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Abstract
From last decade, Big data analytics and machine learning is a hotspot research area in the domain of agriculture. Agriculture 
analytics is a data intensive multidisciplinary problem. Big data analytics becomes a key technology to perform analysis 
of voluminous data. Irrigation water management is a challenging task for sustainable agriculture. It depends on various 
parameters related to climate, soil and weather conditions. For accurate estimation of requirement of water for a crop a strong 
modeling is required. This paper aims to review the application of big data based decision support system framework for 
sustainable water irrigation management using intelligent learning approaches. We examined how such developments can be 
leveraged to design and implement the next generation of data, models, analytics and decision support tools for agriculture 
irrigation water system. Moreover, water irrigation management need to rapidly adapt state-of-the-art using big data technolo-
gies and ICT information technologies with the focus of developing application based on analytical modeling approach. This 
study introduces the area of research, including a irrigation water management in smart agriculture, the crop water model 
requirement, and the methods of irrigation scheduling, decision support system, and research motivation.

1 Introduction

WATER-Every drop is precious, save it.  Water is the main 
limiting factor of agricultural development in semi-arid and 
arid climates. It is a critical input for enhancing agricultural 
productivity. Arthur Keith said that the advancement of agri-
culture is the first major step for civilized life [1]. Even after 
six decades of planned development, agriculture has played 
an important role in the Indian economy. However, the agri-
culture sector of India has been transformed via the effective 
deployment of Information and Communication Technolo-
gies (ICTs) in traditional to modern practices which pro-
vide various services (such as- IoT agriculture, smart water 
management, soil management, plant diseases, crop manage-
ment, geo-spatial image and livestock monitoring).

In India, the demand of water for the agriculture and 
industry sectors is continuously increasing to fulfill the 
needs of 1.366 billion people. Central Indian Punjab is well-
known for its agricultural activities and has occupied a high 

percentage of the land area all over India, and its agricultural 
production mainly depends on irrigation.

Punjab has 97.95% highest gross irrigation of the total 
cropped area [2]. Recently, the achievement of the Green 
Revolution is endangered by a significant decline in water 
resources. As a result, water conservation and precision agri-
culture are becoming vital issues in tropical climate areas. 
Wheat and Maize are the most commonly cultivated crops 
and have high water consumption in Punjab, India. The 
major challenge in agriculture sustainability and dawdling 
is due to climate change; therefore, every drop of freshwater 
needs to be utilize effectively and efficiently.

To overcome these challenges, the multivariate, complex, 
and unpredictable agricultural ecosystems must be well 
understood by continuously analyzing, measuring, and mon-
itoring several physical aspects and phenomena [3]. New 
technologies and knowledge can help in this complex deci-
sion-making. The fundamental idea is that the DSS should 
serve as a farm management tool, supporting farm managers 
in making decisions on irrigation, whether to irrigate and, 
if so, which field with how much water. Wani et al. [4] pre-
sented a thorough investigation to evaluate the possibility of 
using Machine Learning models to identify plant diseases.

In the early twentieth century, irrigation is the most 
crucial practice no doubt and needs effective utilization. 
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Farmers required to predict the need of water for the crops, 
to confirm the data provided by agricultural weather stations 
or to get insight the free water surface evaporation in lakes 
or dams. Agricultural irrigation scheduling is becoming a 
very important managerial activity whose ultimate purpose 
is to achieve effective and efficient utilization of water. The 
primary objective of good irrigation scheduling is to apply 
the right amount of water at right time.

Irrigation scheduling improves the water use efficiency 
and focus on evapotranspiration (ET) estimation methods 
for understanding of spatial variations of ET. It determine 
irrigation applications such as identifying the water balance 
component, integrated various sensing technologies into 
irrigation scheduling models and control, new improved 
sensor technology and integrated water quality constraints 
into irrigation scheduling and control [5]. Figure 1 presents 
the six identified relevant works, indicating the smart water 
management related research work such as crop water mod-
eling, soil monitoring, water quality, drones field monitor-
ing, weather forecasting, and irrigation scheduling.

The ultimate irrigation potential of India has been esti-
mated to be 139.5 million ha, comprising 58.5 million ha 
from major and medium schemes, 15 million ha from minor 
irrigation schemes, 66 million ha from groundwater exploi-
tation, and an estimated 77 million ha beyond 2025 from 
freshwater use for irrigation [6]. It is approximated that after 
gaining the full potential of the irrigation, nearly 50% of the 
total cultivated area will hold out rain-fed.

Irrigation is the most important factor for escalating the 
agricultural production of plants. It is essential to determine 
the quantity of water to get the optimal benefits from the irri-
gation, which depends on some factors such as the environ-
ment, type of crop, subsurface geo-hydrological condition, 
and the stage of its growth.

The questions arise in the irrigation scheduling are as 
follows: (i) How to apply irrigation water?, (ii) How much 
to irrigate?, (iii) When to irrigate. Currently, irrigation deci-
sion-making systems are enforced to the agricultural field 
aiming for specific crop at a given area [7]. It is difficult to 
be practiced to different crops and areas. Under the grow-
ing environment, the amount of irrigation is defined as the 
depth of water required to meet the crop water loss through 
evapotranspiration. It can be obtained via prediction using 
indirect channels or field measurement techniques. However, 
the amount and timing of water have major impact on qual-
ity of crop and its yield. Several methods are applied for the 
irrigation scheduling such as pan evaporation, soil moisture 
basis, leaf water potential, and based on growth-stages. The 
demand of water can be fulfill by full or partial irrigation in 
all methods.

1.1  Motivation

As technology rapidly spread in a few decades, precision 
agriculture is the key to fostering a new revolution in Irriga-
tion scheduling. The United Nations statistical data indicate 
that agriculture consumes 70% of the overall use of water 
worldwide, compared with 20% for industry and 10% for 
domestic use [8]. To ensure the proper use of water sup-
plies in irrigation we need more effective technologies. 
Automatic irrigation scheduling techniques replaced man-
ual irrigation which was based upon crop water estimation. 
The crop evapotranspiration can be determined by weather 
parameters such as max–min temperature, humidity, wind 
speed, solar radiations, and even the crop factors such as the 
stage of growth, crop height, and the soil properties for the 
development of irrigation scheduling. The machine learning 
and deep learning advanced technologies provide direction 
and motivation to propose a novel application on crop water 
modeling. The influence of several factors on crop yields and 
temperature, precipitation have been found to have maxi-
mum influence on the yields of different crops [9].

2  Reference Evapotranspiration ET
o

“Evapotranspiration contains two processes, evapo-
ration in which water is lost from the soil and plant 
surface, and transpiration from plant surfaces to the 
atmosphere” [10].Fig. 1  Smart water management in smart agriculture
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The water irrigation is enforced to match the needs of evapo-
transpiration of crop. Therefore, the irrigation scheduling 
needs to estimate the daily crop evapotranspiration accu-
rately. Evapotranspiration of crops differs significantly over 
the growing season mainly due to alterations in climatic 
conditions and crop cover. It also varies among the crops. 
The information about crop water demand (i.e., ET) is a 
crucial practical consideration in the planning, developing, 

and working of water and irrigation management systems. 
Figure 2 presented the concept of ETo.

Table 1 presented the ET that affecting by weather ele-
ment. The reference evapotranspiration is approximated 
from meteorological data (humidity, temperature, wind 
run/wind speed, sunshine hours/solar radiation) by using 
the Penman-Monteith equation. However, the adjusted pan 
evaporation measurements are also used.

2.1  Factors Affecting ET
o

Climate and weather play crucial role in determining 
long-term and day-to-day activities in the agriculture. The 
demand of crop water is determined largely by weather vari-
ables. Rainfall is the foremost weather variable that affects 
the water resources development planning, irrigation plan-
ning and agricultural cropping. The main climatic/weather 
components crucial for agriculture are rainfall, maximum/
minimum temperature, solar radiation, sunshine duration, 
humidity, photo-period or sunshine hour, wind speed, and 
night temperature [11] as depicted in Fig. 3. Table 2 shows 
the different empirical methods with weather parameters for 
estimation of ETo.

Weather elements controls the crop water demand and 
crop ET. The ET depends upon the different weather ele-
ments such as humidity, temperature, sunshine hour, solar Fig. 2  Reference evapotranspiration (ET

o
 ) process

Table 1  Weather affecting 
parameters

Name Models References

Solar Radia-
tion

Richardson Model     Rg∕Ra = a(Tmax − Tmin)
b Richardson [12]

Angstrom Model     Rg = Ra(a + b)(n∕N) Angstrom [13]
Regression Model     Rg = a

0
+ a

1
x
1
+ a

2
x
2
+⋯ + anxn Ali et al.  [14]

Air Tem-
perature Tmean =

Tmax + Tmin

2

Allen et al. [15]

Air Humid-
ity

The most commonly used expressions: ALi [16]

Absolute humidity, relative humidity, specific humidity, perceptible 
water

Instruments used for measuring humidity is called:
Psychrometer, hair hygrometer, dew-point hygrometer

Wind v̄

v
=

z

z
1

k

 ,     
v̄

v1
=

ln(z∕z
0
+ 1)

ln(z1∕z
0
+ 1)

Linsley  [17]

Sutton  [18]
Sunshine 

hour
N = (2∕15)cos−1(−tan�tan�) Duffie and Beckman 

[19]
Rainfall Arithmetic average, Theissen weight, Isohyetal weight Ali (2010) [16]

P = (P
1
+ P

2
+⋯ + Pn)∕n    P = (PA.WA) + (PB.WB) + (PC.WC) + ..  

