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Abstract

For the sake of precise simulation, and proper controlling of the performance of the proton exchange membrane fuel cells
(PEMEFCs) generating systems, robust and neat mathematical modelling is crucially needed. Principally, the robustness
and precision of modelling strategy depend on the accurate identification of PEMFC’s uncertain parameters. Hence, in the
last decade, with the noteworthy computational development, plenty of meta-heuristic algorithms (MHAs) are applied to
tackle such problem, which have attained very positive results. Thus, this review paper aims at announcing novel inclusive
survey of the most up-to-date MHAs that are utilized for PEMFCs stack’s parameter identifications. More specifically,
these MHAs are categorized into swarm-based, nature-based, physics-based and evolutionary-based. In which, more than
350 articles are allocated to attain the same goal and among them only 167 papers are addressed in this effort. Definitely,
15 swarm-based, 7 nature-based, 6 physics-based, 2 evolutionary-based and 4 others-based approaches are touched with
comprehensive illustrations. Wherein, an overall summary is undertaken to methodically guide the reader to comprehend the
main features of these algorithms. Therefore, the reader can systematically utilize these techniques to investigate PEMFCs’
parameter estimation. In addition, various categories of PEMFC’s models, several assessment criteria and many PEMFC
commercial types are also thoroughly covered. In addition to that, 27 models are gathered and summarized in an attractive
manner. Eventually, some insights and suggestions are presented in the conclusion for future research and for further room
of improvements and investigations.

1 Introduction

In the last decades, the necessities of using clean energy
sources are rapidly increasing due to the ecological devastat-
ing impacts of the fossil fuels [1-4]. As a result, renewable
energy sources (RESs) are targeted to somehow replace the
conventional ones due to their advantageous characteristics.
Virtually, no emissions, static nature of most RESs types,
higher efficiency, availability upon wide range of output
power (from mW to MW’s) and convenient for all applica-
tions (portable, transportation and stationery). Amongst the
several alternatives of RESs; fuel cells (FCs), solar and wind
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have attracted decision-makers and industry-stakeholders to
utilize them as prime energy supplies [1-3, 5].

Particularly, FCs have been considered as a new booming
energy conversion source as they have penetrated several
applications whether portable, stationery or transportation
[1, 2, 6]. Depending on the electrolyte type, FCs are catego-
rized and utilized in the market for different applications [1,
2]. Examples of FC types are; (i) Proton exchange membrane
FCs (PEMFCs) [7, 8], (ii) Solid oxide FCs (SOFCs) [9, 10],
(iii) Molten carbonate FCs (MCFCs) [11], (iv) Phosphoric
acid FCs (PAFCs) [8], (v) Alkaline FCs (AFCs) [12, 13]
and furthermore. Specifically, the basic characteristics of the
latter-mentioned types are illustrated in Table 1.

PEMEFCs have distinguished by their flexibility, high
power density, short startup time, fast response for load
changes, low operating temperatures and pressures and no
safety issues. Thus, they have been involved in the widest
range of applications, mainly in transportation applications
[1, 2, 14-18]. Nevertheless, the expensive cost of PEMFCs
hinders their competitive penetration in the market [1, 2].
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Table 1 (continued)

Electrical
efficiency

Demerits

Operating temperature Power rating (kW) Merits

O

Oxidant

Fuel

Electrolyte material

FC types

(%)

X Excessively affected 60-70

v High electrical
efficiency

1-100

Pure oxygen Under zero-230

Hydrogen

AFCs [1, 8, 12, 13] Potassium hydroxide

by pollutants

(KOH) water solu-

tion
Anion exchange mem-

v/ Broad range of oper- ¥ Require pure hydro-

ating temperatures

and pressures

gen and oxygen for

reactions
X Low power density

X High corrosion of

brane (AEM)

v/ Low-cost catalyst
v Flexible catalyst

the electrolyte and
Sophisticated and

high-cost electrolyte
management for

mobile electrolyte

systems

To appraise the features of PEMFCs systems, several
modelling methods have been proposed, such as theoreti-
cal [19], empirical [20], and semi-empirical [21] models.
Herein, a semi-empirical model, developed by Amphlett is
adopted to simulate the polarization characteristics, which
are represented by the output current versus voltage (I-V)
curve, under various operating situations [21, 22].

In addition, precise PEMFC modelling is crucial for
assessing the performance [23], optimum controlling [23],
accurate simulating [24], and maximum power tracking
[25, 26] of the PEMFCs units. Thus, in the recent years,
numerous researchers have attempted to define the unknown
parameters of PEMFCs’ model by the aid of several param-
eter estimation techniques. Examples of these techniques are
electrochemical impedance spectroscopy-based approaches
[27-29], black box-based methods [30, 31], adaptive filter-
based techniques [32-34], current switching methods [35]
and many more.

Nevertheless, these techniques are not broadly utilized
because of their plain drawbacks, such as inflexibility and
impracticability [7]. Moreover, the PEMFC’s model is
high nonlinear, multi-variant and its variables are strongly
coupled and severely affected by the operating conditions.
Hence, the dynamics and accurate modelling have become
more complicated and time-consuming when employed by
such conventional techniques [36-42]. Therefore, there is an
imperative demand to derive robust and feasible techniques
to tackle such issue.

Since the rapid development of computer-based and arti-
ficial intelligence (AI)-based methods, meta-heuristic algo-
rithms (MHAS) have attained distinct results when applied
on several highly nonlinear optimization problems [43].
Principally, the problem of defining the unknown parameters
of the PEMFCs can be easily dealt with as an optimization
task. So, utilizing MHAs, as a reliable and precise tool to
obtain the optimal solutions offers low computational effort
and high accuracy.

Consequently, numbers of MHAs are employed for
extracting the unspecified parameters of PEMFCs. Samples
of such approaches are genetic algorithm [44, 45], differen-
tial evolution [46, 47], artificial bee colony [48], backtrack-
ing search algorithm [49], Biogeography-based optimizer
[50], Artificial bee swarm optimizer [51], seeker optimizer
[52], Artificial immune system [53], quantum-based opti-
mizer [54], and etc.

