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Abstract

Airway disease is a major healthcare issue that causes at least 3 million fatalities every year. It is also considered one of the
foremost causes of death all around the globe by 2030. Numerous studies have been undertaken to demonstrate the latest
advances in artificial intelligence algorithms to assist in identifying and classifying these diseases. This comprehensive
review aims to summarise the state-of-the-art machine and deep learning-based systems for detecting airway disorders,
envisage the trends of the recent work in this domain, and analyze the difficulties and potential future paths. This systematic
literature review includes the study of one hundred fifty-five articles on airway diseases such as cystic fibrosis, emphysema,
lung cancer, Mesothelioma, covid-19, pneumoconiosis, asthma, pulmonary edema, tuberculosis, pulmonary embolism as
well as highlights the automated learning techniques to predict them. The study concludes with a discussion and challenges
about expanding the efficiency and machine and deep learning-assisted airway disease detection applications.

1 Introduction

The airway diseases have been called the worldwide source
of sickness, as they damage the air tubes that carry oxygen
and other gases into and out of the lungs. These diseases
generally induce a constriction or obstruction of the airways.
People with airway illnesses often remark that they are "try-
ing to breathe out through a straw." Airway disease is a fun-
damental cause of mortality and disability as it touches at
least 65 million people and kills 3 million individuals yearly.
Hence it is ranked as the 3rd most prevalent reason for death
around the globe overall [1]. As shown in Fig. 1, chronic
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respiratory disorders fatalities rose from 3.32 million in
1990 to 3.91 million in 2017. Annually, the age-standardized
mortality rate for chronic respiratory diseases fell by 2.41%
(2.28% to 2.55%), but in 195 nations, the annual fatality
rates attributable to chronic respiratory illnesses have shown
a great variation. The highest mortality was seen in regions
with a low Socio-demographic index [2]. Particulate matter
pollution, such as pneumoconiosis and asthma, has been the
leading cause of COPD fatalities in areas with a low Socio-
demographic index [3]. In addition, one of the studies also
states that 40,000 people have been suffering from cystic
fibrosis in the US [4], 10 million tuberculosis cases have
been estimated, and 1.4 million are reported TB deaths in
2019 [5]. In contrast, lung cancer has been termed the lead-
ing cause of cancer for approx 350 deaths each day in the
UsS [6].

After considering these numbers, several physicians, cli-
nicians, and medical experts from all over the world have
tried their best possible way to predict, detect and diagnose
these dreadful diseases, for which they used conventional
and Al-based approaches that are described in the upcom-
ing subsections.
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Fig. 1 Global impact of airway
diseases [2]
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1.1 Conventional Methods to Diagnose Airway
Diseases

Small airways account for between 10 and 25% of total air-
way resistance in healthy lungs, with their contribution to
total airway resistance increasing significantly in multiple
airway disorders. It is because the internal diameter of the
tiny airways is less than 2 mm, and there is no cartilage [5].
Hence in Table 1, a few traditional ways such as spirometry,
body plethysmography, impulse oscillometry, and washout
tests used for diagnosing airway disorders in patients are
shown, along with their brief description and drawbacks.

1.2 Al Techniques to Predict Airway Diseases

Artificial intelligence has shown tremendous growth in the
health sector in today's era via its various applications, as
shown in Fig. 2. After having a brief idea about the draw-
backs of traditional approaches to diagnosing airway dis-
eases, artificial intelligence has demonstrated its efficiency
and excellent performance in automatic image categoriza-
tion using multiple machine and deep learning algorithms
to detect numerous airway illnesses [10]. Researchers from
various disciplines are steadily amassing evidence to support
the use of Al in diagnosing airway sickness using models
that can learn and make choices utilizing massive input data
[11]. The fundamental rationale for using learning models is
that these approaches learn by constructing a more abstract
representation of input (unlike classical machine learning)
in which the model collects information automatically and
produces more accurate results [12].

Researchers from many fields are progressively accumu-
lating data to support the usage of Al to diagnose airway
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illness. Researchers have applied various algorithms of the
machine and deep learning, as discussed in Sect. 5, to con-
duct an extensive assessment to detect multiple airway dis-
eases. A corresponding spike has been seen in the medical
applications of Al particularly in pulmonology. Applica-
tions of Al to the global problem of airway illnesses can
meet the most priority-based requirements highlighted for
accurately detecting, diagnosing, and providing the best
treatments [13]. A deep learning system generated results
nearly equal to a group of thoracic radiologists identifying
fibrotic lung disease in research [14]. Another study [15]
found that a neural network developed by Google scientists
was just as good as radiologists in detecting cancerous lung
nodules. A similar model [16] could identify and predict
acute respiratory illness episodes and death in smokers along
with chronic obstructive pulmonary disease (COPD). Large
amounts of well-structured data are required to create and
validate Al algorithms, and the algorithms must operate with
data of varying quality [17]. Clinicians must grasp how Al
works in the context of multiple disorders such as asthma
and chronic obstructive pulmonary disease. As a result, it
would be interesting to witness the pros of Al (Artificial
Intelligence) developed for doctors and patients due to its
usage in medical practice in the future [18]. Other Al tools
have also been used tremendously in medical science, such
as robotics, natural language processing, expert systems,
etc. In robotics, more than 2 lakh robots have been installed
annually and are used to perform prostate surgery, head-
neck surgery, update patient records, etc. Likewise, natural
language processing (NLP) helps to analyze, understand and
classify the unstructured format of clinical documentation
and the interaction of patients with doctors via bots [19].
Thusly, to fully understand the role of techniques using
artificial intelligence concepts to predict and diagnose
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Fig.2 Role of Al in healthcare

airway diseases, a systematic literature review (SLR) has
been conducted based on the Al learning models to predict
such illnesses. The study is structured into various sections.
Initially, a brief description of airway diseases and their
global impact has been briefed in Sect. 1. This section also
includes the traditional approaches as well as the role of Al
in diagnosing airway diseases. Section 2 presents the quali-
ties of the paper used in the study, while Sect. 3 presents the
framework to predict airway diseases using Al-based tech-
niques. Section 4 provides a comparison of various methods
based on their dataset, applied algorithms with their results
in terms of different metrics such as precision, accuracy,
Fl1-score, etc., and the limitations of multiple airway dis-
eases such as Mesothelioma, cystic fibrosis, emphysema,
pulmonary edema, pneumoconiosis, lung cancer, pulmonary
embolism, tuberculosis, asthma, and covid-19. The discus-
sion segment, which answers the research questions from
Sect. 2, is handled in Sect. 5. Finally, Sect. 6 concludes the
study that assists researchers in determining the optimal
technique for detecting disorders and the future scope.

