture provides little more than a vague understanding that
smoothly varying density of points and local regularity
(that is, the point cloud locally looking close to optimal
sphere packing) is advantageous. Local regularity is often
prescribed by the minimum distance between points (often
referred to as a ‘separation distance’), and the maximum
radius of a ball that does not contain any points of the
cloud (‘fill distance’), each of which could be a function of
the point density. A few other measures for defining point
cloud quality have also been proposed, including spatial
disorder measures [7], energy definitions (see Sect. 6),
optimal recovery [171], and angle uniformity measures
[143]. These measures have been built into various point
cloud generation algorithms. However, the impact of local
regularity, or any other point cloud quality measure, on
the accuracy and stability of meshfree methods has not
been studied from either a theoretical or a computational
perspective.

Fig. 1 An example of a 2D
mesh (left) with near degener-
ate elements (marked in blue),
the nodes of which produce a
decent point cloud (right)

Fig. 2 Delaunay triangulation
of five points in 3D with a
sliver (left). The five points are
nicely distributed as is clearly
seen from a different viewpoint
(right)

-1

-0.5

0

0.5

-0.5

1

1.50 10.5 0.501 -0.51.5

1.510.50
-1

-0.8

-0.6

-0.5

-0.4

-0.2

0

0.2

0.4

0

0.6

0.8

1

0.5 -0.51 1.5

892 P. Suchde et al.

1 3

Third, meshes may be used at some stages of the algo-
rithm or play an auxiliary role, only contributing a fraction
of the total computational cost. Some examples:

• Construction of meshes on each part of a non-disjoint
domain decomposition into simpler shapes for which
meshing is cheap. If a mesh were to be used directly,
extra work is needed at the intersecting regions. On the
other hand, if only the nodes are being used, the union of
the nodes of each mesh can be taken directly as the point
cloud [4, 132, 161]. This method has also been referred
to as chimera cloud of points [3].

• Meshfree/particle methods with background grids [17,
84, 201, 208]. Several meshfree methods use so-called
background grids for the computation of integrals needed
in weak formulations. In this case, since a background
grid generation is part of the process, the resulting mesh
may also be used for the generation of the point cloud.
Since the computation of integrals does not put high
demands on the mesh quality, the cost of creating and
maintaining background grids is low. The same also
holds for particle-in-cell methods [77] and hybrid mesh-
free-meshed methods [71].

• Lagrangian meshfree methods [15, 196, 203, 215].
For these methods, the most important advantage of
the meshfree framework is not the avoidance of creat-
ing a mesh, but rather the relative ease of incorporating
moving Lagrangian frameworks and dealing with large
displacements and deformations of the domain. Defor-
mations in point clouds can easily be fixed with local
procedures [197, 198]. Thus, the meshfree equivalent of
remeshing, which is typically a global procedure, can be
significantly cheaper computationally. As a result, even
if the meshing process were still used, other advantages
of the meshfree framework are still relevant.

A mesh and, in particular, mesh connectivity information
and other data structures created to maintain the mesh may
also be used to facilitate various computational procedures,
for example for efficient identification of neighbourhoods or
boundary points, inside-outside checks and other searching
tasks arising in meshfree algorithms. A few decades ago,
the use of a background mesh significantly sped up these
tasks in meshfree methods [83]. However, with the subse-
quent advent of efficient neighbour searching algorithms for
meshfree methods (for example, [9, 12, 41, 147, 202]), this
advantage does not seem to hold anymore.

We conclude this section by some general comments
on meshing. Over the years many algorithms have been
developed to handle and optimize different ingredients of
the popular Delaunay-type meshing process that typically
starts by discretizing the edges before a discretization of the
faces and finally of the volume for 3D problems. The amount

of research invested into optimizing and polishing meshing
contributes very much to the prevalence of the mesh-based
methods in numerical simulations. Nevertheless, very often
the geometry is not designed considering the constraints of
the meshing algorithm. As a result, in more complex cases
the definition of the domain may not be appropriate for the
desired discretization (e.g. element size, shape, density). The
geometry may include nodes, edges or surfaces the user does
not want to include in the final discretization. However, they
end up in the mesh due to the inherent workflow of Delaunay
meshing. Another aspect which limits mesh generators is
the above mentioned goal of producing high quality ele-
ments. The meshing algorithms use various quality metrics
to optimize the mesh in the course of the generation process.
However, for more complex problems, the mesh generation
may fail if some metrics cannot be met. Therefore, for com-
plex or poorly defined geometries, extensive additional work
may be needed to achieve a discretization with desired qual-
ity. We report below at the end of Sect. 9.1 about our own
experience of meshing a complex geometry.

3 Cartesian Grids, Lattices, and Other
Uniform Point Clouds

Beyond the use of the nodes of an unstructured mesh, the
most popular method to generate point clouds in meshfree
literature is the use of a regular lattice structure. Several dif-
ferent lattice structures can be found in the literature.

• Cartesian grids: The most common version of this is a
Cartesian grid with uniformly distributed points in each
dimension, giving a uniform cubic lattice [34, 36, 89, 93,
141, 145, 164, 181].

In order to reduce the effect of preferred coordinate direc-
tions inherent in Cartesian grids, several other lattice based
distributions listed below have been used, which are inspired
by various crystal lattice structures [47, 58].

• Body centered cubic (bcc) lattice This is created by start-
ing with a regular cubic lattice and adding nodes at the
center of each cube, and is equivalent to a uniform stag-
gered Cartesian grid. In two dimensions, the bcc lattice
is the same as one formed by considering only element
centers of a hexagonal tiling. These have been used for
point cloud generation, for example, in [152].

• Cubic closed pack (ccp) lattice The ccp lattice is cre-
ated by starting with a regular cubic lattice and adding
nodes at the face centers of each cube [109, 189]. It has
also been called the face centered cubic (fcc or cF) close
packing.

893Point Cloud Generation for Meshfree Methods: An Overview

1 3

• Hexagonally closed-packed (hcp) lattice The hcp lattice
is based an arrangement of nodes in a hexagonal crys-
tal, and has been used to create point clouds for many
particle-based simulations [61, 80]. It is also used in
two-dimensional pseudospectral and generalized finite
difference methods based on radial basis functions [60].

We refer to Diehl et al. [40] for an overview of such crystal
lattice structures in the SPH context. A Cartesian grid and a
hexagonal hcp grid are illustrated in Fig. 3 for a two-dimen-
sional domain. In Fig. 4, we show a Cartesian grid compared
to a bcc lattice for a three-dimensional domain.

Such lattice based point clouds are typically created in

the bounding box of the domain. Points outside the domain
are then removed. For non-trivial domains, the boundary
configuration is obtained in one of three ways:

• The boundary is represented simply by the closest lattice
points, as a “staircase” boundary [177, 182].

• Lattice points near the boundary are orthogonally pro-
jected to the boundary [34, 36].

• The boundary discretization is computed independently
of the lattice. Details on different methods for this are
provided in Sect. 8. The union of these boundary points
and the lattice points in the interior of the domain form

the point cloud [5, 23, 75, 95]. Optionally, lattice points
close to the boundary are deleted [34, 36, 126].

The first two of these cases are illustrated in Fig. 5, with
a Cartesian grid for the interior points. An independently
created boundary discretization is seen in Fig. 3. This fig-
ure also illustrate the fact that this method normally leads
to high irregularity of point clouds near boundaries, which
may affect the quality of simulations. To tackle this, cloud
improvement methods may be applied as in Sects. 5 and 6,
which however destroys the grid structure near the boundary.
Alternatively, points from a finer grid could be added near
the boundary [42].

For complex domains, the identification and deletion of
points outside the computational domain can make these
methods more expensive than they look. Inside–outside
checks may be cheap in level set type methods where the
boundary is given by an implicit function, but they can be
quite intensive with complex CAD structures or intricate
surface meshes defining the boundary.

A single Cartesian grid does not provide spatially vary-
ing point densities. To achieve this, over- or undersampling
may be used as discussed in Sect. 5. Alternatively, block
structured Cartesian lattices [1] consisting of blocks with
different spacings may be employed, but we have not seen
this in the meshfree literature.

Fig. 3 Point clouds based on
a Cartesian grid (left) and
hexagonal grid (right) in a two-
dimensional domain

Fig. 4 Point clouds based on
a Cartesian grid (left) and a
bcc lattice (right) in a three-
dimensional domain. The
colouring according to x is only
to enhance visualization

894 P. Suchde et al.

1 3

Some papers combine a Cartesian grid with additional
point clouds that conform to specific boundaries. These
methods start with a domain decomposition. For parts of
the domain of particular interest, such as the domain around
an enclosed boundary, a point cloud is constructed based
on the shape of that boundary [166, 167]. For example,
in [207], concentric circles are created around a circular
enclosed boundary, and a Cartesian grid is used elsewhere
in the domain.

Curvilinear lattices used in the structured grid generation
do not seem to have appeared in meshfree literature except
of very simple model cases like radially symmetric grids
for an annulus.

The reasons for the use of Cartesian grids and other lat-
tice structures largely overlap with those listed in the previ-
ous section. Each of the lattice based structures are among
the simplest to implement, which makes the use of these
methods quite popular for testing various meshfree tech-
niques. However, they do not seem to have been developed
enough to be used in complex applications.

4 Random and Quasi‑random Points

Another frequently seen method to generate point clouds
is to use random number generators. This can be done in
several ways.

• In meshfree literature, one of the most common meth-
ods to create non-uniformly distributed point clouds is

by performing random perturbations of a point distribu-
tion given by any of the methods of Sect. 3 [14, 16, 52,
67, 126, 169, 204–206, 208, 209].

 An example of this is shown in Fig. 6 for a two-
dimensional domain, and in Fig. 7 for a three-dimen-
sional domain. For both examples, a uniform grid is
considered on a square (cube in 3D), with uniform
spacing � in each direction. To create the perturbed
point cloud, each point in the uniform grids is per-
turbed using a random number generator. A point
indexed i at location �i = (xi, yi, zi) is perturbed as

 where rand(−1, 1) are pseudo-randomly generated num-
bers in the range [−1, 1] . Limiting the perturbation by
a � for a perturbation width a < 0.5 ensures that there
is a minimum distance of (1 − 2a) � between every pair
of points in the resultant point cloud. In Fig. 6, we illus-
trate the impact of the perturbation width a, by perturb-
ing a uniform point cloud on a square with a = 0.15 and
a = 0.3 . Figure 7 shows a three-dimensional example
with a = 0.3.

• Several probabilistic algorithms have been employed to
create point sets. One such case is the use of randomly
generated points, based on a probability distribution
describing a prescribed point density [44, 81, 86, 218,
225]. An algorithm of this type that uses so-called

(1)

xi = xi + a � rand(−1, 1),

yi = yi + a � rand(−1, 1),

zi = zi + a � rand(−1, 1),

Fig. 5 Boundary points gener-
ated from Cartesian grids. A
staircase boundary (left), and
orthogonal projection to the
boundary (right)

Fig. 6 Examples of 2D point
clouds created by perturbing
a uniform 10 × 10 grid. With
a small perturbation width
a = 0.15 (left), and a larger
perturbation of a = 0.3 (right).
See Eq. (1)

895Point Cloud Generation for Meshfree Methods: An Overview

1 3

rejection sampling is explained with an example in
Sect. 9.1.

• As a replacement for pseudo-random points, quasi-
randomly generated points have also been used [55, 73,
127]. This is done with the help of so-called low-dis-
crepancy sequences. Common examples of these are the
Sobol sequence [186], and the Halton sequence [76], see
Fig. 8. These sequences are a well justified tool for the
evaluation of multi-dimensional integrals [39]. Another
similar example is the Poisson disk sampling, which has
been widely used in graphics communities [26], and is
now also used to generate meshfree point clouds [179].

Generation of random or quasi-random points on com-
plex domain boundaries can be quite challenging. There-
fore for non-trivial domains the same methods described in
Sect. 3 for lattices are adopted: staircase boundary, ortho-
normal projection, or independent boundary discretization.
Similar to the case of uniform grids or lattices, resulting
random point clouds may be especially irregular near the
boundaries. Moreover, similar to the lattices of Sect. 3, for
complex computational domains, randomly generated points
would have to be created on a bounding box of the geometry,
and inside-outside checks are needed to identify and delete
points outside the domain.