P =

∑

PiAi
∑

Ai

Effective rainfall=Total rainfall-Surface runoff
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radiation, wind speed, etc. It is also affected by rainfall. The 
weather elements affect ET as follows:

2.2  FAO ET
o
 Estimation Method

There are various mathematical models used to calculate 
the reference evapotranspiration (ETo ). The updated proce-
dures for calculating the ETo were introduced by FAO. The 
Food and Agriculture Organization (FAO) recommends the 
method for calculating the ETo are as follows:

Although, the method FAO-56 Penman–Monteith 
(Allen et al. 1998) [10] is the most dominant as compared 
to others empirical methods  [20, 21]. But, it requires sev-
eral climatic data factors [22].

The FAO-56 Penman-Monteith (FAO-PM56) [10] has 
been broadly used to analyze ETo from meteorological fac-
tors and it is suggested as the standard technique by the 
Food and Agriculture Organization of the United Nations 
(FAO)  [23] and calculated by Eq. (1).

Fig. 3  Factors affecting evapo-
transpiration

Table 2  ET
o
 estimation empirical methods

Name Formula Parameters References

A standard scientific empirical model
 FAO Penman Monteith

ETo =
0.0864

�
.
△(RN − G) + cp�aDPV∕ra

△ + �(1 + rc∕ra)

Tmean , T max , T min , ws, N, RH Allen et al. [15]

Temperature based estimation models
 FAO Blaney-Criddle method ETo = [�(0.46T + 8)] Tmean , p Blaney and Criddle 

[26]
 Rational use of the FAO Blaney-

Criddle method
ETo = [k�(0.46T + 8.13)(1 + 0.0001E)] Tmean , P, N, RHmin , ws, E Allen and Pruitt [27]

 Hargreaves and Samani method ETo = (0.00023Ra)(Tmean + 17.8)TD0.5 Tmean , T max , T min , R a Hargreaves and Sam-
ani method  [28]

 Hargreaves and Samani method 1 ETo = (0.0030 ∗ 0.408Ra)(Tmean + 20)TD0.4 Tmean , T max , T min , R a Droggers and Allen 
[29]

 Thornthwaite (TH)
ET(o) = 16

Tmean

i

i Tmean , i Thornthwaite [30]

 Pan evaporation method ETo = KpEpan Tmean , RH, N, rainfall Kohler [31]
Radiation based estimation models
 FAO radiation method

ETo = a + b[
△

△ + gamma
∗ Rs]

Rs , T mean Doorenbos and Pruitt 
[32]

 Priestley-Taylor (PT)
- 
ETo = 1.26

△

△ + �
∗
Rn − G

�
]

Tmean , T max , T min , RH, N, � Priestley and Taylor 
[33]

 Jesen-Haise (JH) ETo = 0.408 ∗ CTmean
∗ (T − Tk) ∗ KTmean

∗ Ra ∗ TD0.5 Tmean , TD, R a Jensen et al. [34]
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where, ETo is the reference evapotranspiration (mm∕day−1);  
Δ = slope of saturation vapor pressure function (kPa °C−1 ); 
R n = net radiation (MJ m−2day−1 ); � = psychometric constant 
(kPa °C−1); G = soil heat flux density (MJ m−2day−1 ); W s = 
average 24-h wind speed at 2 m height (ms−1) ; T mean = mean 
air temperature (°C); e a = actual vapour pressure(kPa); e s 
= saturation vapour pressure(kPa); and (es − ea ) = vapour 
pressure deficit (kPa).

However, ETo can be determined accurately by this 
method, large scale meteorological data requirement at spe-
cific spatio-temporal scales (vapor pressure deficit, wind 
speed, minimum and maximum air temperatures, and solar 
radiation) are quite often not available in many develop-
ing countries [24]. Thus, the alternate models are needed to 
estimate ETo when the available data are either insufficient 
or limited. So, it is important to explore a simpler model to 
calculate ETo using fewer weather properties and a reason-
able precision.

The need of crop water depends on some factors: crop 
growth/stages, crop type and the climate are given in detail 
[25]:

3  Crop Evapotranspiration ET
c

“The crop evapotranspiration denoted as ETc,is the 
crop water requirements or crop water need.”

The need for crop water is the depth (or quantify of water 
required to cope with the loss of water through evapotranspi-
ration. In other words, water needs to be cultivated optimally 
by different crops. Crop-growth models were developed to 
improve the understanding of crop dynamics and to pre-
dict crop growth and production under various agronomic 
conditions [35]. The continuous monitoring of the soil sta-
tus water, the conditions of crop growth, and its spatial and 
temporal patterns will help in irrigation and precision water 
planning. Evaporation and transpiration variations in the 
field and grass crops can be integrated into dual crop coeffi-
cient or single crop coefficient (Kc ): a soil evaporation coef-
ficient (Ke ) and a basal crop (Kcb ) and calculated by Eq. (2).

3.1  Climate Based ET
c

The combination of two different processes by which water 
evaporates from the soil surface and transpiration from the 
plant is referred as evapotranspiration. It is determined 

(1)

ETo =
0.408 ⋅ Δ ⋅ (Rn − G) + � ⋅

900

Tmean+273
⋅ u

2
⋅ (es − ea)

Δ + �(1 + 0.34Ws)

(2)(Kc) = (Kcb) + (Ke).

by climatic factors including solar radiation, temperature, 
wind, and humidity as well as environmental factors. The 
evaporation account for approximately 10% of the overall 
evapotranspiration and the transpiration of crops constitutes 
the remaining 90%. Hence, there is a need for crop water 
in hot, dry, windy, and sunny areas. For the lowest values 
when the wind is cold, humid, and cloudy, with little to no 
wind. Climate impact on crop water requirements is deter-
mined by reference crop evapotranspiration ETo and gener-
ally expressed per unit of time in millimeters., e.g. mm/day, 
mm/month, or mm/season.

3.1.1  Crop Type

The effect of the crop type in daily crop water requirements 
is often referred to as a fully grown crop; Plant height has 
reached maximum; Plants cover the ground optimally; prob-
ably they began to flowering or developing to set grain; The 
water demand is greatest when the crop is fully cultivated. 
Their water needs are called the “peak period”.

The type of crop that has also affected the total growing 
duration of crop development is known by seasonal crop 
water need and can be obtained. The best possible local 
data can be obtained on the duration of the total seasons of 
the various plants cultivated in a region. Such data can be 
collected from, for example, the seed supplier, the Exten-
sion Service, the Irrigation Department, or the Ministry of 
Agriculture.

3.1.2  Growth Stages of the Crop

While planting and in the initial stage, evaporation is more 
essential than transpiration. When the crop is fully devel-
oped, the need for crop water is estimated to be 50% during 
the mid-season phase. At the stage of development, the crop 
demand moderately increases from 50% of the maximum 
crop water requirement to the maximum crop water. Thus, 
the maximum amount of crop water is extended to the end 
of crop development stage, which is the starting of mid-
season stage.

The value of K c depends on different factors such as can-
opy cover density, agriculture operations, weather variable, 
type of crop, soil moisture, and growth stage [10]. The idea 
of crop coefficient K c is proposed by Jensen [36] and has 
been improved by many researchers [37, 38].

However, K c method has the capability to determine the 
actual crop evapotranspiration ETc precisely. According to 
the FAO methodology, the four growing stages of a crop are 
the initial stage, crop development stage, mid-season stage, 
and end-season stage (Allen et al. 1998) [10]. The crop coef-
ficient method can be expressed as follows:



4460 M. K. Saggi, S. Jain 

1 3

The two-step crop coefficient K c reference evapotranspi-
ration has been a successful method to predict the evapo-
transpiration (ET) and crop water requirements. The total 
growing period is divided into 4 growth stages shown in 
Fig. 4 [39]:

• The initial stage the period ranges from transplanting or 
sowing till crop covers the 10% of ground.

• The crop development stage the period begins at the com-
pletion of the initial stage and remains until the full ground 
has been covered (ground cover 70–80%). It does not cer-
tainly mean that the crop is at its maximum height.

• The mid-season stage the period begins at the completion 
of the crop development stage and remains till maturity; it 
consists grain-setting and flowering.

