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Abstract
Mathematical programming and meta-heuristics are two types of optimization methods. Meta-heuristic algorithms can iden-
tify optimal/near-optimal solutions by mimicking natural behaviours or occurrences and provide benefits such as simplicity 
of execution, a few parameters, avoidance of local optimization, and flexibility. Many meta-heuristic algorithms have been 
introduced to solve optimization issues, each of which has advantages and disadvantages. Studies and research on presented 
meta-heuristic algorithms in prestigious journals showed they had good performance in solving hybrid, improved and 
mutated problems. This paper reviews the sparrow search algorithm (SSA), one of the new and robust algorithms for solving 
optimization problems. This paper covers all the SSA literature on variants, improvement, hybridization, and optimization. 
According to studies, the use of SSA in the mentioned areas has been equal to 32%, 36%, 4%, and 28%, respectively. The 
highest percentage belongs to Improved, which has been analyzed by three subsections: Meat-Heuristics, artificial neural 
networks, and Deep Learning.

1 Introduction

The necessity for meta-heuristic algorithms has grown 
in recent decades as the complexity of diverse issues has 
increased. Previously, academics employed mathematical 
strategies to handle local optimization's deterministic and 
difficult-to-trap optimization issues. Because the search 
space in actual optimization issues increases exponentially 
and the problem perspective shifts in a multidimensional 
fashion, standard optimization methods frequently gener-
ate less-than-optimal solutions [1–3]. These techniques are 
inefficient in solving real optimization problems, which has 
increased interest in metaheuristic algorithms in the last two 
decades. Due to intrinsic complexity constraints and many 
design variables such as nonlinear and convex, most real-
world optimization issues, such as text processing, commu-
nity detection, feature selection, optimization issues, setting 
machine learning parameters, etc., require meta-heuristic 
algorithms. Therefore, solving these optimization problems 
is complicated due to many local minimums. In addition, 

there is no guarantee of finding a universal solution. Many 
researchers have used meta-heuristic strategies to find the 
optimal solution to achieve the global optimal [4–6].

Meta-heuristic algorithms have solved many optimization 
problems, most of which can solve high-dimensional optimi-
zation problems well. Large-scale global optimization issues 
are widespread in scientific research and engineering appli-
cations and have attracted much attention in recent years. 
The high-dimensional optimization problem is expressed 
as a two-dimensional d minimization problem according to 
Eq. (1). Where X = [x1, x2,… , xD] represents the decision 
vector, and F(X) is the fitness function.

As the number of dimensions increases, many 
metaheuristic methods become "dimension traps", mean-
ing that performance decreases rapidly and is easily opti-
mized locally as the number of dimensions increases. 
Therefore, hybridization operators must strike a balance 
between exploitation and exploration in the optimization 
process, and search efficiency must be improved. In gen-
eral, solutions with better fitness have higher growth per-
formance, while solutions with poor fitness can maintain 
population diversity and strengthen their exploration abil-
ity. As a result, to strike a balance between exploration and 
exploitation, the population must be separated into two 
groups: the main population and the sub-population, using 

(1)minF(X),X = [x1, x2,… , xD]
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a multinational concept. People in the main population can 
boost exploitation capacity and solution accuracy, whereas 
individuals in the subpopulation can assure population 
variety and exploration ability. This method ensures the 
ability to exploit while avoiding the local optimum. Dur-
ing the exploration phase, the subpopulation is adjusted by 
directing individuals in the exploitation population, which 
can increase exploration efficacy [7].

In meta-heuristic algorithms, graceful exploration 
means the ability to search optimally globally. The entire 
population is allowed to explore the whole solution space 
to find a promising area. In contrast, good exploitation 
demonstrates good local search capability. The population 
can use the valuable points to refine the search for a more 
accurate optimal solution. The balance of exploration and 
exploitation is essential in improving optimization perfor-
mance. Excessive attention to exploration leads to wasting 
evolution in search of some parts of the solution space, and 
as a result, the convergence rate is reduced.

On the other hand, paying more attention to exploita-
tion risks losing diversity in the early stages of evolution. 
As a result, the initial population will likely be trapped in 
the local optimal. Therefore, achieving the right balance 
between exploration and operation in meta-heuristic algo-
rithms improves performance in solving complex optimi-
zation problems [8–13].

Engineering optimization issues have been researched 
and solved using a variety of methodologies. Meanwhile, 
meta-heuristic algorithms have performed well. Unlike tra-
ditional optimization methods, Meta-heuristic algorithms 
do not require gradient information and can avoid local 
optimization. As a result, they can be used to solve engi-
neering optimization challenges.

They can find an optimal solution regardless of the 
physical nature of the problem. Most of them are inspired 
by physical or natural phenomena. Examples include 
Farmland Fertility Algorithm [14], African Vultures Opti-
mization Algorithm (AVOA) [15], Starling murmuration 
optimizer [16], Sparrow Search Algorıthm [17], and Arti-
ficial Gorilla Troops Optimizer [18].

SSA is a population-based meta-heuristic algorithm 
developed by Xue and Shen in 2020 to solve continuous 
optimization problems [17]. The evaluation of the SSA 
algorithm is performed with 19 known mathematical 
functions. This algorithm has demonstrated its ability to 
address computational complexity and solution conver-
gence difficulties. The SSA algorithm outperforms the 
GWO, Particle Swarm Optimization(PSO), and GSA 
algorithms in performance. The main contributions of this 
paper are as follows:

• SSA algorithm analysis based on schematic and pseudo-
code

• Investigations of SSA methods from the aspects of 
Hybridization, Improved, Variants of SSA, and optimi-
zation issues.

• Improved SSA analysis by different methods
• Analysis of SSA performance in solving diverse prob-

lems based on convergence rate, exploration, and exploi-
tation factors.

• Focus on outlook works in line with the SSA algorithm

The general structure of this paper is as follows: The SSA 
algorithm and its operators will be explained in Sect. 2. In 
Sect. 3, SSA approaches will be divided into four categories: 
hybridization, improvement, SSA variations, and optimiza-
tion concerns. In Sect. 4, we'll talk about discussions and 
comparisons; in Sect. 5, we'll wrap things up and look for-
ward to future projects.

2  SSA: Sparrow Search Algorithm

SSA Algorithm [17] is a new nature-inspired algorithm 
inspired by the behaviour of sparrows in 2020. Many animals 
search for cuisine and avoid predators with their swarming 
intelligence in the wild. The population of sparrows is no 
exception. They are separated into two categories depend-
ing on their fitness, determined by each sparrow's unique 
posture. The person who has a better fit belongs to the pro-
ducers. The remaining sparrows are explorers. In the whole 
population of sparrows, different people have different eating 
behaviors. In addition, several sparrows are responsible for 
avoiding predators during the forage search process among 
the population. To cope with the dangers, they choose to 
fly farther or closer to other sparrows. In short, the sparrow 
colony can search for more low-risk cuisine by constantly 
updating its position.

For simplicity, sparrows' behaviour and related laws are 
described below.

• Producers often have a lot of energy reserves and offer 
regions or forage search routes to all explorers. They are 
in charge of locating cuisine-rich locations. Individual 
fitness determines how much energy is stored in the body.

• When a sparrow detects a predator, individuals start 
chirping with warning signals. When the alarm value 
exceeds the safety threshold, manufacturers must direct 
all explorers to a safe area.

• Each sparrow can be a producer if it seeks a better cuisine 
fountainhead, but the ratio of producers to explorers in 
the whole population is unchanged.

• Producers are sparrows with more vigour. Several hun-
gry probes are more inclined to fly to other locations in 
search of cuisine to replenish their energy levels.
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• Explorers are looking for a producer who can provide the 
best cuisine in search cuisine. Meanwhile, some explor-
ers may constantly monitor producers and compete for 
cuisine over prey.

• The group sparrows move quickly to a safe area to find a 
better position if they are aware of the danger, while the 
sparrows in the middle of the group walk randomly to get 
closer to others.

SSA is suggested by imitating the search behaviour of the 
sparrow and anti-hunting group. This algorithm has fewer 
parameters, a more robust search capacity, and faster perfor-
mance. The main stages of SSA can be explained as follows:

Step 1 Create and initialize the solution. At this stage, 
the population size, maximum number of replicates, pro-
ducer ratio (PD), and the ratio of sparrows in intensive care 
(PV) are all determined. The initial position of the sparrow 
population is shown in Eq. (2). They are produced randomly.

The number of sparrows in Eq. (2) is n, and the dimension 
of choice variables is d. Each person's suitability for the fol-
lowing procedure is determined using Eq. (3). In Eq. (3), n 
defines the number of sparrows, and the value of each row 
in FX represents each person's fit.

Step 2 In the SSA, producers with higher fitness val-
ues are given preference over those who produce cuisine. 
Because producers are in charge of finding cuisine and 
directing the entire population's movement, producers can 
search for cuisine in a broader range compared to the posi-
tion of the explorers. According to steps (1) and (2), during 
each iteration, the manufacturers update their status with 
Eq. (4).

In Eq. (4), itermax is a constant with the highest number 
of iterations. t is the current iteration, and j = 1, 2,… , d , 
Xt
i,j

 represent the next value of jth sparrow in the iteration 
of t. α is a random number between 0 and 1. R2 (alert 
value) is a number in the range of 0 to 1, and ST (safe 
threshold) is a value of 0.5 to 1.0. Q is a random number 
based on a normal distribution. L represents a 1 × d matrix 

(2)X =

⎡⎢⎢⎢⎣

x1,1 x1,2 ⋯ ⋯ x1,d
x2,1 x2,2 ⋯ ⋯ x2,d
⋮ ⋮ ⋮ ⋮ ⋮

xn,1 xn,2 ⋯ ⋯ xn,d

⎤⎥⎥⎥⎦

(3)FX =

⎡⎢⎢⎢⎣

f [x1,1 x1,2 ⋯ ⋯ x1,d]

f [x2,1 x2,2 ⋯ ⋯ x2,d]

⋮ ⋮ ⋮ ⋮ ⋮

f [xn,1 xn,2 ⋯ ⋯ xn,d]

⎤⎥⎥⎥⎦

(4)Xt+1
i,j

=

{
Xt
i,j
× exp

(
−i

𝛼×itermax

)
if R2 < ST

Xt
i,j
+ Q × L if R2 ≥ ST

in which each element is 1. If it is  R2 ≥ ST, some sparrows 
have discovered the hunter, and all the sparrows must fly 
quickly to other safe areas. When  R2 < ST means no hunter 
is around, the manufacturer enters the extensive search 
mode.

