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Abstract
Meshfree methods are becoming an increasingly popular alternative to mesh-based methods of numerical simulation. The 
biggest stated advantage of meshfree methods is the avoidance of generating a mesh on the computational domain. However, 
even today a surprisingly large amount of meshfree literature ironically uses the nodes of a mesh as the point set that dis-
cretizes the domain. On the other hand, already existing efficient meshfree methods to generate point clouds are apparently 
not very well known among meshfree communities, which has led to recent work redeveloping existing algorithms. In this 
paper, we present a brief overview of point cloud generation methods for domains and surfaces and discuss their features 
and challenges, in particular in the context of applicability to industry-relevant complex geometries.

1 Introduction

Most numerical methods for solving partial differential 
equations require the generation of a mesh over the com-
putational domain. Despite advances in mesh generation 
technology and computer hardware, the generation and man-
agement of meshes is often the most difficult and time con-
suming part of the simulation procedure on geometrically 
complex domains. The efficiency of mesh generation limits 
the overall accuracy, robustness and speed of the numerical 
simulation process. Moreover, high quality mesh generation 
cannot always be entirely automated, and often requires a lot 
of manual work for complicated domains [107]. Meshfree 
methods arose in the first instance in order to prevent this 
need of mesh generation. They have been widely used espe-
cially for applications where the computational domain can 
undergo rapid or huge changes in time, such as large defor-
mations and displacements. In such cases, mesh adaptation 
or regeneration has to be done automatically and may easily 
become a computational bottleneck.

As a result, over the past two decades, meshfree methods 
have become a popular alternative to mesh-based simula-
tions. The initial step of mesh generation is replaced by the 
generation of a meshfree point cloud that does not need to be 
topologically connected, unlike meshes, which is an easier 
task per se. There remains, however, a more subtle question 
whether good meshfree point clouds are much easier to gen-
erate than good meshes. Most published research articles on 
meshfree methods take this for granted and do not discuss 
how the point cloud generation should be done. Often they 
test proposed meshfree algorithms on point clouds generated 
as nodes of meshes which are obtained by a standard mesh 
generation method. This may lead to the misconception that 
point cloud generation should be as tough as mesh genera-
tion. Therefore it is important to highlight research in which 
effort has been made to introduce original meshfree point 
cloud generation methods.

A wide variety of meshfree methods have been devel-
oped, based on both weak and strong formulations of the 
underlying partial differential equations. We refer to [18, 
30, 64, 85, 136, 174] for surveys of various types of mesh-
free methods. The goal of the present paper is to cover the 
domain discretization process across the entire spectrum of 
meshfree methods, and is not restricted to any particular 
subclass of methods. For this, we define meshfree meth-
ods in a very broad sense [106], by including all methods 
in which approximations of unknown functions are deter-
mined only from the locations of a scattered set of nodes. 
This includes the so-called ‘truly meshfree’ methods which 
require no mesh, pre-defined or otherwise, but also includes 
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meshfree methods with background grids which could be 
either locally or globally defined, and could be used for post-
processing or for integrating weak forms (such that any vol-
ume or surface integration required is done independently of 
the approximation procedure [146]). We also cover particle-
based methods such as Discrete Element Methods (DEM) 
and molecular dynamics.

Among major techniques for unstructured mesh genera-
tion [63], octree and advancing front methods may serve 
as prototypes for purely meshfree versions. While mesh-
free octree-type methods have not been developed yet, the 
advancing front technique appears to be very promising. In 
fact, automated and efficient meshfree point cloud genera-
tion methods of advancing front type are successfully used 
in a few commercial meshfree codes [62, 140], especially 
in meshfree fluid solvers. However, these ideas are not very 
well known in many meshfree communities, with recent 
meshfree literature sometimes redeveloping the same tech-
niques already in use since two decades.

One difficulty for identifying methods for meshfree point 
cloud generation in the literature is the variability of the 
terminology used for this process. The largely unambiguous 
term of mesh generation has several meshfree counterparts. 
In addition to the term point cloud generation, which we 
shall use in this paper, the same has also been referred to as 
‘point cloud distribution’ or ‘initialization’ [43], ‘point gen-
eration’ [115], ‘node placement’ [138, 139], ‘node position-
ing’ [209], ‘point scattering’ [104], ‘point set generation’ or 
‘creation’ [101, 102], ‘particle setup methods’ [65], ‘particle 
packing’ or ‘sphere packing’ [150], and even ‘model genera-
tion’ [69]. In some meshfree communities like Smoothed 
Particle Hydrodynamics (SPH), where node distributions 
change with time, it is referred to as the ‘generation of ini-
tial conditions’ [40], while in Radial Basis Functions (RBF) 
based methods the term ‘node generation’ is the most com-
mon [59, 179].

In this paper, we present a brief survey of different meth-
ods used for point cloud generation in meshfree research 
and software. We also consider initial domain discretization 
procedures for time dependent problems. The generation of 
point clouds of varying spatial resolutions is also covered. 
However, methods for modification of point clouds during 
simulations, for example those used to maintain regularity of 
moving point clouds are out of scope of this paper, despite 
the overlap of techniques with point cloud generation. The 
selection of local sets of influence is not considered either.

Another question we do not touch in this paper is how to 
facilitate visualization of the results of numerical simula-
tions when they are given in the form of values on a point 
cloud. The problem of approximate evaluation of functions 
known at scattered locations in more than one variable has 
its own extensive literature, see e.g. [217].

Until recently, no open-source point cloud generators 
have been available, but this has changed in the last few 
years, so that many of the methods presented in this paper 
may be checked by the reader using open-source software. 
Milewski introduced a MATLAB point generator in two 
spatial dimensions [125, 126]. Mishra developed another 
MATLAB toolbox for two-dimensional point generators 
[128, 129], based on [59]. In the last three years, three open-
source three-dimensional point generators have been devel-
oped by Slak and Kosec [88, 184], Negi and Ramachandran 
[133, 135], and van der Sande and Fornberg [210, 211]. 
Some simple tools for point cloud generation are avail-
able with the package mFDlab for meshfree finite differ-
ence methods [34]. We note that for the present work, the 
terms point, node, and particle are equivalent, and are used 
interchangeably.

We start discussing the topic at hand with the two most 
popular methods: mesh generation for meshfree methods in 
Sect. 2, and uniform lattice structures in Sect. 3. We then 
consider random and quasi-random generators for point 
clouds in Sect. 4. In Sect. 5, we talk about the use of initially 
over- and under-sampled point clouds followed by a thin-
ning or filling procedure respectively. Section 6 discusses 
the use of iterative methods, pre-simulations and so-called 
relaxation phases. We then present advancing front tech-
niques for point cloud generation in Sect. 7. Point cloud 
discretizations for boundaries and surfaces are discussed 
in Sect. 8. In Sect. 9, we give a brief comparison between 
the different methods, discuss how they could be applied 
to complex examples and present a numerical solution to a 
Poisson problem on point clouds generated with different 
methods. A short conclusion is given in Sect. 10.

2  Mesh Generation for Point Cloud 
Generation

Across meshfree literature, it is quite common to see mesh-
free simulations that begin with mesh generation on the 
computational domain, see for example [24, 72, 82, 121, 
144, 153, 160, 219]. Then the vertices of the mesh are used 
as the global point cloud on which simulations are per-
formed. Alternatively, instead of the vertices, mesh element 
barycenters may also be used as the nodes of the desired 
point cloud. Any of the huge variety of existing mesh gener-
ating methods can be used for this. An overview of different 
mesh generators falls outside the scope of the present work, 
and we refer the reader to the books and surveys [22, 31, 
50, 63, 113, 151]. While the use of a mesh generator seem-
ingly defeats the main reason for the existence of meshfree 
methods, this can be justified in certain circumstances as 
explained below.
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First, using the nodes of a mesh as the point cloud serves 
as an easy approach for comparing the results between mesh-
free and mesh-based methods, which has naturally been an 
essential part in the validation of many meshfree techniques. 
This is especially relevant for literature that focuses on spe-
cific aspects of meshfree techniques development or on the 
numerical validation of theoretical work. Indeed, a large 
number of commercial and open-source mesh-based simu-
lation software packages exist that include mesh genera-
tors. On the other hand, there are few meshfree point cloud 
generators, commercial or open-source, none of which were 
available until recently. As a result, mesh generation for the 
creation of point clouds has the least overhead in terms of 
implementation, when compared to other point cloud gen-
eration methods.