• The late-season stage the period starts at the completion 
of mid-season stage and remains until the last day of the 
harvest; it consists ripening.

where ETc represents the requirement of crop water (mm 
d −1 ), ETo the reference crop water requirement (mm d −1 ), 
and K c the crop coefficient and calculated by Eq. (3). 
Besides, Kingra et al. (2004) computed crop water require-
ment for Wheat and transplanted Rice at Ludhiana, reported 
that the Wheat crop used about 315 mm water whereas the 
rice crop used about 780 mm water during its growing sea-
son [40]. Saggi et al. [41] collected the K c values as case 
study from Punjab agricultural University (PAU), Ludhi-
ana and estimated the ETc for two crops. The K c values of 
Wheat

1
 crop were 0.4, 1.15 & 0.4 while for Wheat

2
 were 

0.5, 1.36, 1.42, and 0.42 for the initial, mid and last stage of 
growth respectively. The length of time (days) for four sea-
sons of Wheat

1
 were 29, 55, 14 32 days while for Wheat

2
 24, 

46, 35, 42 days. The K c values of Maize crop were 0.7, 0.85, 
1.15 & 1.05 for the initial, mid, and end-stage of growth 

(3)ETc = Kc × ETo

respectively. The length of time (days) for four seasons of 
Maize were 35, 18, 17, and 15 days used in different stages. 
Detail of selected crops and period of data for the study.

4  Irrigation Scheduling

In 1996, Howell explored the effects on water use and irri-
gation scheduling [42]. It is an application mechanism that 
can lead to the effective and efficient use of water. This 
efficiency can be enhanced by using advanced methods 
of irrigation. However, even in advanced irrigation meth-
ods, irrigation scheduling at the farm level is required. It 
is necessary when rainfall is deficient to remunerate for 
the water lost by evapotranspiration. The irrigation water 
need is described as the crop water requirement minus the 
fruitful rainfall. It is defined in mm/month or mm/day. The 
main goal of good irrigation scheduling is to apply the cor-
rect amount of water at the right time, and make sure that 
water is accessible when the crop requires it.

According to predetermined schedules, the irrigation 
water is supplied to the cultivation by keep track of the 
following [43]:

• The status of soil water;
• The need of crop water.

The purpose of our research work is to present, analyze, 
and optimize some measure of performance of the crop 
production under a set of specified conditions, such as the 
limited or unlimited total volume of water for the growing 
season. The main factors that influence the solution and 
implementation of the irrigation scheduling problem are 
the characteristics of climate soil, crop, irrigation water, 
and irrigation technology.

Judicious usage of water for crop production needs 
knowledge of water quality, soil, weather, crop, and drain-
age situation. The increase in efficiency of pumping sys-
tems and conveyance need to review.

The soil types and climatic conditions have a consid-
erable effect on the major practical aspects of irrigation 
such as how much amount of water should be supplied and 
when to a selected crop.

A time-consuming and complex process is a precise 
estimation of the irrigation schedule [25]. However, the 
advent of advanced technology has made it simpler and 
the water supply can be scheduled precisely to meet the 
water requirements of cultivation. The timing for irriga-
tion applications can be fixed dates or on flexible dates. 
The quantity should not exceed the crop requirements per 
application, including the leaching of salts; otherwise, 
any excess water would not only reduce the efficiency of 
its usage but can hinder the crop development. Standard 

Fig. 4  Various crop-growth developement stages
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irrigation schedule performance metrics are crop yields 
and net benefits per unit area.

The optimal irrigation schedule is any schedule that 
optimizes the adopted output measurement while meeting 
several defined constraints. Any schedule that optimizes 
the adopted measure of performance while satisfying some 
specified constraints is the optimal irrigation schedule.

4.1  Methods of Irrigation Scheduling

Different techniques can be apply to the plants with irriga-
tion water and each approach has its benefits and limita-
tions. In this context, the best approach to accommodate 
local conditions should be taken into account. Earlier, the 
primary irrigation method is applied via the source of supply 

such as a bucket watering or a well. Although, it is a time-
consuming method.

More advanced water application methods are used in 
larger areas where irrigation is needed. The suitability of 
several irrigation methods, i.e. sprinkler, surface, or drip 
irrigation, depends on the following aspects: Natural condi-
tions, type of crop, type of technology, previous experience 
with irrigation, required labor inputs and costs and benefits.

Surface irrigation may be categorized based on mode of 
water application as depicted in Fig. 5. [44] and Fig. 6 shown 
the different types of irrigation methods. Table 3 presented 
the different types of irrigation methods, advantages and 
their applications.

Fig. 5  Irrigation methods

Fig. 6  Types of irrigation 
scheduling
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4.1.1  Border Irrigation

Surface irrigation is where the water is applied to the sur-
face of field by gravity flow. The water is applied into small 
channels (furrows) or complete surface is flooded with water 
(basin irrigation) or strips of land (borders). Border irriga-
tion is a modern method of surface irrigation. Borders are 
uniformly graded strips of land and long, set apart by earth 
bunds. They are also known as border strips. There are sev-
eral ways to fed the irrigation water to the border such as by 
using small gates, launching the channel bank, using spiles 
or siphons. A sheet of water is guided by the earth bunds and 
flows down the slope of the border. It is mostly suited to gen-
erate long uninterrupted field lengths for facility of machine 
operations in the huge mechanized farms. Borders can be up 
to 3-30m wide and at least 800m in length depend on several 
factors. It is less applicable to farms on small-scale consist-
ing animal-powered cultivation techniques or hand labor.

4.1.2  Sprinkler Irrigation

It is equivalent to natural rainfall, where water is pumped 
using a pipe system and then rotating sprinkler heads used 
to spray onto the crops. Further, the spray is applied into the 
air via sprinklers to breaks it into small drops of water that 
fall on the ground. The sprinklers, pump supply system, and 
operating conditions must be developed to apply the water 
uniformly. It is well suited for the most field, row, and tree 
crops. Water can be sprayed under or over the crop canopy. 
Although, large sprinklers are not suggested for delicate 
crops such as lettuce due to the large size water drops gen-
erated by the sprinklers can harm the crops.

4.1.3  Drip Irrigation

It involves application of dripping water to the soil from a 
small diameter plastic pipe systems attached with outlets 
called emitters or drippers at very low rates (2–20 l/h). It is 
also called as trickle irrigation. Water is applied very close 
to plants so that only part of the soil in which the roots grow 
is wetted, instead of sprinkler and surface irrigation, which 
consists wetting the complete soil profile [25]. It is well suited 
for trees, vine crops and row crops (vegetables, soft fruit), 
where one or more emitters can be given for each plant. It is 
considered for high-value crops only due to high capital costs 
required for installation of a drip system.

4.1.4  Need of Irrigation Scheduling

Hydrological, climatologist, and agronomical processes play 
an significant part in the development of irrigation agriculture 
production. These studies were mainly developed to estimate 
daily, weekly, or monthly evapotranspiration. The precise 
approximation of evapotranspiration is an important process 
that plays a key role in crop planning, deployment and produc-
tion of irrigation systems.

In recent years, several approaches have been developed to 
overcome the problems and obstacles that occur with smart 
farming, such as species recognition, yield prediction, disease 
detection, drought, crop productivity problems and irrigation 
management.

So, there is a great need to explore more research studies 
to enhance the scalability of irrigation scheduling based on 
advanced data analytic and machine learning. Some research 
has been done in the decision support system to improve the 
right decision on agriculture data.

Table 3  Different types of irrigation systems

Name Advantages Application Technology Ref

Drip Irrigation Efficient system, Saves water, 
Reduces nutrient leaching

Fuzzy Control for automatic green-
house irrigation, DIDAS software 
for linearized water flow and 
scheduling

Matlab, Delphi (Embarcadero, Ver-
sion XE3)

[45, 46]

Sprinkler Irrigation Automatic Irrigation, Smooth ferti-
gation and chemigation, No labor 
requirements

Multi-agent system for garden irri-
gation, Crop model AquaCrop for 
the optimization

Agent based simulation, AquaCrop 
Simulator

[47, 48]

Flood Irrigation Usable on shallow soils, Low cost The risk and sensitivity analysis of 
water, Energy and emissions in IR

Risk Software [49]

Border Irrigation Easy to design and maintain, Simple 
operations of the system, Natural 
drainage

Improved understanding of IR 
Models and measures basis for 
improving IR

SISCO [50]

Furrow Irrigation Accomplished, Minimal erosion , 
Adaptable to a large array of land 
slopes

Irrigation and fertigation in isolated 
furrow networks

C-language [51]

Basin Irrigation Small fields, Well suited for crops Modelling and multi-criteria analy-
sis of water saving

ISAREG, SRFR, SIRMOD [52]
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5  Decision Support System

The idea of a decision support system (DSS) for irrigation 
water management is introduced in the 1970’s to assist 
users in complex decision- making processes and efficient 
use of irrigation water at the farm level [53].

Decision support system (DSS) has great potential 
in agriculture era, if the water irrigation management 
research is combined with the modeling approach using 
machine learning analytics and agriculture statistical, 
the research level will be achieved in different levels of 
the agricultural development sector. The decision sup-
port system for crop water irrigation scheduling based on 
crop water model by estimation of evapotranspiration as 
weather parameter, historical dataset, and using of differ-
ent Irrigation water management methods.