Thereupon, an extensive survey article is urgently
demanded to summarize these MHASs. A previous survey
on several MHAs for PEMFC’s parameter estimation was
performed in [5], where only fifteen algorithms are illus-
trated without methodical classification and comparison
among various approaches. Furthermore, detailed discus-
sions and simulation consequences of the algorithms have
not been addressed. In addition, another recent survey was
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undertaken in [7], where only twenty-eight algorithms
are discussed. However, it lacks details about the various
PEMFC’s models in terms of their classification as well as
their applications. Moreover, Amphlett model hasn’t been
fully described in terms of mathematical representations.
Thus, a comprehensive literature survey on numerous
MHAs implemented for extracting the unknown param-
eters of PEMFC’s model is undertaken. In-accordance,
this paper can represent a unified reference for future in-
depth research projects in the same field, while the major
contributions can be epitomized as follows:

(i) An overall discussion of various PEMFC models,
besides their categories are presented,

(i1)) A summarized table gathering twenty-seven up-to-
date models with their category-fulfill features,

(iii) A total of thirty up-to-date MHAs with several simu-
lation results are discussed, which are classified into
four categories, swarm-based, nature-based, physics-
based, and evolutionary-based, respectively, and

(iv) A concluded Table offers the main characteristics of
the MHA, besides the technical specifications and
operating conditions of each mentioned paper.

The rest of this paper is structured as follows: an over-
view of various PEMFC models found in the literature is
revealed in Sect. 2. The mathematical model of PEMFC
is described in Sect. 3. Section 4 announces some broadly
utilized assessment criteria. Numerous MHAs for param-
eter identification of PEMFC are thoroughly illustrated in

Sect. 5. The subsequent discussion is provided in Sect. 6.
Finally, Sect. 7 represents the conclusion.

2 PEMFCs’ Generating Unit Models

Accurate modelling plays a significant role when the investi-
gation of the FC’s performance is needed. FC models can be
categorized in terms of scale, approach, state, spatial dimen-
sions, and covered phenomena, as depicted in Fig. 1 [55, 56].

A summarized comparison among the various FC model
techniques is tabulated in Table 2 [57].

It’s worth saying, some of the recent publications rela-
tive to the various FC model specifications are presented
in Table 3.

3 PEMFC Mathematical Representation

As previously illustrated, since the FC is a multi-physics
device, there are various classifications of the PEMFC mod-
els. Each model is constructed to tackle a certain aspect of
the PEMFC. In this article, the polarization features’ effects
on the PEMFC performance are particularly addressed in
terms of the thermodynamics potential, activation, ohmic
and concentration losses. The difficulty of modelling the
PEMFC polarization characteristics stems from their com-
plexity, multi-variance, and strong coupling. However, the
mathematical semi-empirical model deduced by Amphlett
and Mann [21, 22] has gain the acceptance through its accu-
rate forecasting the performance of PEMFC in form of [-V

Classification of FCs Modelling

7

J

Technique State

Spatial dimensions Covered phenomena

e e e e

Fig. 1 Various modelling categories of PEMFC
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Table 2 Summary of the
comparative characteristics of

various FC model techniques

Comparison item Mechanistic Empirical Semi-empirical
Dependency on laboratory data Low High Moderate
Computational consumed time High Low Moderate
Accuracy High Acceptable Acceptable
Dependency of physical expressions High Very low Acceptable

Applications Cell level Stack/System level Stack/system level
Online simulation possibility Impossible Possible Possible
E,,... 1s calculated by the Nernst equation with the addi-

polarization curve under several steady state and dynamic
operating conditions [5, 7]. Accordingly, numerous research-
ers have been biased to utilize this model for identifying
the performance and the polarization characteristics of the
PEMFC.

As depicted in Fig. 2, the I-V polarization curve of a
single PEMFC can be divided into three regions: activation,
ohmic and concentration losses, respectively. At the startup
period with light load, a rapid decay of the PEMFC output
voltage is noticed. This is due to the initial slow rate of the
electrochemical reactions which is represented by the activa-
tion losses. Then, a linear decay of the output voltage due to
the total resistance seen by the protons and electrons, which
is represented by the ohmic losses. Again, the output voltage
rapidly falls at higher load conditions due to the excessive
water content reducing the concentration of the reactants
in both electrodes. This voltage drop is represented by the
concentration losses [1-3, 5, 7, 85].

Hence, the total output voltage of a single cell V., is
given by (1) [22]:

Vo/cell = Enemst - Vact - VQ - Vcon (1)

where E,,,,., 1s the cell open circuit voltage in (V) that is
calculated by the Nernst equation. V,, is the activation over-
potential in (V). V,, is the ohmic voltage drop and V,,, is the
concentration over-potential in (V).

When connecting N multiple cells in series to form the
stack, the stack output voltage V. in (V) is described

by (2).
14

o/stack

=Ne XV can 2)

It’s worth mentioning, Eq. (2) assumes that all the con-
nected cells exhibit the same polarization characteristics.

10g0(Py,0) = 2.95 X 107(T - 273.15) —

tion of the temperature variation effect, which is given by
(3) [86].

=1.22-8.5x%x 107*(T = 298.15) + 4.3085

x 1075 x T[ln(PHZ \/P702 )] ©)

where T is the cell operating temperature in (Kelvin) and
T <100°C. Py, and P, are the partial regulating pressures
of the hydrogen and oxygen in (atm), respectively.

Since Py and P, vary with the load current values, they
are expressed as follows:

E

nernst —

Py =05XRy X Py oX I -1

Ry, XPy,0 % ex 1.6351,,,
Pa p AT1.334

“

While, calculating P, is dependable of whether the oxidant

is pure oxygen or natural air. Thus, Eqgs. (5) and (6) are applied
for pure oxygen and natural air, respectively [86].

1
P02 = RHL. X PHzo X Ry XPhy0 41920y - ©
L X P( AT1334 )
0 79 0.2911,,;
Po, =P. =Ry X Py,o = 757 X Po, exP[ ATOR2

where Ry and Ry, are the relative humidity of the vapor at
anode and cathode respectively. Py , is the saturation pres-
sure of the water vapor in (atm). P, and P, the anode and
cathode inlet pressure in (atm), respectively. I ,; and A are
the cell current in (A) and the membrane effective area in
(cm?), respectively.

As Py , depends on the cell operating temperature, it’s
given by:

9.18 X 1073(T = 273.15)* + 1.44 x 107(T — 273.15)°> — 2.18 7
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Fig.2 A typical I-V curve of the PEMFC

To express the reactions slowness when starting to load the

cell, the activation losses V,, is given by:

Vier = =@ + 3T + @3TIn(Co,) + @, Tin( ;)] (8)

where ¢;(j = 1... .4) are defined as the semi-empirical coef-
ficients in (V, VK~!, VK~!, VK~!) and Co, represents the con-
centration of the oxygen at the catalytic layer of the cathode
in (mol/cm?) which is expressed by:

Py 498
Co =—2xexp<—> ®
27 5.08%10° T

Also, the concentration of the hydrogen at the catalytic
layer of the anode Cy, in (mol/cm?®) is described by [87]:

Py -77
C =—2><exp<—> (10)
% 10.9% 10° T

Moreover, the ohmic voltage drop V,, which exhibits a
linear relation in the polarization curve is given by:

Vo = LRy +Re) (11

where R in () represents the resistance shown by the elec-
trons through the connections to the external circuit. R, in
(Q2) indicates the resistance shown by the protons, through
the membrane active area A in (cm?) and it’s described by:

Ry = ou(£) (12)

where the membrane thickness is symbolized by [ in (cm).