Second, it is generally expected that the quality require-
ments of a mesh generated to create a point cloud for a 
meshfree method is much lower than when the actual 
mesh is used in the mesh-based simulation. Qualities of 
the mesh such as skewness, orthogonality, or shape regu-
larity of the elements do not play a very important role in 
order to obtain a well distributed point cloud. For example, 
since only the nodes of the mesh are being used, the pres-
ence of degenerate mesh elements can often be permitted. 
A two-dimensional example of this is illustrated in Fig. 1. 
This advantage is even more relevant in three dimensional 
domains, where even Delaunay meshes may contain near 
flat tetrahedra, referred to as slivers [31], as illustrated 
in Fig. 2. As a result, using an efficient but crude mesh 

generator, without subsequent post-processing or optimi-
zation may already significantly reduce the cost of point 
cloud generation as compared to the cost of generating a 
good mesh. That said, quantifying this advantage remains 
an open problem, in particular because the quality require-
ments on a point cloud remain unclear.

Mesh quality is pretty well understood in particular for 
the finite element method (see, for example, [51, 70, 92, 
180]), with criteria like shape regularity of elements moti-
vated in part by theoretical error bounds and confirmed in 
numerical experiments. Contrary to this, meshfree litera-
ture provides little more than a vague understanding that 
smoothly varying density of points and local regularity 
(that is, the point cloud locally looking close to optimal 
sphere packing) is advantageous. Local regularity is often 
prescribed by the minimum distance between points (often 
referred to as a ‘separation distance’), and the maximum 
radius of a ball that does not contain any points of the 
cloud (‘fill distance’), each of which could be a function of 
the point density. A few other measures for defining point 
cloud quality have also been proposed, including spatial 
disorder measures [7], energy definitions (see Sect. 6), 
optimal recovery [171], and angle uniformity measures 
[143]. These measures have been built into various point 
cloud generation algorithms. However, the impact of local 
regularity, or any other point cloud quality measure, on 
the accuracy and stability of meshfree methods has not 
been studied from either a theoretical or a computational 
perspective.

Fig. 1  An example of a 2D 
mesh (left) with near degener-
ate elements (marked in blue), 
the nodes of which produce a 
decent point cloud (right)

Fig. 2  Delaunay triangulation 
of five points in 3D with a 
sliver (left). The five points are 
nicely distributed as is clearly 
seen from a different viewpoint 
(right)
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Third, meshes may be used at some stages of the algo-
rithm or play an auxiliary role, only contributing a fraction 
of the total computational cost. Some examples:

• Construction of meshes on each part of a non-disjoint 
domain decomposition into simpler shapes for which 
meshing is cheap. If a mesh were to be used directly, 
extra work is needed at the intersecting regions. On the 
other hand, if only the nodes are being used, the union of 
the nodes of each mesh can be taken directly as the point 
cloud [4, 132, 161]. This method has also been referred 
to as chimera cloud of points [3].

• Meshfree/particle methods with background grids [17, 
84, 201, 208]. Several meshfree methods use so-called 
background grids for the computation of integrals needed 
in weak formulations. In this case, since a background 
grid generation is part of the process, the resulting mesh 
may also be used for the generation of the point cloud. 
Since the computation of integrals does not put high 
demands on the mesh quality, the cost of creating and 
maintaining background grids is low. The same also 
holds for particle-in-cell methods [77] and hybrid mesh-
free-meshed methods [71].

• Lagrangian meshfree methods [15, 196, 203, 215]. 
For these methods, the most important advantage of 
the meshfree framework is not the avoidance of creat-
ing a mesh, but rather the relative ease of incorporating 
moving Lagrangian frameworks and dealing with large 
displacements and deformations of the domain. Defor-
mations in point clouds can easily be fixed with local 
procedures [197, 198]. Thus, the meshfree equivalent of 
remeshing, which is typically a global procedure, can be 
significantly cheaper computationally. As a result, even 
if the meshing process were still used, other advantages 
of the meshfree framework are still relevant.

A mesh and, in particular, mesh connectivity information 
and other data structures created to maintain the mesh may 
also be used to facilitate various computational procedures, 
for example for efficient identification of neighbourhoods or 
boundary points, inside-outside checks and other searching 
tasks arising in meshfree algorithms. A few decades ago, 
the use of a background mesh significantly sped up these 
tasks in meshfree methods [83]. However, with the subse-
quent advent of efficient neighbour searching algorithms for 
meshfree methods (for example, [9, 12, 41, 147, 202]), this 
advantage does not seem to hold anymore.

We conclude this section by some general comments 
on meshing. Over the years many algorithms have been 
developed to handle and optimize different ingredients of 
the popular Delaunay-type meshing process that typically 
starts by discretizing the edges before a discretization of the 
faces and finally of the volume for 3D problems. The amount 

of research invested into optimizing and polishing meshing 
contributes very much to the prevalence of the mesh-based 
methods in numerical simulations. Nevertheless, very often 
the geometry is not designed considering the constraints of 
the meshing algorithm. As a result, in more complex cases 
the definition of the domain may not be appropriate for the 
desired discretization (e.g. element size, shape, density). The 
geometry may include nodes, edges or surfaces the user does 
not want to include in the final discretization. However, they 
end up in the mesh due to the inherent workflow of Delaunay 
meshing. Another aspect which limits mesh generators is 
the above mentioned goal of producing high quality ele-
ments. The meshing algorithms use various quality metrics 
to optimize the mesh in the course of the generation process. 
However, for more complex problems, the mesh generation 
may fail if some metrics cannot be met. Therefore, for com-
plex or poorly defined geometries, extensive additional work 
may be needed to achieve a discretization with desired qual-
ity. We report below at the end of Sect. 9.1 about our own 
experience of meshing a complex geometry.

3  Cartesian Grids, Lattices, and Other 
Uniform Point Clouds

Beyond the use of the nodes of an unstructured mesh, the 
most popular method to generate point clouds in meshfree 
literature is the use of a regular lattice structure. Several dif-
ferent lattice structures can be found in the literature.

• Cartesian grids: The most common version of this is a 
Cartesian grid with uniformly distributed points in each 
dimension, giving a uniform cubic lattice [34, 36, 89, 93, 
141, 145, 164, 181].

In order to reduce the effect of preferred coordinate direc-
tions inherent in Cartesian grids, several other lattice based 
distributions listed below have been used, which are inspired 
by various crystal lattice structures [47, 58].

• Body centered cubic (bcc) lattice This is created by start-
ing with a regular cubic lattice and adding nodes at the 
center of each cube, and is equivalent to a uniform stag-
gered Cartesian grid. In two dimensions, the bcc lattice 
is the same as one formed by considering only element 
centers of a hexagonal tiling. These have been used for 
point cloud generation, for example, in [152].

• Cubic closed pack (ccp) lattice The ccp lattice is cre-
ated by starting with a regular cubic lattice and adding 
nodes at the face centers of each cube [109, 189]. It has 
also been called the face centered cubic (fcc or cF) close 
packing.
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• Hexagonally closed-packed (hcp) lattice The hcp lattice 
is based an arrangement of nodes in a hexagonal crys-
tal, and has been used to create point clouds for many 
particle-based simulations [61, 80]. It is also used in 
two-dimensional pseudospectral and generalized finite 
difference methods based on radial basis functions [60].

We refer to Diehl et al. [40] for an overview of such crystal 
lattice structures in the SPH context. A Cartesian grid and a 
hexagonal hcp grid are illustrated in Fig. 3 for a two-dimen-
sional domain. In Fig. 4, we show a Cartesian grid compared 
to a bcc lattice for a three-dimensional domain.

 
Such lattice based point clouds are typically created in 

the bounding box of the domain. Points outside the domain 
are then removed. For non-trivial domains, the boundary 
configuration is obtained in one of three ways:

• The boundary is represented simply by the closest lattice 
points, as a “staircase” boundary [177, 182].

• Lattice points near the boundary are orthogonally pro-
jected to the boundary [34, 36].

• The boundary discretization is computed independently 
of the lattice. Details on different methods for this are 
provided in Sect. 8. The union of these boundary points 
and the lattice points in the interior of the domain form 

the point cloud [5, 23, 75, 95]. Optionally, lattice points 
close to the boundary are deleted [34, 36, 126].

The first two of these cases are illustrated in Fig. 5, with 
a Cartesian grid for the interior points. An independently 
created boundary discretization is seen in Fig. 3. This fig-
ure also illustrate the fact that this method normally leads 
to high irregularity of point clouds near boundaries, which 
may affect the quality of simulations. To tackle this, cloud 
improvement methods may be applied as in Sects. 5 and 6, 
which however destroys the grid structure near the boundary. 
Alternatively, points from a finer grid could be added near 
the boundary [42].