Table 2 Inclusion standards and exclusion standards

2 Materials and Methods

Full-text archives in the English language of six different
publication databases have been searched between 2010
and 2022 such as (ScienceDirect (https://www.sciencedir
ect.com), Google Scholar (https://scholar.google.co.in),
Scopus (https://www.scopus.com), Web of Science (http://
isiwebofknowledge.com), PubMed (http://www.ncbi.nlm.
nih.gov/pubmed), EMBASE (https://www.embase.com).
The paper has been searched using the keywords "airway
diseases", "cystic fibrosis"," pneumoconiosis"," pulmonary
embolism", "pulmonary edema", "Mesothelioma", "lung
cancer "

"non

, "tuberculosis"”, "asthma ", "covid-19"," emphy-
sema”, "machine learning" "artificial intelligence," "deep
learning," as well as combinations of these keywords. In
addition to this, the articles have also been chosen based
on inclusion and exclusion parameters (Table 2) which are
based on various metrics such as time duration, scholarly
articles from which the paper can be accessed, research to
highlight the problem, a comparator for analyzing and com-
paring the researchers' work, methodologies to demonstrate
the strategies that had been used in their articles, and finally
research design to analyze the results.

In this systematic literature review, PRISMA (Preferred
reporting items for systematic Reviews and Meta-Analyses)
guidelines have been applied in which four phases have been
used to select the research papers (Fig. 3), i.e., Identifica-
tion- in which the identification of records is carried out
by accessing various repositories, Screening- in which the
papers are selected transparently by assaying the decisions
that are made at different stages of the systematic review,
Eligibility- in which all full-length articles are evaluated [20]
and finally Included- in which the final selected articles are
included to write the review paper. PRISMA is chosen as it
helps improve the reporting and transparency of systematic
reviews and meta-analyses. It is also useful for the readers
to understand how the authors have filtered out the selected
papers by using keywords, year of publication, language,
etc., to frame any article.

S.no. Attributes Inclusion standards Exclusion standards

1 Duration Research work that had been carried out between 2010 Published articles before 2010
and 2022

2 Exploration Research work concentrating on (a) the findings, (b) the Research work that focus on other diseases and not on
benchmark dataset, and (c) the research goal airway diseases

3 Comparability Research studies aims at the prediction of airway diseases Research studies that work on other than airway diseases

Techniques Research articles that mostly focus on machine and deep ~ Research articles that apply the methods other than

learning methods including few traditional ones machine and deep learning models

5 Research design  Original articles that comprise of experimental results Case studies, Language other than English, Patents
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Fig.3 PRISMA flow chart

As far as this paper is concerned, for a better understand-
ing of the state of research on machine and deep learning in
airway disease detection, peer-reviewed papers stated that
these algorithms had played a vital role in predicting such

disorders. In addition to this, a few research questions have
also been framed that were investigated in the study:

RQ 1: Year wise analysis of predicting multiple airway
diseases using Al based techniques.

RQ 2: How doctors are being helped by deep and
machine learning techniques in detecting the airway
diseases?

RQ 3: Which ML and DL techniques are broadly
applied to predict airway diseases?

RQ 4: Name the characteristics that manipulate
the quality of prediction models based on deep and
machine learning?

3 Framework to Predict Multiple Airway
Diseases

In this section, various phases to predict and classify airway
diseases have been mentioned and diagrammatically shown
in Fig. 4.

Dataset: The foremost step is to gather the images from
various repositories or datasets so that the system can clas-
sify them by learning them. It is essential to feed the sys-
tem with many images for better classification. The data
for predicting airway diseases like pulmonary embolism,
emphysema, tuberculosis, pulmonary edema, pneumoco-
niosis, cystic fibrosis, asthma, covid 19, and lung cancer
has been collected from multiple data sources X-ray, CTs-
can (Computed Tomography), histopathology image, etc.
Table 3 shows the detailed description of the dataset for all
the respective airway diseases.

Data Pre-processing
v i Apply multiple learning models
— Augmentation —  APPIY p g
v" Normalization
¥ Resizing
Lung Cancer 1
{ @ g Cystic Fibross
“ O :»? Pulmaonary Edema
: O %\ ; '_ Asthma
Emphysema Mesothelioma  Pulmonary Edema Performance evaluation O ‘< i —p Lung Cancer
" (accuracy, recall, loss, etc) ‘ @/ —»  Covidis
O/ Wiy O—p Tuberculosis
— o/
: / : : —p Emphysema
L i O . 2 Mesothelioma
R — Pumanary Emboism
Pneumoconiosis O/ O

DATASET

Fig.4 Predicting airway diseases using multiple learning models

—p Pnsumoconiosis

Fully connected layers QOutput classes

TRAINING AND
CLASSIFICATION
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Table 3 (continued)

URLs

Description

Dataset name

References Diseases

https://nihcc.app.box.com/v/ChestXrayNIHCC

This database includes CXR classifications

ChestX-ray8 database

Pneumoconiosis

[64]

depending on the presence or exclusion of 14

radiological abnormalities
The data is collected from Chongqing CDC's

https://cloud.tsinghua.edu.cn/f/d8324c2

Pneumoconiosis radiograph dataset

[65]

df)

dbb744b1

electronic health records, which is a complete

image dataset

https://www.cdc.gov/niosh/index.htm

The dataset has images and diagnostic labels

Chest X-ray dataset

[66]

associated with it

https://www.ilo.org/safework/info/ WCMS_108548/

There are posterior-anterior (PA) radiography

Chest X-ray dataset

[67]

lang--en/index.htm

images in the collection, some of which are

totally digital and others which are digitized

films
The dataset contains the chest-X ray information

https://github.com/liyu10000/pneumoconiosis

Pneumoconiosis dataset

[68]

Pre-processing: After collecting the images from various
repositories, it is our prime duty to pre-process them before
training our system with them. It is because the images could
be blurred, noisy or their features are not visible, and training
the system with such images can affect the accuracy perfor-
mance and generate the wrong output, which would be risky
for people's health. There are various techniques by which the
image can be pre-processed, such as Contrast Limited Adaptive
Histogram Equalization (CLAHE) for increasing the image con-
trast, geometric transformations, image filtering, etc. [69]. Data
pre-processing also includes data augmentation to increase the
dataset size without collecting the new data and reduce overfit-
ting. Data normalization is the process of organizing the data
in a structured way. Multiple images are put into a common
statistical distribution in terms of size and pixel values so that
there can be a change in the range of pixel intensity values [70].
Resizing images is a critical pre-processing step since neural
networks receive inputs of the same size. All images need to
be resized to a fixed size before sending them as an input to the
convolution neural network. After this, feature extraction could
be conducted on the training images so that those features will
feed the learning models to identify or predict the class of any
new image. This process produces images that have been altered
or modified and will be utilized in the training phase [71].