The specific resistivity of the membrane is symbolized by
Py in (Qcm) and it’s given by:

@ Springer
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) |y = 0634 = 3(%at ) |exp(4.18( 222 ) )

where y is a unitless parametric coefficient that indicates the
water content in the membrane.

Lastly, the phenomenon, that affects the -V curve when
heavy loading the FC, is the concentration over-potential
V..n Or mass transport losses and it’s determined by:

J -J
Vg = —ﬁln(ML> (14)

JMax

Pu (13)

where f is a parametric coefficient in (V), J,,,, and J are the
maximum cell current density and the actual operating cur-
rent density in (Acm™2), respectively.

4 Model Identification and Assessment
Criteria

It’s self-explanatory from the aforesaid formulas that for
obtaining a fully defined electrochemical-based model,
at least seven parameters (¢, @), @3 @4 R, v, and f) are
assigned. Nonetheless, the indispensability, difficulty, and
complexity of the model identification process stem from
the significant dependence of the model parameters on the
operating conditions. As expected, the quality of the polari-
zation curves and the heavy nonlinear characteristics of such
model are significantly affected. In addition, the unknown
parameters are strongly coupled and aren’t illustrated in the
manufacturer’s specifications sheet [57]. Thus, to simply,
accurately and with low time-effort define the unknown
parameters, it is studied as an optimization problem and
solved by numerous optimization techniques. Amongst the
various optimization methods, Al-based approaches are
widely utilized to obtain the anonymous parameters of the
PEMFC model [43]. Summarily, the procedures of mod-
elling of the PEMFCs stacks, depending on the extracted
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information from the datasheet and the experiment-based
data, are depicted in Fig. 3.

Not only the identification method that affects the accu-
racy of the estimated parameters but also the assessment
criteria play a vital role to precisely determine the unknown
parameters and fit the calculated I-V curve to the experi-
mental one. Proper picking of the objective function (OF)
simplifies the parameter determination process and differen-
tiates among the various model identification methods quan-
titatively and qualitatively in terms of the acceptable range
of results. Thus, a summary of the most utilized OFs in the
parameter estimation of PEMFC, is collected in Table 4.

Table 4 Summery of the popular-used OFs

5 MHAs for PEMFC’s model parameters
identification

Amongst the various Al-based optimization techniques,
MHAs have proven their accuracy and higher computa-
tion efficiency when compared with the other conventional
optimization techniques [7]. Therefore, MHAs have been
adopted to get the optimum solutions for several engineer-
ing problems such as power systems problems, as pre-
sented in [95-104]. Besides, depending on the no free-
lunch theory [105], many researchers have utilized various
algorithms for accurate and effective investigation of the
polarization characteristics of the PEMFC, as reported
in [5, 7, 16, 57]. It’s worth saying that this section high-
lights the most recent works regarding presenting a new
MHA to identify the undefined parameters of the PEMFC

Objective function Ref Mathematical formula Characteristics
Absolute Quadratic
S f quadratic deviation (SQD 88 _ vk 2 v
um of quadratic deviation (SQD) [88] SOD = Zi=1 (mew_ _ Vm[w_)
M dratic deviation (MQD 52 — 1 vk 2 v
ean quadratic deviation (MQD) [52] MOD = 1 ijl (Vmww _ Vcalc',i)
Root mean quadratic deviation (RMQD 89 1 K 2 v
q ( Q ) [ ] RMQD = \/E Z':[ (Vmeas,f - Vcalc,/‘)
Mean absolute deviation (MAD) [90, 91] MAD = L Kl |V Ve v
K &ij= meas.j calc,j
Mean absolute percentage deviation (MAPD) [92] _ 1K | VieassVeatey v
MAPD =3 2w |7, 2,
Normalized root mean quadratic deviation (NRMQD) [93] 1 yK vy v
q Q NRMOD = Vi T (Vv Veaes)
Mean relative deviation (MRD%) [94] MRD = 100 x % ZJK= 1 Vnmy—‘/% v

Fig.4 The main steps for imple-
menting MHAs for PEMFC’s
parameter estimation

/

Construct the model
(manufacturer’s datasheet and
experimental data)

/

v

Derive the OF to be optimized

[

Define the inequality constraints

* Perform the optimization algorithm <—|

False

v

Determine the algorithm control
parameters

* True

Stochastic initializations

Y

Extract the optimal values of the
[ unknown parameters
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based on the semi-empirical model given in [21, 22]. One
can track the procedures depicted in Fig. 4 to implement
the MHAs for obtaining the unknown parameters of the
PEMFC model. MHAs can be classified into four cat-
egories: swarm-based, nature-based, physics-based, and
evolutionary-based, respectively. The reader can get a brief
knowledge about the technical specifications of the most
widely employed PEMFCs types in the commercial market
when perusing Table 5. Also, the lower and upper limits
of the PEMFC unknown parameters, popularly used in the
state-of-art, are encapsulated in Table 6 [57].

5.1 Swarm-Based MHAs
5.1.1 Grasshopper Optimizer (GO)

The GO imitates the behaviors of grasshopper swarms when
searching for food. Substantially, to mathematically derive
the GO equations, the intermediate forces among the agents
are classified as attraction and repulsion forces [106].
Furthermore, GO merits can be summarized as follows: (i)
avoiding falling into local minima as GO is strongly capa-
ble of balancing between exploration and exploitation, (ii)

Table 5 Summary of technical
specifications of various
commercial PEMFCs

Table 6 The minimum and
maximum boundaries of the
PEMFC’s unknown parameters

PEMFCs’ type Manufacturer’s datasheet

Ne, cells A, cm? Lum Jy,., Acm™2 T, Kelvin Py, atm Py, atm
Ballard Mark V [106] 35 50.6 178 1.5 343 1 1
SR-12 500 W [107] 48 62.5 25 0.672 323 1.47628 0.2090
250 W stack [106] 24 27 178 0.68 343 1 1
BCS 500 W [107] 32 64 178 0.469 333 1 0.2095
Temasek 1 kW [107] 20 150 51 15 323 0.5 0.5
Ballard V 5 kW [107] 35 232 178 1.5 343 1 1
NedStack 6 kW [108] 65 240 178  0.9375 343 0.5-5 (bar) 0.5-5 (bar)
Whns 250 W [109] 24 27 127 0.86 343.15-353.15 1-3 (bar)  1-5 (bar)
Horizon H-12 [110] 13 8.1 25 0.2469 302.15 0.4935 1
Horizon 500 W [111] 36 52 25 0.446 278.15-303.15 0.55 1
Up ? @, x 1073 @3 x 107 @, x 107 Rc, mQ Y B
LL —1.2000 1.0000 3.6000 —26.0000 0.1000 10.0000 0.0135
UL —0.8000 5.0000 9.8000 —9.5400 0.8000 24.0000 0.5000

where, U.P, L.L and U.L denote the unknown parameter, the lower and upper limits, respectively