These methods are typically employed to illustrate the
applicability of particular meshfree techniques on scattered
point distributions. It does serve this purpose of validation
quite well, with minimum implementation effort. It is worth
noting here that open-source implementations for the Halton
and Sobol quasi-random point sets are freely available for
any spatial dimension. These methods are also popular to
generate point clouds which serve as the starting point dis-
tribution for iterative methods described in Sect. 6.

5 Over‑ and Undersampling/Thinning
and Filling

The above techniques for point cloud generation, especially
lattice-based grids and the random generators, are often
combined in different ways, especially to generate point
clouds with spatially varying densities. We elaborate on two
classes of such methods below.

5.1 Oversampling

The first approach in this context is to start with an exces-
sively fine point cloud, obtained by any of the methods
explained in Sects. 3 or 4. This is then coarsened or thinned
to achieve the actual point cloud.

Fig. 7 An example of a 3D
point cloud (right) created
by perturbing a uniform grid
of points (left). The colour-
ing according to x is only to
enhance visualization

Fig. 8 Sobol (left) and
Halton (right) points in a two-
dimensional domain

896 P. Suchde et al.

1 3

• The thinning process can be done by merging or remov-
ing points located too close to each other, based on a pre-
scribed separation distance (minimum distance between
points), or a desired density of points. An example of
such a thinning process is shown in Fig. 9. Starting with
a 20 × 20 × 20 grid on [−1, 1]3 , points are thinned to
ensure a separation given by rminh , for the separation
value rmin = 0.25 , and a point density specified by an
inter-point spacing function h(x, y, z) given by

 This point cloud density specification used here, and
throughout this work, is in terms of point spacing. Thus,
higher values of h imply a coarser point cloud. If two
points are closer than rminh apart, they are merged into a
single point between the two original points at the arith-
metic mean location. This process is repeated until all
points satisfy the locally varying minimum separation
distance prescribed by rminh . One of the advantages of
merging the points in a central location (rather than delet-
ing any one of them) is that it can reduce the influence
of any preferred directions present in the original over-
sampled point cloud.

(2)h(x, y, z) = 0.3 (1 + x2 + y2 + z2).

• Alternatively, the thinning process can also be done
by choosing specific points based on desired qualities
in the point set. Methods of this type have been devel-
oped especially for global polynomial approximation
and numerical integration [38, 158, 190].

 One such method is the so-called approximate Fekete
points [190, 226], in which points from an initial over-
sampled grid are selected by applying a QR decomposi-
tion with partial pivoting to the global Vandermonde
matrix of a high order polynomial basis. This process
leads to point clouds that resemble the distribution
of classical Chebyshev points and are supposed to be
advantageous for spectral type methods, see Fig. 10.
In [108] approximate Fekete points are computed with
respect to RBF interpolation matrices. Multi-objective
optimization has also been used to select nodes opti-
mized for specific discretization methods [168], here
for global RBF collocation.

Such thinning processes are also useful in generating
multilevel subsets with decreasing separation distances
[57] which are useful for multilevel algorithms [53, 54,
216].

Fig. 9 Using a thinning proce-
dure on an oversampled point
cloud (left) consisting of 8000
points to obtain the desired
point cloud (right), which con-
tains 1318 points

Fig. 10 Approximate Fekete points of degree 15 for the unit square
(left) and degree 20 for the unit disk (right). The points for the square
are chosen from the 150 × 150 Cartesian grid whereas those for the

disk from a cloud of points on concentric circles shown in blue. The
approximate Fekete points were determined using open source code
from [191]

897Point Cloud Generation for Meshfree Methods: An Overview

1 3

We distinguish this use of oversampled point clouds from
another notion also referred to as “oversampling” in which
both a fine and a coarse point cloud are used in the simula-
tion, one on the test and another on the trial side of a discre-
tization [96, 172].

5.2 Undersampling

Conversely, some authors start with a very coarse point
cloud to discretize the domain. A filling or refinement pro-
cess is then carried out in order to reach the desired density
of points. These are typically based on hole search algo-
rithms to detect regions where points need to be added.
Extra points are added in specific regions, for example near
boundaries.

One or several points, or even a fine point cloud con-
structed by any of the methods listed in earlier sections may
be added in a part of the domain which is a special region
of interest. The main challenges of this approach are to add
a point from the finer point cloud only if it is at a minimum
separation from all points in the coarse point cloud, and to
achieve smoothly varying point densities.

Several approaches for adding points to an undersampled
point cloud are known:

• A discrete hole search [176] based on a prescribed point
density. An example of this in two spatial dimensions is
shown in Fig. 11. At each point a circle (sphere in 3D)
is constructed, with the radius dependent on the desired
point density at that location. Discrete points on that cir-
cle/sphere are then added to the point cloud if they satisfy
a minimum separation criterion.

• Hole searching can also be done using locally defined
tessellations followed by the addition of points in ‘large’
triangles or tetrahedra, relative to the point spacing
required. This process is illustrated in Fig. 12. More
details can be found, for example, in [175, 198]. Similar
approaches have also been carried out using global tes-
sellations [27]. Point generation using hole search from
global tessellations have been referred to as optimization
driven point insertion [148, 149].

• Another option is when a pre-defined density function
is not given, locations of additional points can be deter-
mined by an a posteriori error indicator, as is the case
in adaptive refinement methods for stationary problems
[19, 28, 35, 42, 45, 49, 90, 98, 99, 143, 155, 183, 220].
Similar to adaptive refinement algorithms well known in
the finite element method [2], a numerical simulation is
performed on the coarse grid, and an approximate solu-
tion is computed. An indicator is applied to this tempo-
rary solution, in order to determine which parts of the
domain require a better resolution by inserting additional
points into the cloud. This process is repeated several
times until a satisfactory point cloud is created.

In this context, it is important to mention that the ease of
adaptive refinement is an important advantage of meshfree
methods over mesh-based ones. Due to the presence of an
underlying mesh structure in mesh-based methods, adaptive
mesh refinement typically encounters issues with confor-
mation and hanging nodes (see, for example, [13, 91, 224]
and references therein). In contrast, the lack of topological
connectivity in meshfree methods means that adaptive point
cloud refinement can be done easily without having to deal

Fig. 11 Filling points using a discrete hole search: Discrete hole locations (left), adding a point (middle two), final point cloud (right)

Fig. 12 Filling points using local triangulations: Initial under-sampled points (first), local triangulation (second), adding a point (third), final
point cloud after complete addition process (last)

898 P. Suchde et al.

1 3

with similar issues. This ease of incorporation of adaptive
procedures is not just restricted to the thinning and filling
methods listed in this section, but also holds for the iterative
point movement methods to be discussed in Sect. 6.

The approaches of starting with oversampled or under-
sampled point clouds are especially useful when spatially
varying node densities are desired. Additionally, they are
also useful when specific global conditions on the point
locations are desired.

While the thinning and filling algorithms are essential
after starting with an under- or over-sampled point cloud,
several of the thinning and filling approaches listed above
can also be used as an optional second step to perform
local modifications of a point cloud generated by any other
method. This can be quite useful to avoid irregularities in a
generated point cloud, which occur in several of the methods
explained above, especially near the boundary.

Some of the approaches for the deletion/merging of close
points from a fine point cloud, and the addition of points
in “holes” in a coarse point cloud follow similar (time-
dependent) procedures adopted in many Lagrangian mesh-
free methods [175]. In fully Lagrangian meshfree methods,
nodes are moved with an underlying velocity field. This can
lead to a distortion in the point cloud. In many meshfree
Lagrangian methods (but not all), this is fixed locally by
adding points in holes and removing or merging close points,
which makes point cloud distortion easier to fix than mesh
distortion. All algorithms used in that context can be carried
over to point cloud generation by over- or undersampling.
We refer to [43, 175, 198, 200] for more details on fixing
distortion in Lagrangian meshfree methods. Similarly, vari-
ous approaches for point cloud thinning or refining can also
be adopted from the above mentioned adaptive refinement
algorithms in meshfree methods, or from similar notions in
point cloud based object reconstruction in a computer graph-
ics context [48, 162].

It must be noted here that the thinning and filling meth-
ods to generate a point cloud are often used together. When
space varying point densities are desired, it is possible that
an initial uniformly spaced grid is under-sampled in some
parts of the domain relative to the desired point density, and
over-sampled in other parts, thus requiring both filling and
thinning algorithms simultaneously.

6 Iterative Methods and Cloud
Improvement

In mesh generation, it is common to add a post-processing
step in order to iteratively improve the mesh obtained by
a primary technique, such as Delaunay triangulation or
advancing front method. This is achieved by modifying
the nodes or the mesh or both, and the goal is usually the

improvement of the shape quality of the elements, see e.g.
[63].

Similar ideas are often used for the improvement of mesh-
free point clouds created by any of the methods explained in
the earlier sections. Moreover, sometimes the initial cloud
is a rough first guess, and an iterative point movement pro-
cedure becomes the main vehicle for point cloud genera-
tion, rather than a polishing tool. This approch may also be
found in mesh generation (for example, [156, 185, 223]).
We describe below several popular meshfree methods of
this type.

6.1 Energy Minimization or Inter‑particle Forces

The most common iterative approach is the minimization
of a prescribed energy function on the node set [94, 213].
Usually the energy function is defined via an inter-particle
replusion force [134, 221, 222]. Non-uniform point densi-
ties can be achieved by prescribing spatially varying energy
functionals or inter-particle repulsion forces.

• The most common version of this is one that uses Voro-
noi decompositions [11, 40, 65]. This approach has been
widely adopted in the SPH community. In each itera-
tion, a global Voronoi tessellation of the domain is con-
structed. Particles are then moved using a force

 where �
i
 is the location of the point i, �

i
 is the location

of the centroid of the corresponding Voronoi cell, and
m is a constant. Spatially varying particle densities can
be achieved by constructing weighted Voronoi tessella-
tions [8, 40]. The movement of particles under such a
forcing tries to achieve a (weighted) centroidal Voronoi
tessellation (CVT), where every particle is coincident
with the centroid of it’s Voronoi cell. The construction of
a global Voronoi tessellation means that these methods
are no longer purely meshfree. However, the main char-
acter of the methods remain meshfree in nature since all
approximations are done only on the point cloud. Moreo-
ver, they avoid the main obstacles of mesh generation
because there is no goal to obtain a tessellation whose
dual Delaunay triangulation is a high quality mesh.

• Other purely meshfree energy minimizers typically rely
on the inverse of inter-particle distances, or their loga-
rithms. Commonly used examples are the so-called Riesz
energy function and log-energy function [94, 213],

(3)�
i
= m

(

�
i
− �

i

)

,

(4)
E
s,�

i
=

�

j ∈ Si ,

j ≠ i

�(�i, �j)

‖�i − �j‖
s
,

899Point Cloud Generation for Meshfree Methods: An Overview

1 3

 where Si is a neighbourhood of point �i , the parameter
s > 0 determines the extent of repulsion, and � is a func-
tion of the point locations used to achieve non-uniform
point densities. A specific case of the Riesz energy func-
tion, with s = 2 in Eq. (4), mimics gravitational or elec-
trostatic repulsion that are proportional to the inverse
square distance between particles [59, 211].

Various optimization algorithms have been used to carry
out the actual energy minimization, with gradient descent
algorithms widely adopted. The Voronoi decomposition
based iterative process is generally done using the Lloyd
algorithm [111], which is a special case of a gradient descent
approach. Here, in each iteration, every particle is moved to
the centroid of the corresponding Voronoi cell. Other com-
monly used strategies include other gradient-based descent
methods [110], Monte Carlo [223] and quasi-Monte Carlo
[213] approaches.

An example using Voronoi decompositions-based energy
minimizations is shown in Fig. 13. Starting with a randomly
generated point cloud on [−1, 1]2 , a modified Lloyd algo-
rithm [11] is run to create a point cloud with uniform spac-
ing. This is compared with a multiplicatively weighted Voro-
noi diagram for non-uniform point spacing. Here, the density
of the point cloud is prescribed by the function

6.2 Pre‑simulations

Another approach is to start from some initial configura-
tion and then perform numerical simulations to obtain the

(5)
E
s,�

i
=

�

j ∈ Si ,

j ≠ i

log
�(�i, �j)

‖�i − �j‖
,

(6)� = max
(

0.5, 5 exp
(

−10
(

x2 + y2
)))

.

actual node placement [192]. These simulations can be
done based on equations of motion,

where � is the position of the particles, � the velocity and
� is a pseudo time term. Different force terms can be used
in Eq. (7) in this context. The most common is a prescribed
external force �ext such as gravity or an external pressure
gradient. Optionally, a contact force between particles �contact
is also used, as is a relaxation term � , possibly dependent on
� [32], to ensure convergence of the iterations. Other inter-
particle interaction forces could also be used, which makes
this procedure similar to the energy minimization explained
above. The distinction is that the pre-simulation methods
use “time” integration procedures, rather than optimization
algorithms, to obtain the desired point clouds.