Learning models: Modern systems are deemed artificially
intelligent when they use the machine and deep learning
methods, which allows the computer (the machine) to under-
stand tasks from an ever-changing dataset. Thanks to recent
breakthroughs in learning algorithms and processing speed
machines, deep learning models have become possible for
many prediction problems [72]. Hence in this phase, machine
learning algorithms, deep learning algorithms, transfer learn-
ing, and ensemble learning models can be selected based on
various factors such as the size of the dataset, complexity of
the data, etc. CNN (convolution neural network), which is
excellent for finding image patterns, is a perfect algorithm for
classifying things (and many other tasks involving images).
CNN's, like neural networks in the real brain, are made up of
neurons with trainable biases and weights that receive various
inputs [73]. The information's weighted sum is then calcu-
lated. After that, the weighted total is input into an activation
function, which results. As far as transfer learning is con-
cerned, VGG16 (Visual Geometry Group), VGG19, Mobile-
NetV2, ResNet50 (Residual Neural Network), and other pre-
trained models are frequently trained on massive datasets, a
standard benchmark in the computer vision area. These mod-
els can be used directly to predict new tasks or as part of a
model's training process. Moreover, these techniques, such as
transfer and ensemble techniques, are also used to minimize
training time, enhance the accuracy of the classification and
prevent modeling errors in the system [74].

Classification: In this phase, the trained model will deter-
mine which class a picture belongs to, such as emphysema,

@ Springer
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cystic fibrosis, pneumoconiosis, pulmonary embolism, pul-
monary edema, asthma, mesothelioma, tuberculosis, covid-
19, and lung cancer. If the image does not correspond to
either of these disorders, the model should suggest that it is
a normal lung image. To verify the system's performance,
the model that correctly classifies the image should be evalu-
ated using specific evaluative metrics such as accuracy, loss,
precision, recall, F1 score, and so on (Table 4) [75-79].

4 Background

The work done by researchers to forecast the numerous
airway diseases has been discussed in three subsections,
i.e., pulmonary edema, pulmonary embolism, and covid
19; Mesothelioma and lung cancer; asthma, tuberculosis,
and cystic fibrosis; emphysema and pneumoconiosis. To
undertake comparative analysis, the goal or objective of
their study has been initially briefed. Further, the datasets,
procedures, outcomes, findings, and limits are given in the
tabular form, i.e., from Table 5, 6, 7, 8, followed by the
overall analysis.

4.1 Role of Al to Predict Pulmonary Edema,
Pulmonary Embolism, Covid-19

Medical pictures are one of the first diagnoses since they can
disclose specific undetected pathologic changes. Still, the
absence of publicly available datasets and benchmark studies
makes it impossible to compare and define the best detection
systems. To solve this, Islam et al. [79] employed several
datasets to analyze the effectiveness of models on various
disorders, including pulmonary edema. To find the anoma-
lies in chest X-rays, the investigator's employed trained clas-
sifiers. According to Liao et al. [80], one major obstacle in
analyzing medical pictures is limited ground truth labels. As

Table 4 Evaluation metrics to test system performance

Parameters Symbols Formulae

Ac curacy Acc TrueNegative+TruePositive
TruePositive+FalsePositive+TrueNegative+FalseNegative

Loss Loss (ActualValue—PredictedValue)®

Numberofobservations

Area under the AUC lim Y f(x)
curve e

Sensitivity St TruePositive
TruePositive+FalsePositive

Specificity Sp TrueNegative
TrueNegative+FalseNegative

Recall Re TruePositive
TruePositive+FalseNegative

Precision Pr TruePositive
TruePositive+FalsePositive

F1 Score F1 2:Precision+Recall
Precision+Recall

Root mean RMSE

Z" [ _.Vi)2
i=1 n .

square error

@ Springer

a result, they designed and tested a semi-supervised learning
system for estimating pulmonary edema to aid therapeutic
choices in congestive heart failure. To tackle the problem,
they created a Bayesian model (Eq. 1) that learns the proba-
bilistic feature representations from the complete picture
collection and uses them to forecast the degree of edema

P(x|c)P(c)

P(clx) = P00 ey

where P(c|x) is the posterior probability, P(x|c) is the like-
lihood, P(c) is the class prior probability, and P(x) is the
predictor prior probability,

The authors maximized the log probability of the data to
construct the probabilistic feature representation (Eq. 2) that
has been learned from all images in predicting pulmonary
edema.

N; N
logp(x,y:0) = ) logp(x;,y:0) + ), logp(x;;6) @

i=1 i=N;+1

Here 6 is the parameters, N is the total number of images,
y is the edema severity label, x represent the single image.

According to Hong et al. [81], patients with pulmonary
edema have many consequences for the rest of their lives.
Physicians must deal with stress, concern, and inconven-
ience when treating such patients because they may suffo-
cate if they are not treated. As a result, the author advo-
cated a comprehensive investigation on the application of
auditory classification algorithms for the automated iden-
tification of excessive lung water that engorges the alveo-
lar beds to address these issues. The authors developed a
unique approach using recursive feature eliminations, logis-
tic regression (Eq. 3), and principal component analysis
(Egs. 4-6) to validate the learned data with supplemented
samples from local hospitals.