In the case of explorers, Rules 4 and 5 must be fol-
lowed. As previously said, some explorers keep tabs on 
most manufacturers. They leave their current place to 
compete for cuisine when they learn that a producer has 
discovered delicious cuisine. If they win, they can eat right 
away; otherwise, Rule 5 will apply. Position updating for 
explorers is defined according to Eq. (5). In Eq. (5) xp 
does whether the manufacturer occupy the optimal posi-
tion. Xworst represents the worst place in the world right 
now. A means a 1 × d matrix that is randomly assigned 1 
or -1 to each element inside A+ = AT (AAT )

−1 . If i > n

2
 This 

indicates that the i probe with a worse fit value is more 
likely to go hungry.

Step 3 After updating the position of the whole popula-
tion, several sparrows are selected as scouts (exploration) 
responsible for identification and warning. They usually 
make up 10 to 20% of the total population. Updating their 
position is defined according to Rule 6 according to Eq. (6).

In Eq. (6) Xbest is the current global optimal position. ε 
is a small constant to avoid a zero-division error. β acts as 
a control parameter for step size and the normal distribu-
tion of random numbers with mean value 0 and variance 1. 
fg and fw are the current best and worst overall suitability 
values, respectively. K is a random number in the range 
1 and − 1. fi is the current value of the sparrow. fi= fg 
indicates that sparrows in the middle of the population are 
aware of the hazard and should approach the rest. If fi> fg 
then the person is at the edge of the group. Xbest indicates 
the central location of the population and is safe around it. 
K represents the direction in which the person moves and 
the step size's control factor.

Step 4 Each person's current position is compared to 
the last repetition. The update is done if the new position 
is better than the previous one and saves the best position. 
The survival of some sparrows may improve after the last 
two steps.

Step 5 If the number of repetitions is less than the maxi-
mum number, move on to step 2. Otherwise, the algorithm 
stops, and the best solution is obtained.

(5)Xt+1
i,j

=

{
Q × exp

(
Xt
worst

−Xt
i,j

i2

)
if >

n

2

Xt+1
P

+ |Xt
i,j
− Xt+1

P
| × A+ × L otherwise

(6)Xt+1
i,j

=

{
Xt
best

+ 𝛽 × |Xt
i,j
− Xt

best
| fi > fg

Xt
i,j
+ K ×

(|Xt
i,j
−Xt

worst
|

(fi−fw)+𝜀

)
fi = fg
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Figure 1 shows the pseudocode of the SSA algorithm.
The primary implementation of meta-heuristic algo-

rithms usually has a sequential approach. Sparrow posi-
tions are typically recorded in a n × d matrix, where n is 
the number of sparrows and d is the number of dimensions 
in the search space. Using For-loops, the members of this 
matrix are changed one by one based on their value in 
the previous iteration and some random sample numbers. 
For search agents or various dimensions, all matrix com-
ponents are simultaneously updated. Figure 2 shows the 
flowchart of the SSA algorithm.

Since 2020, various researches have been conducted 
to solve optimization problems with SSA. All the papers 
worked by SSA are downloaded to calculate the number 
of SSA papers. Then a grouping based on the percentage 
of papers in various journals and the number of publica-
tions of SSA papers per year is reviewed. Figure 3 shows 
the rate of papers published by SSA in multiple publica-
tions. The majority of publications belonged to IEEE jour-
nals (39%), followed by Elsevier (28%), Springer (11%), 
Hindawi (9%), Others (7%), and Tandfonline and Wiley 
(3%). Figure 3 shows that the highest percentage of papers 
published belong to the IEEE. At first, we downloaded 
all the papers belonging to SSA. Then the papers were 
categorized based on different publishers. We used the 
Google search engine and reliable sites such as Springer, 
Elsevier etc., for searching. We also used other databases 
in the field of indexing papers.

Figure 4 illustrates the number of SSA papers printed 
per year. The number of SSA papers printed in 2020 is 
7. As shown in Fig. 4, the use of SSA has increased over 
time.

Papers are collected based on the title, keywords and 
abstract. Each paper has been thoroughly reviewed in 
terms of text and type of algorithm. Finally, the papers 
belonging to the SSA algorithm were grouped. Figure 5 
shows the search steps and the number of papers in dif-
ferent steps.

Input:
G: maximum number of iterations
PD: the number of producers
SD: the number of agents (sparrows) alerted to the risk
R2: the alarm value
n: the number of agents
Create a population of n agents and describe its essential parameters.
Output: , .
01: While (t < G)
02: Rank the fitness values to determine the current best and worst individual.
03: R2 = 
04: For  in (1, PD)
05: Using Eq. (4), upgrade the agent’s position;
06: Out of For
07: For  in ((PD + 1), n)
08: Using Eq. (5), upgrade the agent’s position;
09: Out of For
10: For l in (1, SD)
11: Using Eq. (6), upgrade the agent’s position;
12: Out of For
13: Get the current fresh position;
14: if the fresh position is better than formerly, upgrade it;
15: t= t + 1
16: End While
17: Return , .

Fig. 1  Pseudo-code of SSA algorithm [17]

Fig. 2  Flowchart of SSA algorithm [17]

Fig. 3  Percentage of papers published with SSA in various journals
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3  Methods of SSA

Figure 6 shows the taxonomy of SSA methods. Classifica-
tion is based on Hybridization, Improved, Variants of SSA, 
and Optimization issues. In hybridization, the combina-
tion of SSA with other algorithms is used. Improved uses 
various subcategories to improve solutions. In Variants 

of SSA, the Binary subcategory is used, and optimization 
issues are used to solve diverse optimization issues to find 
the best answer.

3.1  Hybridization

3.1.1  Meta‑Heuristics

According to the performed classifications, the SSA algo-
rithm in the field of meta-heuristics is combined with PSO, 
water wave optimization (WWO), sine cosine algorithm 
(SCA), firefly algorithm (FA), differential equation (DE), 
whale optimization algorithm (WOA), topographical global 
optimization (TGO), and BSS algorithms.

PESSA [19], a hybrid approach based on PSO and an 
enhanced SSA (ESSA), has been presented. The ESSA 
strengthens the producer's random jump to ensure global 
search ability, each scrounger continues to learn from the 
producers' optimal experience, and the difference between 
the best and worst individual will be imposed on the sparrow 
with the optimal position when it detects danger to speed up 
the search process. Ten fundamental functions validate PES-
SA's performance, and the experimental findings reveal that 
PESSA outperforms the other twelve methods. Finally, the 
suggested PESSA is tested in four situations, two of which 
are 2D settings and 3D environments. The findings revealed 
that the PESSA could obtain a more viable and effective 
route than the other models.

The WWO-SSA [20] was designed to combine the ben-
efits of the WWO and SSA algorithms while avoiding their 
limitations. WWO and SSA have been integrated to achieve 
good performance by continually modifying the parameters 
to increase WWO's capabilities in development and explo-
ration. Using CEC2017's benchmark features, the hybrid 
algorithm's performance is compared to WWO and SSA's 
original methods. WWOSSA is more efficient, according to 
the findings of the experiments.

A hybrid SSA-PSO [21] model has been developed to 
speed up convergence before individual SSA updates. In 
addition, a novel fitness function based on maximum likeli-
hood parameter estimate was created and utilized for param-
eter initialization. The optimization performance of this 
algorithm was superior to that of a single method, with more 
incredible convergence speed and more stable, accurate out-
puts, according to the findings of five sets of actual datasets. 
Furthermore, it efficiently handled the difficulties of slug-
gish convergence speed and low solution accuracy with the 
help of the new fitness function. The experimental findings 
revealed that the hybrid SSA-PSO could acquire a superior 
solution, convergence speed, and stability in software defect 
estimation and prediction than a single SSA and PSO.

The SCA was initially created to increase the global 
search capacity of the SSA algorithm because it has the 

Fig. 4  Number of SSA papers published per year

Fig. 5  Review of papers belongs to the SSA algorithm
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qualities of attaining high search and avoiding local optimi-
zation. Additionally, the labour collaboration structure of 
the sparrow in the SSA algorithm is redefined to improve 
the algorithm's convergence ability. Finally, the enhanced 
cooperative SSA based on the sine cosine algorithm (SCA-
CSSA) is developed [22] based on the new labour coopera-
tion structure and SCA algorithm. The SCA-CSSA approach 
is used to adjust the weight of AdaBoost-S4VM and the 
critical parameters of S4VM to improve the precision of the 
AdaBoost-S4VM model for semi-supervised lung CT clas-
sification. The suggested AdaBoost-ISSA-S4VM model was 
compared against several hybrids and popular approaches on 
CEC2017 tasks and 12 benchmark tasks, including unimodal 
and multimodal tasks, to see how effective it was.

The SSA is used to improve the starting weights and 
thresholds of the BP-ANN, addressing the problem that 
the BP neural network is sensitive to beginning weights 
and thresholds. The firefly algorithm (FA) technique with 
FASSA [23] is presented to alleviate the weakness of SSA 
that it is easy to slip into the local optimum. Finally, China's 
big battery manufacturing firm is chosen for the empirical 
study. Comparative tests are conducted on the FASSA-BP, 
BP, SSA-BP, and PSO-BP regarding the accuracy, stability, 
and other factors. The FASSA-BP model was shown to be 
more accurate in the study.