For complex domains, the identification and deletion of 
points outside the computational domain can make these 
methods more expensive than they look. Inside–outside 
checks may be cheap in level set type methods where the 
boundary is given by an implicit function, but they can be 
quite intensive with complex CAD structures or intricate 
surface meshes defining the boundary.

A single Cartesian grid does not provide spatially vary-
ing point densities. To achieve this, over- or undersampling 
may be used as discussed in Sect. 5. Alternatively, block 
structured Cartesian lattices [1] consisting of blocks with 
different spacings may be employed, but we have not seen 
this in the meshfree literature.

Fig. 3  Point clouds based on 
a Cartesian grid (left) and 
hexagonal grid (right) in a two-
dimensional domain

Fig. 4  Point clouds based on 
a Cartesian grid (left) and a 
bcc lattice (right) in a three-
dimensional domain. The 
colouring according to x is only 
to enhance visualization
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Some papers combine a Cartesian grid with additional 
point clouds that conform to specific boundaries. These 
methods start with a domain decomposition. For parts of 
the domain of particular interest, such as the domain around 
an enclosed boundary, a point cloud is constructed based 
on the shape of that boundary [166, 167]. For example, 
in [207], concentric circles are created around a circular 
enclosed boundary, and a Cartesian grid is used elsewhere 
in the domain.

Curvilinear lattices used in the structured grid generation 
do not seem to have appeared in meshfree literature except 
of very simple model cases like radially symmetric grids 
for an annulus.

The reasons for the use of Cartesian grids and other lat-
tice structures largely overlap with those listed in the previ-
ous section. Each of the lattice based structures are among 
the simplest to implement, which makes the use of these 
methods quite popular for testing various meshfree tech-
niques. However, they do not seem to have been developed 
enough to be used in complex applications.

4  Random and Quasi‑random Points

Another frequently seen method to generate point clouds 
is to use random number generators. This can be done in 
several ways.

• In meshfree literature, one of the most common meth-
ods to create non-uniformly distributed point clouds is 

by performing random perturbations of a point distribu-
tion given by any of the methods of Sect. 3 [14, 16, 52, 
67, 126, 169, 204–206, 208, 209].

  An example of this is shown in Fig. 6 for a two-
dimensional domain, and in Fig. 7 for a three-dimen-
sional domain. For both examples, a uniform grid is 
considered on a square (cube in 3D), with uniform 
spacing � in each direction. To create the perturbed 
point cloud, each point in the uniform grids is per-
turbed using a random number generator. A point 
indexed i at location �i = (xi, yi, zi) is perturbed as 

 where rand(−1, 1) are pseudo-randomly generated num-
bers in the range [−1, 1] . Limiting the perturbation by 
a � for a perturbation width a < 0.5 ensures that there 
is a minimum distance of (1 − 2a) � between every pair 
of points in the resultant point cloud. In Fig. 6, we illus-
trate the impact of the perturbation width a, by perturb-
ing a uniform point cloud on a square with a = 0.15 and 
a = 0.3 . Figure 7 shows a three-dimensional example 
with a = 0.3.

• Several probabilistic algorithms have been employed to 
create point sets. One such case is the use of randomly 
generated points, based on a probability distribution 
describing a prescribed point density [44, 81, 86, 218, 
225]. An algorithm of this type that uses so-called 

(1)

xi = xi + a � rand(−1, 1),

yi = yi + a � rand(−1, 1),

zi = zi + a � rand(−1, 1),

Fig. 5  Boundary points gener-
ated from Cartesian grids. A 
staircase boundary (left), and 
orthogonal projection to the 
boundary (right)

Fig. 6  Examples of 2D point 
clouds created by perturbing 
a uniform 10 × 10 grid. With 
a small perturbation width 
a = 0.15 (left), and a larger 
perturbation of a = 0.3 (right). 
See Eq. (1)
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rejection sampling is explained with an example in 
Sect. 9.1.

• As a replacement for pseudo-random points, quasi-
randomly generated points have also been used [55, 73, 
127]. This is done with the help of so-called low-dis-
crepancy sequences. Common examples of these are the 
Sobol sequence [186], and the Halton sequence [76], see 
Fig. 8. These sequences are a well justified tool for the 
evaluation of multi-dimensional integrals [39]. Another 
similar example is the Poisson disk sampling, which has 
been widely used in graphics communities [26], and is 
now also used to generate meshfree point clouds [179].

Generation of random or quasi-random points on com-
plex domain boundaries can be quite challenging. There-
fore for non-trivial domains the same methods described in 
Sect. 3 for lattices are adopted: staircase boundary, ortho-
normal projection, or independent boundary discretization. 
Similar to the case of uniform grids or lattices, resulting 
random point clouds may be especially irregular near the 
boundaries. Moreover, similar to the lattices of Sect. 3, for 
complex computational domains, randomly generated points 
would have to be created on a bounding box of the geometry, 
and inside-outside checks are needed to identify and delete 
points outside the domain.

These methods are typically employed to illustrate the 
applicability of particular meshfree techniques on scattered 
point distributions. It does serve this purpose of validation 
quite well, with minimum implementation effort. It is worth 
noting here that open-source implementations for the Halton 
and Sobol quasi-random point sets are freely available for 
any spatial dimension. These methods are also popular to 
generate point clouds which serve as the starting point dis-
tribution for iterative methods described in Sect. 6.

5  Over‑ and Undersampling/Thinning 
and Filling

The above techniques for point cloud generation, especially 
lattice-based grids and the random generators, are often 
combined in different ways, especially to generate point 
clouds with spatially varying densities. We elaborate on two 
classes of such methods below.

5.1  Oversampling

The first approach in this context is to start with an exces-
sively fine point cloud, obtained by any of the methods 
explained in Sects. 3 or 4. This is then coarsened or thinned 
to achieve the actual point cloud.

Fig. 7  An example of a 3D 
point cloud (right) created 
by perturbing a uniform grid 
of points (left). The colour-
ing according to x is only to 
enhance visualization

Fig. 8  Sobol  (left) and 
Halton (right) points in a two-
dimensional domain
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• The thinning process can be done by merging or remov-
ing points located too close to each other, based on a pre-
scribed separation distance (minimum distance between 
points), or a desired density of points. An example of 
such a thinning process is shown in Fig. 9. Starting with 
a 20 × 20 × 20 grid on [−1, 1]3 , points are thinned to 
ensure a separation given by rminh , for the separation 
value rmin = 0.25 , and a point density specified by an 
inter-point spacing function h(x, y, z) given by 

 This point cloud density specification used here, and 
throughout this work, is in terms of point spacing. Thus, 
higher values of h imply a coarser point cloud. If two 
points are closer than rminh apart, they are merged into a 
single point between the two original points at the arith-
metic mean location. This process is repeated until all 
points satisfy the locally varying minimum separation 
distance prescribed by rminh . One of the advantages of 
merging the points in a central location (rather than delet-
ing any one of them) is that it can reduce the influence 
of any preferred directions present in the original over-
sampled point cloud.

(2)h(x, y, z) = 0.3 (1 + x2 + y2 + z2).

• Alternatively, the thinning process can also be done 
by choosing specific points based on desired qualities 
in the point set. Methods of this type have been devel-
oped especially for global polynomial approximation 
and numerical integration [38, 158, 190].

  One such method is the so-called approximate Fekete 
points [190, 226], in which points from an initial over-
sampled grid are selected by applying a QR decomposi-
tion with partial pivoting to the global Vandermonde 
matrix of a high order polynomial basis. This process 
leads to point clouds that resemble the distribution 
of classical Chebyshev points and are supposed to be 
advantageous for spectral type methods, see Fig. 10. 
In [108] approximate Fekete points are computed with 
respect to RBF interpolation matrices. Multi-objective 
optimization has also been used to select nodes opti-
mized for specific discretization methods [168], here 
for global RBF collocation.

Such thinning processes are also useful in generating 
multilevel subsets with decreasing separation distances 
[57] which are useful for multilevel algorithms [53, 54, 
216].

Fig. 9  Using a thinning proce-
dure on an oversampled point 
cloud (left) consisting of 8000 
points to obtain the desired 
point cloud (right), which con-
tains 1318 points

Fig. 10  Approximate Fekete points of degree 15 for the unit square 
(left) and degree 20 for the unit disk (right). The points for the square 
are chosen from the 150 × 150 Cartesian grid whereas those for the 

disk from a cloud of points on concentric circles shown in blue. The 
approximate Fekete points were determined using open source code 
from [191]
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We distinguish this use of oversampled point clouds from 
another notion also referred to as “oversampling” in which 
both a fine and a coarse point cloud are used in the simula-
tion, one on the test and another on the trial side of a discre-
tization [96, 172].