Y, =py+ B X, + ¢ 3)

Here Y, is dependent variable, f, is population y-intercept,
p, is population slope coefficient, X; is an independent vari-
able, and ¢, is random term error. Given a dataset of N cen-
tered observations in a d-dimensional space

N

....,xN},ZxszxkERd 4)
k=1

X = {xl,xz,x3,

PCA diagonalizes the covariance matrix where C is a
covariance matrix,

N
_1 T
C= ﬁ];x,(x,{ 5)

To solve the Eq. (5) using eigen values
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Table 7 (continued)
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enhance the sample size of a

ship between lipid profiles and
moderate and severe CFTR

gene mutations

Recall=96%

model

extracted from 277 perspiration

samples

genetically varied CF community
might improve this research in

the future

=94%

Precision

=98%

Specificity

Av=Cv=>A(X;.v) = (X,.Cv),wherek =1,2,...,N (6)

Lin et al. [82] investigated the diagnosis and progression
of illnesses to integrate bio-fluid-based infrared spectros-
copy into the clinical area. The authors looked at using Fou-
rier transform infrared micro spectroscopy to detect abrupt
cardiac death. Assessing the degree of pulmonary edema is
complex, and detecting it in chest radiographs allows doctors
to make prompt treatment decisions for patients. Using the
large-scale clinical MIMIC-CXR (Chest X-ray Scan) data-
base, Kumar et al. [83] tested different supervised and semi-
supervised deep learning approaches to detect the degree of
edema from radiological pictures. Furthermore, the authors
evaluated three ways to alleviate class imbalance during
implementation: weighted cross entropy loss (Egs. 7-8),
class aware sampling, and random minority oversampling.
Kumar et al. [84] reported a texture analysis of chest X-ray
to detect pulmonary edema in chest X-rays automatically. To
put it another way, the authors were able to tell the difference
between a chest X-ray with indications of pulmonary edema
and a normal chest X-ray.

I =— Z y;» clog(p;, ) @)

ceC

= Z mi, @®)

where [; is the ith window's component of the multiclass
cross-entropy loss, [ is the weighted cross-entropy function,
p is the probability that the window i belongs to class ¢ as
predicted by the given model, m; is the weight applied to the
i component. According to Hayat et al. [85], quick screen-
ing of pulmonary edema patients is required such that radi-
ologists can make a prediction as soon as feasible. However,
depending on specialists' knowledge of reasoning impedes
the diagnostic process. As a result, the author created a deep
learning-based architectural model to detect the presence of
acute pulmonary edema in chest X-ray pictures. Brestel et al.
[86] sought to deliver expert-level information to every chest
X-ray image right away. To achieve expert-level automatic
interpretation of regular chest X-rays, they used a machine
learning approach and discussed the results using a robust
approach of clinical validation.

Kiourt et al. [87] used transfer learning methodologies
to adopt and analyze some of the most common convolu-
tional neural network designs to get decent model accu-
racy for detecting pulmonary embolism in CT scans. Deep
convolutional neural network (DCNN) exhibited good
results in identifying critical abnormalities in CT images,
including intracranial haemorrhage, acute brain ischemia,
and essential abdomen findings, according to Weikert
et al. [88]. An end-to-end, fully convolutional network
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(i.e., U-Net) was created by Liu et al. [89] to segment
clots and determine clot volume in CTPA (CT pulmo-
nary angiogram). This study aimed to evaluate U-ability
Net's to identify clots in terms of efficiency and accuracy
and compute the APE clot load (acute pulmonary embo-
lism). Rucco et al. [90] suggested CAD (computer-aided
drugs) for the mathematical theory of Hyper-networks
and Q-analysis, allowing for a dimensional patient dataset
description. The findings were utilized for feature selection
in the artificial neural network training stage. The authors
were able to identify and diagnose pulmonary embolism
in that manner.

Since we know that the number of Covid-19 cases has
risen dramatically in the last year, it's become even more
critical to track and identify healthy and infected persons
quickly and precisely. Many existing detection approaches
are ineffective in detecting viral patterns. As a result, Chen
[91] developed an excellent classification approach for
detecting COVID-19 viral sequences. Ismael et al. [92]
employed an Al-based technique that effectively moni-
tors various lung illnesses. For deep feature extraction,
the authors operated pre-trained CNN models with SVM
(support vector machine) classifiers with different kernel
functions such as linear, quadratic, cubic, and Gaussian,
used for covid-19 classification.

Similarly, according to Punn et al. [93], artificial intelli-
gence experts have concentrated their professional knowl-
edge on constructing mathematical models for assessing
the epidemic condition utilizing state-wide shared data.
As a result, the authors advocated a few Al models to
analyze everyday exponential behaviour and the projec-
tion of future corona virus reach-ability across coun-
tries using real-time data. The data science community
has developed many machine learning (ML) models to
improve Covid-19's diagnostic capabilities. Most are based
on computed tomography (CT) images or chest X-rays.
Cabitza et al. [94] used various classifiers by including
machine learning techniques for blood-test results, which
are generally available in clinical practices. Panwar et al.
[95] focused on observational lockdown analysis and said
that artificial intelligence technologies were necessary to
defeat such a solution. With this in mind, the scientists
presented a CNN-based algorithm, emphasizing that lock-
down isn't the only way to combat the covid19 epidemic.
Elaziz et al. [96] demonstrated a technique for accurately
classifying covid-19 chest X-ray pictures. The character-
istics of orthogonal moment features and feature selec-
tion approaches determine the classification strategy. The
authors created a novel feature selection approach based
on several assessment techniques to improve the behavior
of Mamta ray foraging optimization. Several aspects may
be used to identify viral infections based on imaging pat-
terns. Wang et al. [97] hypothesized that CNN might aid

in identifying distinctive characteristics that would be dif-
ficult to detect using visual recognition alone.

4.2 Role of Al to Predict Mesothelioma, Lung Cancer

Alam et al. [101] aimed to look for clinical, radiological,
and histological variables in malignant Mesothelioma. The
authors suggested a novel framework for identifying prog-
nostic indicators utilizing non-invasive and cost-effective
methods based on various techniques. According to the
authors, their suggested framework would aid medical pro-
fessionals and healthcare experts in detecting malignant
Mesothelioma early and treating it more effectively by
including crucial prognostic markers. In their study, Latif
et al. [102] looked at the risk factors for malignant Meso-
thelioma. The scientists employed a dataset that included
healthy people and Mesothelioma patients, but only Meso-
thelioma patients were chosen for symptom identification.
According to the authors, these findings will aid in manag-
ing MM-related co-morbidities such as cardiovascular dis-
ease, cancer-related mental distress, diabetes, anemia, and
hypothyroidism. Choudhry et al. [103] employed artificial
intelligence-based algorithms to offer the best system for
Malignant Pleural Mesothelioma early identification and
prognosis (MPM). According to the authors, decision tree
models, random forest, have a risk of overfitting; hence, they
created a model that can diagnose with or without pricey
biopsy data to overcome the flaws outlined above.