One example is the so-called bubble simulation pro-
cedure [138, 139], which prescribes inter-particle forces
and damping forces on particles with an assumed finite
non-zero diameter. The resultant equations of motions are
then solved with an ODE solver until an equilibrium con-
figuration is attained.

A simulation approach is also used to obtain the ini-
tial packing of particles in many Discrete Element
Method (DEM) simulations [123, 150]. The DEM parti-
cles are initially placed in a dilute uniform configuration
[123]. DEM simulations are then run on that configura-
tion of particles until they reach a steady state, which is
subsequently used as the initial condition for the actual
problem being simulated. An example of this is shown
for a simple three-dimensional geometry in Fig. 14. Here,
starting from a dilute particle configuration, the pre-sim-
ulations cause the particles to fall due to gravity and settle

(7)
d�

d�
= �ext + �contact + � ,

(8)
d�

d�
= � ,

Fig. 13 Using CVT based energy minimization to obtain point
clouds. Randomly generated starting point cloud (left), resultant point
cloud after a regular CVT based energy minimization (center), and

resultant point cloud after a weighted CVT based energy minimiza-
tion (right). This figure was generated using open source code from
[10, 11]

900 P. Suchde et al.

1 3

down in a dense configuration. This final state of the pre-
simulation is the initial configuration of the particles in
the main simulation [142]. Another approach considered
by some DEM simulations is to run a pre-simulation with
a specified inflow of particles, or random insertion from
domain boundaries.

Pre-simulation methods have also been widely used
in SPH (for example, [32]). Here, rather than simplified
equations of motion, the pre-simulation is done using con-
tinuous momentum conservation equations, with an added
damping term based on inter-particle distances, or with the
use of fictitious pressure potentials [212].

Iterative methods are reported to produce useful point
clouds. However, they are rather computationally expen-
sive, since a high number of iterations may be required.
In some cases, auxiliary computations such as the Voro-
noi tessellation significantly add to the cost. Furthermore,
the results may heavily depend on the initial placement
of points. To reduce the number of iterations required to
get to a point cloud with good performance, the initial
placement may need to be “improved” [94, 221]. This
becomes especially relevant for complex domains. Similar
to the methods in the earlier sections, there are issues at
the boundary. A further complication in highly complex
domains is the need for boundary penetration checks dur-
ing the movement of the points.

In any case, these methods appear quite useful as a post-
processing step following some more efficient point cloud
generation with already reasonable results.

7 Meshfree Advancing Front Methods

Advancing front techniques arose in the context of volume
mesh generation in the 1980s [112, 137, 154]. These meth-
ods start with a surface mesh which discretizes the domain
boundaries, which could be either pre-defined (for exam-
ple, an STL mesh), or computed using a surface meshing
technique. This is used to progressively create mesh ele-
ments from the boundary inwards until the whole domain
is meshed. We refer to [114, 118, 173] for a detailed intro-
duction to advancing front methods for mesh generation
and their capabilities.

These techniques were first used for point cloud gen-
eration in meshfree methods by Löhner and Oñate over
two decades ago [115]. They introduce a meshfree ver-
sion of the advancing front method in two and three spa-
tial dimensions, with straightforward generalizations for
higher dimensions, and demonstrate the use of variable
point densities and point generation for complex domains.
They further show that meshfree advancing front point
cloud generation (henceforth, AFPCG) is an order of mag-
nitude faster than advancing front mesh generation.

This work has been used by many authors to create
point clouds for meshfree simulations [119, 122, 124,
155, 170, 194], and has been generalized to different ends
[79]. While the original work required a surface mesh, it
has been generalized for different boundary specifications
[43, 79]. Different methods of specifying the point density

Fig. 14 Obtaining the initial particle packing in a Discrete Element Method (DEM) using a pre-simulation of loosely packed particles falling
under gravity

901Point Cloud Generation for Meshfree Methods: An Overview

1 3

and for advancing the front have been considered [43].
Seibold [175] uses AFPCG, while calling the approach
“successive insertion”, and further complements it with
point thinning and filling methods like those explained in
Sect. 5. The method is also used in a couple of commer-
cial meshfree codes [62, 140], which also report parallel
implementations. This work has even been generalized to
fill volume domains with objects of different shapes and
sizes instead of points [56, 116, 117, 163], such as spheres,
ellipsoids, and coils, for the purpose of discrete element
method (DEM) simulations.

A similar method was developed independently by Li
et al. [101, 102], referring to their advancing front strategy
as a biting method. Their method is based on sphere packing
and then using the centers of the spheres as the point cloud.
They employ a different approach to advancing the front.
While [115] advance points in the front directly (details
below), [101, 102] require the computation of intersections
of arcs. As a result, this algorithm is more computationally
expensive.

However, long existing AFPCG methods do not seem to
be very well known in many meshfree communities. As a
result, a significant amount of recent research has been done
into developing similar advancing front methods.

Fornberg and Flyer [59] suggested an AFPCG technique
for two-dimensional problems, which was later extended to
three-dimensional problems in [211]. This work has become
popular in RBF based meshfree methods. The method of
[59, 211] has two key differences from older meshfree
advancing front methods. Firstly, for curved geometries,
they discretize a bounding box of the geometry, and then
discard points outside the domain. Furthermore, the initial
front is not based on the entire boundary, but rather only on
a specific part of it. This simplifies the initial step of bound-
ary discretization; however modifications near the boundary
may be needed to better fit the point cloud to it. For those
domains where the bounding box is much bigger than the
actual computational domain, significant unnessesary com-
putations will be performed.

Slak and Kosec [184] presented an AFPCG technique
developed independently of [115] and related work. The
main difference to the above mentioned generalizations of

[115] is that certain seed nodes are chosen in the interior of
the domain, which results in a different final set of nodes.
The work of [184] is also the first one providing an analysis
of the computational complexity of a meshfree AFPCG.

Below, we provide an overview of advancing front meth-
ods for meshfree point cloud generation. They can be broken
down into the following steps:

1. Create a set of points on the boundary. These boundary
points act as the initial front(s), which will be advanced.

2. Using the boundary points as sources, a first set of inte-
rior points is generated in the domain.

3. Newly generated interior points are then used as a source
to create another set of interior points, until the whole
domain is filled.

This process is illustrated in Fig. 15 for a two dimensional
domain and a uniform density of points.

As mentioned above, advancing front point generation
methods start with the creation of a point distribution on
each of the (possibly disconnected) domain boundaries.
An overview of different methods for doing this is given in
Sect. 8. Once the boundary point configuration is computed,
the boundary points must be equipped with a surface nor-
mal. This normal field is used to prescribe the direction in
which the the first set of interior points will be created. This
normal field must be consistent in the sense that it should
make the discrete surface oriented, i.e., all normals should
either be facing inwards or outwards. The normal field can
be prescribed directly if already available from the domain
boundary specification (see Sect. 8). Alternatively, the nor-
mal field can be computed from the boundary discretization
using surface normal computation methods [103, 130, 165,
198].

7.1 Advancing the Front

The set of “active” points which are being used as sources
to create new points is referred to as the “front” which is
advanced. As a point is used to create (or fails to create) new
points, it is removed from the front, while the newly added

Fig. 15 Generating node distributions in a two-dimensional domain with a uniform point spacing using a meshfree advancing front method. The
images show the point cloud after 2, 5, 8, 11, and 15 iterations of interior point generation, respectively

902 P. Suchde et al.

1 3

points are added to the front. This advancing of the front of
active points has also been referred to as a marching process.

Consider a point �i being used as a source to generate
new points. The point �i generates a set of candidate points
Ci . Admissible points in Ci are then added to the point cloud
and to the active front, and �i is removed from the front. The
admissibility criteria are as follows:

• Each point should be a prescribed minimum distance
away from all other points.

• Points should be inside the domain.

Variations in this framework are obtained by different meth-
ods of choosing the candidate points Ci.

• Stencil-based criteria [115]: By considering different
stencils, similar to those used in finite difference meth-
ods, centered at �i.

• By considering points on the surface of a sphere cen-
tered at �i . The points on the sphere can be chosen either
randomly, or by a discrete set on the sphere [59, 184].
Instead of considering points on the surface of a sphere,
points could also be considered within an annular spheri-
cal region around the candidate point [179].

• By a hole filling algorithm [43, 175]: A discrete hole
search is carried out to identify regions where no points
are present, and points in the center of identified holes
are chosen in Ci.

In each case, the point density specification governs the dis-
tances of the candidate points to �i . Either by differently
sized stencils, or by the radius of the sphere, or the allowed
size of the holes.

This front is advanced until the entire domain is filled
with points. The minimum specified distance in the admissi-
bility criteria ensures an automatic checking for intersection
of the front with itself, or with another disconnected part of
the front. When the entire domain is filled, each of the points

in the active front will fail to generate new points, thus
resulting in an empty front. However, this could produce
a “poor” quality point cloud locally where the advancing
fronts meet. To fix this, local modifications in these regions
can be made either using the thinning and filling algorithms
mentioned in Sect. 5, or using a few iterations of iterative
algorithms mentioned in Sect. 6 on a few selected points.

Note that merging of the advancing front is one of the big-
gest challenges in mesh-based advancing front techniques,
which is much simpler for meshfree variants since less merg-
ing checks are required. As a result, Löhner and Oñate [115]
present time comparisons to show that meshfree advancing
front techniques were an order of magnitude faster than con-
temporary volume mesh generators with advancing fronts.

The process of establishing a point cloud using an
AFPCG is shown in Fig. 15 for a two dimensional domain
with uniform point spacing, and in Fig. 16 for a three dimen-
sional domain with a spatially varying density. Figure 16
shows the discretization of a unit cube with cylindrical
obstacle in the middle. Note that points are being filled
simultaneously from both the cube boundary inwards and
from the cylinder boundary outwards. The point cloud den-
sity is prescribed directly as a function of distance from the
center of the cube. With a minimum inter-point spacing of
h = 0.07 at the cylinder boundary, the resolution is linearly
increased at a rate of 0.2.

All point clouds generated with the advancing front
method are created using the software suite MESHFREE1,
with permission.

8 Discretization of Boundaries and Surfaces

While the bulk of this article focuses on point cloud gener-
ation for volume domains, in this section we discuss point
generation for surfaces and curves. This is of importance

Fig. 16 Generating node distributions in a three-dimensional domain
with a varying point density using a meshfree advancing front
method. The images show the point cloud after 2, 4, and 7 iterations

of interior point generation respectively. All points are shown as
spheres of the same size, with the colour representing the inter-point
spacing function h at that location

1 https:// www. meshf ree. eu

https://www.meshfree.eu

903Point Cloud Generation for Meshfree Methods: An Overview

1 3

for volume point cloud generation, in the form of bound-
ary discretizations, as explained earlier. It can also be
used for the discretization of manifolds. The need for this
arises due to the increasing requirement of solving PDEs
on manifolds with meshfree methods [29, 60, 66, 74, 100,
103, 157, 187, 188, 199].

As discussed earlier, the topic of point cloud genera-
tion for volume domains is a largely overlooked aspect of
meshfree methods. This holds even more so for boundaries
and surface domains.

Many procedures for meshfree surface discretization are
similar to those explained for volume discretization above.
Several possibilities are listed below.

• Parametrization In certain cases, a parametrization of
the domain boundary can be used. The domain could
be bounded by a set of curves (for domains in ℝ2) or
surfaces (for domains in ℝ3) for which a parametriza-
tion is either known, for example NURBS curves and
surfaces [159], or is easy to determine. In this case,
the boundary discretization is achieved through a dis-
cretization of the parameter space [5, 97, 131, 179].
Obtaining good parametrizations may get extremely
complicated for non-trivial geometries. Isogeometric
collocation methods [6, 87] could be adopted for para-
metric boundary discretization in the case of a NURBS
geometry. Here points on the surfaces are added by
directly discretizing the parameter space defining the
NURBS.