Table 7 PEMFC parameter estimation using swarm-based MHAs

Row MHA PEMFC Type ¢, @, %107 @yx107° @, x10°  Rx107 7 B SQD
GO [106] SR-12500 W —1.1997  4.2695 9.8000 -10.1371  0.4638 23.0000  0.1486  0.0478
2 GWO [107]  BCS 500 W -1.0180 23151 5.2400 —-12.8150 0.75036  18.8547  0.0136  7.1889
3 SSA [108] NedStack 6 kW~ —0.9719  3.3487 7.9111 -9.5435  0.10000  13.0000  0.0534 2.1807
(calculated)
4 SSO[117] Temasek 1 kW~ —1.0299  2.4105 4.0000 —9.5400  0.1087 10.0005  0.1274  1.6481
5 CS-EO[119]  BCS 500 W —-1.1365 2.9254 3.7688 —13.9490  0.8000 18.5446  0.0136  5.5604
6 WO [110] Horizon H-12  —1.1870  2.6697 3.6000 —-9.5400  0.8000 13.8240  0.1598 0.1160
7 BO [122] SR-12500 W —1.0973  3.8093 9.8000 -9.5400 0.6723 23.0000  0.1753  1.0566
8 CHHO [86]  Temasek 1 kW  —1.0944  4.4282 8.7656 —21.4650  0.1891 18.6392  0.1016  0.8023
9 MRFO [78]  HorizonH-12  —1.0630 2.3641 4.3272 -9.5400 0.2853 19.8150  0.1829  0.0966
10  MBBO[130] NedStack6kW —1.0300 3.5300 8.2400 —9.4800  0.1640 15.1100  0.0100 2.1200
11 BWOJI32]  BalladMark V. —1.1933  1.0000 3.8000 -16.000  0.3200 143950 02729 14x107
12 ISSOA[134] HorizonH-12  —1.1300  2.4400 3.5700 —9.5400 0.7140 18.7900  18.1700  0.0970
13 JSO[136] BCS 500 W -0.9689  2.6930 4.6700 —19.0000  0.1000 20.8389  0.0161 0.0117
14 PFO[138] Horizon H-12  —1.1113  2.0573 3.6000 —-9.5400 0.1058 22.9999  0.1868  0.0965
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fast convergence and (iii) simple controlling variables [106,
112]. Thus, it has been utilized in the parameter identifica-
tion of PEMFC, while promising results are incapsulated in
Table 7 in the second row [112].

5.1.2 Grey Wolf Optimizer (GWO)

The GWO mimics the intelligent attitude of grey wolves
when attacking their preys. As they live in groups, their tasks
are assigned according to the swarm hierarchy where the
wolves are divided into four kinds: alpha, Beta, delta, and
omega. The hunting process passes through three stages,
pursuing and chasing, encircling, and attacking which
mathematically represent the exploration, OF evaluation
and exploitation phases, respectively [107, 113]. Due to
GWO advantages such as simple tuning process and lower
computational time and burden, it has been employed in the
parameter estimation of the PEMFC model, while the results
are gathered in Table 7 in the third row [107].

5.1.3 Salp Swarm Algorithm (SSA)

The SSA mimics the salps collective attitude when searching
for food in oceans, where the swarm members are combined
to form chains. Mathematically, the salp chains are modeled
by classifying the group individuals into leader and follow-
ers. Thus, the leader position during the searching process
can be formulated as in (15) [108, 114].

X =

L

{Sj+b1 [(HL; = LL) - ¢y + LL] b3 2 0 15)

S;=by - [(HL; = LL;) - c; + LL;|,by < 0

where X{ denotes the leader position, the food source posi-
tion in the jth dimension is symbolized by S;. HL; and LL,
represent the higher and lower limits of the jth dimension,
while b,, b, and b; are three random numbers, respectively.
SSA has the capability of effectively enhancing the initial
haphazard solutions and rapidly converging into the opti-
mum ones. As a result, it has been adopted to estimate
the undefined parameters of the PEMFC, as elucidated in
Table 7 in the fourth row [108].

5.1.4 Shark Smell Optimizer (SSO)

The SSO imitates the hunting mechanism of the sharks
when sensing the prey smell. Employing their strong sense
of smelling the prey blood, the hunting process depends on
three assumptions: (i) the shark velocity is much greater than
the prey velocity. So, the prey is assumed stationary. (ii) The
blood is uninterruptedly flowed out from the prey to the sea
and the propagation of the prey smell particles isn’t affected
by the flow of the seawater. (iii) Only one prey (seeking
environment) is existed in the search domain [115-117].

Accordingly, SSO exhibits the merits of high precision, low
computational effort, and high convergence trend. Conse-
quently, its results have outperformed the other conventional
algorithms when utilized in the parameter estimation of the
PEMEFC model, as indicated in Table 7 in the fifth row [117].

5.1.5 Cuckoo Search Optimizer (CSO)

The CSO mimics the brood parasite attitude of cuckoos where
the cuckoos put their eggs surreptitiously in the host birds’
nests. Fraudfully, the cuckoos try to empty the nests of the
host birds out of their own eggs, keeping only the cuckoos’
eggs to enhance the hatching amount. The cuckoos implement
a haphazard strategy to pick the host nest. Furthermore, the
basic construction of CSO depends on three concepts, relying
on which each cuckoo produces next solutions referring to
(16) [118-120].

XP*' = XP! + A @ Levy(e) (16)

where XP; represents the ith egg position, A > 0 indicates the
step size, the element-wise multiplications are symbolized
by @ and e denotes the exponent of Lévy flight.

For the sake of effectively and robustly employ this tech-
nique in PEMFC parameter identification, a novel modified
approach, called CS-EO, is developed in [119]. In CS-EO,
CSO is merged with the explosion operator (EO), derived from
fireworks algorithm (FWA). Consequently, the newly proposed
hybrid algorithm can effectively improve the search capability
and evade from being trapped into local minimum solutions.
Eventually, the sixth row in Table 7 elucidates the obtained
results from adopting CS-EO in identifying the PEMFC model
unknown parameters [119].