Because buildings play a significant role in energy effi-
ciency, it is critical to implement sustainable energy source 
(SES) systems globally, especially given the rising inter-
est in near-zero energy structures. Because of their signifi-
cant influence on energy usage and pollution, SES must be 
entirely used in buildings to promote renewable energy and 

efforts to develop a green future. As a result, getting the best 
results is critical. A novel multiple-objective optimization 
approach called SSA-DE [24] is used to get the best SES 
level. SSA-purpose DE is to determine the best value for 
system resource parameters.

In Wireless Sensor Networks, a hybrid SSA with DE is 
designed to alleviate the energy efficiency issue by cluster 
head selection [25]. The proposed approach combined the 
SSA's high-level search efficiency with DE's lively poten-
tial, extending node lifespan. The hybrid model performs 
well in the number of alive nodes, throughput, and residual 
energy. Compared to comparable algorithms, the Improved 
SSA employing the DE model to find the best potential 
cluster head demonstrated residual power and throughput 
development.

Due to sluggish convergence speed, low accuracy, and 
optimum local distance, the WOA algorithm is merged with 
the SSA and golden sine leading strategy (SGSWOA) [26]. 
The producer's position update rule in the SSA is integrated 
into the encircling prey stage of WOA to extend the algo-
rithm's search space and escape from the local optimum. 
Then, when used with the golden Sine leading technique, it 
may balance exploration and development capabilities while 
improving the WOA algorithm's performance. Finally, the 
experimental findings showed that the SGSWOA method 
has superior convergence accuracy, convergence speed, 
and resilience after optimizing 16 benchmark functions and 
applying it to actual engineering optimization situations.

A new greedy genetic SSA (GGSC-SSA) based on the 
SCA method has been suggested [27]. The greedy method 
is first implemented to initialize the population and boost 

Fig. 6  Classification of SSA 
methods
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its diversity. Second, GA operators are utilized to balance 
global search and local development capacities to update the 
population. Finally, adaptive weight is added to the routine 
upgrade to improve the algorithm's flexibility and maxi-
mize the solution quality, and the SCA approach is used to 
update the scroungers. On TSP datasets, the GGSC-SSA is 
also tested against the genetic algorithm (GA), simulated 
annealing (SA), PSO, grey wolf optimization (GWO), ant 
colony optimization (ACO), and the artificial fish algorithm 
(AFA). The results showed that the GGSC-SSA significantly 
enhanced the solution precision, optimization speed, and 
perseverance.

For Unmanned Aerial Vehicle Path Planning, a unique 
SPSA is suggested [28]. PSO improves the discoverer posi-
tion updating rule to improve the search along the start–end 
line. When impediments are encountered, adaptive variable 
speed escape search is employed to increase path search 
efficiency. Adaptive oscillation optimization increases path 
smoothing and lowers path fluctuations. Finally, reduc-
ing the nodes and smoothing procedure increases the path 
smoothness, making it more acceptable for path planning 
in the actual world. It's also been proven that the SPSA has 
a faster convergence time and uses less energy than other 
algorithms.

SSA and TGO [29] have been proposed for network 
security situations to improve the accuracy and perfor-
mance of the scenario prediction model [30]. TGO-SSA is 
used to optimize neural network scenario prediction model 

structural hyperparameters. The TGO-SSA technique out-
performs the standard scenario prediction model to improve 
neural network model accuracy and reduce training loss. 
Python was used to test the suggested technique. The find-
ings revealed that the approach could perform better at situ-
ation prediction.

The Improved Bear Smell Search (IBSS) and SSA are 
presented [31]. The BSS is included in the proposed work 
through crossover and mutation functions, thus the designa-
tion IBSS-SSA. The grid created the multi-objective func-
tion with reactive power variations dependent on the avail-
able resource power. The SSA procedure ensures that online 
control signals are detected utilizing a parallel implemen-
tation against active and reactive power variations. Under 
power flow changes, the control technique based on the sug-
gested methodology enhances the power controller's control 
parameters. The proposed approach, based on fluctuations 
in the resource and load side characteristics, is used to regu-
late the power flow management of the smart-grid system. 
The proposed model manages energy resources to meet the 
grid's power needs, including renewable energy and energy 
storage devices.

Figure 7 shows the advantages of hybridization SSA with 
different algorithms. SSA combines SCA, PSO, DE, and 
BSS algorithms to solve optimization issues.

In the hybrid SSA-PSO model, the SSA algorithm uses 
the gbest agent to update the agents' position. By choos-
ing the best optimal points, the SSA algorithm ignores the 

Fig. 7  Advantages of hybridi-
zation SSA with different 
algorithms
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problem of premature convergence in the PSO algorithm. 
The SSA-PSO model prevents premature convergence by 
enhancing group search capabilities. In the optimization pro-
cess, the SSA-PSO model reduces premature convergence by 
determining the optimal value for the parameters.

3.2  Improved

All SSA restrictions are slow convergence, optimum local 
entrapment in certain circumstances, and exploration and 
exploitation phases that can't cope with the extensive dimen-
sions. Due to the limitations of SSA, numerous approaches 
have been developed in recent years to enhance SSA, includ-
ing chaos, Gaussian, Lévy flight, OBL, Random Walk, Strat-
egy mechanism, artificial neural networks (ANNs), and 
Deep Learning. Improved strategies for boosting population 
variety and speeding convergence by hybridization operators 
have shown to be beneficial.

3.2.1  Chaotic

Turbulent systems are distinguished by their unpredictabil-
ity, periodicity, and parameter sensitivity. Turbulent map-
ping can be used to produce rough numbers between 0 and 
1 instead of pseudo-random number generators to optimize 
the parameters of metaheuristic algorithms. Experiments 
have demonstrated that using chaotic sequences for ini-
tialization influences the entire algorithm process and that 
chaotic sequences produce better results than quasi-random 
numbers. Chaotic mapping improves the variety of the spar-
row population's starting state. Chaotic mapping prevents 
premature convergence and increases global optimization 
accuracy and convergence. Figure 8 shows the most critical 
chaotic targets in SSA.

Table 1 shows the improvement of SSA by the chaotic 
method. Items such as the advantages and disadvantages of 
chaotic SSA have been analyzed.

3.2.2  Gaussian

A modified SSA termed CASSA [51] was used for an 
uncrewed aerial vehicle (UAV). The route planning chal-
lenge is changed into a multi-dimensional task optimiza-
tion issue once the 3D task space model and UAV route 
planning cost functions are established. Second, the cha-
otic approach is used to broaden the algorithm's popula-
tion, while an adaptive inertia weight is used to balance the 
algorithm's convergence rate and exploration capabilities. 
Finally, the Cauchy-Gaussian mutation technique improves 
the algorithm's capacity to overcome stagnation. According 
to simulation data, the CASSA-generated routes are superior 
to the SSA, PSO, ABC, and WOA.

A crack segmentation approach based on adaptive T-dis-
tribution is utilized to enhance the selection of clustering 
centres and make the cracks more accurate and comprehen-
sive segmentation [52]. The simulation demonstrates that 
incorporating an adaptive t-distribution mutation mechanism 
into SSA improves its ability to resist getting caught in local 
optimization. Second, the improved TSSA is utilized as the 
K-means algorithm's starting clustering point. After verifica-
tion, the suggested technique considerably enhanced compli-
cated crack pictures' segmentation accuracy and fitness. The 
Gaussian function's objective is to keep you from slipping 
into the local optimum.

A multi-objective scheduling model based on an ISSA 
has been developed to increase the efficiency of Micro-grid 
combined heat and power (MCHP) [53]. The objective and 
economic advantage objectives are initially defined to mini-
mize total operating costs and environmental pollutant dis-
charge. Then, a dynamic adaptive weight is used instead of 
a single weighting technique, and the SSA is combined to 
create a multi-objective optimum timetable model for com-
prehensive energy. Finally, multiple optimization scenarios 
are constructed to test a typical day operation's suggested 
scheduling optimization model. The results demonstrated 
that the multi-objective configuration outperformed the 
single-objective setup to meet power grid dispatching cri-
teria. The proposed optimization approach improved the 
economic and environmental advantages of the integrated 
energy system. As a result, the Cauchy-Gaussian mutation 
method chooses the current best fitness person for mutation, 

Fig. 8  The most critical chaotic targets in SSA
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Table 1  Improvement of SSA by Chaotic method

Refs Models Objective Advantages Disadvantages

[32] Improved chaotic SSA (ICSSA) Using an enhanced chaotic SSA, 
identify parameters of robot 
manipulators with unknown 
payloads

Population diversity* Slow convergence rate*

Strong global searchability* High execution time*
Good convergence*

[33] CSSA Fault diagnosis Good convergence* High execution time*
[34] IHSSA-ICMIC Optimization of engineering 

problems
Faster convergence* Achieve a solution in the final 

iterations*
Strong global searchability*

[35] Logistic chaotic-SSA The chaotic time series prediction 
method

Balance between exploration and 
exploitation*

High execution time*

Good convergence*
[36] Sin chaotic-SSA Scheduling strategy of regional 

integrated energy model
Good convergence* Achieve a solution in the final 

iterations*
Prevent useless search*
Global optimization capability*

[37] CM-SSA Energy optimization in microgrid Population diversity* Slow convergence rate*
Good convergence*
Prevent useless search*

[38] Chaotic sine mapping-SSA Predicting and optimizing net-
work weights

Population diversity* Achieve a solution in the final 
iterations*

Strong global searchability*
Good convergence*
Prevent useless search*

[39] CM-SSA Optimal dispatch strategy of 
microgrid energy storage

Faster convergence* High execution time*

Strong global searchability*
Short running time*

[40] CSSA Position recognition problem Balance between exploration and 
exploitation*

Achieve a solution in the final 
iterations*

Global optimization capability*
[41] CMSSA Global optimization Strong global searchability* High iterations*

Good convergence*
Prevent useless search*

[42] CSSA Dynamic path planning Balance between exploration and 
exploitation*

High execution time*

Good convergence*
Prevent useless search*

[43] CSSA Solve continuous optimiza-
tion problems and continuous 
dimensions

Short running time* Achieve a solution in the final 
iterations*

Balance between exploration and 
exploitation*

Global optimization capability*
[44] NCSSA TSP problem Prevent useless search* Slow convergence rate*

Update the situation without get-
ting lost*

Faster convergence*
[45] CSSA Solve continuous optimiza-

tion problems and continuous 
dimensions

Balance between exploration and 
exploitation*

High iterations*

[46] CSSA-SCN Solve continuous optimization Strong global searchability* High execution time*
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compares the positions before and after the mutation, and 
chooses the better position to move on to the next iteration.