• Surface mesh For the more general case, with com-
plex domains, the domain geometry is often specified
by a surface mesh, which is much easier to generate
than a volume mesh of the entire domain. The surface
mesh is used to generate points on the surface [43, 69,
115]. This can be done by directly using the nodes or
centroids of surface mesh elements. This initial node
set can then be refined or coarsened to achieve the
desired point density, with surface thinning or filling
algorithms [198], similar to those explained in Sect. 5.
It must be noted here that many meshfree methods use
a surface mesh to define the domain boundary. This
is especially relevant for practical applications with
complex geometries. Furthermore, for time-dependent
geometries, the surface mesh only defines the initial
domain boundary.

• CAD surface It is often desirable to prescribe the
bounding geometry directly by CAD surfaces, without
even a surface mesh. For this case, points are placed
directly on CAD entities. It must be mentioned that
a detailed study of efficient point cloud generation
directly on a CAD surface has not been done. While
several commercial software packages mention the

ability to go directly from CAD to point clouds, we
have not found publications detailing such algorithms.

• Projection from the interior As discussed in Sect. 3,
boundary points may be generated by projecting interior
points to the boundary.

• Implicit surfaces A point cloud can be obtained by iso-
surface extraction methods, such as the marching cubes
algorithm [120], if a signed distance function or another
level set function is available, see e.g. [36].

• Advancing front Advancing front methods can also be
applied to manifold discretizations [46, 198]. Just as in
the volume case, the process starts with a discretization
of the manifold boundaries, with successive filling in the
interior. For a closed manifold with no boundaries, the
process would begin with an arbitrary choice of a seed
point somewhere in the domain. These methods could
be especially useful if the surface is prescribed by CAD
data.

• Iterative procedures and minimum energy points Iterative
energy minimizing procedures as explained in Sect. 6
are also commonly used for boundary discretizations
[21, 60]. Similar to the volume point generation case,
the biggest advantage of these procedures is that they
are reported to produce good quality point sets. Many
particular examples of well distributed point clouds are
obtained for the sphere in ℝ3 by minimizing some energy,
maximizing determinants, or from spherical designs [25].
A large collection of such points sets for the sphere can
be found in [193].

• Random points, over- and undersampling approaches can
also be used [179] to discretize boundaries, with proce-
dures similar to that described in Sects. 4 and 5.

9 Comparisons and Applications

In this section we provide a comparison of the features of
the different methods, and explain how they can be applied
and combined.

Different features of each of the point cloud generation
methods discussed above are summarized in Table 1. Among
the different methods discussed, iterative and cloud improve-
ment methods of Sect. 6 can serve as a post-processing tool
to improve an existing point cloud, and as a stand-alone
method starting with a uniform initial point cloud. Simi-
larly, the thinning and filling approaches of Sect. 5 can be
used both as a post-processing method, and a stand-alone
method starting with an over- or under-sampled point cloud.
Random numbers based methods of Sect. 4 are primarily
used as a first step in the generation of point clouds, except
of the situations where they provide irregular point clouds
for testing different meshfree techniques. We note that other
than mesh generation for point clouds, each of the other

904 P. Suchde et al.

1 3

direct point cloud generation methods mentioned above is
usually combined with a certain amount of post-processing.

In terms of modifying or post-processing a given point
cloud, iterative methods are very good to prevent points
from coming too close together. However, since the number
of points is typically fixed in an iterative process, they can
only be used to achieve an optimum separation for a given
number of points and a point density. These iterative meth-
ods can not be used to achieve a prescribed minimum and
maximum separation, which is often desired, as is the case in
one of the examples below. Thus, for such applications, thin-
ning/filling is a better post-processing option than the itera-
tive methods. Moreover, most thinning/filling algorithms are
local in nature, making them easier to parallelize, while the
iterative methods are global processes.

To show how the different methods discussed above can
be applied and combined, we discuss their use on two com-
plex examples. As mentioned earlier, since there is no well
understood measure of what constitutes a good point cloud,
comparisons between point clouds generated by different
methods can only be done to a limited extent. Thus, we do
not attempt to compare the quality of different point clouds,
nor do we present complete time comparisons between

different methods. The goal of these examples is only to
discuss the applicability of different point cloud genera-
tion methods on complex domains, and to highlight various
technical details involved when different methods are being
applied. We emphasize that performing a thorough com-
parison of numerical results on point clouds generated is not
a goal here. The latter likely depends on the choice of the
meshfree method and requires its own dedicated investiga-
tion that falls out of the scope of the present overview paper.

We start with a detailed discussion on the challenges
involved in generating a point cloud with a varying density
around a car geometry in Sect. 9.1. We then consider a Pois-
son problem on a simpler geometry, and present numerical
solutions with a generalized finite difference method GFDM
on the point clouds generated with different methods.

9.1 DrivAer Car Geometry

We consider the process of point cloud generation around
the open source DrivAer car geometry [78],2 in which the car
model is prescribed by a surface mesh. This geometry and

Table 1 Summary of different
types of point cloud generation,
the required implementational
effort, their applicability to
problems with spatially varying
densities, and their use as a
post-processing method to
modify an existing point cloud

*The implementation overhead for mesh generation is low because of the vast variety of existing open-
source and commercial tools for the purpose

Point cloud generation method Implementation
overhead

Spatially varying densities Post-
processing
method

Nodes of generated mesh Low* ✓

Uniform grids and lattices Low
Random points Moderate ✓

Over / under sampling Moderate Small variations only
Thinning / filling High ✓ ✓

Iterative/pre-simulation Moderate ✓ ✓

Advancing front High ✓

Fig. 17 Point cloud around the DrivAer car model. The colour represents the point density given by the inter-point spacing function h. Only a
clip of the point cloud is shown with the half closer to the viewing angle hidden

2 The FastBack and engine bay flow configuration is used here.

905Point Cloud Generation for Meshfree Methods: An Overview

1 3

a point cloud discretizing the domain are shown in Fig. 17.
The dimensions of the car model are about 4.6 × 2 × 1.42 ,
with all dimensions in m. The computational domain of
interest is the region around the car, inside a box of size
9 × 4 × 3.

For complex geometries such as this one, it is often con-
venient to prescribe the density of a point cloud as a function
of the distance to specific boundaries, as shall be done here.
Within a distance of Lmin = 0.2 to specific tagged bound-
aries (the car geometry here), the point spacing is set to
hmin = 0.08 . This is linearly increased at a rate of dh∕dl = 0.5
till a maximum of hmax = 0.8 is reached.

We also prescribe a minimum and maximum separation
distance between two points. Relative to a given point den-
sity, the minimum separation controls the minimum distance
between two points, while the maximum separation gov-
erns the size of the largest hole allowed in the point cloud.
There is no unique way to prescribe the minimum separa-
tion and hole sizes. While in some literature, a minimum
separation distance is prescribed directly as a function of
space, it is also very common to have a point density func-
tion prescribed as a function of space, with the minimum
separation and maximum hole size given by fixed factors of
the density. We use this latter approach here. The minimum
separation and maximum hole size are prescribed by fixed
factors of the point spacing function h, given by rmin = 0.25h
and rmax = 0.42h.

We generate point clouds with several different point
generation methods, with details explained below. With
the exception of mesh generation for point clouds, all other
point cloud generation methods start by generating points
on the boundary. Here, we place points on the surface mesh
of both the car and the outer box of the domain, such that
the prescribed point density is satisfied. The points placed
on the car geometry are shown in Fig. 18. Starting with this
boundary point discretization, volume point cloud genera-
tion in the interior of the domain is done as described below.

9.1.1 Advancing Front Point Cloud Generation

We first consider an AFPCG method to generate the interior
points. The front is advanced using a hole filling algorithm,
with a prescribed search radius of holes as 0.5(rmin + rmax) .
This ensures that the required minimum and maximum sepa-
ration are satisfied everywhere, with the possible exception
where different advancing fronts intersect. The generated
point cloud is then run through with a thinning and filling
algorithm, to ensure that the minimum and maximum sepa-
ration is satisfied even at locations where different fronts
intersected. We observe that two thinning and filling cycles
each are sufficient. The resultant point cloud generated is
shown in Fig. 17. Points around the detailed underbody of
the DrivAer car model are shown in Fig. 18.

We note here that for the AFPCG, the distance to the
boundary computation required for the point cloud density
specification does not need to be explicitly calculated. It can
be approximated while advancing the front of active points.

Running the computation serially on a dedicated node,
the generation of the point cloud shown in Fig. 17 took 133
s. We note here that the computational time depends on the
complexity of the geometry. The surface mesh of the car
contains 2.85 × 106 triangles. If the car geometry is replaced
with a cube representing its bounding box, filling the domain
with the same density of points using the advancing front
method takes a fraction of the time: 16s to generate 137346
points, compared to 133s to generate 147947 points with
the car geometry. Generating a point cloud with a uniform
density of points would be even faster.

9.1.2 Random Point Generation

We start by generating points in the bounding box of the
domain using a pseudo-random number generator. To take
the prescribed point density into account, rejection sampling
[214] was used. This is done by considering uniform sam-
pling of points in the domain, with a uniform sampling of a
density check variable. A randomly generated point is added
to the point cloud only if the corresponding density check
variable is greater than the desired density at that location.

The second step after the random point generation is to
detect points outside the desired domain, and delete them.
In this example, points inside the car geometry need to be
removed. This is done by computing a signed distance func-
tion (only the sign is important here [20]) using a fast march-
ing method [178].

The final step is to ensure that the point cloud satisfies
the desired minimum and maximum separation. This is done
using multiple cycles of thinning and filling. The filling pro-
cess is done with a hole search algorithm which searches
for holes of size rmax , while the thinning algorithm merges
any two points closer than rmin apart. We note that the same
thinning and filling implementations used in the AFPCG
are used here.

Two different randomly generated point clouds are con-
sidered here, with different number of randomly sampled
points: 50,000 and 140,000. Since the same minimum and
maximum separation is used, the final number of points after
thinning and filling is similar in both cases, 145,022 in the
first case, and 148,441 in the latter. The complete process of
interior point generation takes 209 s in the former case, and
183 s in the latter. In the former case, the number of filling
cycles required to reach the desired point density is much
higher, and thus it takes longer. This is illustrated in Fig. 19.

906 P. Suchde et al.

1 3

9.1.3 Uniform Point Cloud

Starting with a spatially uniform point cloud using a Carte-
sian grid or a uniform lattice is not feasible in such an exam-
ple with a huge difference in the coarsest and finest resolu-
tion required. No matter what the resolution of a considered

uniform grid would be, a large number of thinning and/or
filling cycles would be required to attain the desired mini-
mum and maximum separation. We thus do not generate a
uniform point cloud for this example.

For the sake completeness, we mention possible adap-
tations of uniform point clouds that could be considered

Fig. 18 Point cloud around
the underbody of DrivAer
car model. The underbody
geometry (top), boundary points
only (center), and a clip of the
point cloud after 2 iterations
of interior point addition in an
AFPCG (bottom). Note that the
points in the center image are
shown with a 50% transparency,
while those in the bottom image
are shown with a 90% transpar-
ency

907Point Cloud Generation for Meshfree Methods: An Overview

1 3

for the current application. One possibility is to consider
domain decompositions, and use a different notion of a uni-
form point cloud. For example, the domain could be parti-
tioned into several blocks with a uniform point cloud in each
block for the corresponding mean density there. However,
this would result in a non-smooth distribution of points. This
drawback could be reduced by partitioning the domain into a
high number of blocks, with an octree type structure, based
on the desired density.

9.1.4 Mesh Generation

We use Gmsh [70] to create a volume mesh around the car
model. The DrivAer car model [78] is available as both
CAD and STL surface mesh. In the point cloud generation
methods used above, we used the STL surface mesh. Here,
we first try to generate a mesh from the CAD prescription
directly. However, our attempts at this suggested that a lot of
manual work would be required for this because (i) the CAD
model included many free edges and very small curves and
surfaces. (ii) at several intersections of different parts of the
geometry, one surface was tangent to the other. For instance,
near the mirror and at the exhaust system. This caused a
problem in inserting elements at these regions.