5.2  Undersampling

Conversely, some authors start with a very coarse point 
cloud to discretize the domain. A filling or refinement pro-
cess is then carried out in order to reach the desired density 
of points. These are typically based on hole search algo-
rithms to detect regions where points need to be added. 
Extra points are added in specific regions, for example near 
boundaries.

One or several points, or even a fine point cloud con-
structed by any of the methods listed in earlier sections may 
be added in a part of the domain which is a special region 
of interest. The main challenges of this approach are to add 
a point from the finer point cloud only if it is at a minimum 
separation from all points in the coarse point cloud, and to 
achieve smoothly varying point densities.

Several approaches for adding points to an undersampled 
point cloud are known:

• A discrete hole search [176] based on a prescribed point 
density. An example of this in two spatial dimensions is 
shown in Fig. 11. At each point a circle (sphere in 3D) 
is constructed, with the radius dependent on the desired 
point density at that location. Discrete points on that cir-
cle/sphere are then added to the point cloud if they satisfy 
a minimum separation criterion.

• Hole searching can also be done using locally defined 
tessellations followed by the addition of points in ‘large’ 
triangles or tetrahedra, relative to the point spacing 
required. This process is illustrated in Fig. 12. More 
details can be found, for example, in [175, 198]. Similar 
approaches have also been carried out using global tes-
sellations [27]. Point generation using hole search from 
global tessellations have been referred to as optimization 
driven point insertion [148, 149].

• Another option is when a pre-defined density function 
is not given, locations of additional points can be deter-
mined by an a posteriori error indicator, as is the case 
in adaptive refinement methods for stationary problems 
[19, 28, 35, 42, 45, 49, 90, 98, 99, 143, 155, 183, 220]. 
Similar to adaptive refinement algorithms well known in 
the finite element method [2], a numerical simulation is 
performed on the coarse grid, and an approximate solu-
tion is computed. An indicator is applied to this tempo-
rary solution, in order to determine which parts of the 
domain require a better resolution by inserting additional 
points into the cloud. This process is repeated several 
times until a satisfactory point cloud is created.

In this context, it is important to mention that the ease of 
adaptive refinement is an important advantage of meshfree 
methods over mesh-based ones. Due to the presence of an 
underlying mesh structure in mesh-based methods, adaptive 
mesh refinement typically encounters issues with confor-
mation and hanging nodes (see, for example, [13, 91, 224] 
and references therein). In contrast, the lack of topological 
connectivity in meshfree methods means that adaptive point 
cloud refinement can be done easily without having to deal 

Fig. 11  Filling points using a discrete hole search: Discrete hole locations (left), adding a point (middle two), final point cloud (right)

Fig. 12  Filling points using local triangulations: Initial under-sampled points  (first), local triangulation  (second), adding a point  (third), final 
point cloud after complete addition process (last)
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with similar issues. This ease of incorporation of adaptive 
procedures is not just restricted to the thinning and filling 
methods listed in this section, but also holds for the iterative 
point movement methods to be discussed in Sect. 6.

The approaches of starting with oversampled or under-
sampled point clouds are especially useful when spatially 
varying node densities are desired. Additionally, they are 
also useful when specific global conditions on the point 
locations are desired.

While the thinning and filling algorithms are essential 
after starting with an under- or over-sampled point cloud, 
several of the thinning and filling approaches listed above 
can also be used as an optional second step to perform 
local modifications of a point cloud generated by any other 
method. This can be quite useful to avoid irregularities in a 
generated point cloud, which occur in several of the methods 
explained above, especially near the boundary.

Some of the approaches for the deletion/merging of close 
points from a fine point cloud, and the addition of points 
in “holes” in a coarse point cloud follow similar (time-
dependent) procedures adopted in many Lagrangian mesh-
free methods [175]. In fully Lagrangian meshfree methods, 
nodes are moved with an underlying velocity field. This can 
lead to a distortion in the point cloud. In many meshfree 
Lagrangian methods (but not all), this is fixed locally by 
adding points in holes and removing or merging close points, 
which makes point cloud distortion easier to fix than mesh 
distortion. All algorithms used in that context can be carried 
over to point cloud generation by over- or undersampling. 
We refer to [43, 175, 198, 200] for more details on fixing 
distortion in Lagrangian meshfree methods. Similarly, vari-
ous approaches for point cloud thinning or refining can also 
be adopted from the above mentioned adaptive refinement 
algorithms in meshfree methods, or from similar notions in 
point cloud based object reconstruction in a computer graph-
ics context [48, 162].

It must be noted here that the thinning and filling meth-
ods to generate a point cloud are often used together. When 
space varying point densities are desired, it is possible that 
an initial uniformly spaced grid is under-sampled in some 
parts of the domain relative to the desired point density, and 
over-sampled in other parts, thus requiring both filling and 
thinning algorithms simultaneously.

6  Iterative Methods and Cloud 
Improvement

In mesh generation, it is common to add a post-processing 
step in order to iteratively improve the mesh obtained by 
a primary technique, such as Delaunay triangulation or 
advancing front method. This is achieved by modifying 
the nodes or the mesh or both, and the goal is usually the 

improvement of the shape quality of the elements, see e.g. 
[63].

Similar ideas are often used for the improvement of mesh-
free point clouds created by any of the methods explained in 
the earlier sections. Moreover, sometimes the initial cloud 
is a rough first guess, and an iterative point movement pro-
cedure becomes the main vehicle for point cloud genera-
tion, rather than a polishing tool. This approch may also be 
found in mesh generation (for example, [156, 185, 223]). 
We describe below several popular meshfree methods of 
this type.

6.1  Energy Minimization or Inter‑particle Forces

The most common iterative approach is the minimization 
of a prescribed energy function on the node set [94, 213]. 
Usually the energy function is defined via an inter-particle 
replusion force [134, 221, 222]. Non-uniform point densi-
ties can be achieved by prescribing spatially varying energy 
functionals or inter-particle repulsion forces.

• The most common version of this is one that uses Voro-
noi decompositions [11, 40, 65]. This approach has been 
widely adopted in the SPH community. In each itera-
tion, a global Voronoi tessellation of the domain is con-
structed. Particles are then moved using a force 

 where �
i
 is the location of the point i, �

i
 is the location 

of the centroid of the corresponding Voronoi cell, and 
m is a constant. Spatially varying particle densities can 
be achieved by constructing weighted Voronoi tessella-
tions [8, 40]. The movement of particles under such a 
forcing tries to achieve a (weighted) centroidal Voronoi 
tessellation (CVT), where every particle is coincident 
with the centroid of it’s Voronoi cell. The construction of 
a global Voronoi tessellation means that these methods 
are no longer purely meshfree. However, the main char-
acter of the methods remain meshfree in nature since all 
approximations are done only on the point cloud. Moreo-
ver, they avoid the main obstacles of mesh generation 
because there is no goal to obtain a tessellation whose 
dual Delaunay triangulation is a high quality mesh.

• Other purely meshfree energy minimizers typically rely 
on the inverse of inter-particle distances, or their loga-
rithms. Commonly used examples are the so-called Riesz 
energy function and log-energy function [94, 213], 
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 where Si is a neighbourhood of point �i , the parameter 
s > 0 determines the extent of repulsion, and � is a func-
tion of the point locations used to achieve non-uniform 
point densities. A specific case of the Riesz energy func-
tion, with s = 2 in Eq. (4), mimics gravitational or elec-
trostatic repulsion that are proportional to the inverse 
square distance between particles [59, 211].

Various optimization algorithms have been used to carry 
out the actual energy minimization, with gradient descent 
algorithms widely adopted. The Voronoi decomposition 
based iterative process is generally done using the Lloyd 
algorithm [111], which is a special case of a gradient descent 
approach. Here, in each iteration, every particle is moved to 
the centroid of the corresponding Voronoi cell. Other com-
monly used strategies include other gradient-based descent 
methods [110], Monte Carlo [223] and quasi-Monte Carlo 
[213] approaches.