ISSA-SVM is an ISSA that solves the problem of SVM 
hyperparameter selection and constructs the mid-long term 
load prediction model [54]. A novel dynamic adaptive 
t-distribution mutation improves the ISSA. The ISSA offers 
greater convergence precision, stability, and speed than 
the SSA, evidenced by a comparison test using six bench-
mark functions. The simulation results demonstrated that 
the ISSA-SVM successfully enhanced prediction accuracy 
compared to the original SVM, BP neural network, multiple 
linear regression, and other methods. The Gaussian function 
has always detracted from local optimism and population 
variety.

3.2.3  Levy Flight (LF)

The LF technique improves the multi-objective SSA's capac-
ity to jump out of the local optimum. The simulation results 
confirmed the upgraded multi-objective SSA's efficacy. The 
wind–solar-diesel–storage micro-cost grids and loss were 
reduced using a multi-objective function. The correct step 
size for an LF is crucial since a big step size might make 
individuals meander around the local optimal amount and be 
unable to find the ideal answer. An extremely tiny step size, 
on the other hand, may render the ideal value unachievable 
and result in merely a local optimization. On the other hand, 
LF's search approach in SSA is fully random.

A DV-Hop method is suggested to optimize using the 
improved SSA (ISSA) [55]. The maximum hop distance 
error is utilized to adjust the hop distance from the unknown 
node to each anchor node to decrease the estimated distance 
error. Second, LF is used to improve the capacity of the 

SSA to leap out of local optimums, and Powell local search 
is used to improve the method's convergence. Finally, the 
simulation results indicated that the revised algorithm's 
positioning error is considerably decreased compared to the 
original DV-Hop method, and positioning accuracy is effec-
tively enhanced in irregular regions.

Bernoulli's chaotic mapping, LF, mutation, crossover, 
competition, and enhanced SSA are designed to obtain an 
ideal energy configuration [56]. The results of several test 
functions and assessment indicators illustrate the superiority 
of the upgraded SSA. The suggested method's usefulness is 
demonstrated by solving and assessing the best configura-
tion of an energy management model. The case study results 
reveal that an active distribution network with a multi-micro-
grid system offers significant economic and environmental 
benefits under many scenarios. The proposed solutions are 
critical for a multi-microgrid dynamic distribution network's 
effective operation and environmental conservation.

The LF operation is added to the original SSA's pro-
ducer's search process to improve the algorithm's ability 
to hop out of the local optimum and optimize performance 
[57]. The opposition-based learning (OBL) technique pro-
duces better SSA solutions, which helps to speed up the 
algorithm's convergence speed. On the one hand, numeri-
cal tests based on traditional benchmark functions assess 
the LOSSA's performance. On the other hand, the Support 
Vector Machine (SVM) hyper-parameter optimization task is 
used to verify LOSSA's capacity to tackle actual situations. 
The LOSSA is feasible and successfully handles machine 
learning algorithms' hyper-parameter optimisation problem. 
This study proposes an improved SSA based on LOSSA. 
The LOSSA's overall performance is good, according to the 
experimental data. The LOSSA surpassed the SSA and other 

The asterisk (*) indicates the number of items

Table 1  (continued)

Refs Models Objective Advantages Disadvantages

Short running time*
Balance between exploration and 

exploitation*
[47] CSSA Solve optimization problems and 

strengthen the antenna
Update the situation without get-

ting lost*
Achieve a solution in the final 

iterations*
Population diversity*

[48] CWTSSA Solve continuous optimiza-
tion problems and continuous 
dimensions

Update the situation without get-
ting lost*

Slow convergence rate*

Population diversity*
Strong global searchability*

[49] CMISSA Solve continuous optimization Balance between exploration and 
exploitation*

Slow convergence rate*

[50] CSSA Solve continuous optimization Update the situation without get-
ting lost*

High iterations*
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natural heuristic algorithms in search accuracy, convergence 
speed, and stability.

Reverse learning and the LF random step are used in the 
SPISSA [58]. In the initialization stage, this model increased 
the variety and quality of sparrows, and in the subsequent 
iteration stage, it improved the global search capabilities. 
Finally, the technique is integrated with the Spark distrib-
uted computing framework to account for network incur-
sion traffic's high-dimensional and large-scale aspects. The 
population is estimated in parallel in the Spark framework 
based on the data partition. Experiments have shown that 
SPISSA can identify the best subset from the public data 
set. At the same time, the algorithm's computation time has 
been significantly lowered.

In the WSN, DV-Hop is a frequently utilized position-
ing method [59]. An ISSA is provided based on DV-Hop 
wireless sensor network positioning technology. There are 
two critical factors to DV advancement. The double com-
munication radius method modifies the minimum hop 
count between nodes to reduce the estimated distance error; 
second, instead of using the least-squares method. This 
improved algorithm employs SSA to evaluate nodes' posi-
tions; simultaneously, SSA employs the Lévy flight strategy 
to improve performance further. Finally, simulation is used 
to assess the method's placement accuracy, and the results 
show that ISSA-LF is superior.

3.2.4  Opposition‑Based Learning (OBL)

DV-Hop is a widely used placement strategy in the WSN 
[60]. Based on DV-Hop wireless sensor network positioning 
technology, an ISSA is supplied. DV progress is dependent 
on two variables. The double communication radius method 
modifies the minimum hop count between vertices to reduce 
the estimated distance error; second, instead of using the 
least-squares method. This enhanced algorithm utilizes SSA 
to calculate node positions; simultaneously, SSA uses the 
Lévy flight strategy to improve performance even further. 
Finally, simulation is used to evaluate the method's accu-
racy in terms of placement, and the findings demonstrate 
that ISSA-LF is superior. A new defect diagnostic tech-
nique based on LightGBM optimized by the elite opposite 
SSA(EOSSA) [61] is proposed. The change in data distribu-
tion is frequently ignored by dimension reduction methods 
based on Euclidean distance.

In the case of mobile robot route planning, population 
variety is insufficient in later rounds, making it simple to 
settle into a locally optimum solution. Using the sparrow 
search method, an enhanced SSA is presented to address 
these issues in mobile robot path planning. First, the algo-
rithm optimizes the initial population of sparrows using 
OBL, which increases the quality of the initial solution and 
improves the system's local search capabilities. Second, 

it incorporates the Metropolis criteria into the simulated 
annealing (SA) process, allowing the system to accept new 
solutions by determining whether to take them, allowing the 
algorithm to escape the local optimum and improve global 
search capacity. OBL is utilized to construct a reverse solu-
tion to create a new sparrow population, increase population 
variety, and enhance population quality [62]. Simultane-
ously, the OBL can be utilized to direct the algorithm away 
from the local optimum. Finally, the ISSA's performance is 
tested using 2D grid maps of various specifications created 
on the MATLAB platform. The simulation results demon-
strate that the ISSA outperforms the SSA, PSO, and other 
standard intelligence algorithms in optimal performance and 
can successfully jump out of the local optimum.

An improved SSA (ISSA) is used to suggest a distributed 
maximum power point tracking (DMPPT) [63]. First, the 
population was initialized using the centre of gravity reverse 
learning technique, resulting in a superior spatial solution 
distribution. Second, the learning coefficient was added to 
the discoverer's position update section to increase the algo-
rithm's global search capability. Simultaneously, the muta-
tion operator was employed to improve the joiner's position 
update and prevent the algorithm from sliding into the local 
extreme value. The initial sparrow population is generated 
using random initialization in the conventional SSA. The 
quality of the starting population influences the end con-
vergence accuracy for the intelligent algorithm of popula-
tion iteration. The initial population of the SSA is gener-
ated using centroid OBL (COBL), which assures the initial 
population's homogeneity and variety while also improving 
its fitness. The model's findings revealed that the ISSA could 
track the maximum power point (MPP) more precisely and 
fast than the perturbation observation technique (P&O) and 
the PSO and has superior steady-state performance.

The ROSSA model [64] is based on SSA paired with 
Random OBL (ROBL) and a linear decreasing approach. 
The path planning challenge for mobile robots may theo-
retically turn into an optimization problem that intelligent 
optimization systems can handle. An SSA-based optimiza-
tion technique is presented in light of this assumption. The 
declining linear approach balances the algorithm's capac-
ity to search worldwide and exploit locally by altering the 
algorithm parameters. ROBL increases the variety of the 
population and improves the algorithm's exploration capa-
bilities. Trials demonstrate the ROSSA's superiority with 
three conventional algorithms for 11 benchmark test func-
tions and comparative studies with PSO and SSA on the path 
planning issue.

A learning SSA (LSSA) [65] is introduced in the dis-
coverer stage. The random reverse learning technique 
promotes population variety and flexibility in the search 
process. An upgraded sine and cosine guiding mechanism 
is added at the follower stage to make the discoverer's 
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search approach more thorough. Finally, we suggest a dif-
ferential-based local search. The method updates the best 
solution acquired each time to avoid omitting high-quality 
solutions throughout the search process. In 12 benchmark 
functions, LSSA was compared against CSSA, ISSA, SSA, 
BSO, GWO, and PSO to ensure the method was feasi-
ble. According to the simulation results, LSSA has a high 
degree of universality. Finally, robot route planning is used 
to verify LSSA's practicability, and LSSA has high path 
planning quality and reliability.