Similarly, Alam et al. [104] concentrated on investi-
gating MM risk variables. The scientists included ill and
healthy people in their study, resulting in a larger dataset.
The dataset has a class imbalance problem, with the number
of malignant Mesothelioma patients being much lower than
the number of healthy people. Furthermore, the numerical
attributes were categorized as nominal attributes, and asso-
ciation rules were created in the dataset. To detect malig-
nant Mesothelioma, Gupta et al. [105] compared numerous
machine learning algorithms with different feature sets to
address the class imbalance problem. To achieve this, the
authors used three sampling techniques: resampling, syn-
thetic minority oversampling technique (SMOTE), and
adaptive synthetic sampling (ADASYN). They also used
other dimension reduction approaches, such as the ordinary
least square method (OLS), principal component analysis
(PCA), and random forest feature selection (RFFS), as well
as genetic algorithms, to determine the exact collection of
features. MesoNet was developed by Courtiol et al. [106].
It successfully predicted survival rates of Mesothelioma
patients using whole-slide digitized images with no need for
pathologist-provided locally labeled regions. The research-
ers also confirmed that the method was more suitable for
estimating the patient's survival rate than conventional path-
ological approaches.

@ Springer
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Several researchers have proposed several CNN strate-
gies for lung cancer detection. These models, however, could
not give the expected detection accuracy. Sori et al. [107]
utilized a retraining technique, i.e., multi-phase CNN. The
initial training was identical to the usual one. It was based
on fine-tuning, which just used the selected parts of the
model to describe and learn distinct morphology of lung
nodule characteristics for contextual information, as shown
in Fig. 5. Much work has gone into developing computer-
assisted diagnosis and detection methods to increase the
diagnostic quality for lung cancer detection categorization.
As aresult, Asuntha et al. [108] attempted to identify malig-
nant lung nodules in the input picture and categorize lung
cancer according to severity. The authors employed several
optimal feature extraction approaches such as local binary
pattern (LBP), scale-invariant feature transform (SIFT), and
others to extract textural, geometric, and intensity features.
Machine learning models improve the model's performance
by learning from previous experiences. These models also
seek to identify practical factors and their relationships.
As a result, Xie et al. [109] discovered clinical metabolic
markers that demonstrated significant differences between
lung tumor patients and healthy persons. According to the
authors, biomarkers were also employed to distinguish
between histological subtypes and illness degrees.

Because they had a restricted lung cancer image dataset
that did not work out using typical transfer learning and data
augmentation techniques, Ausawalaithong et al. [110] imple-
mented the transfer learning model twice to improve its per-
formance. The first occurred when the model was transferred
from the domain of public image to the chest X-ray. The
model was then applied to lung cancer for the second time.
According to the authors, multi-transfer learning solved the
sample's limited size and produced greater results on the test
than classic transfer learning. Shakeel et al. [111] introduced
an intelligent machine learning approach to improvise the
lung detection process. The CT scan-based lung pictures
were continually evaluated using a multilayer brightness-
preserving method that reduced image noise and improved
lung image quality. Due to the segmentation process's rel-
evance, the scientists adopted a multilayer augmented deep
neural network technique to extract the cancer-affected area.
Pradhan et al. [112] researched to predict various illnesses
to make a judgment on lung cancer prediction. The authors
also provided a comprehensive analysis of several machine
learning algorithms to assess their competence and perfor-
mance in predicting lung cancer and, as a result, detecting
lung cancer with IoT integration. In a retrospective study of
the USA National Lung Screening Trial (NLST), Kadir et al.
[113] indicated the influence of lung imaging reporting and
data system (lung RADS). Although lung RADS has been
shown to lower the total number of benign nodules during
screening, its categorization task has proven complicated.

@ Springer

As aresult, the authors addressed the issue by recommend-
ing that radiologists and pulmonary medicine specialists
use computer-assisted technology as a tool. As a result,
the authors analyzed their study's progress in developing
and validating the lung cancer predictive model and nodule
categorization.

4.3 Role of Al to Predict Asthma, Tuberculosis,
Cystic Fibrosis

Awal et al. [114] applied multiple learning models to
investigate the parameters that characterize asthma diag-
nosis and prediction. BOMLA (Bayesian Optimisation-
based Machine Learning Framework for Asthma), a new
machine learning technique, had been developed for
identifying asthma. Khasha et al. [115] set out to identify
asthma control levels, and they only looked at research
that used supervised approaches like classification models
in data mining. Their primary goal was to improve the
effectiveness of classification algorithms by investigat-
ing the impact of daily clinical data's time-series/time-
sequences dynamics on asthma control level detection in
patients. Zhang et al. [116] identified severe asthma exac-
erbations based on freely accessible daily monitoring data.
Compared to previously published models, the authors
hypothesized that a predictive algorithm created utiliz-
ing machine learning techniques and an extensive train-
ing dataset of daily monitoring data would yield greater
accuracy for identifying asthma exacerbations, as shown
in Fig. 6.

Several studies have employed Mahalanobis—Taguchi
System (MTS) for intelligent illness detection with rea-
sonable accuracy, according to Zhan et al. [117]. Their
research aimed to see if MTS could be used to diagnose
asthma based on regular blood measurements from healthy
people and people living with asthma.

Tuberculosis can be cured by diagnosing it at its early
stages, and to make it happen, the main requirement is to
use the diagnostic technologies properly. Hence, Dasan-
ayaka et al. [118] presented a model that can detect TB
using deep generative adversal network. The chest X-ray
images were chosen based on the subjective and objective
quality assessment metrics. The objective quality assess-
ment metrics were selected as peak signal-to-noise ratio
(PSNR) (calculated by Egs. 9-10), and the radiologists
performed a subjective evaluation.

C))

2
PSNR = 1010g]0<MAX >

MSE

And to calculate (mean square error) MSE, we have
an Eq. 10 where I and K are the observed and predicted
values, m &n are the data points respectively
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Fig.5 Architecture based on multi-pathway CNN to detect lung cancer [107]
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According to Panicker et al. [119], traditional micro-
scopic sputum smear screening for TB (tuberculosis) diag-
nosis is time-consuming and error-prone. To make the diag-
nostic procedure more accessible, the scientists employed
an image binarization approach and a modified convolution
neural network to detect TB by identifying the pixels in
the picture corresponding to bacilli. Gao et al. [120] con-
centrated on using cutting-edge deep learning approaches
to analyze CT pulmonary images. The authors identified
five categories of severity for tuberculosis to track therapy
effectiveness. The latter was the subject of Hwa et al. [121].
They detected tuberculosis using contrast-enhanced canny
edge detected (CEED-Canny) X-ray images which gener-
ated edge detection in lung X-ray pictures. Li et al. [122]
developed a new model for generating quantitative computed