Thus, to reduce the amount of manual work needed, we
start with the STL surface mesh. Using Blender [33] and

Fusion360 (Autodesk), we create a simpler CAD model of
the car geometry. A CAD geometry was still preferred over
working directly with the STL file primarily because the
specification of the desired node density as a function of the
distance to the CAD model of the car can be done easily.
Using the resultant simplified CAD model, we create a mesh
with a similar node density in Gmsh. The resultant mesh,
and the point cloud formed by the vertices of the mesh are
shown in Fig. 20.

A visual comparison of the point clouds generated by the
three methods considered here is shown in Fig. 21.

9.2 Poisson Problem

For a representational comparison of point clouds gen-
erated by different methods, we consider the numerical
solution of a Poisson problem

with Dirichlet boundary conditions. The geometry con-
sidered is the “Forearm Link” geometry that is shipped
with the MATLAB PDE toolbox, and is shown in Fig. 22.
The geometry is defined by a STL surface mesh. The size
of the bounding box of the geometry is approximately
134 × 33 × 61.

(9)Δ� = f ,

Fig. 19 Random point cloud generation around a car. Initial points
clouds after random point generation (left column), and final point
clouds after thinning and filling (right column), with 50,000 (top row)
and 140,000 (bottom row) randomly sampled points initially, and

comparable final numbers in both cases. Only a clip of each of the
point clouds are shown, with the halves closer to the viewing angle
hidden

908 P. Suchde et al.

1 3

We consider a manufactured solution to Eq. (9), given by

at a point � = (x, y, z) . The right hand side f of the Poisson
equation is set such that �exact is a solution of Eq. (9). Bound-
ary conditions are also set to match �exact . Point clouds to
discretize the resultant computational domain are generated
with four different approaches, each with a spatially constant
density.

1. Nodes of a mesh We start by generating a volume mesh
in Gmsh 4.3.0 [70], using the Delaunay algorithm with
default parameters, and a spacing of 2.3.

 This results in a mesh with approximately 104 vertices,
which are used as the point cloud.

(10)�exact = sin(x∕10),

2. Advancing front point cloud generation We then create
a point cloud with an AFPCG using a uniform spacing
such that the total number of nodes matches the number
of nodes in the mesh as closely as possible.

3. Cartesian grid Then using the boundary node set of the
AFPCG, we create a uniform Cartesian grid in the inte-
rior so as to match the total number of nodes to the first
two point clouds as closely as possible.

4. Randomly generated points Once again, we start with the
boundary node set used in the AFPCG point cloud. Then
we randomly generate 1.5 × 104 points in the bounding
box of the domain. Points outside the geometry are iden-
tified and deleted. This is followed by a few thinning and
filling cycles in the interior of the domain. We generated
several point clouds with this process till the number of
nodes closely matched the number of nodes in the above
three point clouds.

Fig. 20 Point cloud generation around a car using the Gmsh mesh generator. A slice of the mesh (left) and the corresponding clip of the point
cloud composed of nodes of the mesh (right). The point cloud only shows the points behind the shown mesh slice

Fig. 21 Comparison of points clouds around the car generated by three methods. AFPCG (left), randomly generated point cloud (center), and
nodes of a mesh (right)

Fig. 22 Forearm Link geom-
etry (left), and a point cloud
discretizing the computational
domain (right). Boundary points
are marked in red, and interior
points are marked in blue

909Point Cloud Generation for Meshfree Methods: An Overview

1 3

Other than the nodes of the mesh, the other three point
clouds were generated within the framework of the software
MESHFREE [62]. The point clouds generated by each of
the above four methods have been made freely available as
supplementary material with this work. While a Cartesian
grid was not feasible in the previous example due to the large
variance in point densities, a Cartesian grid can be used in
the present case since we are using uniform point densities.
It is also important to note that no thinning or filling opera-
tions were done on the Cartesian grid. As a result, this point
cloud has the highest irregularity near the boundary.

The Poisson equation is solved on each of the four
point clouds using a meshfree Generalized Finite Differ-
ent Method (GFDM), which is a strong form meshfree col-
location method. In the GFDM formulation used here, the
Laplacian of a scalar valued function u is approximated as

where the neighbourhoods or support domains Si are chosen
based on proximity, and are given by the 35 nearest neigh-
bours. We note that a smaller number of neighbours is often
used in some GFDM applications, especially for stationary
point clouds, while the number of neighbours used here is
typical for Lagrangian approaches. The coefficients cij are
computed using a weighted minimization

subject to the exactness of Eq. (11) for quadratic polynomi-
als. The weights considered here are wij = ‖�i − �j‖

2� , with
� = 3 . This choice of � has a theoretical justification given
in [37]. For the sake of brevity, we do not present an in-depth
introduction to GFDMs here, and refer the interested reader
to [68, 85, 105, 195] for more details. For all simulations
considered here, the implementations of the GFDM are from
the open source repository mFDlab [34].

Errors in the numerical solutions are measured in a rela-
tive L2 sense

(11)Δu(�i) ≈
∑

j∈Si

ciju(�j),

(12)min
∑

j∈Si

wijc
2
ij
,

where Ω ⧵ �Ω is the set of all interior points in the domain,
and �h

i
 is the numerical solution to the Poisson problem at

point �i.
The number of points in the point cloud, and the errors in

the solution when using only Dirichlet boundary conditions
at all boundaries are summarized in Table 2. We emphasize
here that these errors are purely representational and do not
serve to indicate the superiority of one point cloud gen-
eration method over another. Note that the different errors
observed are not just a factor of different point placements,
and hence different point cloud qualities, but also of the ratio
of boundary points to interior points. For reference, a finite
element solution with linear shape functions on the same
mesh results in a nodal error of �2r(FEM) = 3.17 × 10−3.

We note that the condition numbers of the global discre-
tised linear system (without preconditioning) are 60 and 67
for the mesh nodes and advancing front method respectively
on one hand, and significantly higher, 4235 and 1786 for the
Cartesian grid and random point cloud respectively on the
other hand. This stems presumably from the high irregular-
ity near the boundary for the Cartesian grid and the random
point cloud.

10 Conclusion

In this paper, we gave an overview of different methods of
point cloud generation, and highlighted their advantages and
disadvantages. The aim is not just to collect various methods
used in different meshfree communities in one place, but
also to encourage dedicated investigation into efficient point
cloud generation techniques.

The topic of point cloud generation is often neglected
across meshfree literature. Many articles on meshfree meth-
ods do not even mention how the domain discretization is
achieved. A wide section of meshfree literature still uses
the generation of a mesh or lattice structures to obtain the
point cloud, primarily because of convenience and familiar-
ity with those methods, which leads to low overhead in terms
of implementation. In order to test meshfree techniques on
irregular points, point clouds generated using a mesh or
lattice structure are often perturbed using random number
generation. Several iterative methods are used as a second
step after a preliminary point cloud has been generated with
some other method. These serve to improve the quality of
the point cloud, primarily to ensure a minimum separation
between points or to achieve a prescribed spatially varying
density of the point cloud. Thinning and filling algorithms

(13)�2r =

�

�

�

�

�

∑

i∈Ω⧵�Ω

�

�h
i
− �exact(�i)

�2

∑

i∈Ω⧵�Ω

�

�exact(�i)
�2

,

Table 2 Poisson problem on Forearm Link geometry with different
point generation methods: total number of points N in the domain
including both interior and boundary points, the number of boundary
points Nboundary , and the relative L2 errors �2r [see Eq. (13)] in numeri-
cal solutions of the Poisson problem with GFDM

N Nboundary �2r

Mesh nodes 10,802 5931 2.42 × 10−3

Advancing front 10,631 4292 2.30 × 10−3

Cartesian grid 10,777 4292 2.46 × 10−3

Random point cloud 10,026 4292 2.75 × 10−3

910 P. Suchde et al.

1 3

have also been used towards the same end, while also being
coupled with initially over- or under-sampled point clouds.
Recent work has brought attention back to advancing front
point cloud generation.

In addition to the overview we provided examples to
illustrate how these different methods can be combined and
applied to complex models.

What we presented in this paper is a snapshot of the cur-
rent state of the point cloud generation methods that are
being actively developed by many authors. We believe that
meshfree communities may benefit from more effort devoted
to in-depth comparison between different existing methods
on the basis of a better understanding of what defines a good
point cloud. In particular, investigation of quantifiable point
cloud quality measures that correlate to numerical stability
and accuracy could be helpful.

Acknowledgements Pratik Suchde would like to acknowledge partial
support from the European Unions Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie Actions Grant
Agreement No. 892761. The car DrivAer model is courtesy of the
Chair of Aerodynamics and Fluid Mechanics, Technical University of
Munich. The authors would like to thank Dr. Jens Bender for the DEM
set up and code used to generate Fig. 14, and Dr. Joerg Kuhnert for
creating Fig. 11. The authors would like to thank Prof. Stéphane P.A.
Bordas for helpful discussions.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Aftosmis MJ, Berger M, Melton J (1998) Adaptive Cartesian
mesh generation. CRC Handbook of Mesh Generation (Contrib-
uted Chapter), Boca Raton

 2. Ainsworth M, Oden JT (2000) A posteriori error estimation in
finite element analysis. Wiley, Hoboken

 3. Anandhanarayanan K (2010) Development of three-dimensional
grid-free solver and its applications to multi-body aerospace
vehicles. Defence Sci J. https:// doi. org/ 10. 14429/ dsj. 60. 583

 4. Anandhanarayanan K, Nagarathinam M, Deshpande S (2005)
Development and applications of a gridfree kinetic upwind solver
to multi-body configurations. In 23rd AIAA applied aerodynam-
ics conference, p 4846

 5. Angulo A, Pozo LP, Perazzo F (2009) A posteriori error estima-
tor and an adaptive technique in meshless finite points method.
Eng Anal Bound Elem 33(11):1322–1338

 6. Anitescu C, Jia Y, Zhang YJ, Rabczuk T (2015) An isogeometric
collocation method using superconvergent points. Comput Meth-
ods Appl Mech Eng 284:1073–1097

 7. Antuono M, Bouscasse B, Colagrossi A, Marrone S (2014) A
measure of spatial disorder in particle methods. Comput Phys
Commun 185(10):2609–2621

 8. Aurenhammer F, Edelsbrunner H (1984) An optimal algorithm
for constructing the weighted Voronoi diagram in the plane.
Pattern Recogn 17(2):251–257

 9. Awile O, Büyükkeçeci F, Reboux S, Sbalzarini IF (2012) Fast
neighbor lists for adaptive-resolution particle simulations.
Comput Phys Commun 183(5):1073–1081

 10. Balzer M (2009) Capacity-constrained Voronoi tessellations.
https:// github. com/ micha elbal zer/ ccvt

 11. Balzer M, Schlömer T, Deussen O (2009) Capacity-constrained
point distributions: a variant of lloyd’s method. In ACM SIG-
GRAPH 2009 Papers, SIGGRAPH ’09, New York, NY, USA,
Association for Computing Machinery

 12. Band S, Gissler C, Teschner M (2020) Compressed neighbour
lists for SPH. Comput Graph Forum 39(1):531–542

 13. Bangerth W, Kim I, Sheen D, Yim J (2017) On hanging node
constraints for nonconforming finite elements using the Doug-
las–Santos–Sheen-ye element as an example. SIAM J Numer
Anal 55(4):1719–1739

 14. Bašić J, Degiuli N, Ban D (2018) A class of renormalised
meshless laplacians for boundary value problems. J Comput
Phys 354:269–287

 15. Bašić J, Degiuli N, Šime Malenica, Ban D (2020) Lagrangian
finite-difference method for predicting green water loadings.
Ocean Eng 209:107533

 16. Bašić J, Degiuli N, Blagojević B, Ban D (2022) Lagrangian dif-
ferencing dynamics for incompressible flows. J Comput Phys
462:111198

 17. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin
methods. Int J Numer Methods Eng 37(2):229–256

 18. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P
(1996) Meshless methods: an overview and recent develop-
ments. Comput Methods Appl Mech Eng 139(1):3–47

 19. Benito J, Urena F, Gavete L, Alvarez R (2003) An H-adaptive
method in the generalized finite differences. Comput Methods
Appl Mech Eng 192(5–6):735–759