An example using Voronoi decompositions-based energy 
minimizations is shown in Fig. 13. Starting with a randomly 
generated point cloud on [−1, 1]2 , a modified Lloyd algo-
rithm [11] is run to create a point cloud with uniform spac-
ing. This is compared with a multiplicatively weighted Voro-
noi diagram for non-uniform point spacing. Here, the density 
of the point cloud is prescribed by the function

6.2  Pre‑simulations

Another approach is to start from some initial configura-
tion and then perform numerical simulations to obtain the 
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actual node placement [192]. These simulations can be 
done based on equations of motion,

where � is the position of the particles, � the velocity and 
� is a pseudo time term. Different force terms can be used 
in Eq. (7) in this context. The most common is a prescribed 
external force �ext such as gravity or an external pressure 
gradient. Optionally, a contact force between particles �contact 
is also used, as is a relaxation term � , possibly dependent on 
� [32], to ensure convergence of the iterations. Other inter-
particle interaction forces could also be used, which makes 
this procedure similar to the energy minimization explained 
above. The distinction is that the pre-simulation methods 
use “time” integration procedures, rather than optimization 
algorithms, to obtain the desired point clouds.

One example is the so-called bubble simulation pro-
cedure [138, 139], which prescribes inter-particle forces 
and damping forces on particles with an assumed finite 
non-zero diameter. The resultant equations of motions are 
then solved with an ODE solver until an equilibrium con-
figuration is attained.

A simulation approach is also used to obtain the ini-
tial packing of particles in many Discrete Element 
Method (DEM) simulations [123, 150]. The DEM parti-
cles are initially placed in a dilute uniform configuration 
[123]. DEM simulations are then run on that configura-
tion of particles until they reach a steady state, which is 
subsequently used as the initial condition for the actual 
problem being simulated. An example of this is shown 
for a simple three-dimensional geometry in Fig. 14. Here, 
starting from a dilute particle configuration, the pre-sim-
ulations cause the particles to fall due to gravity and settle 

(7)
d�

d�
= �ext + �contact + � ,

(8)
d�

d�
= � ,

Fig. 13  Using CVT based energy minimization to obtain point 
clouds. Randomly generated starting point cloud (left), resultant point 
cloud after a regular CVT based energy minimization  (center), and 

resultant point cloud after a weighted CVT based energy minimiza-
tion  (right). This figure was generated using open source code from 
[10, 11]
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down in a dense configuration. This final state of the pre-
simulation is the initial configuration of the particles in 
the main simulation [142]. Another approach considered 
by some DEM simulations is to run a pre-simulation with 
a specified inflow of particles, or random insertion from 
domain boundaries.

Pre-simulation methods have also been widely used 
in SPH (for example, [32]). Here, rather than simplified 
equations of motion, the pre-simulation is done using con-
tinuous momentum conservation equations, with an added 
damping term based on inter-particle distances, or with the 
use of fictitious pressure potentials [212].

Iterative methods are reported to produce useful point 
clouds. However, they are rather computationally expen-
sive, since a high number of iterations may be required. 
In some cases, auxiliary computations such as the Voro-
noi tessellation significantly add to the cost. Furthermore, 
the results may heavily depend on the initial placement 
of points. To reduce the number of iterations required to 
get to a point cloud with good performance, the initial 
placement may need to be “improved” [94, 221]. This 
becomes especially relevant for complex domains. Similar 
to the methods in the earlier sections, there are issues at 
the boundary. A further complication in highly complex 
domains is the need for boundary penetration checks dur-
ing the movement of the points.

In any case, these methods appear quite useful as a post-
processing step following some more efficient point cloud 
generation with already reasonable results.

7  Meshfree Advancing Front Methods

Advancing front techniques arose in the context of volume 
mesh generation in the 1980s [112, 137, 154]. These meth-
ods start with a surface mesh which discretizes the domain 
boundaries, which could be either pre-defined (for exam-
ple, an STL mesh), or computed using a surface meshing 
technique. This is used to progressively create mesh ele-
ments from the boundary inwards until the whole domain 
is meshed. We refer to [114, 118, 173] for a detailed intro-
duction to advancing front methods for mesh generation 
and their capabilities.

These techniques were first used for point cloud gen-
eration in meshfree methods by Löhner and Oñate over 
two decades ago [115]. They introduce a meshfree ver-
sion of the advancing front method in two and three spa-
tial dimensions, with straightforward generalizations for 
higher dimensions, and demonstrate the use of variable 
point densities and point generation for complex domains. 
They further show that meshfree advancing front point 
cloud generation (henceforth, AFPCG) is an order of mag-
nitude faster than advancing front mesh generation.

This work has been used by many authors to create 
point clouds for meshfree simulations [119, 122, 124, 
155, 170, 194], and has been generalized to different ends 
[79]. While the original work required a surface mesh, it 
has been generalized for different boundary specifications 
[43, 79]. Different methods of specifying the point density 

Fig. 14  Obtaining the initial particle packing in a Discrete Element Method (DEM) using a pre-simulation of loosely packed particles falling 
under gravity
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and for advancing the front have been considered [43]. 
Seibold [175] uses AFPCG, while calling the approach 
“successive insertion”, and further complements it with 
point thinning and filling methods like those explained in 
Sect. 5. The method is also used in a couple of commer-
cial meshfree codes [62, 140], which also report parallel 
implementations. This work has even been generalized to 
fill volume domains with objects of different shapes and 
sizes instead of points [56, 116, 117, 163], such as spheres, 
ellipsoids, and coils, for the purpose of discrete element 
method (DEM) simulations.

A similar method was developed independently by Li 
et al. [101, 102], referring to their advancing front strategy 
as a biting method. Their method is based on sphere packing 
and then using the centers of the spheres as the point cloud. 
They employ a different approach to advancing the front. 
While [115] advance points in the front directly (details 
below), [101, 102] require the computation of intersections 
of arcs. As a result, this algorithm is more computationally 
expensive.

However, long existing AFPCG methods do not seem to 
be very well known in many meshfree communities. As a 
result, a significant amount of recent research has been done 
into developing similar advancing front methods.

Fornberg and Flyer [59] suggested an AFPCG technique 
for two-dimensional problems, which was later extended to 
three-dimensional problems in [211]. This work has become 
popular in RBF based meshfree methods. The method of 
[59, 211] has two key differences from older meshfree 
advancing front methods. Firstly, for curved geometries, 
they discretize a bounding box of the geometry, and then 
discard points outside the domain. Furthermore, the initial 
front is not based on the entire boundary, but rather only on 
a specific part of it. This simplifies the initial step of bound-
ary discretization; however modifications near the boundary 
may be needed to better fit the point cloud to it. For those 
domains where the bounding box is much bigger than the 
actual computational domain, significant unnessesary com-
putations will be performed.

Slak and Kosec [184] presented an AFPCG technique 
developed independently of [115] and related work. The 
main difference to the above mentioned generalizations of 

[115] is that certain seed nodes are chosen in the interior of 
the domain, which results in a different final set of nodes. 
The work of [184] is also the first one providing an analysis 
of the computational complexity of a meshfree AFPCG.

Below, we provide an overview of advancing front meth-
ods for meshfree point cloud generation. They can be broken 
down into the following steps: 

1. Create a set of points on the boundary. These boundary 
points act as the initial front(s), which will be advanced.

2. Using the boundary points as sources, a first set of inte-
rior points is generated in the domain.

3. Newly generated interior points are then used as a source 
to create another set of interior points, until the whole 
domain is filled.

This process is illustrated in Fig. 15 for a two dimensional 
domain and a uniform density of points.

As mentioned above, advancing front point generation 
methods start with the creation of a point distribution on 
each of the (possibly disconnected) domain boundaries. 
An overview of different methods for doing this is given in 
Sect. 8. Once the boundary point configuration is computed, 
the boundary points must be equipped with a surface nor-
mal. This normal field is used to prescribe the direction in 
which the the first set of interior points will be created. This 
normal field must be consistent in the sense that it should 
make the discrete surface oriented, i.e., all normals should 
either be facing inwards or outwards. The normal field can 
be prescribed directly if already available from the domain 
boundary specification (see Sect. 8). Alternatively, the nor-
mal field can be computed from the boundary discretization 
using surface normal computation methods [103, 130, 165, 
198].

7.1  Advancing the Front

The set of “active” points which are being used as sources 
to create new points is referred to as the “front” which is 
advanced. As a point is used to create (or fails to create) new 
points, it is removed from the front, while the newly added 

Fig. 15  Generating node distributions in a two-dimensional domain with a uniform point spacing using a meshfree advancing front method. The 
images show the point cloud after 2, 5, 8, 11, and 15 iterations of interior point generation, respectively
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points are added to the front. This advancing of the front of 
active points has also been referred to as a marching process.