According to Lai et al. [123], machine learning technologies
identify and diagnose various disorders. The effectiveness
of artificial neural networks and support vector machine in
predicting the development of prostate, ovarian, breast, and
liver cancer were outstanding. As a result, the researchers
utilized machine learning-based three algorithms to predict
anti-tuberculosis drug-induced hepatotoxicity. According to
Barros et al. [124], determining the severity of illnesses is
necessary to improve patient quality of life, efficiently man-
age health resources, and so on. As a result, they focused on
evaluating nine machine learning models, including KNN
(calculated by Eq. 11), Nave Bayes, and decision trees, on
improving TB prognosis to predict the chance of mortality
using patient geographical, medical, and laboratory data. To
summarise, the authors used feature selection techniques to
identify the most relevant fields, used randomized search
techniques to choose the optimal hyper-parameters of the
machine learning model, and proposed an ensemble learning
model to achieve better results.

dp.q) = d@.p) = \/ @ = PP+ @+ P + o+ (g, ) =

an

tomography images in a clinic for diagnosing pulmonary
TB. Based on CT data, the scientists used a fine-tuned 3D
CNN model to classify pulmonary TB lesion areas. Their
mission was to digitally assess the spatial position of each
lesion, the confidence of each infection, the presence of
calcification, lesion type classifications, overall infection
likelihood, and practical volume of the left and right lungs.

Here the two points in Euclidean n-space are p and q.
According to Das et al. [125], a chest X-ray is a potential
signal for detecting TB. However, the shortage of compe-
tent radiologists in limited resource areas exacerbates the
problem. As a result, the authors wanted to employ an end-
to-end deep learning TB screening tool based on chest X-ray
images so that their system could adjust to changed data
over time.
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The cystic fibrosis transmembrane conductance regulator
is widely distributed in the colon and plays a crucial function
in controlling gut secretion viscosity and pH. As a result,
Malagelada et al. [126] evaluated gut function using imaging
methods often used to detect anatomical abnormalities of the
digestive system. The authors also predicted that combining
internal (endoluminal) and exterior (MRI) imaging gives a
new viewpoint on the relationship between cystic fibrosis
anatomical and functional findings. Zucker et al. [127] inves-
tigated if a deep CNN model might aid automated Brasfield
rating of radiographic images of a chest for cystic fibrosis
sufferer that would be analogous to that of a radiologist.
Marques et al. [128] developed a texture classification-based
technique to detect cystic fibrosis anomalies. The researchers
used convolutional neural networks, as shown in Fig. 7, in
two ways, in which the first one detected aberrant tissues,
and the next determined the sort of structural abnormali-
ties. The authors also presented a network that solely used
patch-wise annotations to compute pixel-wise heatmaps of
present irregularities.

Dio et al. [129] stated that physicians were given tools
to recognize airway disorders in an automated and quick
manner. Their goal was to produce a proof-of-concept and
the first favorable results that might lead to rapid, reliable,
and automatic detection of such disorders, similar to how the
Sweat Chloride Test was used to diagnose Cystic Fibrosis
(CF). Likewise, Zhou et al. [130] proposed a novel technique
for cystic fibrosis diagnosis based on combining desorp-
tion electrospray ionization mass spectrometry with gradi-
ent boosted decision trees (calculated by Eqgs. 12, 13) that
divided the set of data into sub-sets, where S, X is a discrete
random variable and P is a probability.

c

E@S) =) —pilog.p; (12)

i=1

and entropy using the frequency table of two attributes is
given as

E(S,X) = ) P(0)E() (13)

ceX

to analyze perspiration samples.

4.4 Role of Al to Predict Emphysema,
Pneumoconiosis

Emphysema is a condition that causes difficulties in breath-
ing and needs to be detected early with computed tomogra-
phy scans and primary function testing. On the other hand,
the challenges involved with specific diagnostic methods
have prompted additional computer-assisted treatments to
flourish. As a result, Mondal et al. [131] used deep learn-
ing networks to conduct automated pulmonary emphysema
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Fig.6 Ways to predict asthma exacerbation patients

diagnosis, resulting in increased detection accuracy. Borts-
ova et al. [132] investigated a weakly labeled strategy com-
parable to multiple instance learning. Using this method,
the authors measured emphysema by leveraging %age
labels and applying existing information on the nature of
these labels. The authors developed an approach that used
a custom loss to learn the intervals and a label propor-
tion problem-specific architecture (LPP). Deep learning
has made significant progress in various complex tasks of
processing images. In light of this, Humphries et al. [133]
used the Fleischner technique to classify emphysema using
chest CT image processing. The authors' primary goal was
to see if emphysema patterns at the participant level may
predict disability and death when identified using a deep
learning algorithm. Srivastava et al. [134] employed neu-
ral networks to help medical experts diagnose Chronic
Obstructive Pulmonary Disease by providing a complete
and systematic assessment of clinical pulmonary audio
data. The authors used ten splits of K-fold Cross-Validation
(defined by Eq. 14) to escalate the presentation of the exist-
ing deep neural networks for N observations.

letk={1...N} - {1...L} (14)

which is an indexing function that indicates the division to
which randomization assigns observation ‘i’. The fitted func-
tion that is computed with the kth part of the removed data
is denoted by %0 (x). The estimate prediction error using
cross validation (CV) is shown by Eq. (15)

N
eV = = 2 LT () (15)
i=1

According to Nyboe et al. [135], automatic evaluation
of emphysema presence might produce highly steady fore-
casts at a far cheaper cost, so it could be a viable alterna-
tive for an expert to do the assessments. As a result, they
proposed a multiple instance learning (MIL) technique for
emphysema detection. They also looked at whether emphy-
sema at the scan level is sufficient to train the system to
predict emphysema occurrence at the area level. Improving
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Fig.7 Architecture of cascade approach for the detection of cystic fibrosis [128]

the detection of extreme inactivity (EI) in COPD patients
can reduce morbidity and death. Except for patients with
evident EI, detecting such conduct in a real-life session is
impossible. As a result, the authors such as Aguilaniu et al.
[136] presented a machine learning technique to test for
excessive inactivity. They created a prediction system that
could accurately identify EI patients who would benefit the
most from therapies like pulmonary rehabilitation. Gonza-
lez et al. [137] introduced a biomarker estimated approach
based on deep learning techniques that relied on a regression
network. In this system, the input was supplied to algorithm
photos having the structure where the biomarker was gener-
ated, and the output was shown directly as the biomarker
value. The two indicators used to demonstrate the suggested
regression architectures were emphysema and bone mineral
density (BMD), which are medically necessary. Pena et al.
[138] described a technique for autonomously estimating
emphysema areas in patients with chronic obstructive pul-
monary disease (COPD) using High-Resolution Computed
Tomography (HRCT) pictures that don’t require manually
labeled records for training. The authors wanted to use
HRCT images without local annotations to detect emphy-
sema sites in COPD patients.