 20. Bharadwaj A, Ghosh S (2020) Data reconstruction at surface
in immersed-boundary methods. Comput Fluids 196:104236

 21. Borodachov SV, Hardin DP, Saff EB (2019) Discrete energy
on rectifiable sets. Springer, New York

 22. Botsch M, Kobbelt L, Pauly M, Alliez P, Lévy B (2010) Poly-
gon mesh processing. CRC Press, Boca Raton

 23. Bourantas G, Mountris K, Loukopoulos V, Lavier L, Joldes G,
Wittek A, Miller K (2018) Strong-form approach to elasticity:
hybrid finite difference-meshless collocation method (fdmcm).
Appl Math Model 57:316–338

 24. Bourantas GC, Zwick BF, Joldes GR, Loukopoulos VC, Tavner
AC, Wittek A, Miller K (2019) An explicit meshless point col-
location solver for incompressible Navier–Stokes equations.
Fluids 4(3):164

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14429/dsj.60.583
https://github.com/michaelbalzer/ccvt

911Point Cloud Generation for Meshfree Methods: An Overview

1 3

 25. Brauchart JS, Grabner PJ (2015) Distributing many points
on spheres: minimal energy and designs. J Complex
31(3):293–326

 26. Bridson R (2007) Fast Poisson disk sampling in arbitrary dimen-
sions. SIGGRAPH Sketches 10:1278780–1278807

 27. Calvo N (2005) Generación de mallas tridimensionales por méto-
dos duales. PhD thesis, Universidad Nacional del Litoral

 28. Cavoretto R, De Rossi A (2020) A two-stage adaptive scheme
based on rbf collocation for solving elliptic pdes. Comput Math
Appl 79(11):3206–3222

 29. Chen M, Ling L (2020) Extrinsic meshless collocation methods
for PDEs on manifolds. SIAM J Numer Anal 58(2):988–1007

 30. Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: pro-
gress made after 20 years. J Eng Mech 143(4):04017001

 31. Cheng S-W, Dey TK, Shewchuk J (2012) Delaunay mesh gen-
eration. CRC Press, Boca Raton

 32. Colagrossi A, Bouscasse B, Antuono M, Marrone S (2012)
Particle packing algorithm for SPH schemes. Comput Phys
Commun 183(8):1641–1653

 33. Community BO (2018) Blender—a 3D modelling and render-
ing package. Blender Foundation, Stichting Blender Founda-
tion, Amsterdam

 34. Davydov O (2020) mFDlab: a laboratory for meshless finite
difference (mFD) methods. https:// bitbu cket. org/ meshl essFD/
mfdlab

 35. Davydov O, Oanh DT (2011) Adaptive meshless cen-
tres and RBF stencils for Poisson equation. J Comput Phys
230:287–304

 36. Davydov O, Safarpoor M (2021) A meshless finite difference
method for elliptic interface problems based on pivoted QR
decomposition. Appl Numer Math 161:489–509

 37. Davydov O, Schaback R (2018) Minimal numerical differentia-
tion formulas. Numer Math 140(3):555–592

 38. De Marchi S, Piazzon F, Sommariva A, Vianello M (2015) Poly-
nomial meshes: computation and approximation. In Proceedings
of the 15th international conference on computational and math-
ematical methods in science and engineering, Citese. pp 414–425

 39. Dick J, Kuo FY, Sloan IH (2013) High-dimensional integration:
the quasi-Monte Carlo way. Acta Numer 22:133–288

 40. Diehl S, Rockefeller G, Fryer CL, Riethmiller D, Statler TS
(2015) Generating optimal initial conditions for smoothed parti-
cle hydrodynamics simulations. Publications of the Astronomical
Society of Australia, 32

 41. Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC
(2011) Neighbour lists in smoothed particle hydrodynamics. Int
J Numer Meth Fluids 67(12):2026–2042

 42. Driscoll TA, Heryudono AR (2007) Adaptive residual subsam-
pling methods for radial basis function interpolation and colloca-
tion problems. Comput Math Appl 53(6):927–939

 43. Drumm C, Tiwari S, Kuhnert J, Bart H-J (2008) Finite pointset
method for simulation of the liquid–liquid flow field in an extrac-
tor. Comput Chem Eng 32(12):2946–2957

 44. Du Q, Gunzburger M, Ju L (2002) Meshfree, probabilistic deter-
mination of point sets and support regions for meshless comput-
ing. Comput Methods Appl Mech Eng 191(13):1349–1366

 45. Duarte CA, Oden JT (1996) An HP adaptive method using
clouds. Comput Methods Appl Mech Eng 139(1–4):237–262

 46. Duh U, Kosec G, Slak J (2021) Fast variable density node genera-
tion on parametric surfaces with application to mesh-free meth-
ods. SIAM J Sci Comput 43(2):A980–A1000

 47. Dunlap RA (2018) Crystalline structure. Novel microstructures
for solids. Morgan Claypool Publishers, Williston, pp 2053–2571

 48. Dyn N, Iske A, Wendland H (2008) Meshfree thinning of 3d
point clouds. Found Comput Math 8(4):409–425

 49. Ebrahimnejad M, Fallah N, Khoei A (2015) Adaptive refinement
in the meshless finite volume method for elasticity problems.
Comput Math Appl 69(12):1420–1443

 50. Edelsbrunner H (2001) Geometry and topology for mesh genera-
tion. Cambridge University Press, Cambridge

 51. Ern A, Guermond J-L (2013) Theory and practice of finite ele-
ments, vol 159. Springer, New York

 52. Fang J, Parriaux A (2008) A regularized Lagrangian finite point
method for the simulation of incompressible viscous flows. J
Comput Phys 227(20):8894–8908

 53. Farrell P, Gillow K, Wendland H (2017) Multilevel interpo-
lation of divergence-free vector fields. IMA J Numer Anal
37(1):332–353

 54. Fasshauer GE (1999) Solving differential equations with radial
basis functions: multilevel methods and smoothing. Adv Comput
Math 11(2–3):139–159

 55. Fasshauer GE (2007) Meshfree approximation methods with
MATLAB, vol 6. World Scientific, Singapore

 56. Feng YT, Han K, Owen DRJ (2003) Filling domains with
disks: an advancing front approach. Int J Numer Meth Eng
56(5):699–713

 57. Floater MS, Iske A (1998) Thinning algorithms for scattered data
interpolation. BIT Numer Math 38(4):705–720

 58. Flowers P, Theopold K, Langley R, Robinson W (2019) Chem-
istry 2e. Rice University, Houston

 59. Fornberg B, Flyer N (2015) Fast generation of 2-d node distri-
butions for mesh-free pde discretizations. Comput Math Appl
69(7):531–544

 60. Fornberg B, Flyer N (2015) A primer on radial basis functions
with applications to the geosciences. Society for Industrial and
Applied Mathematics, Philadelphia

 61. Förster P U (2014) Turbulence in SPH. Bachelor’s thesis, Lud-
wig–Maximilians–University Munich

 62. Fraunhofer Society. MESHFREE. https:// www. meshf ree. eu
 63. Frey PJ, George P-L (2008) Mesh generation: application to finite

elements. Wiley, Hoboken
 64. Fries T-P, Matthies HG (2004) Classification and overview of

meshfree methods. Informatik-Berichte der Technischen Univer-
sität Braunschweig, 2003-03

 65. Fu L, Ji Z (2019) An optimal particle setup method with Cen-
troidal Voronoi Particle dynamics. Comput Phys Commun
234:72–92

 66. Fuselier EJ, Wright GB (2013) A high-order kernel method for
diffusion and reaction-diffusion equations on surfaces. J Sci
Comput 56(3):535–565

 67. Gavete L, Urena Benito J (2016) Generalized finite differences
for solving 3D elliptic and parabolic equations. Appl Math Model
40(2):955–965

 68. Gavete L, Gavete M, Benito J (2003) Improvements of general-
ized finite difference method and comparison with other mesh-
less method. Appl Math Model 27(10):831–847

 69. Gerace S, Erhart K, Kassab A, Divo E (2017) A model-integrated
localized collocation meshless method (mims). Comput Assist
Methods Eng Sci 20(3):207–225

 70. Geuzaine C, Remacle J-F (2009) Gmsh: a 3-d finite element mesh
generator with built-in pre- and post-processing facilities. Int J
Numer Methods Eng 79(11):1309–1331

 71. Ghoneim A (2015) A meshfree interface-finite element method
for modelling isothermal solutal melting and solidification in
binary systems. Finite Elem Anal Des 95:20–41

 72. Goyal VK, Huertas CA, Vasko TJ (2013) Smooth particle hydro-
dynamics for bird-strike analysis using ls-dyna. Am Trans Eng
Appl Sci 2(2):83–107

 73. Griebel M, Schweitzer MA (2002) A particle-partition of
unity method-part III: a multilevel solver. SIAM J Sci Comput
24(2):377–409

https://bitbucket.org/meshlessFD/mfdlab
https://bitbucket.org/meshlessFD/mfdlab
https://www.meshfree.eu

912 P. Suchde et al.

1 3

 74. Gross B, Trask N, Kuberry P, Atzberger P (2020) Meshfree meth-
ods on manifolds for hydrodynamic flows on curved surfaces: a
generalized moving least-squares (GMLS) approach. J Comput
Phys 409:109340

 75. Gu Y, Wang L, Chen W, Zhang C, He X (2017) Application of
the meshless generalized finite difference method to inverse heat
source problems. Int J Heat Mass Transf 108:721–729

 76. Halton JH (1964) Algorithm 247: radical-inverse quasi-random
point sequence. Commun ACM 7(12):701–702

 77. Harlow FH (1964) The particle-in-cell computing method for
fluid dynamics. Methods Comput Phys 3:319–343

 78. Heft AI, Indinger T, Adams NA (2012) Introduction of a new
realistic generic car model for aerodynamic investigations. Tech-
nical report, SAE Technical Paper

 79. Ho HP, Chen Y, Liu H, Shi P (2005) Level set active contours
on unstructured point cloud. In 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’05), IEEE. vol 2, pp. 655–662

 80. Holmes DW, Williams JR, Tilke P, Leonardi CR (2016) Char-
acterizing flow in oil reservoir rock using SPH: absolute perme-
ability. Comput Part Mech 3(2):141–154

 81. Horton A, Wittek A, Joldes GR, Miller K (2010) A meshless total
Lagrangian explicit dynamics algorithm for surgical simulation.
Int J Numer Methods Biomed Eng 26(8):977–998

 82. Huang T-H, Wei H, Chen J-S, Hillman MC (2020) Rkpm2d: an
open-source implementation of nodally integrated reproducing
kernel particle method for solving partial differential equations.
Comput Particle Mech 7(2):393–433

 83. Idelsohn SR, Onate E (2006) To mesh or not to mesh. That is the
question... Comput Methods Appl Mech Eng 195:4681–4696

 84. Idelsohn S, Oñate E, Pin FD (2004) The particle finite ele-
ment method: a powerful tool to solve incompressible flows
with free-surfaces and breaking waves. Int J Numer Meth Eng
61(7):964–989

 85. Jacquemin T, Tomar S, Agathos K, Mohseni-Mofidi S, Bordas
SP (2020) Taylor-series expansion based numerical methods:
a primer, performance benchmarking and new approaches for
problems with non-smooth solutions. Arch Comput Methods Eng
27(5):1465–1513

 86. Jaworska I (2019) Application of the multipoint meshless fdm
to chosen demanding problems. In AIP Conference Proceedings,
vol 2078, p 020071. AIP Publishing LLC

 87. Jia Y, Anitescu C, Zhang YJ, Rabczuk T (2019) An adaptive
isogeometric analysis collocation method with a recovery-based
error estimator. Comput Methods Appl Mech Eng 345:52–74

 88. Jožef Stefan Institute. Medusa. https:// gitlab. com/ e62Lab/ medusa
 89. Kaennakham S, Chuathong N (2019) An automatic node-adap-

tive scheme applied with a RBF-collocation meshless method.
Appl Math Comput 348:102–125

 90. Kim H, Atluri S (2000) Arbitrary placement of secondary nodes,
and error control, in the meshless local Petrov–Galerkin (MLPG)
method. CMES 1(3):11–30

 91. Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libmesh:
a c++ library for parallel adaptive mesh refinement/coarsening
simulations. Eng Comput 22(3):237–254

 92. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci
Comput 23(1):193–218

 93. Kumar S, Danas K, Kochmann DM (2019) Enhanced local max-
imum-entropy approximation for stable meshfree simulations.
Comput Methods Appl Mech Eng 344:858–886

 94. Kunc O, Fritzen F (2019) Generation of energy-minimizing point
sets on spheres and their application in mesh-free interpolation
and differentiation. Adv Comput Math 45(5):3021–3056