3.2.5  Random Walk

An enhanced SSA employing the random walk approach 
(RWSSA) [66] is presented to maximize the distribution 
and signal coverage of 5G base stations in open-pit mines. 
RWSSA is compared to SSA, MS-ALO, and PSO. In com-
parison to other models, the convergence speed and accuracy 
are good. Finally, the RWSSA is superior to previous algo-
rithms in numerous ways, making it more appropriate for 
5G base station distribution optimization in open-pit mines. 
In the 5G base station deployment optimization challenge, 
RWSSA achieved superior performance and application.

An RW technique is presented to enhance the SSA [67]. 
The SSA, the grey wolf optimization algorithm, and the 
WOA are all contrasted and studied. It is confirmed that the 
ISSA has a quick convergence speed and good optimization 
precision after a benchmark test function experiment. The 
RW strategy improvement sparrow search method's exact 
solution is employed as the starting neuron connection 
weight and threshold information of the BP neural network, 
which is then used to categorize dangerous URLs and fur-
ther evaluate the updated technique's viability. The findings 
demonstrated that optimising the BP network by optimising 
the RW strategy optimization SSA might increase hazardous 
URL classification accuracy.

For optimal model parameter identification of proton 
exchange membrane fuel cell (PEMFC) stacks, a new opti-
mization approach termed Adaptive SSA (ASSA) [68] is 
suggested. The sparrows' locations in the solution space 
are scattered randomly. An RW technique is used when no 
nearby sparrows surround the present individual. The ASSA 
is used to minimize the sum of squared error (SSE) between 
the empirical and estimated stack voltages in the PEMFC 
stack by optimally selecting the parameters in the PEMFC 
stack. The approach is used in three case studies: Horizon 
H-12, Ballard Mark V, and NedStack PS6 under various 
operating circumstances, yielding SEE values of 0.82, 5.14, 
and 0.097, respectively. The ASSA significance is demon-
strated by comparing the algorithm's outputs to CGOA, 
GRA, and simple SSA. According to the final data, the pro-
posed ASSA is the most efficient compared to the others.

3.2.6  Strategy Mechanism

A strategy mechanism combines local and global search by 
strengthening the update of individuals in the community 
to search more in the problem space. This method makes 
it possible to move towards a global optimizer faster, even 
for algorithms with heavy computational fitness functions. 
The strategy mechanism helps to change the control param-
eters in different optimization stages, or even for various 
optimization problems, the parameters are adjusted accord-
ing to the ongoing search feedback. This approach selects 
an adaptive parameter and thus balances exploration and 
exploitation (Table 2).

3.2.7  Artificial Neural Networks

ANNs are used to predict and classify various issues such as 
time series, price estimation, weather forecasting, estimat-
ing the accuracy of industrial devices, etc. If the structure of 
ANNs is improved, then their efficiency and accuracy will 
increase. In this section, the combination of SSA with ANNs 
is examined. The SSA algorithm is used to optimize radial-
basis function (RBF), extreme learning machine (ELM), 
generalized regression neural network (GRNN), and Elman 
networks. The ELM network is a feed neural network used 
for statistical classification, regression analysis, clustering, 
approximate spars, comparison, and training. The limitation 
of the ELM network is that initial weights and thresholds 
are determined using traditional trial-and-error or network 
search methods. Traditional methods do not work well with 
inaccuracy, so SSA has been used to solve ELM problems. 
Each hidden node has a return edge of its connection in the 
Elman network. Figure 9 shows the SSA schema on ANNs.

Table 3 shows the advantages and disadvantages of SSA 
with ANNs.

Recently, neural networks have been widely used to 
predict various issues in artificial intelligence. In ANNs, 
a parameter called weight needs to be updated frequently 
to avoid significant errors. Since the learning process of 
an ANN is strongly related to optimizing a target func-
tion, choosing an optimization algorithm is a crucial step 
in designing the structure of an ANN. Figure 10 shows the 
steps of SSA-BP synthesis. The purpose of SSA is to opti-
mize the weight of the BP network.

3.2.8  Deep Learning

Deep learning (DL) has demonstrated advanced perfor-
mance on various issues. Hyper-parameter settings are 
vital in deep learning performance and machine learning 
models. Deep neural networks have one or more hidden 
layers between the input and output layers. They typically 
apply nonlinear transformations or activation functions 
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(logistics, tanh, or ReLU). In DL, hyperparameters include 
the number of layers, the neurons in each layer, the acti-
vation function, the learning rate, the deletion rate, and 
the batch size. There is no optimal general configura-
tion for hyperparameter optimization. These parameters 
can be optimized manually but are time-consuming and 
require specialized knowledge. Automated optimization 

of meta-parameters can be done using meta-heuristic algo-
rithms. GRU, LSTM, and CNN are the most important 
deep learning networks. Table 4 shows the combination 
of SSA with deep learning algorithms.

Figure 11 shows the percentage of Improved SSA based 
on different methods. The Chaotic and Strategy models' 
percentage is higher than Gaussian, LF, OBL, and Random 

Table 2  Improving SSA with strategic methods

Refs Models Strategy Results Global convergence Exploration vs exploita-
tion

Complexity

[69] EEMD-Tent-SSA-LS-
SVM

Tent chaotic mapping, 
t-distribution

Wind power prediction Moderate Tuning dependent Moderate

[70] Mixed Strategy SSA 
(MSSSA)

Non-linear adjustment, 
random distribution

Increase positioning 
accuracy

Slow Moderate High

[71] ISSA-gradient boosting 
regression tree tech-
nique (ISSA-GBRT)

gradient boosting 
regression tree, 
t-distribution

Optimization issues 
in the engineering 
industry

Tuning dependent Tuning dependent Moderate

[72] ISSA Neighborhood search 
strategy

Path planning approach 
for mobile robots

Slow Less diverse solutions Moderate

[73] ESSA-DELM Trigonometric substitu-
tion strategy and 
Cauchy mutation

Optimization of engi-
neering and continu-
ous issues

Fast Good Moderate

[74] ISSA Mutation, random 
distribution

Optimal reactive 
power dispatch and 
distributed generation 
placement

Slow Less diverse solutions High

[75] ISSA Position updating 
strategy

Solve engineering and 
dynamic problems

Fast Tuning dependent Moderate

[76] LLSSA Inverse learning 
strategy, spiral search 
strategy

Optimization of engi-
neering and continu-
ous issues

Slow Good Low

[77] ISSA Iterative local search 
strategy, a greedy 
strategy

Optimization of engi-
neering and continu-
ous issues

Fast Tuning dependent High

[78] IMSSA Position updating 
strategy

Sequential quadratic 
programming for solv-
ing the cost minimi-
zation

Tuning dependent Moderate Moderate

[79] SSACBR t-distribution mutation 
operator, memetic 
algorithm, Case-based 
reasoning

Prediction of statistical 
data

Tuning dependent Good Low

[80] EMSSA Hazard-aware transfer-
ring strategy, dynamic 
evolutionary strategy, 
uniformity-diversi-
fication orientation 
strategy

Continuous optimiza-
tion problems

Slow Less diverse solutions Moderate

[81] adaptive spiral flying 
SSA (ASFSSA)

Variable spiral search 
strategy

Optimization of engi-
neering and continu-
ous issues

Tuning dependent Tuning dependent Moderate

[82] ISSA Position updating 
strategy

Optimization of engi-
neering and continu-
ous issues

Moderate Tuning dependent Low

[83] ISSA Mutation, random 
distribution

Water quality prediction Slow Tuning dependent Moderate
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Walk models. The percentage of using the Strategy Mecha-
nism model with SSA is lower than Chaotic.

3.3  Variants of SSA

3.3.1  Binary

A Discrete SSA (DSSA) [121] with a global perturbation 
technique has been developed to solve the TSP. The roulette-
wheel selection generates the population's first solution. The 
order-based decoding approach is then added to finish the 
sparrow position update. The global perturbation technique 
is used with Gaussian mutation and swap operator to bal-
ance exploration and exploitation capacity. Finally, the 2-opt 
local search enhances the solution's quality. These tactics 
improve the quality of the solution and speed up the conver-
gence process. Experiments were conducted using 34 TSP 
benchmark datasets.

Furthermore, statistical tests confirm the significant dif-
ferences between the DSSA and other current approaches. 
According to the results, the suggested strategy is more 
competitive and resilient in solving the TSP. A novel DSSA 
algorithm has been augmented with the genetic operator and 
local search to the robot route. Comparing the DSSA to other 
approaches (Hybrid FA, PSO, Adaptive ABC, etc.) revealed 
that the enhanced algorithm outperformed the others in the 
examples examined.

3.3.2  Multi‑objective Optimization

Single or many designs are commonly involved in engineer-
ing optimization problems. Multi-objective optimization, as 
opposed to single-objective optimization, which tries to dis-
cover the best solution to a given issue using an objective 
function, includes optimizing two or multi-objective func-
tions and offering optimum solutions.

To the dynamic reconfiguration integrated optimization 
model of an active distribution network, a novel solution 

technique based on a multi-objective SSA (MOSSA) [122] 
has been developed (ADN). Distributed generation and 
time-varying loads can aid in sustainable development and 
energy conservation. As a result, this study investigates the 
ADN integrated optimization problem while considering 
distributed generation and time-varying demand to improve 
ADN power quality, economics, and energy savings. The 
supremacy of the proposed MOOSSA for the multi-objec-
tive, multi-constraint, non-linear, high-dimensional ADN 
integrated optimization problem is first proven. Second, the 
ADN mathematical model for integrated optimization is cre-
ated. The MOOSSA reduced power loss and node voltage 
fluctuation by 75.76% and 70.06%.