5.1.6 Whale Optimizer (WO)

The WO is inspired by the smart attitude of humpback whales
when hunting a swarm of small fishes at the ocean surface,
which is called bubble net feeding. These whales start the
hunting process by diving deeply and surrounding the prey by
bubbles. Thereafter, the whales arise to the surface for trapping
the small fishes. Consequently, the hunting process mainly
includes three phases, encircling prey, making bubbles with
various shapes, and looking for the prey. Mathematically, the
whales update their positions based on (17)—(18). Upon ending
the encircling phase, the whales will try to attack the victim
through creating bubbles which mathematically refers to the
local exploitation [110, 121].

Y+ 1))=Y, —A-B an

B = |D- Y, () - Y(t)| (18)

@ Springer



3954

H. Ashraf et al.

where Y(¢) is the position vector of the whales, ¢ refers to
the iteration counter, Y, (¢) is the position vector of the target
victim and A and D represents the coefficient vectors.

Due to the robustness, accurateness, and effectiveness
of WO, it has been applied for the sake of estimating the
unknown parameters of several commercial types of PEMFC,
as indicated in Table 7 in the seventh row [110].

5.1.7 Bonobo Optimizer (BO)

The BO is inspired by the social attitudes and reproductive
process of Bonobos. Essentially, the Bonobos mating process
depends on the fission—fusion concept which describes the
techniques used by Bonobos groups for looking for food and
other. Moreover, the Bonobos lifestyle is classified into two
stages. Firstly, the positive stage (PS) at which all living cir-
cumstances are available like food, proper mating, and protec-
tion. Secondly, the negative stage (NS) which refers to the lack
of these circumstances [122]. Recently, the authors in [122]
have utilized BO for the sake of proper identifying the unknow
parameters of three commercial PEMFCs, due to its ability to
converge to the global solution smoothly and rapidly, while the
results are indicated in Table 7 in the eighth row.

5.1.8 Harris Hawk’s Optimizer (HHO)

X, (it +1) = {

Fqt) + 1+ (Fpq(it) = F; 4(it)) 4+ w(F, 4(it) — F, 4(it))
Fig(it) + 1+ (Fiy 4(it) = F; 4(it)) + w(F, 4(it) = F; 4(it)) i =2,... N

5.1.9 Coyote Optimizer (CO)

Basically, the CO imitates the coyotes’ attitude not only while
chasing preys but also the community framework of coyotes
and the experiences interchange by the coyotes. Mathemati-
cally, the coyote’s population consists of N, packs, each pack
has N, coyotes which is a static number and fixed for all packs.
Moreover, each coyote represents a feasible solution for the
optimization task and its social circumstance is the cost of the
fitness function [125, 126]. CO exhibits advantageous features
such as low computational effort, simple tuning variables, and
fast convergence trend. Consequently, it has been applied for
defining the unspecified parameters of the commercial 250 W
PEMFC:s stack, while the results are capsulated in Table 8
[127].

5.1.10 Manta Rays Foraging Optimizer (MRFO)

The MRFO is inspired from the menta ray’s mechanism
when searching for food (plankton). Hence, the foraging
mechanism is subdivided into three phases such as (i) chain
foraging, (ii) cyclone foraging, and (iii) somersault forag-
ing. In the chaining phase, the positions of menta rays are
updated to the best position of plankton where the plankton
exists with high concentration using the mathematical equa-
tions given in (19)—(20) [78, 128].

i=1 (19)

pop

The HHO mimics the hunting strategy of Harris hawks when
chasing their preys (rabbits). Mathematically, like any pop-
ulation-based approaches, HHO is divided into two phases,
exploration, and exploitation. In the exploration phase, Har-
ris hawks employ two tactics to discover the prey where the
first tactic supposes that the hawks’ position is near to the
group members and the prey. On the other hand, the second
one assumes that the hawks allocate on stochastic trees [123,
124]. Furthermore, an improved HHO using chaotic equations,
called chaotic HHO (CHHO), is presented in [86] where the
convergence trend is enhanced. As foreseen, CHHO has been
employed for identifying the unknown parameters of several
commercial types of PEMFCs, while the results are revealed
in Table 7 in the ninth row.

Table 8 PEMFC parameter estimation using CO

w = 2ry/|log(r)| (20)

where F; ,(it) denotes the location of the ith member at irth
iteration in dth dimension. r is a randomly generated vector
from O to 1, w represents a weight coefficient and F, ,(it)
refers to the plankton best location (plankton with high con-
centration). N,,,, denotes the population size.

It’s worth saying that MRFO requires lesser effort to fine-
adjust its controlling parameters. therefore, the authors in
[78] have applied it for extracting the unknown parameters
of three commercial types of PEMFCs under various oper-
ating conditions, where the results are indicated in Table 7
in the tenth row.

PEMFC type UP ¢, @, x 107 @y x107° @, x 107

Rox 107 v B

Lx107% Ty A SQD

250 Wstack C.P  —0.9401 3.0703 8.0935

—15.2860 0.6335

13.0048 0.0204 125.0002 0.8291 27.6150 0.4105

where, C.P stands for the computed parameters
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5.1.11 Monarch Butterfly Optimizer (MBO)

The MBO mimics the migration mechanism of monarch
butterflies which can be achieved by following the subse-
quent rules. Starting by dividing the whole population into
individuals located only in Land 1 or Land 2. Ending by
assuming that the movement to the next generation of the
MB individuals, having the best fitness, is automatically per-
formed and there is no operator can change them. Hence,
this will prevent any deterioration for the MB population and
maintain the effectiveness of the population while increasing
the generations [129, 130].

However, a major drawback of MBO is that it some-
times gets trapped into local optimum which leads to
premature convergence. As a result, a modified MBO
(MMBO) has been utilized in [130] to solve this issue. In
MMBO, two mechanisms have been integrated with the
basic MBO where the first is the mutation operator and the
second is the anti-cosine operator, While the procedures
of MMBO are revealed in Fig. 5. Accordingly, MMBO
has been utilized for tackling the parameter estimation
problem of the PEMFCs, while the results are depicted in
Table 7 in the eleventh row [130].

Start

Initialize the MB population and
paramters

v

Generations counter <

v

Mutation operator

v

Fitness evaluation

* No

Migration operator +
adjusting operator

v

Anticosine operator

End

Fig.5 MMBO flowchart

Initialize the BWO 1
population Procreate
Fitness evaluation of +
individuals Cannibalism
Mutation
No l +
A 4 Update
Stochastically pick End population
parents
l

Fig.6 BWO flowchart

5.1.12 Black Widow Optimizer (BWO)

The BWO imitates the distinguished mating attitude of
black widow spiders. Fundamentally, this reproduc-
tive behavior is composed of an exclusive phase called
cannibalism. Thanks to this phase, the individuals with
unwanted fitness value are excluded from the circle, result-
ing in early convergence. While the main phases of BWO
are revealed in Fig. 6 [131, 132].