The decision support system is an integrated approach 
to solve complex problems, combining the computer cal-
culation and data storage capacities with human language 
and perception, support of mathematical model statistics, 
providing decision-maker. It is known as a primary tool 
in management for better decision making and environ-
mental resources. In 1985, Guariso et  al. firstly intro-
duced the concept of DSS. Various researchers surveyed 
the advanced use of the management of DSS for water 
resources [54]. Today, it is required for the on-farm irri-
gation water management due to its use of the computer 
to relate soil, crop, and water quality conditions. It can be 
used for analyzing and determining how much water is 
needed and when it should give next time.

5.1  Statistics

The statistical approach leads to the process of collection, 
presentation, analyze, and apply the data to make deci-
sions, problems solving, design products, and processes. It 
is very useful for us to explore the description and under-
stand the variability. Statistical methods contributed for 
making scientific judgments in the face of variation uncer-
tainty. Russo et al. (2015) Bayesian method is used to esti-
mate the hydrological properties and irrigation needs for 
an under-constrained mass balance model. They presented 
an approach Markov chain Montecarlo algorithm to solve 
for spreading of values for each unknown parameter in a 
conceptual mass balance model [55].

5.2  Machine Learning

From the last decade, machine learning and data analytics is 
a hot-spot research area in the domain of agriculture. Among 
the other definitions, machine learning is described as the 

scientific are that allows the machines to learn without being 
strictly programmed [56].

Machine learning models have demonstrated excellent 
results for crop-based modeling in recent days. There is a 
variety of machine learning models based on prediction 
for reference crop evapotranspiration. The main contri-
bution of our research prediction, by applying machine-
learning and data analytics based modeling to predict crop 
evapotranspiration.

Yamaç and Todorovic [57], revealed the satisfactory out-
puts of ML with R2 ranged from 0.81 to 0.97 [58] by apply-
ing several ML models on the climatic data. A comparative 
analysis was performed by Shiri et al. [59] to estimate the 
ETo using various intelligent models, namely ANN, ANFIS, 
support vector machine (SVM), and GEP. In the domain 
of agriculture, big data analytic technologies have offered 
newly predictive models for ETo estimation, e.g. generalized 
neuro-fuzzy models [60], artificial neural network (ANN), 
[61], adaptive neuro-fuzzy inference system [62], multi-layer 
Perceptrons neural network (MLPNN), Zaji and Bonakdari 
[63], extreme learning machine (ELM) Abdullah et al. [64], 
multivariate adaptive regression splines (MARS) and least 
square support vector regression (LSSVM) [65], GRNN 
(2016), ELM, WNN and GANN [66]. Moreover, the Auto-
ML technique is found to show excellence in application of 
irrigation scheduling where border irrigation and sprinkler 
irrigation methods are deployed.

5.3  Deep Learning

The deep learning technique is now practical to address mil-
lions or even billions of weights among neurons for better 
understanding of behaviors due to current advances in com-
putational power, in terms of software, hardware and parallel 
processing. It is accepted to have established a revolutionary 
era since it can address the issues that have countered AI for 
a long time.

Deep feed-forward neural networks are based on multi-
layer Perceptrons (MLPs) published by Alexey Ivakhnenko 
and Lapa in 1965 [67]. It can be used to model the com-
plicated relationship between input and output due of its 
high hierarchical structure model training, construction and 
feature learning [68]. It has been used in the hydrological 
and agricultural fields because of the difficulty of software 
data availability, costs, and complexity, e.g., approximation 
and modeling of crop evapotranspiration [42], Wang et al. 
(2018) determined that traditional ML and DL models are 
equivalent as a data-driven artificial intelligence method that 
can be used to model the complicated relationship between 
input and output [68]. However, DL has a benefit over tra-
ditional ML, due to wits high hierarchical structure model.
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5.4  Big Data Analytics

Big Data is a fascinating new field at the joint of advanced 
analytics, data science, statistics, and machine learning. Big 
data and analytics have tremendous development benefits 
in the agriculture economy. Advanced big data analytics 
have improved the tools and technologies that changed the 
way of real-time applications to make better decision pro-
cessing, high-performance platform to efficiently analyze, 
capturing, storing and managing large scale of big data. In 
addition, agriculture practices are becoming increasingly 
data-derived and data-enabled with the recent development 
of 5G, artificial intelligence, Internet of Things and big data 
technologies [69]. To obtain insights from these data Saggi 
et al. [70] investigated the state-of-the-art framework for 
decision-making and different methods of integrating big 
data analytical methods with smart applications such as 
smart agriculture, healthcare, and cyber security. Figure 7 
presented the framework of big data analytics and machine 
learning analytics for agriculture application as follows:

• Data sources The domain of data is expressed by variety 
of descriptive terms such as:-structured, unstructured, 
machine and sensor generated data, batch, and real-time 
processing data, biometric data, human-generated data, 
and business-generated data.

• Data storage and processing Database technology, Stor-
age infrastructure, Distributed storage, Programming 
model and Data staging, collection, pre-processing and 
many tools for batch and streaming process.

• Data analytics and visualization It includes the machine 
learning, data mining, statistics, artificial neural network, 
natural language processing, and deep learning models 
for agriculture based applications such as DSS, forecast-
ing weather, crop-soil and water monitoring and pesti-
cides detection.

The objective of this study is to introduced the several 
advanced analytic techniques to develop a flexible system 
that would lead to better irrigation decisions (allocation, 
application, and optimization). This study is expected to 
provide a decision tool that will assist irrigators and water 
managers in determining reference evapotranspiration (ETo ), 
crop water requirement (CWR), irrigation water requirement 
(IWR), and irrigation scheduling for more effective water 
allocation and application.

6  Literature of Irrigation Scheduling

Agriculture is the world’s biggest water user, that consume 
70% of fresh water in average. However, these percentages 
will go as high as 95 percent in few developed nations and 

Fig. 7  Big data based machine learning framework for agriculture application
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Punjab is one of India’s largest contributors to the central 
grain pool. In India, ground-water (GW) is an essential 
source of water supply in agriculture and Rice-Wheat crop-
ping system has resulted in significant increase in irrigation 
water need approximately 73% with GW in Punjab. India is 
a seventh largest subcontinent country by geographical area 
in South Asia, nowadays India ranks 2nd worldwide in farm 
production and 1st largest country in irrigated land area. 
Water conservation and precision agriculture is becoming a 
vital issue in the tropical climate areas. Central Indian Pun-
jab is a well-known for its agriculture activities and occupied 
high percentage of land area in all over India.

6.1  A Bibliometric Perspective of Irrigation 
Scheduling

In this section, the articles from Science direct digital data-
base is considered. Figure 8 shows the number of papers 
published from 1995 to 2021 in field of irrigation schedul-
ing, reference evapotranspiration and crop evapotranspira-
tion. We have selected only elsevier science direct library 
to find out research articles, where we found 34,083 results 
in area of irrigation scheduling, 32,775 papers in reference 
evapotranspiration and 14,261 results articles in crop evapo-
transpiration (crop water need).

Irrigation scheduling, ETo and ETc trends are represented 
by Green, Blue, and Yellow colored lines respectively. Fig-
ure 8 shows the article type in which review reports, case 
reports, data articles, mini review, and many more articles. 
Figure 8 shows the number of top-journal publications. 
Several computer simulation techniques and decision sup-
port systems have been developed to estimate ETo , ETc and 
Crop Water Requirement (CWR). It is important to identify 
changes in the hydrological cycle when we want to predict 
the impacts of climate change. However, current studies on 
climate change must be expanded to cover the entire globe. 
The two main components of the global water cycle are 
evaporation and precipitation.

Methods for measuring evapotranspiration from meteoro-
logical data include a number of climatology, and the physi-
cal inputs which is directly estimated in weather stations. 
Other parameters are associated with measured data and can 
be obtained by directly or empirical methods. Meteorologi-
cal data can be expressed in several units.

6.2  Estimation and Forecasting 
of Evapotranspiration ET

o

The application of Evapotranspiration (ETo ) in irrigation 
scheduling is divided into different categories for literature 
section such as statistical, machine learning, evolutionary 
models, and decision support system [42, 71, 72]. We have 

presented a comprehensive review literature for reference 
evapotranspiration as follows:

Figure 9 presented the process of DSS for crop water irri-
gation scheduling. ETo is an imperative aspect of the hydro-
logical cycle that is stirring water availability on the earth 
surface. It is one of the significant criteria of accurate quan-
tification of crop water requirement that influence various 
hydrological processes, planing of water management and 
resources [62], and requirement of irrigation [73]. Tradition-
ally, the ETo is estimated at the field scale, but it consumes 
lot of time and is difficult to process by complex mathemati-
cal calculations with various climatic variables. Methods 
for measuring evapotranspiration from meteorological data 
include a number of climatology, and the field inputs which 
is directly estimated in weather stations. Some parameters 
are associated with measured data, where as others can be 
obtained directly or through empirical methods.