Wang, X et al. [139] wanted to see if deep learning could
be used to consider pneumoconiosis on digital chest radio-
graphs as well as contrast its performance to that of quali-
fied radiologists. The scientists used a conventional deep
convolutional neural network to analyze chest X-ray pictures
and verify them with various parameters. Furthermore, the
scientists requested two trained radiologists to assess the
testing dataset separately and compare their results to the
computerized system. Hao et al. [65] presented an electronic
health record-based pneumoconiosis radiography dataset.
According to the authors, recent research has focused on
machine learning for computer-aided detection. These have
attained remarkable precision, with the artificial neural net-
work (ANN) doing exceptionally well.

Nevertheless, wide use in clinical practice has been
challenging due to unbalanced samples and a lack of read-
ability. Hence to address such issues, the authors initially
created a pneumoconiosis-based radiograph dataset, which
included both un-favorable and favorable representatives.
Secondly, deep convolutional diagnostic methodologies

were examined in identifying pneumoconiosis, and bal-
anced training was used to improve recall. Pneumoconiosis
diagnosis is based mainly on chest radiographic images,
according to Wang et al. [140], and there is substantial
disagreement across clinicians. Zhang et al. [141] set out
to create an artificial intelligence (AI)-based model that
would aid physicians in pneumoconiosis diagnosis as well
as grading using chest radiographic images. The chest
radiograph system was created with the help of a train-
ing cohort and validated with the help of an independent
assessment cohort. Their groundbreaking research evalu-
ated the possibility and effectiveness of Al-assisted radiog-
raphy diagnosis and screening in the field of occupational
lung disease. To surmount the issues of insufficient anno-
tation pneumoconiosis data and increase the accuracy of
pneumoconiosis diagnostics, Zheng et al. [142] presented
two transfer learning models. They also demonstrated vari-
ous pre-processing techniques for improving the quality
and accuracy of X-rays, such as segmentation of lungs
and amplification of data. Many computer-aided investi-
gations on pneumoconiosis classification algorithms have
been offered, according to Zhang et al. [143], but most of
them were based on lung pictures. As a result, the authors
provided a technique for diagnosing pneumoconiosis using
wrist pulse signals gathered from non-pneumoconiosis
individuals and pneumoconiosis patients. Machine learning
approaches were utilized to process and assay the pulses
of non-pneumoconiosis persons and the pneumoconiosis
patient. Other than specialist radiologists, Wang et al. [144]
noted a lack of sequential, automatic, and primary proce-
dures for identifying and analyzing the evolution of pneu-
moconiosis in every coal miner. Consequently, the authors
presented the most recent research findings from a study
to address the challenges described by creating Computer-
Aided Diagnosis (CAD) tools to identify pneumoconiosis
using chest X-rays automatically.

4.5 Overall analysis
The best techniques have been filtered out based on their
respective accuracy in Table 9 after observing the perfor-

mance of the models that have been used for the detec-
tion and diagnosis of multiple airway diseases such as
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pulmonary edema, pulmonary embolism, cystic fibrosis,
pneumoconiosis, lung cancer, asthma, covid-19, Mesothe-
lioma, tuberculosis, and emphysema.

5 Discussion

5.1 RQ 1:Year Wise Analysis of Predicting Multiple
Airway Diseases Using Al Techniques

As demonstrated in Fig. 8, one hundred fifty-five (155)
papers that range over 12 years, i.e. from (2010 to 2022)*
have been studied for identifying different types of airway
diseases using Al techniques which include pulmonary
edema, cystic fibrosis, emphysema, Mesothelioma, pneu-
moconiosis, pulmonary embolism, lung cancer, covidl9,
tuberculosis, and asthma.

One hundred papers have been taken from recent years
i.e. 2019 to 2022, and the remaining fifty-five papers have
been taken from 2010 to 2018. This research intends to
create a broader sense of the various types of Al and Al-
derived techniques, such as machine and deep learning
techniques for detecting and diagnosing multiple airway
diseases.

*- (As per the sources, the papers from the past ten
years can be considered for SLR, but in this paper, we had
to include some other information, such as a dataset of any
particular disease, etc. for which we studied the papers
atmost from the past 12 years.)

5.2 RQ 2: How Doctors are Being Helped by Deep
and Machine Learning Techniques in Detecting
the Airway Diseases?

The goal of an Al system is to organically learn a func-
tion and continue to improve without being actively taught.
Machine learning and deep learning are artificial intelligence
technologies that allow systems to detect patterns and con-
nections between data and desired outputs [145]. These tech-
niques connect multiple chunks of information discovered
from the facts without requiring explicit human description
[146]. At its most basic level, a machine and deep learning
e-based strategy lead to a better diagnosis by analyzing a
more excellent range of data than a physician.

We know that medical treatment is substantially affected
by the increasing amount of healthcare data which makes
it very difficult for pulmonologists to handle and analyze
it for treating their patients manually. Hence, to improvise
such a patient-doctor relationship, clinicians use Al tech-
niques to predict, classify, and diagnose diseases efficiently.
The stats have been shown in Fig. 9, which clearly defines
the accuracy of Al techniques in predicting and analyzing

@ Springer

the diseases as compared to the traditional methods used by
pulmonologists.

One advantage of employing Al to interpret diagnos-
tic exams such as imaging is the ability to evaluate tests
done in geographically isolated or underserved places
[147]. This may result in a more early and accurate diag-
nosis, as well as a referral to expert treatment at an earlier
stage of the disease, potentially influencing the prognosis
Radiographs from these centers, on the other hand, can
be remotely submitted and analyzed by a single central
system using Al [148]. In Fig. 10, it has been shown that
artificial intelligence techniques have successfully proven
to be better than pulmonologists in predicting airway
disorders.