MOSSA is used to efficiently manage the functioning of 
a microgrid (MG) [123]. This paper presents two optimiza-
tion problems. The first is a single-objective issue that tries 
to reduce the overall operating cost or the total emission 
from the system. The second issue is a multi-objective prob-
lem that simultaneously includes total operational costs and 
emissions. There is a new version of SSA available. To man-
age the energy of the MG optimally, photovoltaic modules 
(PV), wind turbines (WT), fuel cells (FC), micro-turbines 
(MT), batteries (BSS), and the grid are all integrated into 
the MG. The suggested method is statistically tested using 
Friedman and Kruskal–Wallis ANOVA tests in non-para-
metric analysis. In addressing the single objective issue, the 
recommended SSA achieved cost and emission depreciation 
of 1.44% and 54.76%, respectively, compared to Krill Herd 
(KH). In the multi-objective problem, the proposed MOSSA 
saved 42.78% operating expenses and 0.118% emissions 
compared to ALO. The critical findings indicated SSA's 
resiliency in regulating the created MG's functioning.

A MOSSA-based wireless sensor clustering and routing 
protocol model (MUSHROOM) has been presented [124]. 
A fitness function based on maximum neighbour node dis-
tance, the average distance to BS, and energy ratio are shown 
to conduct clustering. With the excess energy of the next-
hop node, sink distance, and node degree, MUSHROOM 
applied the fitness function to the routing process. The sug-
gested model has undergone extensive testing to guaran-
tee that it has achieved maximum energy competence and 
network longevity when compared to other techniques with 
varied numbers of nodes.

MOSSA [125] is a suggested multi-objective variation of 
the SSA. MO-SSA performed well compared to other well-
known optimization methods in tests (NSGA-II, NSGA-III, 
and MO-ALO). The MOSSA outperformed most baseline 
algorithms on numerous performance parameters.

3.4  Optimization Problems

The term "optimization" refers to selecting the best option 
from a set of alternatives. Engineers search for ideal 

Fig. 9  SSA schema on ANNs



441Advances in Sparrow Search Algorithm: A Comprehensive Survey  

1 3

Ta
bl

e 
3 

 C
om

bi
na

tio
n 

of
 S

SA
 w

ith
 A

N
N

s

Re
fs

M
od

el
s

O
bj

ec
tiv

e
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

[8
4]

SS
A

-R
B

F
IS

SA
-R

B
F

Pr
ed

ic
tin

g 
th

e 
te

m
pe

ra
tu

re
 o

f t
he

 se
ns

or
s

Fi
nd

 th
e 

op
tim

al
 v

al
ue

 fo
r R

B
F 

pa
ra

m
et

er
s

N
on

-o
pt

im
al

 u
pd

at
es

 o
f i

nd
iv

id
ua

l

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

A
ch

ie
ve

 a
 so

lu
tio

n 
in

 th
e 

fin
al

 it
er

at
io

ns
In

cr
ea

se
 d

et
ec

tio
n 

ac
cu

ra
cy

Er
ro

r r
ed

uc
tio

n
[8

5]
SS

A
-E

LM
Th

e 
SS

A
-E

LM
 m

od
el

 p
re

di
ct

s t
he

 u
ni

ax
ia

l 
co

m
pr

es
si

ve
 st

re
ng

th
 (U

C
S)

 o
f t

he
 c

em
en

te
d 

pa
ste

 b
ac

kfi
ll 

(C
PB

) u
nd

er
 d

iff
er

en
t c

on
di

-
tio

ns

In
cr

ea
se

 fo
re

ca
st 

ac
cu

ra
cy

N
on

-o
pt

im
al

 u
pd

at
es

 o
f i

nd
iv

id
ua

l

D
is

co
ve

r t
he

 o
pt

im
al

 v
al

ue
 fo

r E
LM

 p
ar

am
-

et
er

s
H

ig
h 

ex
ec

ut
io

n 
tim

e

Se
tti

ng
s f

or
 th

e 
nu

m
be

r o
f l

ay
er

s a
nd

 th
e 

nu
m

be
r o

f n
od

es
[8

6]
Fi

re
fly

 A
lg

or
ith

m
 S

SA
 (F

A
SS

A
-G

R
N

N
)

Pr
ed

ic
tio

n 
of

 in
du

str
ia

l a
nd

 la
bo

ra
to

ry
 m

at
er

i-
al

s
En

ha
nc

e 
SS

A
 se

ar
ch

 c
ap

ab
ili

ty
 u

si
ng

 F
A

Sl
ow

 c
on

ve
rg

en
ce

 ra
te

D
et

er
m

in
in

g 
th

e 
op

tim
al

 w
ei

gh
t f

or
 G

R
N

N
Re

du
ce

 th
e 

am
ou

nt
 o

f o
ut

pu
t e

rr
or

[8
7]

SS
A

-E
N

N
Th

e 
SS

A
-E

N
N

 st
ra

te
gy

 c
an

 im
pr

ov
e 

ro
ad

 
ca

pa
ci

ty
 a

nd
 tr

affi
c 

st
ab

ili
ty

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

A
ch

ie
ve

 a
 so

lu
tio

n 
in

 th
e 

fin
al

 it
er

at
io

ns

In
cr

ea
se

 d
et

ec
tio

n 
ac

cu
ra

cy
Er

ro
r r

ed
uc

tio
n

[8
8]

SS
A

-B
P

Th
e 

pr
op

os
ed

 S
SA

-B
P 

al
go

rit
hm

 c
an

 c
ha

ra
c-

te
riz

e 
th

e 
cr

iti
ca

l d
ef

or
m

at
io

n 
di

m
en

si
on

s 
(h

ei
gh

t, 
le

ng
th

, t
ilt

 a
ng

le
) w

ith
in

 th
e 

m
ea

n 
re

la
tiv

e 
er

ro
r o

f 1
0%

Fi
nd

 th
e 

op
tim

al
 v

al
ue

 fo
r R

B
F 

pa
ra

m
et

er
s*

Sl
ow

 c
on

ve
rg

en
ce

 ra
te

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

In
cr

ea
se

 d
et

ec
tio

n 
ac

cu
ra

cy
Er

ro
r r

ed
uc

tio
n

[8
9]

FA
-S

SA
-B

PN
N

O
pt

im
iz

at
io

n 
of

 se
ns

or
 fe

at
ur

es
 a

nd
 m

od
el

 
pa

ra
m

et
er

s
Re

du
ce

 d
at

a 
tra

in
in

g 
tim

e
A

ch
ie

ve
 a

 so
lu

tio
n 

in
 th

e 
fin

al
 it

er
at

io
ns

Im
pr

ov
e 

ac
cu

ra
cy

 in
 d

at
a 

tra
in

in
g

[9
0]

IC
EE

M
D

-S
SA

-B
PN

N
Pr

ed
ic

tin
g 

th
e 

pr
ic

e 
of

 c
ar

bo
n 

an
d 

in
du

str
ia

l 
m

at
er

ia
ls

Se
tti

ng
s f

or
 th

e 
nu

m
be

r o
f l

ay
er

s a
nd

 th
e 

nu
m

be
r o

f n
od

es
H

ig
h 

ex
ec

ut
io

n 
tim

e

Im
pr

ov
e 

th
e 

in
te

rn
al

 st
ru

ct
ur

e 
of

 th
e 

ne
tw

or
k

In
cr

ea
se

 d
et

ec
tio

n 
ac

cu
ra

cy
Im

pr
ov

e 
ac

cu
ra

cy
 in

 d
at

a 
tra

in
in

g
[9

1]
W

M
F-

SS
A

-M
LE

LM
Sh

or
t-t

er
m

 m
ul

tis
te

p 
w

in
d 

sp
ee

d 
fo

re
ca

sti
ng

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

A
ch

ie
ve

 a
 so

lu
tio

n 
in

 th
e 

fin
al

 it
er

at
io

ns
Im

pr
ov

e 
ac

cu
ra

cy
 in

 d
at

a 
tra

in
in

g



442 F. S. Gharehchopogh et al.

1 3

Ta
bl

e 
3 

 (c
on

tin
ue

d)

Re
fs

M
od

el
s

O
bj

ec
tiv

e
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

Fi
nd

 th
e 

op
tim

al
 v

al
ue

 fo
r n

et
w

or
k 

pa
ra

m
et

er
s

[9
2]

SS
A

-B
P

pr
ed

ic
tin

g 
po

ss
ib

le
 th

re
at

s b
as

ed
 o

n 
co

m
-

m
an

de
r m

oo
d 

(P
TP

-C
E)

Im
pr

ov
e 

th
e 

in
te

rn
al

 st
ru

ct
ur

e 
of

 th
e 

ne
tw

or
k

H
ig

h 
ex

ec
ut

io
n 

tim
e

Im
pr

ov
e 

ac
cu

ra
cy

 in
 d

at
a 

tra
in

in
g

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

[9
3]

C
M

SS
A

-E
lm

an
Sh

or
t-t

er
m

 P
V

 P
ow

er
 F

or
ec

as
tin

g 
B

as
ed

 o
n 

Ti
m

e-
Ph

as
ed

 a
nd

 E
rr

or
 C

or
re

ct
io

n
Se

tti
ng

s f
or

 th
e 

nu
m

be
r o

f l
ay

er
s a

nd
 th

e 
nu

m
be

r o
f n

od
es

A
ch

ie
ve

 a
 so

lu
tio

n 
in

 th
e 

fin
al

 it
er

at
io

ns

Er
ro

r r
ed

uc
tio

n
[9

4]
SS

A
-B

P
O

pt
im

iz
at

io
n 

of
 th

e 
B

P 
N

eu
ra

l N
et

w
or

k 
A

lg
o-

rit
hm

 w
ith

 S
SA

 fo
r t

he
 P

ro
ce

ss
in

g 
of

 C
oa

l 
M

in
e 

W
at

er
 S

ou
rc

e 
D

at
a

Se
tti

ng
s f

or
 th

e 
nu

m
be

r o
f l

ay
er

s a
nd

 th
e 

nu
m

be
r o

f n
od

es
Sl

ow
 c

on
ve

rg
en

ce
 ra

te

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

Fi
nd

 th
e 

op
tim

al
 v

al
ue

 fo
r n

et
w

or
k 

pa
ra

m
et

er
s

[9
5]