6.2.1  Existing Methods Based on Empirical

Since many years, various researchers have established 
reference evapotranspiration ETo estimation with empiri-
cal methods. There are few categories of ETo estimation 
methods: Temperature-based, Radiation-based, Empirical, 
Pan, and many more. Commonly, FAO-56 Penman-Monteith 
method is applied as the scientific, standard and temperature 
based method to estimate the ETo [10, 74]. FAO-PM has 
been extensively adopted because to its positive outcomes 
in a variety of climates across the world. However, it needs 
a significant amount of meteorological data obtained from 
regular meteorological observation stations [75].

To overcome the existing limitation of the FAO-PM 
model, various attempts aiming to estimate ETo with limited 
observed data have been made. A large number of studies 
have focused on estimating ETo using empirical methods 
with limited ground-level data such as the Hargreaves and 
Samani equation, Priestley-Taylor equation, and Thorn-
thwaite equation have been used for estimating (ETo ) by 
Tomas-Burguera et al. [76].

ETo is estimated with simplified or empirical methods 
(e.g. Lysimetric measurements) and it is highly difficult to 
achieve more precise and robust approaches [77, 78]. HS 
equation is the most simple and accurate approach based on 
temperature [10, 31]. There are many empirical approaches 
to predict the ETo using five mass transfer-based models 
(Ivanov, WMO, Penman, Trabert, and Mahringer), five 
radiation-based approach (Tu, PT, Ab, JH, and Mk), and 
five temperature-based approach (HS, modified Hargreaves-
Samani

1
 ) (Th, BC, MHS

1
 , and MHS

2
 ) [79]. Table 4 shows 

the literature of empirical methods for estimation of ETo.
Malamos et al. [80] investigated the monthly Geo-spa-

tial ETo with FAO Penman–Monteith using line, polygon, 
and point through a geometry independent algorithm. They 
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Fig. 8  Number of publications, article types and publication title
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selected various climate parameters such as T mean , u 
2
 , R H , 

latitude � , altitude (m), I s.
Tegos et al. [81] applied the radiation based model to cal-

culate the daily potential evapotranspiration ETo with FAO-
56 Penman–Monteith using T mean , u 

2
 , R H,and I s parame-

ters. The Potential ETo is estimated for current and future 
drought condition using PDSI tool, Spatial, and Temperature 
based models such as Penman–Monteith, Thornthwaite, and 
Hamon methods. They have selected T mean , u 

2
 , R H , I s input 

variable, and analyzed on MATLAB GUI [82].
Yang et al. [83] analyses the daily reference evapotranspi-

ration (ETo ) using short-term forecasting with FAO-56 Pen-
man–Monteith equation, Hargreaves–Samani equation, and 
Reduced-set Penman–Monteith (RPM). The R language is 
used to simulate with various climate parameters including 
T mean , T max , T min , u 

2
 , RHmean , I s , and Vapor pressure (ea).

6.2.2  Existing Methods Based on Machine Learning

There have been many studies on hybrid models with 
machine learning, and evolutionary algorithms to estima-
tion of ETo with few climate parameters around the world.

Patil and Deka [85] investigated the performance of 
extreme machine learning (ELM) to quantify the weekly 

ETo in the Thar Desert of India. Also, they have showed 
the comparison of Artificial Neural Network (ANN) with 
three input variable. The ELM model gives slightly higher 
accuracy than empirical, and ANN models.

Wu et al. [86] proposed hybrid model using machine 
learning and soft-computing to estimate the monthly ETo in 
south China with 26 data stations. The proposed (Kmeans-
FFA-KELM) approach developed with the three approaches 
(K-means clustering, Firefly Algorithms, and Kernel 
Extreme Learning Machine model) found higher accuracy 
using three input variables (Temperaturemax , Temperaturemin , 
and R a ). Another study showed performance of six remote-
sensing based ML models to predict the daily ETo in the 
Andalusian. The two ELM and MLP models found higher 
accuracy than RF, SVM, GRNN, and XGBoost models [87].

Stacking and blending ensemble based ML models are 
used to calculate the daily ETo with limited input variables. 
Two-layer ensemble model is build with RF, SVR, MLP, 
LR and KNN models and found higher accuracy in terms 
of R 2 ranged from (0.66 to 0.99) as compared to empirical 
models [88]. Another, ensemble based model is build with 
ANN, SVM and RF to estimate the ETo with geno-types 
and optimize the ETo with time series data, and found the 
correct results [89].

Bai et al. [90] proposed ensemble-based four ML mod-
els with RF, BMA, KNN, SVM and MLP to calculate the 
ETo . The MLP-based ensemble model provides the efficient 
results. However, the ML and DL based models are proposed 
to estimate a urban ETo with Flux Footprint, Remote Sens-
ing and Geographic Information System (GIS) data. The 
RF model provides slightly better result in terms of R 2 of 
(0.840) and RMSE of (0.0239 mm) than CNN model [91].

Adnan et al. [92] demonstrated the capability of dif-
ferent Neuro-Fuzzy methods to estimate the pan evapora-
tion monthly using climatic inputs of different parameters 
obtained from Uttarakhand, (India). Recently, Adnan et al. 
[93] demonstrated the capability of dynamic evolving Neu-
ral-Fuzzy Inference System (DENFIS) and Least-Square 
Support Vector Regression with a Gravitational Search 
Algorithm (LSSVR-GSA) for estimating ETo.

It has been shown that the extraterrestrial radiation or 
temperature-based LSSVR-GSA models are superior to 

Fig. 9  Process of DSS for crop water irrigation scheduling

Table 4  Estimation of evapotranspiration ET
o
 with empirical methods

Author Method Parameters

Malamos et al. [80] FAO Penman–Monteith Tmean , u 
2
 , R H , latitude � , altitude (m), I s

Tegos et al. [81] FAO Penman–Monteith Tmean , u 
2
 , R H,Is , R s , R

Ficklin et al. [82] Penman, Monteith, Thornthwaite, Hamon Tmean , u 
2
 , R H,Is

Yang et al. [83] FAO-56 Penman–Monteith, Hargreaves–Samani, Reduced-
set Penman Monteith (RPM)

Tmean , T max , T min , RHmean , u 
2
 , I s , VPD.

Heydari et al. [84] Blaney-Criddle Tmean , RHmin , u 
2
 , I s , � , � , and � coefficients.
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DENFIS model for estimating monthly ETo . They [94] 
forecasted the monthly and daily stream flows of poorly 
gauged mountainous watershed with Fuzzy Genetic 
Algorithm (FGA), Least Square Support Vector Machine 
(LSSVM), and M5 model tree (M5T) models.

Heddam et al. [95] estimated and compared daily refer-
ence evapotranspiration (ETo ) using the Online Sequen-
tial Extreme Learning Machine (OSELM) and Optimally 
Pruned Extreme Learning Machine (OPELM) in the Medi-
terranean region of Algeria. The OPELM models showed 
good performances as compared to OSELM models.

Recently, Tikhamarine et al. [96] combined the Support 
Vector Regression and Grey Wolf Optimizer (SVR-GWO) 
to predict the monthly ETo at Annaba, Algiers, and Tlem-
cen stations in North Algeria. Moreover, the proposed 
model is compared with the existing variants of SVR and 
showed that the performance of the SVR-GWO gives occa-
sionally competitive and very promising results. Marouf-
poorb et al. [34] proposed the concept of hybrid Artificial 
Neural Network-Gray Wolf Optimization (ANN-GWO) 
model and predicted the ETo for Iran.

Further, the proposed model showed more efficient 
and accurate results as compared to ANN and LS-SVR. 
Mohammadi and Mehdizadeh [97] proposed a hybrid of 
two models Support Vector Regression and Whale Optimi-
zation Algorithm to predict the daily reference evapotran-
spiration at three stations in Iran. It has been shown that 
hybrid models outperformed the support vector regres-
sions models. Kisi [65] obtained weather dataset from 
Turkish Meteorological Organization (TMO) for 2 sta-
tions from 1982 to 2006 and applied MARS, LSSVR, and 
M5-Tree to estimate ETo.

Valipour et  al. [79] collected data for the period of 
(1961–2010) with 50 climate parameters from 18 regions 
of Iran to estimate monthly ETo using five models namely 
(mass transfer, radiation and temperature based).

Mattar [98] obtained 32 weather stations of data from 
United Nations Food & Agriculture Organization (UN-FAO) 
known as CLIMWAT for (2013 to 2015) and presented gene 
expression programming (GEP) and empirical models to 
estimate ETo.

Tao [99] presented the hybrid intelligent ETo model using 
data of three meteorological stations during 1998 to 2012. 
They used the Adaptive Neuron Fuzzy Inference System 
(ANFIS), Firefly Optimization Algorithm with ANFIS 
(ANFIS-FA) and Penman–Monteith models.