5.3 RQ 3: Which ML and DL Techniques are Broadly
Applied to Predict Airway Diseases?

Patients who require early diagnosis and treatment can
benefit from Al-driven sickness detection models that
help medical companies produce improved diagnostic
tools. As a result, the literature mentions the techniques
for diagnosing airway disorders such as cystic fibrosis,
pneumoconiosis, pulmonary edema, pulmonary embolism,
covid-19, emphysema, tuberculosis, lung cancer, asthma,
and mesothelioma. Linear regression, support vector
machine (SVM), random forest (RF), decision tree (DT),
nave Bayes (NB), fuzzy particle, logistic regression, and
ensemble learning are the most commonly used machine
learning models in the literature. Convolutional Neural
Networks (CNN) are the most often utilized deep learning
models for illness diagnosis. Furthermore, artificial neural
networks (ANN) and transfer learning techniques such as
VGGNet, ResNet, and others have been extensively used
as shown in Fig. 11.

5.4 RQ 4: Name the Characteristics that Manipulate
the Quality of Prediction Models Based on Deep
and Machine Learning?

Al algorithms in the medical industry are essential, notably
for identifying a disease from the medical database. Many
firms employ these approaches to predict illnesses early and
better medical diagnostics. Irrespective of their continual
progress, there are specific problems that remain. On the
one hand, machine and deep learning algorithms can han-
dle any complicated situation, but on the other hand, they
also demand more research effort for practical implementa-
tions [149]. Hence, certain limitations occur while utilizing
machine and deep learning models to diagnose airway ill-
nesses gathered from research gaps and described below.
Data Paucity One of the most pervasive issues in artificial
intelligence is a shortage of high-quality data. Every business
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Table 9 Overall comparison of models

Ref Diseases Techniques Accuracy
[87] Pulmonary Embolism Deep Learning, Image Classification, Long Short Term Model 91%
[82] Pulmonary Edema Principal Component Analysis, Random Forest 96.5%
[129] Cystic fibrosis Support vector machine, Naive Bayes classifier, logistic regression 99%
[141] Pneumoconiosis Convolution Neural Network 97.3%
[111] Lung cancer Ensemble classifier 97.6%
[114] Asthma Decision Tree, Naive Bayes, K Nearest Neighbour 96.52%
[96] Covid-19 Mamta Ray Foraging Optimization, Fractional Multichannel Exponent Moments 98.09%
[105] Mesothelioma SMOTE, ADASYN, Artificial neural network, principal component analysis 96%
[118] Tuberculosis CLAHE method, Deep convolution neural network, UNet architecture 97.1%
[131] Emphysema Improved red deer algorithm, Fuzzy C Means, Adaptive local ternary pattern 95.56%

will encounter this difficulty throughout the AI deployment
process. Thus, in the future, open-source datasets of multi-
ple airway diseases should be considered, though they occa-
sionally lack quality but represent promising solutions for
organizations [150]. In addition, synthetic data should be
created to increase data security and privacy; data augmen-
tation should be considered to enhance the size of the dataset
without accumulating additional data; and finally, transfer
learning techniques should be used when we have enough
training data. Modeling errors: Two main restricting errors
are overfitting and underfitting. This is called overfitting,
when a model learns the information and noise in the train-
ing dataset to the point that it degrades its performance on a
new dataset. In underfitting, models cannot train or general-
ize new datasets, thus impairing the system's performance
[151]. Therefore, algorithms like pre trained models should
be incorporated that work on system modeling errors in the
future. Perpetual improvement of models: At times, optimiz-
ing a model's performance might be difficult. This is because
optimizing a model's performance makes it more accurate in
predicting and the most dependable and acceptable in artifi-
cial intelligence. Developing an Al-based model is not dif-
ficult for engineers while verifying its performance is critical
to obtaining accurate and trustworthy results [152]. Hence
to improve it, in the future, the appropriate amount of data
should be utilized, the proper algorithms should be used, and
models should be verified and evaluated appropriately. Trans-
fer learning can also enhance the performance of Al-based
models [153]. Class imbalance: An unbalanced classification
issue is when the distribution of instances across recognized
classes is uneven or biased [154]. Imbalanced classifications
provide a problem to predict the class because most machine
learning methods for classification are built on the premise of
an equal number of instances for each class. So, in the future,
Re-sampling, K fold cross-validation, or pre-trained models
can be used to deal with class imbalance issues [155].

6 Conclusion and Future Work

Between 2010 and 2022, 155 studies were chosen from six
digital libraries that can be accessed online, and four ques-
tions were investigated after going through them. Research-
ers analyzed a variety of technical developments that might
be used to enhance Al-based models in the field of pul-
monology. This article discusses the influence of machine
learning and deep learning techniques on analyzing the
information related to airway disorders. Furthermore, the
paper details several academics' rigorous research efforts
to demonstrate how machine learning and deep learning
models help to detect or categorize various airway illnesses.
The literature's systematic review is presented in a tabular
format, with each column indicating the dataset, methodol-
ogy, and outcomes used by the researchers and their limi-
tations. After accumulating the constraints encountered by
researchers for the prediction of airway problems, an attempt
has been made to determine the usage of the latest models
that may be incorporated in the future to enhance the sys-
tem's performance. The lasso method, CNN, Decision Tree,
GAP Net, and other algorithms were examined by certain
researchers. However, their findings revealed that the models
could not distinguish between diseases or detect anomalies
in their data. Aside from that, several models only worked
with limited data sets, failed to pre-process data, and refused
to provide localization information for the final image. The
model's overall performance is hampered due to these limi-
tations, which must be addressed. Several approaches used
in research publications, such as random forest and logistic
regression, have the lowest prediction accuracy because of
modeling flaws such as overfitting and underfitting. Many
researchers have also struggled to categorize data using
DFD-Net, Fuzzy Particle effectively, Swarm Optimiza-
tion to detect lung cancer, CNN to detect pneumoconiosis,
Dense Net, Inception V3, ResNet, and DNN to diagnose
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pulmonary embolism, and Canny Edge to detect tuberculo-
sis. It's also worth noting that researchers have only focused
on one or two airway disorders for prediction, which limits
users' capacity to distinguish between other types of airway
difficulties.

Although artificial technology has innumerable benefits,
its flaws and limitations may restrict its applications, nota-
bly in the healthcare business. But there is also scope for
improvement in this field to overcome the issues such as
the best selection of models which can be further improved
or innovated to provide better output, and optimization
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Al Software

techniques should be added to the network to provide the
optimal results. The most important task while using the
learning models is correctly classifying the data. Hence,
such a methodology that connects the data's features to
improve the classification model and generates correct out-
put should be included. Besides this, deep learning tech-
niques should be improved to be applied to a dataset where
they can detect various airway diseases using less process-
ing time. In addition, the conventional learning methods
should also be considered in the future as they can be used
to improve the airway disease detection model.
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Fig. 10 Airway Diseases
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