 95. Kwan-yu Chiu E, Wang Q, Hu R, Jameson A (2012) A conserva-
tive mesh-free scheme and generalized framework for conserva-
tion laws. SIAM J Sci Comput 34(6):A2896–A2916

 96. Larsson E, Shcherbakov V, Heryudono A (2017) A least squares
radial basis function partition of unity method for solving PDES.
SIAM J Sci Comput 39(6):A2538–A2563

 97. Lee CK (2000) A new finite point generation scheme using met-
ric specifications. Int J Numer Meth Eng 48(10):1423–1444

 98. Lee CK, Shuai Y (2007) An automatic adaptive refinement pro-
cedure for the reproducing kernel particle method part II: adap-
tive refinement. Comput Mech 40(3):415–427

 99. Lee C, Zhou C (2004) On error estimation and adaptive refine-
ment for element free Galerkin method: part II: adaptive refine-
ment. Comput Struct 82(4):429–443

 100. Leung S, Zhao H (2009) A grid based particle method for moving
interface problems. J Comput Phys 228(8):2993–3024

 101. Li X-Y, Teng X-Y, Ungor A (2000) Point placement for mesh-
less methods using sphere packing and advancing front methods.
ICCES’00, Los Angeles, CA

 102. Li X, Teng S, Ungör A (2000) Generating a good quality point
set for the meshless methods. Comput Model Eng Sci (CMES)
1(1):10–17

 103. Liang J, Zhao H (2013) Solving partial differential equations on
point clouds. SIAM J Sci Comput 35(3):A1461–A1486

 104. Lin Q, Rokne J (2006) Construction and analysis of meshless
finite difference methods. Comput Mech 37(3):232–248

 105. Liszka T, Orkisz J (1980) The finite difference method at arbi-
trary irregular grids and its application in applied mechanics.
Comput Struct 11(1–2):83–95

 106. Liu G-R (2009) Meshfree methods: moving beyond the finite
element method. CRC Press, Boca Raton

 107. Liu G-R, Gu Y-T (2005) An introduction to meshfree methods
and their programming. Springer, New York

 108. Liu T, Platte RB (2021) Node generation for RBF-FD methods
by QR factorization. Mathematics 9(16):1845

 109. Liu M, Liu G, Lam K (2003) Coupling meshfree particle method
with molecular dynamics novel approach for multiscale simula-
tions. In Advances In Meshfree And X-Fem Methods. World
Scientific. pp 211–216

 110. Liu Y, Wang W, Lévy B, Sun F, Yan D-M, Lu L, Yang C (2009)
On centroidal voronoi tessellation-energy smoothness and fast
computation. ACM Trans Graph (ToG) 28(4):1–17

 111. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans
Inf Theory 28(2):129–137

 112. Lo SH (1985) A new mesh generation scheme for arbitrary planar
domains. Int J Numer Meth Eng 21(8):1403–1426

 113. Lo DS (2014) Finite element mesh generation. CRC Press, Boca
Raton

 114. Löhner R (1996) Progress in grid generation via the advancing
front technique. Eng Comput 12(3–4):186–210

 115. Lohner R, Onate E (1998) An advancing front point generation
technique. Commun Numer Methods Eng 14(12):1097–1108

 116. Löhner R, Onate E (2004) A general advancing front technique
for filling space with arbitrary objects. Int J Numer Methods Eng
61(12):1977–1991

 117. Löhner R, Onate E (2009) An advancing front technique for fill-
ing space with arbitrary separated objects. Int J Numer Methods
Eng 78(13):1618–1630

 118. Löhner R, Parikh P (1988) Generation of three-dimensional
unstructured grids by the advancing-front method. Int J Numer
Meth Fluids 8(10):1135–1149

 119. Löhner R, Sacco C, Onate E, Idelsohn S (2002) A finite point
method for compressible flow. Int J Numer Methods Eng
53(8):1765–1779

 120. Lorensen WE, Cline HE (1987) Marching cubes: a high resolu-
tion 3d surface construction algorithm. ACM SIGGRAPH Com-
put Graph 21(4):163–169

https://gitlab.com/e62Lab/medusa

913Point Cloud Generation for Meshfree Methods: An Overview

1 3

 121. Lukyanov A (2019) Meshless numerical methods applied to mul-
tiphysics and multiscale problems. PhD thesis, Delft University
of Technology

 122. Ma Z, Wang H, Pu S (2014) GPU computing of compressible
flow problems by a meshless method with space-filling curves. J
Comput Phys 263:113–135

 123. Matuttis H-G, Chen J (2014) Understanding the discrete element
method: simulation of non-spherical particles for granular and
multi-body systems. Wiley, Hoboken

 124. Michel I, Seifarth T, Kuhnert J, Suchde P (2020) A meshfree gen-
eralized finite difference method for solution mining processes.
Comput Particle Mech 18:1–14

 125. Milewski S (2017) Generate nodes mesh. https:// www. cce. pk.
edu. pl/ slawek/ gener ate_ nodes_ mesh. zip

 126. Milewski S (2017) Development of simple effective cloud of
nodes and triangular mesh generators for meshless and element-
based analyses—implementation in Matlab. Comput Assist
Methods Eng Sci 24(3):157–180

 127. Mirzaei D, Schaback R, Dehghan M (2012) On generalized
moving least squares with diffuse derivatives. IMA J Numer
Anal 32(3):983–1000

 128. Mishra P (2019) NodeLab. https:// github. com/ panka jkmis hra/
NodeL ab

 129. Mishra P (2019) NodeLab: a MATLAB package for meshfree
node-generation and adaptive refinement. J Open Source Softw
4(40):1173

 130. Mitra NJ, Nguyen A (2003) Estimating surface normals in
noisy point cloud data. In Proceedings of the nineteenth annual
symposium on Computational geometry, pp 322–328

 131. Mokhtaram M, Noor MM, Abd Nazir MJ, Abidin AZ, Yassin
AM (2020) Enhanced meshfree rpim with nurbs basis function
for analysis of irregular boundary domain. Malays J Civil Eng
32(1):1–8

 132. Munikrishna N (2007) On viscous flux discretization pro-
cedures for finite volume and meshless solvers. PhD thesis,
Indian Institute of Science, Bangalore

 133. Negi P, Ramachandran P (2021) Algorithms for uniform parti-
cle initialization in domains with complex boundaries. Comput
Phys Commun 265:108008

 134. Negi P, Ramachandran P (2019) Algorithms for uniform
particle initialization in domains with complex boundaries.
arXiv:1910.07898v3

 135. Negi P, Ramachandran P (2019) SPHGeom. https:// gitlab. com/
pypr/ sph_ geom

 136. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless
methods: a review and computer implementation aspects. Math
Comput Simul 79(3):763–813

 137. Nguyen-Van-Phai (1982) Automatic mesh generation with tet-
rahedron elements. Int J Numer Methods Eng 18(2):273–289

 138. Nie Y, Zhang W, Liu Y, Wang L (2010) A node placement
method with high quality for mesh generation. IOP Conf Ser
10:012218

 139. Nie Y, Zhang W, Qi N, Li Y (2014) Parallel node place-
ment method by bubble simulation. Comput Phys Commun
185(3):798–808

 140. NOGRID GmbH. NOGRID. https:// www. nogrid. com
 141. Nomeritae N, Bui HH, Daly E (2018) Modeling transitions

between free surface and pressurized flow with smoothed par-
ticle hydrodynamics. J Hydraul Eng 144(5):04018012

 142. Norouzi HR, Zarghami R, Sotudeh-Gharebagh R, Mostoufi N
(2016) Coupled CFD-DEM modeling: formulation, implemen-
tation and application to multiphase flows. Wiley, Hoboken

 143. Oanh DT, Davydov O, Phu HX (2017) Adaptive RBF-FD
method for elliptic problems with point singularities in 2D.
Appl Math Comput 313:474–497

 144. Obeidat A, Bordas SPA (2018) Three-dimensional remeshed
smoothed particle hydrodynamics for the simulation of iso-
tropic turbulence. Int J Numer Meth Fluids 86(1):1–19

 145. Obeidat A, Bordas SP (2019) An implicit boundary approach
for viscous compressible high reynolds flows using a hybrid
remeshed particle hydrodynamics method. J Comput Phys
391:347–364

 146. Onate E, Idelsohn S, Zienkiewicz O, Taylor R (1996) A finite
point method in computational mechanics, applications to
convective transport and fluid flow. Int J Numer Methods Eng
39(22):3839–3866

 147. Onderik J, Durikovic R (2008) Efficient neighbor search
for particle-based fluids. J Appl Math Stat Inform (JAMSI)
4(1):29–43

 148. Ortega E, Onate E, Idelsohn S, Flores R (2013) A meshless
finite point method for three-dimensional analysis of compress-
ible flow problems involving moving boundaries and adaptiv-
ity. Int J Numer Methods Fluids 73(4):323–343

 149. Ortega E, Onate E, Idelsohn S, Flores R (2014) Comparative
accuracy and performance assessment of the finite point method
in compressible flow problems. Comput Fluids 89:53–65

 150. O’Sullivan C (2011) Particulate discrete element modelling: a
geomechanics perspective. CRC Press, Boca Raton

 151. Owen SJ (1998) A survey of unstructured mesh generation tech-
nology. IMR 239:267

 152. Pahar G, Dhar A (2016) A robust volume conservative diver-
gence-free ISPH framework for free-surface flow problems. Adv
Water Resour 96:423–437

 153. Pepper DW, Wang X, Carrington DB (2013) A meshless method
for modeling convective heat transfer. J Heat Transf 135(1):1–7

 154. Peraire J, Vahdati M, Morgan K, Zienkiewicz O (1987) Adaptive
remeshing for compressible flow computations. J Comput Phys
72(2):449–466

 155. Perazzo F, Löhner R, Perez-Pozo L (2008) Adaptive meth-
odology for meshless finite point method. Adv Eng Softw
39(3):156–166

 156. Persson P-O, Strang G (2004) A simple mesh generator in MAT-
LAB. SIAM Rev 46(2):329–345

 157. Petras A, Ling L, Piret C, Ruuth S (2019) A least-squares implicit
rbf-fd closest point method and applications to pdes on moving
surfaces. J Comput Phys 381:146–161

 158. Piazzon F, Sommariva A, Vianello M (2017) Caratheodory–Tch-
akaloff subsampling. Dolomites Res Notes Approx 10(1):82

 159. Piegl L, Tiller W (1996) The NURBS book. Springer, Cham
 160. Praveen C, Deshpande SM (2007) Kinetic meshless method for

compressible flows. Int J Numer Meth Fluids 55(11):1059–1089
 161. Praveen C, Ghosh A, Deshpande S (2009) Positivity preserva-

tion, stencil selection and applications of LSKUM to 3-d inviscid
flows. Comput Fluids 38(8):1481–1494

 162. Qi J, Hu W, Guo Z (2019) Feature preserving and uniformity-
controllable point cloud simplification on graph. In 2019 IEEE
international conference on multimedia and expo (ICME), IEEE.
pp 284–289

 163. Recarey C, Pérez I, Roselló R, Muniz M, Hernández E, Giraldo
R, Onate E (2019) Advances in particle packing algorithms for
generating the medium in the discrete element method. Comput
Methods Appl Mech Eng 345:336–362

 164. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peri-
dynamics. Int J Numer Meth Eng 108(12):1451–1476

 165. Reséndiz-Flores E, Kuhnert J, Saucedo-Zendejo F (2018) Appli-
cation of a generalized finite difference method to mould filling
process. Eur J Appl Math 29(3):450–469

 166. Rhee J, Huh J, Kim K, Jung S (2015) Three dimensional meshless
point generation technique for complex geometry. In World Con-
gress on aeronautics, nano, bio, robotics, and energy. Incheon,
Korea

https://www.cce.pk.edu.pl/%20slawek/generate_nodes_mesh.zip
https://www.cce.pk.edu.pl/%20slawek/generate_nodes_mesh.zip
https://github.com/pankajkmishra/NodeLab
https://github.com/pankajkmishra/NodeLab
https://gitlab.com/pypr/sph_geom
https://gitlab.com/pypr/sph_geom
https://www.nogrid.com