Co-active Neuro Fuzzy Inference System (CANFIS) 
model is proposed for modeling the monthly evaporation of 
Lake Nasser, Egypt [110]. The Gene Expression Program-
ming (GEP), Support Vector Machine (SVM), Classifica-
tion and Regression Tree (CART), the Cascade Correlation 
Neural Network (CCNNs), and are proposed for estimating 
evaporation by Yaseen et al. [100].

Falamarzi et al. [101] estimated the daily ETo for water 
resources with ANN and WNN models from the period of 
2009 to 2012. They have applied RMSE, APE, N.S., R 2 met-
rics to check the model accuracy with three input parameters 
such as T min , T max , and u 

2
 . Models LS-SVM, MARS, and 

M5 models have been applied to estimate the Pan evapora-
tion for Reservoir and water resources management. They 
have applied four input variable, T mean , R s , u 

2
 , and R h with 

dataset of period 1986 to 2006 [102]. Another, ANN model 
is applied to forecast the ETo for application of real-time 
irrigation scheduling with T mean , R s , u 

2
 , and R h input param-

eters using dataset of (2011 to 2012) [103].
Yassin et al. [73] analyzed the performance of ANN, 

and GEP models to quantify the ETo with various climate 
parameters using dataset from 1980 to 2010. The GeneX-
pro Tools 5.0, and Propagation version 2.2.4 were used to 
developed the model and also provide the accuracy on the 
basis of these metrics MAE, RMSE, R 2 , and OI. Gocic et al. 
[71] forecasted the ETo using SVM, FFA, DWT, ANN, and 
GEP models with climate parameters for the period of 1980 
to 2010. Goyal et al. [104] explored the four ML models 
namely ANN, LS-SVR, FL, ANFIS, and Gamma Test to 
estimate the pan evaporation for the duration of 2000 to 
2010. They have found the efficient results with the FG and 
LS-SVR models using various climate parameters on MAT-
LAB platform.

However, Chen et al. [105] found the best performance 
of Bayesian Model Averaging Model to estimate the terres-
trial ETo using KGE and Cubist software. Mehdizadeh et al. 
[106] proposed the hybrid model to estimate the monthly 
ETo with GEP, SVM-Poly, SVM-RBF, and MARS models 
for duration of 1951 to 2010. The performance of the applied 
models is compared with the empirical methods, where 
the MARS and SVM-RBF models give the most accurate 
results. The hybrid ELM model revealed a superior perfor-
mance to estimate the daily ETo at the four major countries 
of (US, Germany, Belgium, and Sweden) using 9 years of 
dataset [72].

Mohammadi et al. [97] proposed an approach that couples 
Support Vector Regression with Whale Optimization (SVM-
WO) to estimate the daily ETo.The T max , T min , RHmean , u 

2
 , 

R h , and SSD parameters are used to build the model and 
found accurate result with SVM-WO model.

The recent estimation of reference evapotranspira-
tion based on machine learning modeling, e.g. H2O-Deep 
Learning,Distributed Random Forest,Gradient Boosting 
Machine and Generalized Linear Model [107], Ensemble 
Extreme Machine Learning, Multi-layer Perceptrons-Neural 
Network, Support Vector Machine [108], Quantum Matrix 
Product State [111], CNN-LSTM and Conv-LSTM used 
for combine the features and modeling of ETo [109], Deep 
learning versus gradient boosting used for predicting the pan 
evaporation [112],
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In the domain of agriculture, ML offered new predictive 
models for ETo estimation, e.g. Generalized Neuro-Fuzzy 
Models (GNFM) [60], ANN model [61], ANFIS model 
[62], MLP-NN [63] [113], ELM algorithm [64] [90], M5 
Model Tree [113], LS-SVR , MARS, ELM, WNN and 
GANN [66]. The DL model and ML model are applied in 
various domains such the COVID-19 analysis [114], pro-
posed a novel method based on artificial intelligence (AI) 
to identify COVID-19 disease [115], developed genetically 
optimized Deep Neural Network [116], Tripathy et al. [117] 

investigated the performance of MARPUF approach and it 
is found to be better resistant to such modelling attacks, 
image classification using deep learning [118], Artificial 
Intelligence approaches used to classifying various types of 
cancer [119], enhanced the grip functionality of myoelec-
tric hands based on deep learning [120], and classifiers for 
on-line handwriting recognition based on SVM and KNN 
algorithms [121], and a survey for software fault prediction 
[122]. Singh et al. [123] presented the efficient results and 
reliable algorithm for optimal design of water distribution 

Table 5  Estimation of evapotranspiration ET
o
 based on ML and EA

Author Purpose Algorithm Data Parameters

Patil and Deka [85] Weekly ETo ANN, ELM TR(1970–2005) T S(2006–
2010)

Tmax , T min , RHmax , RHmin , 
R s , u 

2

Wu et al. [86] Monthly ETo Kmeans-FFA-KELM TR(1966–2000) T S(2001–
2015)

Tmax , T min ,Ra

Wu [88] Daily ETo ELM, MLP, RF, SVR, 
GRNN, XGBoost

TR(1989–2008) T S(2009–
2018)

Tmax , T min , RHmean , R a

Bai et al. [90] Daily ETo RF, KNN, SVM, MLP FLUXNET 2015 47 cropland Tmean R n , u 
2
 , NDVI, EVI, 

VPD, DTsR, TR, Pd, and 
WSF

Adnan et al. [93] Monthly ETo DENFIS, LSSVR-GSA TR(1961–1986) T S(2000–
2012)

Tmean R a

Heddam et al. [95] Daily ETo OSELM, OPELM TR(2001–2008) T S(2009-
2013)

Tmax , T min , RHmean , R s , u 
2

Tikhamarine et al. [96] Monthly ETo SVR-GWO, SVR-PSO TR(2000–2009) T S(2009–
2013)

Tmax , T min , RHmean , R s , u 
2

Maroufpoorb et al. [34] Daily ETo ANN-GWO, LS-SVR TR(2012–2016) T S(2017) Tmax , T min , RHmean , S h , u 
2
 , P e

Kisi [65] Monthly ETo LS-SVR, MARS, M5 Tree 1982–2006 Tmean , RHmean , S h , u 
2
 , R s

Mattar [98] Monthly ETo GEP 2013 to 2015 Tmax , T min , RHmean , S h , u 
2

Tao (2018) [99] Monthly ETo ANFIS, ANFIS-FA, Pen-
man–Monteith

1998–2012 Tmax , T min , RHmax , u 
2
 , R s , 

VPD
Yaseen et al. [100] Evaporation CART, CCNN, GEP, SVM 1999 to 2009 Tmax , T min , RHmean , u 

2
 , S h , RF

Falamarzi et al. [101] Daily ETo ANN WNN 2009–2012 Tmin , T max , u 
2

Kisi [102] Pan Evaporation LS-SVM MARS M5 Tree 1986–2006 Tmean , R s , u 
2
 , R h

Ballesteros et al. [103] Forecasting ETo ANN 2011–2012 Tmean , R s , u 
2
 , R h

Yassin et al. [73] ETo ANN, GEP 1980–2010 Tmean,Tmax , T min , RHmean , 
RHmax , RHmin , u 

2

Gocic et al. [71] Forecasting ETo SVM, FA, DWT, GEP 1980–2010 Tmax , T min , ea , u 
2
 , I s

Goyal et al. [104] Daily Pan Evaporation ANN, ANFIS, LS-SVR, FL 2000–2010 Rr  , T max , T min , RHmax , RHmin , 
I s

Chen et al. [105] Terrestrial ETo BMAM 1982–2009 Tmean , T max , T min , RHmean , u 
2
 , 

R s , R n , VPD
Mehdizadeh et al. [106] Montly ETo GEP, SVM-Poly, SVM-RBF, 

MARS
1951–2010 Tmean , T max , T min , RHmean , 

u 
2
 , R s

Dou et al. [72] Daily ETo ELM, ANN, SVM, ANFIS 2001–2009 Tmax , RHmean , R net , T soil
Saggi et al. [107] Daily ETo H2O- DL, RF, GBM, GLM ST

1
 (1978–1999& 2007 - 

2016) ST
2
 (1970–1999 & 

2007–2016)

Tmax , T min , RHmean , I s , R s , u 
2

Saggi et al. [108] Daily ETo ELM, MLP, SVM TR (1970–1990), V L (1993–
1999), T S (2007–2016)

Tmax , T min , RHmean , I s , R s , u 
2

Sharma et al. [109] Daily ETo CNN-LSTM and Conv-
LSTM

ST
1
 (2003 to 2015) & ST

2
 

(2000 to 2016)
Tmax , T min , RHmean , I s , V p , 

R s , u 
2
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networks.The literature summary of ML and EA are given 
in Table 5.