Consequently, BWO has been applied for the parameter
estimation of two commercial PEMFCs, while the results
are depicted in Table 7 in the twelfth row [132].

5.1.13 Sparrow Search Optimization Algorithm (SSOA)

Fundamentally, the SSOA simulates the collective wis-
dom, countering the predators and foraging attitudes of
sparrows. Specially, the sparrows are divided into two
types of producers and scroungers where the producers
seek for obtain their food source. On the other hand, the
scroungers are fed by the producers [133, 134]. Despite
the advantages of SSOA, such as accuracy, stability and
robustness, the convergence speed may be slowed down
due to haphazardness walk strategy. Thus, an improved
version of SSOA, called improved SSOA (ISSOA), has
been introduced in [134] to refine this problem. Basically,
ISSOA combines the basic SSA with an adaptive learning
factor. As aresult, ISSOA has been utilized for extracting
the unknown parameter of the PEMFCS, while the results
are indicated in Table 7 in the thirteenth row [134].
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5.1.14 Jellyfish Search Optimizer (JSO)

The JSO is motivated by the search mechanism and
movement of jellyfish in the ocean. Specifically, JSO is
composed of three concepts: (a) jellyfish track only one
governing rule either the ocean current or inside-swarm
movement (passive or active) and a time control tech-
nique. (b) Jellyfish are interested towards the locations
which contains large amount of food. (¢) The food quan-
tity is assigned, and its corresponding cost fitness value
is determined accordingly [135, 136]. Fewer control
parameter and lesser computational efforts and random
trials are such the JSO merits. Hence, the authors in [136]
has applied JSO in the field of estimating the PEMFCs
unknown parameters, while the outcomes are encapsulated
in Table 7 in the fourteenth row.

5.1.15 Pathfinder Optimizer (PFO)

The PFO emulates the haphazard motion and performance
of animal’s groups following their leader according to
their adjoining place, searching for food location or prey.
Primarily, PFO is based on the animal competitors’ move-
ment which are gathered in groups. On the other side,
the way to the target may be picked by the collaboration
between the leader and some competitors who have suf-
ficient information. Moreover, there are four parameters
that has been tuned to refine the competitors’ attitude in
the exploration phase, which are (a) the oscillation fre-
quency of the competitors, (b) the competitors’ vibration,
(c) the communication parameter, and (d) the attraction
parameter [137, 138].

PFO has been utilized for extracting the unknown
parameters of two commercial PEMFCs. Besides, it
has been involved for investigating the steady state and
dynamic operation of the PEMFCs, while the results are
tabulated in Table 7 in the fifteenth row [138].

Table 9 PEMFC parameter estimation using nature-based MHAs

5.2 Nature-Based MHAs
5.2.1 Flower Pollination Optimizer (FPO)

Principally, FPO is inspired by the pollination behavior of
flowers. Hence, the pollination process can be classified
into two techniques, self-pollination (abiotic) and cross
pollination (biotic). Herein, the self-pollination, in which
pollens of the same flowers inseminate to emanate new
flowers via wind as the pollinating medium. While, in the
cross pollination, pollens of various flowers inseminate
to emanate new flowers via bats, honeybees and birds as
the pollinating medium [139].

FPO is characterized by enhancing the convergence
tendency, simple variables tuning effort and effectively
balancing the global exploration and the local exploi-
tation. Consequently, the authors in [109], have uti-
lized FPO for the parameters estimation purpose of the
PEMFC, while the results are indicated in Table 9 in the
second row.

5.2.2 Neural Network Optimizer (NNO)

The NNO emulates the artificial neural network (ANN) atti-
tude, in which obtaining the incoming data and the desired
data is established first and thereafter forecasting the rela-
tion between them. Referring to the ANN framework, it can
be divided into two frames feed-forward and frequent NNs.
Moreover, it depends on its framework whichever open-loop
or closed-loop (feedback). Specifically, in NNO, the targeted
solution at a certain iteration is regarded as the output data
and the principal aim is to reduce the deviation between this
targeted solution and the other forecasted solutions [140,
141].

Additionally, low tuning efforts of the NNO controlling
variables and low computation burdens are such the NNO
benefits. Hence, the authors in [141] have implemented the
NNO to properly define the unknown parameters of the
PEMFC, while the results are indicated in Table 9 in the
third row.

Row MHA PEMFC Type @, @, x 107 @ x 107 @, x107°  R.x107° 7 J/ SQD

1 FPO [109]  Wns 250 W —0.8775 2.500 6.4439 —12.5310  0.6369 12.0160 0.0198 0.2872

2 NNO [141] NedStack 6GKW —0.8535 2.4316 3.7545 —9.5400  0.1000 13.0802 0.0136  2.1449

3 FFO[111]  NedStack 6KW —1.0357  2.9502 3.7670 —9.5400 0.1622 15.0297 0.0136 2.1671

4 IAEO [144] 250 W stack —0.8770  2.8000 6.9200 —11.0000 0.2730 21.5177 0.1500 0.3359

5 MPO [148]  BCS 500 W —0.9864 2.6085 3.6000 —19.2893  0.1000 20.8167 0.0161 0.0116

6 SMO [150] Ballard Mark V. —1.1942  1.0000 4.1234 —16.8070  0.2000 153311 02083 17729 x 10~°
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Fig.7 FFO flowchart

5.2.3 Firefly Optimizer (FFO)

The FFO is inspired by the social attitude of fireflies when
courting mates. Basically, FFO procedures relies on three
fundamental assumptions, (i) all the fireflies are considered
as hermaphrodite where all the agents in the population
seek for the same target. (ii) the attraction possibility of the
fireflies is proportional to the intensity of their flashlights.
(iii) the brightness strength of a firefly is determined by the
objective function [111, 142].

Moreover, FFO procedures are revealed in Fig. 7. In
addition, as tabulated in Table 9 in the fourth row, FFO has

Fig.8 The distinct behaviors of
the living creatures

proven reasonable results in commercial test cases regarding
the PEMFC parameter identification [111].

5.2.4 Artificial Ecosystem Optimizer (AEO)

The AEO is inspired by the energy flow in an ecological
system on the earth. Specifically, AEO imitates three dis-
tinguished attitudes of the living creatures, production,
consumption, and decomposition, as revealed in Fig. 8.
Mathematically, the production target is to enhance the
exploration and exploitation characteristics. Meanwhile, the
consumption’s endeavor is to improve the exploration capa-
bility. Finally, the decomposition’s objective is to promote
the exploitation ability [143, 144].