914 P. Suchde et al.

1 3

 167. Rhee JS, Huh JY, Han D, Kim KH, Jung SY (2016) A devel-
opment of meshless point generation technique for analysis of
the unsteady flow around the multibody. In 30th congress of the
international council of the aeronautical sciences, Korea

 168. Roque C, Madeira J, Ferreira A (2014) Node adaptation for
global collocation with radial basis functions using direct multi-
search for multiobjective optimization. Eng Anal Boundary Elem
39:5–14

 169. Šarler B, Vertnik R (2006) Meshfree explicit local radial basis
function collocation method for diffusion problems. Comput
Math Appl 51(8):1269–1282

 170. Saucedo-Zendejo FR (2022) A novel meshfree approach based
on the finite pointset method for linear elasticity problems. Eng
Anal Boundary Elem 136:172–185

 171. Schaback R (2015) A computational tool for comparing all linear
PDE solvers. Optimal methods are meshless. Adv Comput Math
41(2):333–355

 172. Schaback R (2016) All well-posed problems have uni-
formly stable and convergent discretizations. Numer Math
132(3):597–630

 173. Schöberl J (1997) NETGEN an advancing front 2d/3d-mesh gen-
erator based on abstract rules. Comput Vis Sci 1(1):41–52

 174. Schweitzer MA (2008) Meshfree and generalized finite element
methods. Habilitation, Institute for Numerical Simulation, Uni-
versity of Bonn. http:// wissr ech. ins. uni- bonn. de/ resea rch/ pub/
schwe itz/ schwe itzer_ habil itati on. pdf

 175. Seibold B (2006) M-Matrices in Meshless Finite Difference
Methods. PhD thesis, Kaiserslautern University

 176. Seidel T, König C, Schäfer M, Ostermann I, Biedert T, Hietel
D (2014) Intuitive visualization of transient groundwater flow.
Comput Geosci 67:173–179

 177. Seleson P, Littlewood DJ (2018) Numerical tools for improved
convergence of meshfree peridynamic discretizations. In: Voyi-
adjis GZ (ed) Handbook of nonlocal continuum mechanics for
materials and structures. Springer International Publishing,
Cham, pp 1–27

 178. Sethian JA (1996) A fast marching level set method for mono-
tonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595

 179. Shankar V, Kirby R, Fogelson A (2018) Robust node generation
for mesh-free discretizations on irregular domains and surfaces.
SIAM J Sci Comput 40(4):A2584–A2608

 180. Shewchuk JR (2002) What is a good linear finite element? - inter-
polation, conditioning, anisotropy, and quality measures. Techni-
cal report, In Proc. of the 11th International Meshing Roundtable

 181. Shi B, Zhang Y, Zhang W (2019) Run-out of the 2015 shenz-
hen landslide using the material point method with the softening
model. Bull Eng Geol Env 78(2):1225–1236

 182. Silling SA, Askari E (2005) A meshfree method based on
the peridynamic model of solid mechanics. Comput Struct
83(17–18):1526–1535

 183. Slak J, Kosec G (2019) Adaptive radial basis function-generated
finite differences method for contact problems. Int J Numer Meth
Eng 119(7):661–686

 184. Slak J, Kosec G (2019) On generation of node distribu-
tions for meshless PDE discretizations. SIAM J Sci Comput
41(5):A3202–A3229

 185. Smirnov A, Zhang H (2008) Physically based node distributions
for mesh generation. Int J Model Simul 28(2):182–187

 186. Sobol I (1967) On the distribution of points in a cube and the
approximate evaluation of integrals. USSR Comput Math Math
Phys 7(4):86–112

 187. Sokolov A, Davydov O, Kuzmin D, Westermann A, Turek S
(2019) A flux-corrected RBF-FD method for convection domi-
nated problems in domains and on manifolds. J Numer Math
27(4):253–269

 188. Sokolov A, Davydov O, Turek S (2017) Numerical study of the
RBF-FD level set based method for partial differential equa-
tions on evolving-in-time surfaces. In International workshop
on meshfree methods for partial differential equations. Springer.
pp 117–134

 189. Soleimani M (2017) Numerical simulation and experimental
validation of biofilm formation. PhD thesis, Institut für Kon-
tinuumsmechanik, Gottfried Wilhelm Leibniz Universität

 190. Sommariva A, Vianello M (2009) Computing approximate
Fekete points by QR factorizations of Vandermonde matrices.
Comput Math Appl 57(8):1324–1336

 191. Sommariva A, Vianello M WAM 2D 280210. https:// www. math.
unipd. it/ alvise/ DIDAT TICA/ softw are. html

 192. Song B, Pazouki A, Pöschel T (2018) Instability of smoothed
particle hydrodynamics applied to Poiseuille flows. Comput
Math Appl 76(6):1447–1457

 193. spherepts G Wright (2015) https:// github. com/ grady wright/ spher
epts

 194. Su X, Sasaki D, Nakahashi K (2012) A hybrid scheme for the
near wall treatment of building cube method. J Fluid Sci Technol
7(2):197–208

 195. Suchde P (2018) Conservation and Accuracy in Meshfree Gen-
eralized Finite Difference Methods. PhD thesis, University of
Kaiserslautern, Germany

 196. Suchde P (2021) A meshfree Lagrangian method for flow on
manifolds. Int J Numer Meth Fluids 93(6):1871–1894

 197. Suchde P, Kuhnert J (2018) Point cloud movement for fully
Lagrangian meshfree methods. J Comput Appl Math 340:89–100

 198. Suchde P, Kuhnert J (2019) A fully Lagrangian meshfree frame-
work for PDEs on evolving surfaces. J Comput Phys 395:38–59

 199. Suchde P, Kuhnert J (2019) A meshfree generalized finite
difference method for surface PDEs. Comput Math Appl
78(8):2789–2805

 200. Suchde P, Kuhnert J, Schröder S, Klar A (2017) A flux conserv-
ing meshfree method for conservation laws. Int J Numer Meth
Eng 112(3):238–256

 201. Sulsky D, Chen Z, Schreyer H (1994) A particle method for
history-dependent materials. Comput Methods Appl Mech Eng
118(1):179–196

 202. Tapia-Fernández S, Romero I, García-Beltrán A (2017) A new
approach for the solution of the neighborhood problem in mesh-
free methods. Eng Comput 33(2):239–247

 203. Tiwari S, Kuhnert J (2003) Particle method for simulation of free
surface flows. In: Hou TY, Tadmor E (eds) Hyperbolic problems:
theory, numerics, applications:: Proceedings of the Ninth Inter-
national Conference on Hyperbolic Problems held in CalTech,
Pasadena, March 25–29, 2002. Springer, Berlin, pp 889–898

 204. Tota P, Wang Z (2007) Meshfree euler solver using local radial
basis functions for inviscid compressible flows. In 18th AIAA
computational fluid dynamics conference, p 4581

 205. Trask N, Maxey M, Hu X (2016) Compact moving least squares:
an optimization framework for generating high-order compact
meshless discretizations. J Comput Phys 326:596–611

 206. Trask N, Perego M, Bochev P (2017) A high-order staggered
meshless method for elliptic problems. SIAM J Sci Comput
39(2):A479–A502

 207. Trask N, Maxey M, Hu X (2018) A compatible high-order mesh-
less method for the stokes equations with applications to suspen-
sion flows. J Comput Phys 355:310–326

 208. Trask N, Bochev P, Perego M (2020) A conservative, consist-
ent, and scalable meshfree mimetic method. J Comput Phys
409:109187

 209. Trobec R, Kosec G, Šterk M, Šarler B (2012) Comparison of
local weak and strong form meshless methods for 2-d diffusion
equation. Eng Anal Boundary Elem 36(3):310–321

http://wissrech.ins.uni-bonn.de/research/pub/schweitz/schweitzer_habilitation.pdf
http://wissrech.ins.uni-bonn.de/research/pub/schweitz/schweitzer_habilitation.pdf
https://www.math.unipd.it/%20alvise/DIDATTICA/software.html
https://www.math.unipd.it/%20alvise/DIDATTICA/software.html
https://github.com/gradywright/spherepts
https://github.com/gradywright/spherepts

915Point Cloud Generation for Meshfree Methods: An Overview

1 3

 210. van der Sande K Node generation, 2019. https:// github. com/
kierav/ node_ gener ation

 211. van der Sande K, Fornberg B (2021) Fast variable density 3-D
node generation. SIAM J Sci Comput 43(1):A242–A257

 212. Vela Vela L, Sanchez R, Geiger J (2018) Alaric: an algorithm
for constructing arbitrarily complex initial density distributions
with low particle noise for sph/spmhd applications. Comput Phys
Commun 224:186–197

 213. Vlasiuk O, Michaels T, Flyer N, Fornberg B (2018) Fast high-
dimensional node generation with variable density. Comput Math
Appl 76(7):1739–1757

 214. von Neumann J (1951) Various techniques used in connection
with random digits. In: Householder AS, Forsythe GE, Germond
HH (eds) Monte Carlo method, chapter 13, National Bureau of
standards applied mathematics series, vol 12. US Government
Printing Office, Washington, pp 36–38

 215. Wang S, Zhang YO, Wu JP (2018) Lagrangian meshfree finite dif-
ference particle method with variable smoothing length for solv-
ing wave equations. Adv Mech Eng 10(7):1687814018789248

 216. Wendland H (1999) Numerical solution of variational problems
by radial basis functions. Approximation Theory IX 2:361–368

 217. Wendland H (2005) Scattered data approximation. Cambridge
University Press, Cambridge

 218. Wittek A, Joldes GR, Miller K (2019) Meshless algorithms for
computational biomechanics of the brain. In: Miller K (ed) Bio-
mechanics of the brain. Springer International Publishing, Cham,
pp 273–301

 219. Xiao Y, Dong H, Zhan H, Gu Y (2017) A new particle genera-
tion method for arbitrary 2d geometries in sph modeling. Int J
Comput Methods 14(03):1750023

 220. Yvonnet J, Coffignal G, Ryckelynck D, Lorong P, Chinesta F
(2006) A simple error indicator for meshfree methods based on
natural neighbors. Comput Struct 84(21):1301–1312

 221. Zamolo R, Nobile E (2018) Two algorithms for fast 2d node
generation: Application to rbf meshless discretization of dif-
fusion problems and image halftoning. Comput Math Appl
75(12):4305–4321

 222. Zamolo R, Nobile E, Šarler B (2019) Novel multilevel techniques
for convergence acceleration in the solution of systems of equa-
tions arising from rbf-fd meshless discretizations. J Comput Phys
392:311–334

 223. Zhang H, Smirnov AV (2005) Node placement for triangular
mesh generation by Monte Carlo simulation. Int J Numer Meth
Eng 64(7):973–989

 224. Zhao X, Conley R, Ray N, Mahadevan VS, Jiao X (2015) Confor-
mal and non-conformal adaptive mesh refinement with hierarchi-
cal array-based half-facet data structures. Proc Eng 124:304–316

 225. Zhou D, Seibold B, Shirokoff D, Chidyagwai P, Rosales RR
(2015) Meshfree finite differences for vector Poisson and pres-
sure Poisson equations with electric boundary conditions. In:
Griebel M, Schweitzer MA (eds) Meshfree methods for partial
differential equations VII. Springer International Publishing,
Cham, pp 223–246

 226. Žitňan P (2011) The collocation solution of Poisson problems
based on approximate Fekete points. Eng Anal Boundary Elem
35(3):594–599

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://github.com/kierav/node_generation
https://github.com/kierav/node_generation

	Point Cloud Generation for Meshfree Methods: An Overview
	Abstract
	1 Introduction
	2 Mesh Generation for Point Cloud Generation
	3 Cartesian Grids, Lattices, and Other Uniform Point Clouds
	4 Random and Quasi-random Points
	5 Over- and UndersamplingThinning and Filling
	5.1 Oversampling
	5.2 Undersampling

	6 Iterative Methods and Cloud Improvement
	6.1 Energy Minimization or Inter-particle Forces
	6.2 Pre-simulations

	7 Meshfree Advancing Front Methods
	7.1 Advancing the Front

	8 Discretization of Boundaries and Surfaces
	9 Comparisons and Applications
	9.1 DrivAer Car Geometry
	9.1.1 Advancing Front Point Cloud Generation
	9.1.2 Random Point Generation
	9.1.3 Uniform Point Cloud
	9.1.4 Mesh Generation

	9.2 Poisson Problem

	10 Conclusion
	Acknowledgements
	References