7  Estimation of Crop Evapotranspiration 
(ET

c
)

Crop evapotranspiration (ETc ) one the most essential ele-
ment of the hydrological system for irrigation scheduling. 
The crop coefficient K c method multiplied with (ETo ) is 
most widely-used to determine the (ETc ) Eq. (3). Different 
estimations and methods having their own advantages and 
disadvantages are available. For the estimation of ETc using 
Machine Learning, Deep Learning and Evolutionary Algo-
rithms, some potential literature work are presented in this 
section. The literature analysis of crop evapotranspiration 
methods is presented in Table 6.

7.1  Existing Methods Based on Statistics

The need of precise estimation of crop water is an crucial 
aspect of agricultural planning and there exists several meth-
ods for determining ET in crop land [124]. The significant 
field based estimations are required, appropriate for monitor-
ing the crop-water status at the land-scale level [125, 126].

The FAO-Penman, PM, and 1963 Penman applied to 
forecasting the ET for rice crop using meteorological data 
by Shah and Edling (2000). They have found the crop coef-
ficients for initial, middle and late stage as 1.39, 1.51, and 
1.43 [127]. The derivation and development of crop K c were 
identified for Castor and Maize crops of Rajendranganagar 
by Reddy et al. [128]. Ko et al. [129] conducted study to 
estimate the crop water requirement for Cotton and Wheat 

crops at Uvalde, TX, USA. Fang and Ping (2013) presented 
an optimal the uncertainty approaches of interval regression 
analysis and crop water production function for irrigation 
and Penman-Monteith method used to obtain ETo . LINGO 
software introduced to solve above model [57].

7.2  Machine Learning and Evolutionary Models

The Back-propagation Neural Network (BP-NN) model is 
proposed to evaluate the crop evapotranspiration ETc with 
combination of various climate parameters (Tmax , T min , 
RHmean , S h , RF and crop coefficient K c ). It is observed that 
the combination of Eddy Covariance method and BP model 
achieved the best accuracy in terms of R 2 (0.87) and accu-
racy (91.44%) than MLR model [130]. Mehta et al. [131] 
estimated the ETo , ETc and K c of Wheat and Maize crops 
of Gujarat using climate data. They applied the various tem-
perature and radiation based empirical methods to calculate 
and estimate the crop water requirement.

It is observed that the accurate value of K c for Wheat crop 
is more efficient as compared to FAO-56 Penman–Monteith 
method results. Whereas in case of maize crop the outcomes 
were found less accurate at Surat and higher outcomes as 
compared to FAO method at Bharuch station.

Saggi et al. [41] proposed a novel multi-layer ensemble 
model based on fuzzy-genetic and regularization random 
forest (FG-RRF) for predicting the K c and ETc of Ludhiana 
station. They found that the models had high performance 
for modeling K c and ETc.

Elbeltagi et al. [132] presented the deep learning model 
to estimate the Wheat ETc from 1970-2017 and forecasting 
the future changes from 2022-2035 of Nile Delta in Egypt 
using Visual Gene Developer technology. For calibration R 2 
of 0.95, 0.96, 0.97 and for testing R 2 of 0.94, 0.95, 0.95 have 
been found efficient result respectively. Russo et al. [55] pre-
sented the MCMC and Bayesian algorithms to analysis the 
irrigation requirements for ground water mass balance with 
soil tensiometer of Rice crop. They have optimized the man-
agement decisions on crop replacement and increased the 
irrigation efficiency. The NN model and regression model 
are explored to estimate a greenhouse tomato crop yield, its 
growth, and efficiency in use of water with CropAssist and 
NeuralWare platforms [133]. Maurya et al. [134] developed 
a novel fuzzy-based energy-efficient routing protocol based 
on automated irrigation system for Maize crop on MAT-
LAB platform. The FIS-DSS (Flexible Irrigation Scheduling 
Decision Support System) is proposed to analyze the optimal 
allocation of water resources of irrigation system. Fuzzy-
inference and knowledge based user-friendly optimization 
tool is developed for Wheat and corn crops [135]. Chauhan 
et al. [136] proposed a web-based DSS to enhance irrigation 
water management for peanut crop on APSIM platform.

Table 6  Estimation of ET
c
 based on empirical, ML and EA

Author Algorithm Crops

Han et al. [130] BP-NN Wheat
Mehta et al. [131] Empirical Wheat, Maize
Saggi et al. [41] Fuzzy-Genetic and 

Regularization Ran-
dom Forest

Wheat, Maize

Elbeltagi et al. [132] DL Wheat
Russo et al. [55] Bayesian, MCMC Rice
Ehret et al. [133] NN, RA Tomato
Maurya et al. [134] Fuzzy-based, Hybrid 

routing
Maize

Yang et al. [135] Fuzzy Inference Model Wheat Corn, Cotton
Chauhan et al. [136] DSS Peanut
Gavilán et al. [137] Radiation, Makkink 

FAO-24
Strawberry

Tabari et al. [138] ANFIS, SVM Potato
Yamaç et al. [139] NN, ABM, KNN Potato
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Gavilán et al. [137] measured the daily greenhouse crop 
evapotranspiration for strawberry and found more accuracy 
using empirical methods and sensors based on soil mois-
ture. Tabari et al. [138] explored a ANFIS and SVM model 
performance for Potato crop evapotranspiration ETc using 
meteorological data.

Yamaç et al. [139] applied the four scenarios based on 
features subset to accurately estimate the ETc of Potato 
crop using ANN, ABM and KNN models. Further, ANN 
and SVM models are also applied to estimate the garlic ETc 
by Abyaneh et al. [140] and the outcomes are found accurate 
as compared to lysimeter performance.

The need of precise estimation of crop water is an crucial 
aspect of agricultural planning and there exists several meth-
ods for determining ET in crop land [124]. The field based 
estimations are required and appropriate for monitoring the 
crop-water status at the land-scale level [125] [126].

The FAO-Penman and Penman methods are applied 
to forecast the ET for rice crop using meteorological data 
[127]. They have found the crop coefficients for initial, mid-
dle and late stage as 1.39, 1.51, and 1.43. The derivation 
and development of crop K c are identified for Castor and 
Maize crops of Rajendranganagar by Reddy et al. [128]. Ko 
et al. [129] conducted a analyses report to evaluate the crop 
water requirement for Cotton, and Wheat crops at Uvalde, 
TX, USA. Fang and Ping [57] presented an optimal solution 
to estimate the ETo using interval regression analysis, crop 
water production function and Penman-Monteith method 
with LINGO software.

Numerous experiments have been conducted in recent 
decades to investigate the possible effect of climate change 
on evapotranspiration ETc . For efficient crop evapotranspi-
ration ETc modeling using VIP (Vegetation Interface Pro-
cesses) for Wheat and Maize [141], durum Wheat in Tuni-
sia [142], APSIM-Maize model [143], SEBAL model for 
yield, WUE, IWUE and HUE for Wheat crop [144], weigh-
ing lysimeter for K c and ETc [145], farm-level operational 
services in smart agriculture [146], crop water model based 
on Crop2ML framework [147] have been used.

The ETc estimation results proved that the ML and EA 
approaches performed better than existing classical methods. 
However, several studies have investigated the estimation 
of ETc with empirical methods. But limited studies have 
reported the estimation of ETc using ML, and EA models 
as shown in Table 6.

8  Decision Support System for Irrigation 
Scheduling

This section considers the Decision support system (DSS) 
based on research that have included ETo , ETc , and irri-
gation requirement. An irrigation management system can 

offer farmers with appropriate decision-making tools in 
order to regulate the amount of water supplied to crops.

A decision support system PETP V2.0.0 is developed to 
analysis and estimate the potential evapotranspiration ETo 
using various empirical approaches namely Hargreaves, 
Jensen-Haise, Penman-Monteith, Priestley-Taylor, etc. Vis-
ual Studio 2010 software is used to build the computational 
tool to estimate the accurate results for water requirement 
of crop [148].

Navarro et al. [149] developed smart irrigation DSS for 
managing the irrigation scheduling. They purposed 2 ML 
techniques i.e. PLSR and ANFIS. Maximum and mini-
mum relative humidity, temperature, and direction of wind, 
global radiation, vapour pressure deficit, rainfall, dew point 
are the variables used to predict the daily ETo with FAO 
Penman–Monteith method. Zizhong and Zenghui [150] pre-
sented a single irrigation system that enhanced higher corn 
production and also provided efficiency in use of water in 
Northeast China. They include climate parameters namely 
average, max and min of air temperatures, max and min of 
relative humidity, wind speed, and sunshine hours from 1980 
to 2012. Penman–Monteith approach is used to determine 
the soil evaporation and ETc.

The knowledge of the irrigation management has an 
impact on crop water requirements, maintaining water bal-
ance and is the practical considerations to enhance produc-
tivity of crop [157]. Various research work in Punjab have 
demonstrated the requirements of crop water irrigation, irri-
gation water based on ET and pan evaporation, [158], but 
few studies have focused on Soil Water Deficit (SWD) [159].