Consider a point �i being used as a source to generate 
new points. The point �i generates a set of candidate points 
Ci . Admissible points in Ci are then added to the point cloud 
and to the active front, and �i is removed from the front. The 
admissibility criteria are as follows:

• Each point should be a prescribed minimum distance 
away from all other points.

• Points should be inside the domain.

Variations in this framework are obtained by different meth-
ods of choosing the candidate points Ci.

• Stencil-based criteria [115]: By considering different 
stencils, similar to those used in finite difference meth-
ods, centered at �i.

• By considering points on the surface of a sphere cen-
tered at �i . The points on the sphere can be chosen either 
randomly, or by a discrete set on the sphere [59, 184]. 
Instead of considering points on the surface of a sphere, 
points could also be considered within an annular spheri-
cal region around the candidate point [179].

• By a hole filling algorithm [43, 175]: A discrete hole 
search is carried out to identify regions where no points 
are present, and points in the center of identified holes 
are chosen in Ci.

In each case, the point density specification governs the dis-
tances of the candidate points to �i . Either by differently 
sized stencils, or by the radius of the sphere, or the allowed 
size of the holes.

This front is advanced until the entire domain is filled 
with points. The minimum specified distance in the admissi-
bility criteria ensures an automatic checking for intersection 
of the front with itself, or with another disconnected part of 
the front. When the entire domain is filled, each of the points 

in the active front will fail to generate new points, thus 
resulting in an empty front. However, this could produce 
a “poor” quality point cloud locally where the advancing 
fronts meet. To fix this, local modifications in these regions 
can be made either using the thinning and filling algorithms 
mentioned in Sect. 5, or using a few iterations of iterative 
algorithms mentioned in Sect. 6 on a few selected points.

Note that merging of the advancing front is one of the big-
gest challenges in mesh-based advancing front techniques, 
which is much simpler for meshfree variants since less merg-
ing checks are required. As a result, Löhner and Oñate [115] 
present time comparisons to show that meshfree advancing 
front techniques were an order of magnitude faster than con-
temporary volume mesh generators with advancing fronts.

The process of establishing a point cloud using an 
AFPCG is shown in Fig. 15 for a two dimensional domain 
with uniform point spacing, and in Fig. 16 for a three dimen-
sional domain with a spatially varying density. Figure 16 
shows the discretization of a unit cube with cylindrical 
obstacle in the middle. Note that points are being filled 
simultaneously from both the cube boundary inwards and 
from the cylinder boundary outwards. The point cloud den-
sity is prescribed directly as a function of distance from the 
center of the cube. With a minimum inter-point spacing of 
h = 0.07 at the cylinder boundary, the resolution is linearly 
increased at a rate of 0.2.

All point clouds generated with the advancing front 
method are created using the software suite MESHFREE1, 
with permission.

8  Discretization of Boundaries and Surfaces

While the bulk of this article focuses on point cloud gener-
ation for volume domains, in this section we discuss point 
generation for surfaces and curves. This is of importance 

Fig. 16  Generating node distributions in a three-dimensional domain 
with a varying point density using a meshfree advancing front 
method. The images show the point cloud after 2, 4, and 7 iterations 

of interior point generation respectively. All points are shown as 
spheres of the same size, with the colour representing the inter-point 
spacing function h at that location

1 https:// www. meshf ree. eu

https://www.meshfree.eu
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for volume point cloud generation, in the form of bound-
ary discretizations, as explained earlier. It can also be 
used for the discretization of manifolds. The need for this 
arises due to the increasing requirement of solving PDEs 
on manifolds with meshfree methods [29, 60, 66, 74, 100, 
103, 157, 187, 188, 199].

As discussed earlier, the topic of point cloud genera-
tion for volume domains is a largely overlooked aspect of 
meshfree methods. This holds even more so for boundaries 
and surface domains.

Many procedures for meshfree surface discretization are 
similar to those explained for volume discretization above. 
Several possibilities are listed below.

• Parametrization In certain cases, a parametrization of 
the domain boundary can be used. The domain could 
be bounded by a set of curves (for domains in ℝ2 ) or 
surfaces (for domains in ℝ3 ) for which a parametriza-
tion is either known, for example NURBS curves and 
surfaces [159], or is easy to determine. In this case, 
the boundary discretization is achieved through a dis-
cretization of the parameter space [5, 97, 131, 179]. 
Obtaining good parametrizations may get extremely 
complicated for non-trivial geometries. Isogeometric 
collocation methods [6, 87] could be adopted for para-
metric boundary discretization in the case of a NURBS 
geometry. Here points on the surfaces are added by 
directly discretizing the parameter space defining the 
NURBS.

• Surface mesh For the more general case, with com-
plex domains, the domain geometry is often specified 
by a surface mesh, which is much easier to generate 
than a volume mesh of the entire domain. The surface 
mesh is used to generate points on the surface [43, 69, 
115]. This can be done by directly using the nodes or 
centroids of surface mesh elements. This initial node 
set can then be refined or coarsened to achieve the 
desired point density, with surface thinning or filling 
algorithms [198], similar to those explained in Sect. 5. 
It must be noted here that many meshfree methods use 
a surface mesh to define the domain boundary. This 
is especially relevant for practical applications with 
complex geometries. Furthermore, for time-dependent 
geometries, the surface mesh only defines the initial 
domain boundary.

• CAD surface It is often desirable to prescribe the 
bounding geometry directly by CAD surfaces, without 
even a surface mesh. For this case, points are placed 
directly on CAD entities. It must be mentioned that 
a detailed study of efficient point cloud generation 
directly on a CAD surface has not been done. While 
several commercial software packages mention the 

ability to go directly from CAD to point clouds, we 
have not found publications detailing such algorithms.

• Projection from the interior As discussed in Sect. 3, 
boundary points may be generated by projecting interior 
points to the boundary.

• Implicit surfaces A point cloud can be obtained by iso-
surface extraction methods, such as the marching cubes 
algorithm [120], if a signed distance function or another 
level set function is available, see e.g. [36].

• Advancing front Advancing front methods can also be 
applied to manifold discretizations [46, 198]. Just as in 
the volume case, the process starts with a discretization 
of the manifold boundaries, with successive filling in the 
interior. For a closed manifold with no boundaries, the 
process would begin with an arbitrary choice of a seed 
point somewhere in the domain. These methods could 
be especially useful if the surface is prescribed by CAD 
data.

• Iterative procedures and minimum energy points Iterative 
energy minimizing procedures as explained in Sect. 6 
are also commonly used for boundary discretizations 
[21, 60]. Similar to the volume point generation case, 
the biggest advantage of these procedures is that they 
are reported to produce good quality point sets. Many 
particular examples of well distributed point clouds are 
obtained for the sphere in ℝ3 by minimizing some energy, 
maximizing determinants, or from spherical designs [25]. 
A large collection of such points sets for the sphere can 
be found in [193].

• Random points, over- and undersampling approaches can 
also be used [179] to discretize boundaries, with proce-
dures similar to that described in Sects. 4 and 5.

9  Comparisons and Applications

In this section we provide a comparison of the features of 
the different methods, and explain how they can be applied 
and combined.

Different features of each of the point cloud generation 
methods discussed above are summarized in Table 1. Among 
the different methods discussed, iterative and cloud improve-
ment methods of Sect. 6 can serve as a post-processing tool 
to improve an existing point cloud, and as a stand-alone 
method starting with a uniform initial point cloud. Simi-
larly, the thinning and filling approaches of Sect. 5 can be 
used both as a post-processing method, and a stand-alone 
method starting with an over- or under-sampled point cloud. 
Random numbers based methods of Sect. 4 are primarily 
used as a first step in the generation of point clouds, except 
of the situations where they provide irregular point clouds 
for testing different meshfree techniques. We note that other 
than mesh generation for point clouds, each of the other 
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direct point cloud generation methods mentioned above is 
usually combined with a certain amount of post-processing.

In terms of modifying or post-processing a given point 
cloud, iterative methods are very good to prevent points 
from coming too close together. However, since the number 
of points is typically fixed in an iterative process, they can 
only be used to achieve an optimum separation for a given 
number of points and a point density. These iterative meth-
ods can not be used to achieve a prescribed minimum and 
maximum separation, which is often desired, as is the case in 
one of the examples below. Thus, for such applications, thin-
ning/filling is a better post-processing option than the itera-
tive methods. Moreover, most thinning/filling algorithms are 
local in nature, making them easier to parallelize, while the 
iterative methods are global processes.