Moreover, a new modified AEO, called improved AEO
(IAEO), is presented in [144], which overcomes the lack of
accurate solution related to the basic AEO. Consequently,
IAEO has been utilized in the parameter estimation of the
PEMFC:s. This is due to its ability to effectively fit the com-
puted voltage datasets to the experimental ones, while the
results are depicted in Table 7 in the fifth row [144].

5.2.5 Moth-Flame Optimizer (MFO)

Mainly, the MFO mimics the distinguished navigation tech-
niques of moths in night where they can fly with the aid
of the moonlight. Using transverse orientation technique,
moths fly by keeping a certain angle with respect to the
moon [145, 146]. Recently, a proposed algorithm, called
without certainty MFO (WCMFO), has been presented in

. -
High Level of energy Low
| @ rroducer @ Consumer @ Decomposer
Table 10 PEMFC parameter estimation using WCMFO
PEMFCtype UP ¢, @, x 107 @y x 107 @, x10°  R.x102 vy 8 T Py, Py, N¢
250 W stack CP -1.1197 3.0186 6.4573 —10.0000  8.1676 24 0.0050 355 21610 5 24.9430
11 unknows SQD=0 RMQD =0
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[146] which integrates the uncertainty measurement with
the conventional algorithm. Hence, the suggested algorithm
has gained more robustness to disturbance with respect to
the conventional one. Thus, WCFMO has been employed
for extracting the unknown parameters of the PEMFCs with
various numbers of unknowns and two OFs, while the results
are depicted in Table 10 [146].

5.2.6 Marine Predator Optimizer (MPO)

The MPO is inspired from the foraging process implemented
by the marine predators to catch their preys. Particularly, the
predators follow the Levy mechanism in case of lack of prey.
On the other hand, in case of plentiful prey, the predators
follow Brownian movements’ mechanism. According to the
ecological impacts, the relative velocity of the prey v with
respect to the predators can be varied relying on the Levy
and Brownian mechanisms. Moreover, MPO has exhibited
an enhanced global and local search besides, the fast con-
vergence trend [147, 148]. Thus, MPO has been applied for
defining the unknown parameters of several commercial
PEMEFCs, while the results are encapsulated in Table 9 in
the sixth row [148].

5.2.7 Slime-Mould Optimizer (SMO)

The SMO is inspired by the natural oscillation state of slime
mould. Basically, SMO employs adaptive weights to imitate
the concept of generating positive and negative feedback of
the spread wave of slime mould. Basically, these feedbacks
depend on the bio-oscillator to establish the optimal path for
linking food with perfect explorative capability and exploita-
tive tendency [149, 150]. Recently, SMO has been utilized
for identifying the unknown parameters of the PEMFCs,
while the results are depicted in Table 9 in the seventh row
[150].

Table 11 PEMFC parameter estimation using physics-based MHAs

5.3 Physics-Based MHAs
5.3.1 Multi-Verse Optimizer (MVO)

The MVO is extracted from the multi-verse theory which
states that various universes are generated from numerous
big-explosions. Each universe is related to each explosion.
MVO construction relies on three cosmological concepts,
white, black and worm holes. Mathematically, the explora-
tion phase is represented by white and black holes, while
the worm holes indicate the exploitation phase [151, 152].

MVO has shown advantageous features such as, simple
implementation, less tuning parameters, and less compu-
tational effort. Thus, the authors in [152] have encouraged
to employ it for identifying the unknown parameters of the
PEMFC model, where the results are depicted in Table 11
in the second row.

5.3.2 Atom Search Optimizer (ASO)

Principally, the atoms are the preliminary part that form all
the substances. The ASO is inspired by the atoms motion
which are moving sustainably based on the classical mechan-
ics. While moving, there are two types of forces that affect
the atoms interactions with each other. The first type is the
interaction forces deduced from Lennard—Jones potential.
While the second one is the constraint forces generated from
Bond-Length potential. Referring to Newton’s second law,
the atom acceleration g, is a function of the atom mass m;,
the interaction /F; and the constraint CF; forces, as given in
(21) [153, 154].

_IF;+CF,

= —— 1)

1

a

Accordingly, ASO is distinguished by its simple construc-
tion and smooth convergent rate. Hence, as expected, it has
proven such robustness and accurateness in determining the
unknown parameters of the PEMFC model, as illustrated in
[154] and revealed in Table 11 in the third row.

Row MHA PEMFC type ? @, x 107 3 x107° @, x107°  R.x107° 7 B SQD

1 MVO [152] NM -09182  3.1299 8.7031 —18.0253  0.4223 15.1921  0.0180  3.5846
2 ASO[154] 250 W stack -1.1132 36 10.0000 —20.0000  0.0001 221763  0.0248  0.7346
3 VSDE [47]  SR-12 500 W —-0.8576  3.0100 7.7800 —-9.5400  0.1339 23.000  0.1516  1.2660
4 IFSO[157] Ballard V5kW  —1.1200  3.5700 8.0100 —15.9400  0.1000 22.0000  0.0150  0.7840
5 EO [159] NedStack 6KW ~ —0.8720  Computed  9.8000 —9.5400  Assumed  13.0000 — 1.9547
6 GBO [161]  SR-12500 W —0.8549 27339 6.7420 —10.6347 02726 215149 0.1500  0.0001
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5.3.3 Vortex Search Optimizer (VSO)

The VSO simulates the vortex pattern generated by cephalic
flow of stirred fluids. This pattern is considered as a set of
overlapped circles coordinated in a two-dimensional search-
ing area. Like other metaheuristic approaches, Elementally,
VSO is divided into two phases, generation, and replace-
ment. In the generation phase, the existing solution is uti-
lized to produce a group of solutions, while the existing
solution is updated in the replacement phase [47, 155]. Fur-
thermore, to improve the computational efficiency and the
capability to evade from the local minima, a novel approach
called vortex search differential evolution (VSDE) is illus-
trated in [47]. Thus, VSDE has exhibited robustness and
effectiveness in investigating the PEMFC electrical charac-
teristics, while the consequences are arranged in Table 11
in the fourth row.

5.3.4 Fluid Search Optimizer (FSO)

Principally, the FSO simulates the Bernoulli’s law to eval-
uate the fluid speed relying on the fluid pressure. Where,
improving the fluid speed, diminishes the fluid pressure
and the potential energy. Herein, the fluid pressure is con-
sidered as the fitness function value where improving the
fluid pressure, reduces its velocity [156, 157]. Despite all
the afore-stated procedures, FSO has an obvious drawback
which is the premature convergence. Hence, an improved
FSO (IFSO) is proposed in [157] to tackle this problem.
Particularly, IFSO is composed of two enhancement tech-
niques, that have been integrated with the basic FSO, which
are quasi-oppositional based learning and chaotic concept.
IFSO has been applied for tackling the parameter estimation
problem of the PEMFCs, while the results are indicated in
Table 11 in the fifth row [157].