SS
A

-E
LM

Pr
ed

ic
tin

g 
ai

r p
ol

lu
tio

n
In

cr
ea

se
 d

et
ec

tio
n 

ac
cu

ra
cy

N
on

-o
pt

im
al

 u
pd

at
es

 o
f i

nd
iv

id
ua

l
Im

pr
ov

e 
th

e 
in

te
rn

al
 st

ru
ct

ur
e 

of
 th

e 
ne

tw
or

k
Fi

nd
 th

e 
op

tim
al

 v
al

ue
 fo

r n
et

w
or

k 
pa

ra
m

et
er

s
[9

6]
SS

A
-B

P
B

as
ed

 o
n 

th
e 

SS
A

-B
P 

N
eu

ra
l N

et
w

or
k,

 a
n 

as
se

ss
m

en
t a

lg
or

ith
m

 fo
r n

et
w

or
k 

se
cu

rit
y 

is
 

de
ve

lo
pe

d

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

H
ig

h 
ex

ec
ut

io
n 

tim
e

Im
pr

ov
e 

ac
cu

ra
cy

 in
 d

at
a 

tra
in

in
g

[9
7]

Te
nt

 C
au

ch
y 

SS
A

 (T
C

SS
A

-B
P)

Re
gr

es
si

on
 p

re
di

ct
io

n 
of

 m
at

er
ia

l g
rin

di
ng

 
pa

rti
cl

e 
si

ze
Se

tti
ng

s f
or

 th
e 

nu
m

be
r o

f l
ay

er
s a

nd
 th

e 
nu

m
be

r o
f n

od
es

A
ch

ie
ve

 a
 so

lu
tio

n 
in

 th
e 

fin
al

 it
er

at
io

ns

Re
du

ce
 d

at
a 

tra
in

in
g 

tim
e

[9
8]

SS
A

-K
EL

M
In

te
lli

ge
nt

 F
au

lt 
D

ia
gn

os
is

Er
ro

r r
ed

uc
tio

n
H

ig
h 

ex
ec

ut
io

n 
tim

e
Im

pr
ov

e 
ac

cu
ra

cy
 in

 d
at

a 
tra

in
in

g
[9

9]
SS

A
-D

B
N

Pr
ed

ic
ta

bi
lit

y 
an

d 
ac

cu
ra

cy
 o

f d
ia

gn
os

is
Fi

nd
 th

e 
op

tim
al

 v
al

ue
 fo

r n
et

w
or

k 
pa

ra
m

et
er

s
Sl

ow
 c

on
ve

rg
en

ce
 ra

te
Se

tti
ng

s f
or

 th
e 

nu
m

be
r o

f l
ay

er
s a

nd
 th

e 
nu

m
be

r o
f n

od
es

Er
ro

r r
ed

uc
tio

n
Im

pr
ov

e 
ac

cu
ra

cy
 in

 d
at

a 
tra

in
in

g
[1

00
]

SS
A

-B
P

Fo
re

ca
sti

ng
 h

yd
ro

po
w

er
 g

en
er

at
io

n
Im

pr
ov

e 
ac

cu
ra

cy
 in

 d
at

a 
tra

in
in

g
Sl

ow
 c

on
ve

rg
en

ce
 ra

te
Im

pr
ov

e 
th

e 
in

te
rn

al
 st

ru
ct

ur
e 

of
 th

e 
ne

tw
or

k
Er

ro
r r

ed
uc

tio
n

[1
01

]
SS

A
-K

EL
M

Fr
om

 w
at

er
 q

ua
lit

y 
as

se
ss

m
en

t t
o 

en
vi

ro
nm

en
-

ta
l w

at
er

 q
ua

lit
y 

m
an

ag
em

en
t

Se
tti

ng
s f

or
 th

e 
nu

m
be

r o
f l

ay
er

s a
nd

 th
e 

nu
m

be
r o

f n
od

es
H

ig
h 

ite
ra

tio
ns

Im
pr

ov
e 

th
e 

in
te

rn
al

 st
ru

ct
ur

e 
of

 th
e 

ne
tw

or
k

[1
02

]
SS

A
-B

P 
ne

ur
al

 n
et

w
or

k
Pr

ed
ic

tio
n 

of
 in

du
str

ia
l a

nd
 la

bo
ra

to
ry

 m
at

er
i-

al
s

In
cr

ea
se

 d
et

ec
tio

n 
ac

cu
ra

cy
N

on
-o

pt
im

al
 u

pd
at

es
 o

f i
nd

iv
id

ua
l



443Advances in Sparrow Search Algorithm: A Comprehensive Survey  

1 3

parameters to save time or expense while improving their 
designs' operational efficiency, effectiveness, excellence, 
or lifespan. Traditional approaches such as regular linear 
programming are acceptable for fundamental optimization 
problems, and some employ gradient information to identify 
the best solution. Still, real-world engineering optimization 
problems are often nonlinear, indistinguishable, complex, 
and multifaceted. Solving these problems using classical 
optimization methods is relatively difficult. Hence, meta-
heuristic algorithms that do not require gradient information 
are needed to solve them. The optimization section uses the 
SSA algorithm to solve forecasting, error detection, energy 
management, complex optimization, clustering, scheduling, 
and object detection in engineering disciplines. The algo-
rithm has proven its effectiveness in most issues. Table 5 
provides an overview of SSA in optimization.

Figure 12 shows the percentage of SSA application in dif-
ferent areas of optimization. As shown in Fig. 12, the highest 
rate of SSA utilization in Complex Optimization belongs 
to optimization in continuous and discrete problems. Fault 
Diagnosis is equal to 15%, which belongs to industrial and 
advanced issues. Clustering and Object Recognition are 
equal to 8%. The lowest percentage belongs to Location 
Optimization, and 5% is obtained.Ta
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Fig. 10  SSA-BP combination flowchart [90]
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Table 4  Hybridization of SSA with deep learning algorithms

Refs Models Objective Advantages Disadvantages

[107] SSA-BI-GRU Bidirectional GRU (Bi-GRU) and 
time-series production forecasting 
approach based on the integration 
of (SSA)

Improve accuracy in data training High iterations

Reduce data training time
Error reduction

[108] LSTM-SSA Short-term wind speed forecasting Find the optimal value for network 
parameters

Problem of Overfitting with an 
increasing number of iterations

Increase detection accuracy
Improve accuracy in data training
Increase detection accuracy

[109] SCGRU-HSSA Recognition of a linear source 
contamination

Improve accuracy in data training Reduction of performance of middle 
neurons by increasing repetitions

Settings for the number of layers 
and the number of nodes

[110] SSA-CNN COVID-19 diagnosis and categori-
zation based on chest CT scans

Error reduction Non-optimal updates of individual

High execution time
[111] VMD-ISSA-GRU Short-Term Photovoltaic Power 

Forecasting
Increase detection accuracy Reduction of performance of middle 

neurons by increasing repetitions
Find the optimal value for network 

parameters
Error reduction
Improve the internal structure of 

the network
[112] CEEMDAN-SSA-GRU Wind power prediction Find the optimal value for network 

parameters
Problem of Overfitting with an 

increasing number of iterations
Reduce data training time
Error reduction

[113] BSSA-CNN Optimal brain tumour diagnosis 
based on deep learning

Improve the internal structure of 
the network

High iterations

Reduce data training time
[114] IMEFD-ODCNN-SSA Design fall detection systems for 

smart homecare
Error reduction Reduce network speed in detecting 

samples
Improve the internal structure of 

the network
[115] TA-SSALSTM Electric vehicle load forecast Improve accuracy in data training Reduce network speed in detecting 

samples
Settings for the number of layers 

and the number of nodes
[116] ESSA-CNN Optimal brain tumour detection Find the optimal value for network 

parameters
Reduction of performance of middle 

neurons by increasing repetitions
Reduce data training time
Error reduction

[117] SWT-ISSA-LSTM Water quality prediction Error reduction High execution time
Improve the internal structure of 

the network
[118] LSTM-SSSA Accurate ultra-short-term wind 

speed prediction
Increase detection accuracy Reduce network speed in detecting 

samples
Find the optimal value for network 

parameters
Error reduction
Improve the internal structure of 

the network
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4  Discussion

Global exploration and local exploitation are critical com-
ponents of the SSA algorithm's search process. An equal 
balance of exploration and exploitation must be struck to 
obtain a beneficial performance. In the early phases of the 
search process, search agents should always be deployed 
across the search space. They must, however, converge on 
the best candidate in the following stages of the search 
process. Agent During the global search phase, it changes 
its location by learning from the best international agent 
to expedite convergence and increase exploitation ability. 
On the other hand, the individual at the local stage renews 
his position by concurrently learning from present and ran-
dom elements to promote population variety. Studies have 
shown that exchanging the global search section and the 
local search process uses a random distribution, sometimes 
losing the best agent in the search space.

Random search makes it possible to explore more sig-
nificant parts of the search space than the local approxi-
mations created in gradient-based optimization. However, 
random search often leads to a large number of analyzes, 

which leads to minor improvements in modelling. Studies 
have shown that the search process is better with methods 
such as Chaotic and OBL.

The explorers update manufacturers' search positions to 
direct the next search. In each iteration, the solutions pro-
duced in previous generations can be used as a historical 
experience to guide explorers' investigations. The histori-
cal background of the manufacturers not only shows the 
explorers to the optimal points but also prevents the algo-
rithm from being placed in the local optimal. Better use of 
manufacturers' experience leads to increased performance in 
convergence and optimization. In addition, since the Crawler 
Update Strategy may not apply to a variety of problems, 
Vanguard agents improve the effect of the current strategy, 
which is used as feedback information to set optimization 
strategies. Figure 13 shows the percentage of SSA methods 
based on four different areas.

Table 6 shows the general advantages and disadvantages 
of the SSA algorithm. The SSA algorithm also suffers from 
the problem of operational incompatibility in complex 
issues, and sometimes the accuracy of the solution is often 
unsatisfactory at the specified time required.