To show how the different methods discussed above can 
be applied and combined, we discuss their use on two com-
plex examples. As mentioned earlier, since there is no well 
understood measure of what constitutes a good point cloud, 
comparisons between point clouds generated by different 
methods can only be done to a limited extent. Thus, we do 
not attempt to compare the quality of different point clouds, 
nor do we present complete time comparisons between 

different methods. The goal of these examples is only to 
discuss the applicability of different point cloud genera-
tion methods on complex domains, and to highlight various 
technical details involved when different methods are being 
applied. We emphasize that performing a thorough com-
parison of numerical results on point clouds generated is not 
a goal here. The latter likely depends on the choice of the 
meshfree method and requires its own dedicated investiga-
tion that falls out of the scope of the present overview paper.

We start with a detailed discussion on the challenges 
involved in generating a point cloud with a varying density 
around a car geometry in Sect. 9.1. We then consider a Pois-
son problem on a simpler geometry, and present numerical 
solutions with a generalized finite difference method GFDM 
on the point clouds generated with different methods.

9.1  DrivAer Car Geometry

We consider the process of point cloud generation around 
the open source DrivAer car geometry [78],2 in which the car 
model is prescribed by a surface mesh. This geometry and 

Table 1  Summary of different 
types of point cloud generation, 
the required implementational 
effort, their applicability to 
problems with spatially varying 
densities, and their use as a 
post-processing method to 
modify an existing point cloud

*The implementation overhead for mesh generation is low because of the vast variety of existing open-
source and commercial tools for the purpose

Point cloud generation method Implementation 
overhead

Spatially varying densities Post-
processing 
method

Nodes of generated mesh Low* ✓

Uniform grids and lattices Low
Random points Moderate ✓

Over / under sampling Moderate Small variations only
Thinning / filling High ✓ ✓

Iterative/pre-simulation Moderate ✓ ✓

Advancing front High ✓

Fig. 17  Point cloud around the DrivAer car model. The colour represents the point density given by the inter-point spacing function h. Only a 
clip of the point cloud is shown with the half closer to the viewing angle hidden

2 The FastBack and engine bay flow configuration is used here.
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a point cloud discretizing the domain are shown in Fig. 17. 
The dimensions of the car model are about 4.6 × 2 × 1.42 , 
with all dimensions in m. The computational domain of 
interest is the region around the car, inside a box of size 
9 × 4 × 3.

For complex geometries such as this one, it is often con-
venient to prescribe the density of a point cloud as a function 
of the distance to specific boundaries, as shall be done here. 
Within a distance of Lmin = 0.2 to specific tagged bound-
aries (the car geometry here), the point spacing is set to 
hmin = 0.08 . This is linearly increased at a rate of dh∕dl = 0.5 
till a maximum of hmax = 0.8 is reached.

We also prescribe a minimum and maximum separation 
distance between two points. Relative to a given point den-
sity, the minimum separation controls the minimum distance 
between two points, while the maximum separation gov-
erns the size of the largest hole allowed in the point cloud. 
There is no unique way to prescribe the minimum separa-
tion and hole sizes. While in some literature, a minimum 
separation distance is prescribed directly as a function of 
space, it is also very common to have a point density func-
tion prescribed as a function of space, with the minimum 
separation and maximum hole size given by fixed factors of 
the density. We use this latter approach here. The minimum 
separation and maximum hole size are prescribed by fixed 
factors of the point spacing function h, given by rmin = 0.25h 
and rmax = 0.42h.

We generate point clouds with several different point 
generation methods, with details explained below. With 
the exception of mesh generation for point clouds, all other 
point cloud generation methods start by generating points 
on the boundary. Here, we place points on the surface mesh 
of both the car and the outer box of the domain, such that 
the prescribed point density is satisfied. The points placed 
on the car geometry are shown in Fig. 18. Starting with this 
boundary point discretization, volume point cloud genera-
tion in the interior of the domain is done as described below.

9.1.1  Advancing Front Point Cloud Generation

We first consider an AFPCG method to generate the interior 
points. The front is advanced using a hole filling algorithm, 
with a prescribed search radius of holes as 0.5(rmin + rmax) . 
This ensures that the required minimum and maximum sepa-
ration are satisfied everywhere, with the possible exception 
where different advancing fronts intersect. The generated 
point cloud is then run through with a thinning and filling 
algorithm, to ensure that the minimum and maximum sepa-
ration is satisfied even at locations where different fronts 
intersected. We observe that two thinning and filling cycles 
each are sufficient. The resultant point cloud generated is 
shown in Fig. 17. Points around the detailed underbody of 
the DrivAer car model are shown in Fig. 18.

We note here that for the AFPCG, the distance to the 
boundary computation required for the point cloud density 
specification does not need to be explicitly calculated. It can 
be approximated while advancing the front of active points.

Running the computation serially on a dedicated node, 
the generation of the point cloud shown in Fig. 17 took 133 
s. We note here that the computational time depends on the 
complexity of the geometry. The surface mesh of the car 
contains 2.85 × 106 triangles. If the car geometry is replaced 
with a cube representing its bounding box, filling the domain 
with the same density of points using the advancing front 
method takes a fraction of the time: 16s to generate 137346 
points, compared to 133s to generate 147947 points with 
the car geometry. Generating a point cloud with a uniform 
density of points would be even faster.

9.1.2  Random Point Generation

We start by generating points in the bounding box of the 
domain using a pseudo-random number generator. To take 
the prescribed point density into account, rejection sampling 
[214] was used. This is done by considering uniform sam-
pling of points in the domain, with a uniform sampling of a 
density check variable. A randomly generated point is added 
to the point cloud only if the corresponding density check 
variable is greater than the desired density at that location.

The second step after the random point generation is to 
detect points outside the desired domain, and delete them. 
In this example, points inside the car geometry need to be 
removed. This is done by computing a signed distance func-
tion (only the sign is important here [20]) using a fast march-
ing method [178].

The final step is to ensure that the point cloud satisfies 
the desired minimum and maximum separation. This is done 
using multiple cycles of thinning and filling. The filling pro-
cess is done with a hole search algorithm which searches 
for holes of size rmax , while the thinning algorithm merges 
any two points closer than rmin apart. We note that the same 
thinning and filling implementations used in the AFPCG 
are used here.

Two different randomly generated point clouds are con-
sidered here, with different number of randomly sampled 
points: 50,000 and 140,000. Since the same minimum and 
maximum separation is used, the final number of points after 
thinning and filling is similar in both cases, 145,022 in the 
first case, and 148,441 in the latter. The complete process of 
interior point generation takes 209 s in the former case, and 
183 s in the latter. In the former case, the number of filling 
cycles required to reach the desired point density is much 
higher, and thus it takes longer. This is illustrated in Fig. 19.
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9.1.3  Uniform Point Cloud

Starting with a spatially uniform point cloud using a Carte-
sian grid or a uniform lattice is not feasible in such an exam-
ple with a huge difference in the coarsest and finest resolu-
tion required. No matter what the resolution of a considered 

uniform grid would be, a large number of thinning and/or 
filling cycles would be required to attain the desired mini-
mum and maximum separation. We thus do not generate a 
uniform point cloud for this example.

For the sake completeness, we mention possible adap-
tations of uniform point clouds that could be considered 

Fig. 18  Point cloud around 
the underbody of DrivAer 
car model. The underbody 
geometry (top), boundary points 
only (center), and a clip of the 
point cloud after 2 iterations 
of interior point addition in an 
AFPCG (bottom). Note that the 
points in the center image are 
shown with a 50% transparency, 
while those in the bottom image 
are shown with a 90% transpar-
ency
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for the current application. One possibility is to consider 
domain decompositions, and use a different notion of a uni-
form point cloud. For example, the domain could be parti-
tioned into several blocks with a uniform point cloud in each 
block for the corresponding mean density there. However, 
this would result in a non-smooth distribution of points. This 
drawback could be reduced by partitioning the domain into a 
high number of blocks, with an octree type structure, based 
on the desired density.

9.1.4  Mesh Generation

We use Gmsh [70] to create a volume mesh around the car 
model. The DrivAer car model [78] is available as both 
CAD and STL surface mesh. In the point cloud generation 
methods used above, we used the STL surface mesh. Here, 
we first try to generate a mesh from the CAD prescription 
directly. However, our attempts at this suggested that a lot of 
manual work would be required for this because (i) the CAD 
model included many free edges and very small curves and 
surfaces. (ii) at several intersections of different parts of the 
geometry, one surface was tangent to the other. For instance, 
near the mirror and at the exhaust system. This caused a 
problem in inserting elements at these regions.