Paraskevopoulos and Singels [151] investigated the inte-
grated content of soil water recordings of real-time field into 
the MyCanesim system to estimate its use in 15 sugarcane 
fields of South Africa for supporting irrigation system. It is 
used to determine the decision making for irrigation sched-
uling based on the status of forecasts of crop, soil water, 
and the next irrigation date. Ying et al. [152] represented 
the evaluation for summer Wheat and winter Maize crop-
ping system for optimal irrigation scheduling. Further, they 
described topical versions of the SWAP and Wofost models 
for crop growing simulation and obtaining efficiency in use 
of water.

Afzal et al. [160] improved water resources management 
using different irrigation strategies and water qualities by 
field, and modeling study. To deficit irrigation PRD and RDI 
methods are used to estimate the effects of waste and fresh 
water on salinity distribution, soil moisture, and crop yield 
of Potato, Maize in Italy, Bologna through field experiments.

The fuzzy, evolutionary, and machine learning models 
are used to develop a DSS model for irrigation schedul-
ing. Gaiqiang et al. [135] developed a FIS-DSS software 
based on knowledge, interface for user, and an inference 
engine for wheat, corn and cotton crops. It is a fuzzy interval 
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programming model having multiple objectives and con-
straints, flexibility of model, data processing, and an alterna-
tive solving algorithm. The main objective is to maximize 
the economic-based benefits for crop-land in China. The NN 
model is used to train the model with precipitation and his-
torical climate parameters.

Giusti and Marsili-Libelli [153] developed a fuzzy-DSS 
to schedule the daily irrigation need of crop based on soil 
moisture as a predictive model and an inference model 
as irrigation decision maker. This model determines the 
actual need of water for kiwi, corn, and potato crops with 
past irrigation soil moisture, climatic parameters, and ETc . 
They used meteorological data including temperature, solar 
radiation, wind, rain, etc. The objective of FDSS model is 
to reduce the water usage and provide the efficient result in 
terms of saving water up-to 13.55, 18.3, and 72.95 water 
units for irrigating three crops respectively. Sahoo et al. 
[161] proposed fuzzy multi objective linear programming 
approach for planing of land-water-crop system. The mete-
orological data like daily rainfall, evaporation, temperature, 
solar radiation, daily sunshine hours, humidity, wind veloc-
ity, and albedo are collected from the Central Rice Research 
Institute, Cuttack. The objective function is to optimize, 
maximized crop production, net return, and to minimize the 
labor requirement for various vegetables and pulses.

Reddy and Kumar [162] demonstrated a multi-objective 
method for the optimal crop pattern and multi-crop irriga-
tion reservoir scheme by several procedures. Adeyemo and 
Otieno [163] explored a method to solve the multi objective 
crop planning model by an evolutionary algorithm. They 
have found excellent results in minimizing total water irri-
gation, maximizing the yield productivity, and net income 
from farming.

Irrigation water management is numerically intensive 
for computations and provides model interpretation and 
discretization. Neural networks and evolutionary algo-
rithms demonstrated to estimate the irrigation volume and 
also determined the effectiveness to diminish irrigation 

application and maximize production [164]. Ortega Álva-
rez et al. [154] proposed a non-linear model to recognize 
yield schemes and water irrigation management plannings 
using the genetic algorithms. Further, they estimated crop 
yield, gross margin and production as a function of irrigation 
depth. Schmitz et al. [165] simulated 92 percent greater pro-
duction for corn using evolutionary algorithm as compared 
to dynamic programming.

Application and web based DSS models are developed 
for the irrigation water scheduling by various researchers. 
Recently, a web-based DSS is proposed to estimate the soil-
water balance for irrigation system with limited input param-
eters such as (dual crop-coefficient and meteorological). The 
irrigation parameters are computed through soil moisture 
and requirement of water. A web-based irrigation decision 
support system is introduced with limited inputs (WIDSSLI) 
for summer corn and winter Wheat irrigation management 
in North China Plain (NCP) [155].

Table 7 presents the estimation of ETo , ETc , and irriga-
tion with DSS systems. Antonopoulou et al. [166] presented 
an appropriate decision support system for crops which is 
implemented on web-based software. They introduced this 
approach by using the Java and PHP technologies for spe-
cific irrigation technique and soil improvement instructions. 
Dutta et al. [167] developed a mobile application based on 
sustainable irrigation DSS. They proposed cloud sensors 
based approach to evaluate the ground water usage and avail-
ability of water. This approach includes the CSIRO sensor 
based cloud computing organization and integrated big data 
that includes machine learning technologies. Bonfante et al. 
[168] proposed an irrigation water supply management tool 
to obtain the maximum yield of Maize with W-tens, IRRI-
SAT, and W-Mod approaches. W-Mod and IRRISAT models 
found more accurate results as compared to W-Tens in terms 
of irrigation water use efficiency.

A Climate-Smart Decision-Support System (CSDSS) 
tool is proposed to evaluate the requirement of rice crop in 
Malaysia. They determine a daily crop-water balance based 

Table 7  Estimation of evapotranspiration ET
o
 , ET

c
 , and Irrigation with DSS systems

Author Estimation Developed Software Approach Crop

Cesar et al. [148] ETo PETP V2.0.0 Empirical Methods –
Navarro-Hellín et al. [149] ETo , IR DSS PLSR, ANFIS –
AL et al. [151] IR MyCanesim – 15 Sugarcane
Ma et al. [152] Optimal IR DSS SWAP, Wofost Summer Wheat, Winter Maize
Yang et al. [135] Crop-land Model FIS-DSS Fuzzy Interval Program-

ming, Neural Network
Wheat, Corn, Cotton

Giusti et al. [153] ETc , IR fuzzy-DSS Fuzzy Kiwi, Corn, Potato
Alvarez et al. [154] Yield, Gross margin Non-linear Model Genetic Algorithms
Li et al. [155] Soil-water balance IR Web-based DSS Dual crop-coefficient Summer Corn, Winter Wheat
Rowshon et al. [156] ETc Climate-Smart-DSS GCM Rice



4473A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning…

1 3

on input data (2010 to 2099) and (1976 to 2005) from Global 
climate models (GCM) and integrate with evapotranspira-
tion using MATLAB simulator [156].

Ragab et al. [169] proposed a SALTMED model which 
includes the to partial root drying or deficit irrigation, sub-
surface irrigation, soil nitrogen fertilizer application, ferti-
gation, dry matter production, plant nitrogen uptake, and 
nitrate leaching.

For the model calibration and endorsement the statistical 
measurements are used such as R2 coefficient, RMSE, and 
percentage error. The DIDAS software package for irrigation 
system decision-making strategies of drip irrigation systems 
is developed [46].

A DSS framework have been introduced which includes 
22 ETo estimation approaches using user-friendly GUI 
(Microsoft Visual Basic 6.0) of 133 selected stations of 
India [170]. Potential-ETo and FAO56-PM ETo are used to 
estimate the ETo in the Geisenheim Irrigation Scheduling 
(GS) for vegetable crops using sprinkler irrigation [171]. 
Ballesteros et al. [103] estimated the ETo using FORETO 
software with Hargreaves Samani (HS) equation or the Pen-
man Monteith (PM) and Artificial neural networks (ANNs) 
models. Modern platforms (.NET and Java) software applied 
to calculate the daily/monthly ETo using meteorological 
parameters [172]. There are various crop simulation based 
models exists such as CropSyst [173], STICS (Brisson et al. 
1998) [174], EPIC [175], DSSAT [176], VegSyst simulation 
model [177], and CERES [178].

A single approach, that can address all operational cir-
cumstances (weather information, crop growth monitoring, 
field data, agricultural expertise and infrastructure etc.), 
as well as the associated expenses for farmers which may 
limit the usage of these systems. Therefore, DSS’s for irri-
gation scheduling have been developed to integrating vari-
ous approaches in terms of (data collection from meteoro-
logical), pre-processing techniques and modeling based on 
empirical or artificial intelligence.

9  Conclusion

Overall agricultural systems modeling needs to rapidly adopt 
and absorb state-of-the-art data and ICT technologies with 
a focus on the needs of beneficiaries and on facilitating 
those who develop applications of their models. In spite of 
the vast literature available, the subject of irrigation water 
management and crop water modeling for machine learning 
techniques are yet in its emerging phase. Although there 
is wide literature available on statistics, machine learning, 
decision support system for general manifolds. To estimate 
crop water modeling on general manifolds, we have different 
approaches available in literature.

Moreover, the water balance is well-entrenched 
approach for estimating irrigation amount and time 
(i.e. irrigation frequency) in irrigation scheduling. This 
approach is simple to use, typically inexpensive and 
very effective approach to estimates the ETo , and ETc . 
The major objective is to adopt the several approaches to 
develop a flexible system that supports irrigation water 
requirement system, which may fit into diverse fields of 
operational activities (weather information, field data 
collection, crop coefficients etc.). This study provides 
an overview of the irrigation water scheduling. It also 
presented the concept of reference evapotranspiration 
and crop evapotranspiration for crop water modeling. It 
also presents the various methods of irrigation schedul-
ing. It also address the need of decision support system 
and its various approaches that lead to irrigation water 
management.
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