Various meta-heuristic algorithms have been successfully 
developed in recent decades to solve optimization problems. 
The SSA algorithm uses a variety of strategies to balance 
global exploration and local exploitation. In particular, the 
opposite learning strategy increases the search scope in the 
decision space. The gaussian approach is used to improve 
the performance of elite solutions. At the same time, random 
search is used to diversify people in the community. Stud-
ies have shown that improved SSA has a more vital ability 
to find better solutions than SSA. Hence, it is an effective 
evolutionary optimizer with a robust search capability and 
convergence rate for global optimization problems. The SSA 
algorithm has been improved by including hybrid factors to 
update positions to increase the utilization rate. In addition, 
SSA uses algorithms such as PSO and DE to increase the 
ability to exploit and explore the approach.

The main disadvantage of SSA is the fast or sometimes 
slow coverage of the problem search space, and a proper 
balance between the search steps is not established. This 
requires modified methods by creating an appropriate 

Table 4  (continued)

Refs Models Objective Advantages Disadvantages

[119] SSA-LSTM Residential high-power load 
prediction

Find the optimal value for network 
parameters

High execution time

Reduce data training time
Error reduction

[120] ISSA-DELM Accurate damage degree prediction Find the optimal value for network 
parameters

High iterations

Error reduction

Fig. 11  Percentage diagram of improved SSA based on different 
methods
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Table 5  An overview of SSA in the field of optimization

Refs Models Application Advantages Disadvantages

[126] SSA-DBN Prediction Strong global searchability Non-optimal updates of individual
Update the situation without 

getting lost
Slow convergence rate

[127] Multipoint optimal minimum 
entropy deconvolution adjusted 
(MOMEDA-SSA)

Fault Diagnosis Prevent useless search Achieve a solution in the final 
iterations

Better solution than other exist-
ing techniques

High iterations

[128] SSA Prediction Update the situation without 
getting lost

Non-optimal updates of individual

Good convergence
Short running time
Update the situation without 

getting lost
[129] SSA Energy management system Group and intelligent search 

towards the optimal solution
Achieve a solution in the final 

iterations
Balance between exploration and 

exploitation
High iterations

Better solution than other exist-
ing techniques

[130] SSA Complex optimization Strong global searchability High execution time
Update the situation without 

getting lost
Achieve a solution in the final 

iterations
[131] SSA Optimal scheduling Prevent useless search Non-optimal updates of individual

Better solution than other exist-
ing techniques

[132] SSA Object recognition Balance between exploration and 
exploitation

Non-optimal updates of individual

Update the situation without 
getting lost

Slow convergence rate

Population diversity
[133] SSA Complex optimization Global optimization capability Achieve a solution in the final 

iterations
Balance between exploration and 

exploitation
High iterations

High quality of solution and 
computation efficiency

[134] ISSACPM (control parameteri-
zation method (CPM))

Complex optimization Group and smart search towards 
the optimal solution

Slow convergence rate

Balance between exploration and 
exploitation

Better solution than other exist-
ing techniques

[135] IVMD-MSE-SSA-ELM Prediction Prevent useless search Non-optimal updates of individual
Better solution than other exist-

ing techniques
[136] SSA Energy management system Balance between exploration and 

exploitation
Non-optimal updates of individual

Update the situation without 
getting lost

Slow convergence rate

Population diversity
[137] SSA Complex optimization Global optimization capability Achieve a solution in the final 

iterations



447Advances in Sparrow Search Algorithm: A Comprehensive Survey  

1 3

Table 5  (continued)

Refs Models Application Advantages Disadvantages

Balance between exploration and 
exploitation

High iterations

High quality of solution and 
computation efficiency

[138] SSA Object recognition Prevent useless search Non-optimal updates of individual
Better solution than other exist-

ing techniques
[139] ISSA Energy management system Faster convergence Non-optimal updates of individual

Global optimization capability Slow convergence rate
[140] SSA Energy management system Strong global searchability High execution time

Update the situation without 
getting lost

Achieve a solution in the final 
iterations

[141] ISSA Complex optimization Prevent useless search Non-optimal updates of individual
Better solution than other exist-

ing techniques
[142] SSA Clustering Group and intelligent search 

towards the optimal solution
Achieve a solution in the final 

iterations
Balance between exploration and 

exploitation
High iterations

Better solution than other exist-
ing techniques

[143] ISSA Object recognition Group and intelligent search 
towards the optimal solution

Non-optimal updates of individual

Balance between exploration and 
exploitation

Better solution than other exist-
ing techniques

[144] ISSA Location optimization Prevent useless search Non-optimal updates of individual
Better solution than other exist-

ing techniques
Slow convergence rate

[145] LEACH-Wireless Gateway Rota-
tion (WGR)-SSA

Clustering Global optimization capability High execution time

Balance between exploration and 
exploitation

High quality of solution and 
computation efficiency

[146] SSA-based Resource Manage-
ment (SSARM)

Optimal scheduling Strong global searchability Slow convergence rate

Update the situation without 
getting lost

[147] ISSA Complex optimization Group and intelligent search 
towards the optimal solution

Achieve a solution in the final 
iterations

Balance between exploration and 
exploitation

High iterations

Better solution than other exist-
ing techniques

[148] Active Disturbance Rejection 
Control (LADRC-SSA)

Complex optimization Prevent useless search Slow convergence rate

Better solution than other exist-
ing techniques

[149] SSA Prediction Faster convergence Non-optimal updates of individual
Global optimization capability

[150] SSA-PID Complex optimization Balance between exploration and 
exploitation

Achieve a solution in the final 
iterations
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Table 5  (continued)

Refs Models Application Advantages Disadvantages

Update the situation without 
getting lost

High iterations

Population diversity
[151] SSA-XG-Boost Prediction Global optimization capability Non-optimal updates of individual

Balance between exploration and 
exploitation

High quality of solution and 
computation efficiency

[152] ISSA Fault diagnosis Balance between exploration and 
exploitation

Achieve a solution in the final 
iterations

Update the situation without 
getting lost

High iterations

Population diversity
[153] SSA Optimal scheduling Prevent useless search Non-optimal updates of individual

Better solution than other exist-
ing techniques

[154] SSA-SVM Fault diagnosis Update the situation without 
getting lost

High execution time

Good convergence
Short running time
Update the situation without 

getting lost
[155] SSA Fault diagnosis Group and intelligent search 

towards the optimal solution
Achieve a solution in the final 

iterations
Balance between exploration and 

exploitation
High iterations

Better solution than other exist-
ing techniques

[156] SSA Optimal scheduling Prevent useless search High execution time
Better solution than other exist-

ing techniques
[157] SSA Fault diagnosis Balance between exploration and 

exploitation
Non-optimal updates of individual

Update the situation without 
getting lost

Population diversity
[158] SSA Optimal scheduling Group and intelligent search 

towards the optimal solution
High execution time

Balance between exploration and 
exploitation

Better solution than other exist-
ing techniques

[159] SSA Clustering Faster convergence Non-optimal updates of individual
Global optimization capability

[160] SSA Complex optimization Prevent useless search Slow convergence rate
Better solution than other exist-

ing techniques
[161] SSA-LA (SSA Based on Locali-

zation Algorithm)
Location optimization Strong global searchability Slow convergence rate

Update the situation without 
getting lost

[162] SSA Energy management system Faster convergence Non-optimal updates of individual
Global optimization capability
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operator for the SSA equations. OBL is one of the suitable 
methods for the weaknesses of SSA. OBL-SSA aims to deal 
with the drawbacks such as local search area confinement, 
premature convergence, and balancing of the search process. 
There are two main reasons for the weakness of SSA in high-
dimensional spaces. The first is the poor convergence rate. 
The ability to search the high-dimensional target space is 
insufficient. The second is diversity preservation because 
preserving diversity in a high-dimensional target space with 
a vast search space is challenging. Hence, effective mainte-
nance of diversity in SSA is necessary to deal with multi-
objective problems.

5  Conclusions and Future Works

Optimization problems have attracted the scientific commu-
nity to various meta-heuristic algorithms. As the complexity 
of the problems increases, the need for new metaheuristic 
algorithms has become very acute. Optimization aims to 
find the best solution to a problem of all possible values   to 
maximize or minimize output. Many researchers use practi-
cal meta-heuristic algorithms to find the optimal solution to 
obtain the global optimal. Because the search space grows 
exponentially in real optimization problems and the prob-
lem perspective becomes multidimensional, meta-heuristic 
algorithms are viable for generating optimal solutions. This 
paper examines the SSA algorithm from hybridization, 
Improved, Variants, and Optimization aspects. The SSA 
algorithm can run on most optimization problems due to 
its ease of implementation and rapid increase in the spread 
of agents in the problem space. Studies have shown that 
SSA uses the scout search concept, making it possible to 
track population characteristics in the optimization process. 

Table 5  (continued)

Refs Models Application Advantages Disadvantages

[163] SSAE-SSA-SVM Fault diagnosis Update the situation without 
getting lost

High execution time

Good convergence
Short running time
Update the situation without 

getting lost
[164] SSA Complex optimization Faster convergence Non-optimal updates of individual

Global optimization capability
[165] SSA Threshold image segmentation Prevent useless search High execution time

Better solution than other exist-
ing techniques

[166] SSA Wireless sensor network cov-
erage optimization

Nationwide coverage of the 
network

Non-optimal updates of individual

Good convergence

Fig. 12  Percentage of SSA application in different areas of optimiza-
tion

Fig. 13  Percentage of SSA methods based on four different areas
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WOA, FA, SCA, and DE may suffer from premature con-
vergence, stagnation, and sensitivity to the formulation. In 
addition, WOA and FA contain more internal parameters 
than SSA, which, if not adjusted correctly, can reduce the 
efficiency of the exploratory value in the optimization pro-
cess. The results showed that the domain of Improved had 
the best performance. Chaotic, Gaussian Mutation, Levy 
flight, OBL, Random Walk, and Strategy mechanism meth-
ods have improved SSA. Orienting future work to complex 
and improved algorithms to solve the optimization problem 
will be complicated.
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