5.3.5 Equilibrium Optimizer (EO)

The EO emulates the control technique of the balance
between mass and volume utilized to evaluate dynamic and
equilibrium phases. Particularly, in EO, the search agent is
represented by each particle with its concentration. Where,
the search agents stochastically update their concentra-
tion with respected to the best results, called equilibrium

Table 12 PEMFC parameter estimation using evolutionary-based MHAs

candidates. Furthermore, the mass balance is mathematically
described in (22) [158, 159].
dc,,

1% - = F.(C,-C,) +G,, (22)

where V refers to the control volume, V4 represents the
mass change rate and F, denotes the flow rate. C, is the equi-
librium phase concentration, C;, denotes the inside concen-
tration and G;, symbolizes the inside mass generation rate.
Due to the effectiveness, robustness, and fast convergence
trend, EO has been employed for extracting the unknown
parameters of various commercial PEMFCs, while the
results are tabulated in Table 11 in the sixth row [159].

5.3.6 Gradient-Based Optimizer (GBO)

Mainly, the GBO is inspired by the gradient-based New-
ton’s concept. Especially, two worthy operators are utilized
in GBO, called gradient search approach (GSA) and local
escaping coefficient (LEC), respectively. Besides, a group
of vectors to explore the search space. Moreover, the explo-
ration features and the convergence trend can be enhanced
by implementing the GSA. On the other hand, the LEC is
utilized to make GBO evade the local optima problem [160,
161]. Since, GBO has a smooth transition between explora-
tion and exploitation phases and fast convergence features,
it has been employed for tackling the parameter estimation
issue of the PEMFCs. Hence, the results are revealed in
Table 11 in the seventh row [161].

5.4 Evolutionary-Based MHAs
5.4.1 Satin bowerbird Optimizer (SBO)

The SBO is inspired by the satin bowerbirds’ behavior when
constructing their own bowers in such a manner to attract
satin females during reproduction season. Consequently,
various elements like sparkling materials, branches, flowers,
and fruits are utilized while building bowers to entice satin
females [162, 163]. Owing to the advantageous features of
SBO such as algorithm stability and fast convergence trend,
it has been employed in [164] to extract the accurate val-
ues of the PEMFC unknown parameters, as encapsulated
in Table 12 in the second row. Moreover, SBO has shown

MHA PEMFC Type ? @, x 1073y x107° @, x10°  R.x107 7 B SQDb
SBO [164] Ballard V5 kW  —1.1828  3.7080 9.3600 —11.9250  0.7877 11.7603  0.0137  0.0021
SFLO[111]  Horizon 500 W —0.8532  2.5220 7.8437 —16.3000  0.7999 13.0000  0.0489  0.0156
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Fig.9 Principal characteristics of BCS 500 W PEMFC stack under various operating conditions: a I-V at varied temperature, b I-P at varied

temperature, ¢ I-V at varied pressure, d I-P at varied pressure

a significant fitness between the experimental data and the
computed ones.

5.4.2 Shuffled Frog-Leaping Optimizer (SFLO)

The SFLO is a memetic evolution-inspired metaheuristic
approach which merges the local search mechanism of the par-
ticle swarm optimizer (PSO) into the concept of integrating the
data obtained from various local searches to a global solution.
Mainly, in SFLO, the number of frogs (solutions) represent the
agents (population size), where the agents are split into some
subgroups called memeplexes. Every memeplex represents a
set of frogs carrying out a local search [111, 165].

Finally, SFLO performance in terms of robustness, accu-
racy and reliability has been proven via parametric statistical
tests while identifying the unspecified parameters of many
PEMEFC types. One can track the results obtained by SFLO
in Table 12 in the third row [111].

6 Concluding Discussions

For the sake of helping the reader for simply browsing
the various earlier-mentioned MHAs, a comprehensive
summary is offered in Table 13. Furthermore, it gives a

detailed comparison of thirty MHAs, besides four MHAs
that don’t fit to any of the previously-mentioned MHAS’
categories. Essentially, the comparison is divided into
two categories, MHA features and PEMFC characteris-
tics. Especially, MHA features include year of application,
controlling variables, number of independent runs and
statistical performance tests. On the other hand, PEMFC
characteristics are represented by model state, number of
unknowns, OF, types of plotted curves, various operat-
ing conditions and lastly, number of measured [-V dataset
points.

As concluded from the mathematical model of PEMFC,
the polarization characteristics depends mainly on the
operating temperatures and the partial pressures of the
fuel and oxidant. Hence, in order to make the reader fully
grasp such dependence, two well-known commercial types
of PEMFC have been studied under various operating con-
ditions. Particularly, BCS 500 W and SR-12 500 W PEM-
FCs have been evaluated in terms of I-V and I-P curves,
as revealed in Figs. 9a—d and 10a—d; respectively [148].
Generally, as revealed in Figs. 9a—d and 10a—d, it’s clear
that the polarization characteristics and the output power
of PEMFC are enhanced by increasing the operating tem-
perature at constant pressure. Also, the polarization char-
acteristics are promoted by rising the suppliants’ partial

@ Springer
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Fig. 10 Principal characteristics of SR-12 500 W PEMFC stack under various operating conditions: a [-V at varied temperature, b I-P at varied

temperature, ¢ I-V at varied pressure, d I-P at varied pressure

pressures at a constant temperature, as long the minimum
and maximum limits haven’t been violated.

7 Conclusions

In this paper, an inclusive survey of various models’ cat-
egories of PEMFC has been carried out. In which, 27 mod-
els related to such categories have been gathered and sum-
marized. Besides, a detailed PEMFC mathematical model,
widely utilized in identifying the PEMFC electrical charac-
teristics, has been totally represented. In addition, a sum-
mary of various commercial types of PEMFCs, in terms of
their datasheet-extracted parameters, is encapsulated. More-
over, as the paper core work, 34 MHAs, which have been
employed for extracting the unknown parameters of PEMFC,
have been thoroughly discussed. Particularly, the discussion
has covered their based-category, their inspiration, their fea-
tures, and lastly their results in PEMFC parameter estima-
tion. Consequently, a comprehensive comparison, among
these MHAs, has been applied for clearly help the reader to
simply investigate their characteristics. Also, the impact of
varying the operating conditions on PEMFC output voltage
and power have been demonstrated for sake of elaboration.

@ Springer

Lastly, as a future-wise point of view, further develop-
ment of newly designed PEMFC models, together with novel
optimization techniques are crucial for more properly and
accurately evaluate the PEMFC performance. In addition,
developing new objective functions play a vital role in effec-
tively and precisely assess the performance of the optimiza-
tion methods.
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