Thus, to reduce the amount of manual work needed, we 
start with the STL surface mesh. Using Blender [33] and 

Fusion360 (Autodesk), we create a simpler CAD model of 
the car geometry. A CAD geometry was still preferred over 
working directly with the STL file primarily because the 
specification of the desired node density as a function of the 
distance to the CAD model of the car can be done easily. 
Using the resultant simplified CAD model, we create a mesh 
with a similar node density in Gmsh. The resultant mesh, 
and the point cloud formed by the vertices of the mesh are 
shown in Fig. 20.

A visual comparison of the point clouds generated by the 
three methods considered here is shown in Fig. 21.

9.2  Poisson Problem

For a representational comparison of point clouds gen-
erated by different methods, we consider the numerical 
solution of a Poisson problem

with Dirichlet boundary conditions. The geometry con-
sidered is the “Forearm Link” geometry that is shipped 
with the MATLAB PDE toolbox, and is shown in Fig. 22. 
The geometry is defined by a STL surface mesh. The size 
of the bounding box of the geometry is approximately 
134 × 33 × 61.

(9)Δ� = f ,

Fig. 19  Random point cloud generation around a car. Initial points 
clouds after random point generation (left column), and final point 
clouds after thinning and filling (right column), with 50,000 (top row) 
and 140,000 (bottom row) randomly sampled points initially, and 

comparable final numbers in both cases. Only a clip of each of the 
point clouds are shown, with the halves closer to the viewing angle 
hidden
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We consider a manufactured solution to Eq. (9), given by

at a point � = (x, y, z) . The right hand side f of the Poisson 
equation is set such that �exact is a solution of Eq. (9). Bound-
ary conditions are also set to match �exact . Point clouds to 
discretize the resultant computational domain are generated 
with four different approaches, each with a spatially constant 
density. 

1. Nodes of a mesh We start by generating a volume mesh 
in Gmsh 4.3.0 [70], using the Delaunay algorithm with 
default parameters, and a spacing of 2.3.

  This results in a mesh with approximately 104 vertices, 
which are used as the point cloud.

(10)�exact = sin(x∕10),

2. Advancing front point cloud generation We then create 
a point cloud with an AFPCG using a uniform spacing 
such that the total number of nodes matches the number 
of nodes in the mesh as closely as possible.

3. Cartesian grid Then using the boundary node set of the 
AFPCG, we create a uniform Cartesian grid in the inte-
rior so as to match the total number of nodes to the first 
two point clouds as closely as possible.

4. Randomly generated points Once again, we start with the 
boundary node set used in the AFPCG point cloud. Then 
we randomly generate 1.5 × 104 points in the bounding 
box of the domain. Points outside the geometry are iden-
tified and deleted. This is followed by a few thinning and 
filling cycles in the interior of the domain. We generated 
several point clouds with this process till the number of 
nodes closely matched the number of nodes in the above 
three point clouds.

Fig. 20  Point cloud generation around a car using the Gmsh mesh generator. A slice of the mesh (left) and the corresponding clip of the point 
cloud composed of nodes of the mesh (right). The point cloud only shows the points behind the shown mesh slice

Fig. 21  Comparison of points clouds around the car generated by three methods. AFPCG (left), randomly generated point cloud (center), and 
nodes of a mesh (right)

Fig. 22  Forearm Link geom-
etry (left), and a point cloud 
discretizing the computational 
domain (right). Boundary points 
are marked in red, and interior 
points are marked in blue
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Other than the nodes of the mesh, the other three point 
clouds were generated within the framework of the software 
MESHFREE [62]. The point clouds generated by each of 
the above four methods have been made freely available as 
supplementary material with this work. While a Cartesian 
grid was not feasible in the previous example due to the large 
variance in point densities, a Cartesian grid can be used in 
the present case since we are using uniform point densities. 
It is also important to note that no thinning or filling opera-
tions were done on the Cartesian grid. As a result, this point 
cloud has the highest irregularity near the boundary.

The Poisson equation is solved on each of the four 
point clouds using a meshfree Generalized Finite Differ-
ent Method (GFDM), which is a strong form meshfree col-
location method. In the GFDM formulation used here, the 
Laplacian of a scalar valued function u is approximated as

where the neighbourhoods or support domains Si are chosen 
based on proximity, and are given by the 35 nearest neigh-
bours. We note that a smaller number of neighbours is often 
used in some GFDM applications, especially for stationary 
point clouds, while the number of neighbours used here is 
typical for Lagrangian approaches. The coefficients cij are 
computed using a weighted minimization

subject to the exactness of Eq. (11) for quadratic polynomi-
als. The weights considered here are wij = ‖�i − �j‖

2� , with 
� = 3 . This choice of � has a theoretical justification given 
in [37]. For the sake of brevity, we do not present an in-depth 
introduction to GFDMs here, and refer the interested reader 
to [68, 85, 105, 195] for more details. For all simulations 
considered here, the implementations of the GFDM are from 
the open source repository mFDlab [34].

Errors in the numerical solutions are measured in a rela-
tive L2 sense

(11)Δu(�i) ≈
∑

j∈Si

ciju(�j),

(12)min
∑

j∈Si

wijc
2
ij
,

where Ω ⧵ �Ω is the set of all interior points in the domain, 
and �h

i
 is the numerical solution to the Poisson problem at 

point �i.
The number of points in the point cloud, and the errors in 

the solution when using only Dirichlet boundary conditions 
at all boundaries are summarized in Table 2. We emphasize 
here that these errors are purely representational and do not 
serve to indicate the superiority of one point cloud gen-
eration method over another. Note that the different errors 
observed are not just a factor of different point placements, 
and hence different point cloud qualities, but also of the ratio 
of boundary points to interior points. For reference, a finite 
element solution with linear shape functions on the same 
mesh results in a nodal error of �2r(FEM) = 3.17 × 10−3.

We note that the condition numbers of the global discre-
tised linear system (without preconditioning) are 60 and 67 
for the mesh nodes and advancing front method respectively 
on one hand, and significantly higher, 4235 and 1786 for the 
Cartesian grid and random point cloud respectively on the 
other hand. This stems presumably from the high irregular-
ity near the boundary for the Cartesian grid and the random 
point cloud.

10  Conclusion

In this paper, we gave an overview of different methods of 
point cloud generation, and highlighted their advantages and 
disadvantages. The aim is not just to collect various methods 
used in different meshfree communities in one place, but 
also to encourage dedicated investigation into efficient point 
cloud generation techniques.

The topic of point cloud generation is often neglected 
across meshfree literature. Many articles on meshfree meth-
ods do not even mention how the domain discretization is 
achieved. A wide section of meshfree literature still uses 
the generation of a mesh or lattice structures to obtain the 
point cloud, primarily because of convenience and familiar-
ity with those methods, which leads to low overhead in terms 
of implementation. In order to test meshfree techniques on 
irregular points, point clouds generated using a mesh or 
lattice structure are often perturbed using random number 
generation. Several iterative methods are used as a second 
step after a preliminary point cloud has been generated with 
some other method. These serve to improve the quality of 
the point cloud, primarily to ensure a minimum separation 
between points or to achieve a prescribed spatially varying 
density of the point cloud. Thinning and filling algorithms 

(13)�2r =

�

�

�

�

�

∑

i∈Ω⧵�Ω

�

�h
i
− �exact(�i)

�2

∑

i∈Ω⧵�Ω

�

�exact(�i)
�2

,

Table 2  Poisson problem on Forearm Link geometry with different 
point generation methods: total number of points N in the domain 
including both interior and boundary points, the number of boundary 
points Nboundary , and the relative L2 errors �2r [see Eq. (13)] in numeri-
cal solutions of the Poisson problem with GFDM

N Nboundary �2r

Mesh nodes 10,802 5931 2.42 × 10−3

Advancing front 10,631 4292 2.30 × 10−3

Cartesian grid 10,777 4292 2.46 × 10−3

Random point cloud 10,026 4292 2.75 × 10−3
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have also been used towards the same end, while also being 
coupled with initially over- or under-sampled point clouds. 
Recent work has brought attention back to advancing front 
point cloud generation.

In addition to the overview we provided examples to 
illustrate how these different methods can be combined and 
applied to complex models.

What we presented in this paper is a snapshot of the cur-
rent state of the point cloud generation methods that are 
being actively developed by many authors. We believe that 
meshfree communities may benefit from more effort devoted 
to in-depth comparison between different existing methods 
on the basis of a better understanding of what defines a good 
point cloud. In particular, investigation of quantifiable point 
cloud quality measures that correlate to numerical stability 
and accuracy could be helpful.
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