Skip to main content

Advertisement

Log in

Machine Learning Methods for Diagnosis of Eye-Related Diseases: A Systematic Review Study Based on Ophthalmic Imaging Modalities

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Glaucoma, diabetic retinopathy, diabetic hypertension (DHR), Cataract, and age-related macular degeneration are some of the most common and important retinal diseases. A permanent vision loss occurs if these diseases are not discovered at an early stage. It is illustrated by numerous abnormalities in the retina such as microaneurysms (MA), hard exudates, soft exudates, or cotton wool spots, hemorrhages (HEM), neovascularization (NV), and macular edema (DME). An analysis of Ophthalmic imaging modalities is used as computerized tools by ophthalmologists for faster screening and diagnosis of these diseases. Compared to traditional-machine learning, multilayer deep learning (MDL), speeds up diagnosis and improves precision and accuracy. As a result, this survey offers a thorough overview of the new technologies used in each phase of the retinal diagnosis process concerning various image modalities. Among different imaging modalities, this paper is primarily focused on the retinal fundus photograph and optical coherence tomography images. This review aims to provide a more in-depth survey of the most significant components, types, and network architectures of MDL algorithms. This paper also describes the advantage of using other different MDL algorithms that are not being used in the past. To assist the researcher, the challenges and potential developments of current traditional and deep learning methods are described in depth. At last, the challenges and recommended solutions are also presented to support scientists in terms of research gaps. We have measured the influence of benchmarks (GPU, and CPU) on MDL algorithms in this paper. Moreover, the limitations and future direction are also mentioned to assist other experts. The comparative results and discussion section of this article suggest that a rigorous MDL model is still required compared to traditional machine-learning to effectively diagnose eye-related diseases in several modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Teo ZL, Tham YC, Yu MCY, Chee ML, Rim TH, Cheung N, Cheng CY (2021) Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128(11):1580–1591

  2. Cheung R, Chun J, Sheidow T, Motolko M, Malvankar-Mehta MS (2021) Diagnostic accuracy of current machine learning classifiers for age-related macular degeneration: a systematic review and meta-analysis. Eye 1–11

  3. Perepelkina T, Fulton AB (2021) Artificial intelligence (AI) applications for age-related macular degeneration (AMD) and other retinal dystrophies. In: Seminars in ophthalmology, pp 1–6. Taylor & Francis

  4. Bhardwaj C, Jain S, Sood M (2021) Hierarchical severity grade classification of non-proliferative diabetic retinopathy. J Ambient Intell Humaniz Comput 12(2):2649–2670

    Article  Google Scholar 

  5. Zhou Y, Wang B, Huang L, Cui S, Shao L (2020) A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans Med Imaging 40:818–828

    Article  Google Scholar 

  6. Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, De Fauw J (2020) Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med 26(6):892–899

    Article  Google Scholar 

  7. Saeed MU, Oleszczuk JD (2016) Advances in retinal imaging modalities: challenges and opportunities. World J Ophthalmol 6(2):10–19. https://doi.org/10.5318/wjo.v6.i2.10

    Article  Google Scholar 

  8. Tong Y, Lu W, Yu Y, Shen Y (2020) Application of machine learning in ophthalmic imaging modalities. Eye and Vis 7:1–15

    Article  Google Scholar 

  9. Zhang X, Fang J, Hu Y, Xu Y, Higashita R, Liu J (2020) Machine learning for cataract classification and grading on ophthalmic imaging modalities: a survey. arXiv preprint http://arxiv.org/abs/2012.04830

  10. Abdelmaksoud E, El-Sappagh S, Barakat S, Abuhmed T, Elmogy M (2021) Automatic diabetic retinopathy grading system based on detecting multiple retinal lesions. IEEE Access 9:15939–15960

    Article  Google Scholar 

  11. Mayya V, Kamath SS, Kulkarni U (2021) Automated microaneurysms detection for early diagnosis of diabetic retinopathy: a comprehensive review. Comput Methods Programs Biomed Update 1:1–15

  12. Shanthini A, Manogaran G, Vadivu G, Kottilingam K, Nithyakani P, Fancy C (2021) Threshold segmentation based multi-layer analysis for detecting diabetic retinopathy using convolution neural network. J Ambient Intell Humaniz Comput 136:1–15

  13. Sharma A, Rani R (2021) A systematic review of applications of machine learning in cancer prediction and diagnosis. Arch Comput Methods Eng 28:4875–4896

  14. Dargan S, Kumar M, Ayyagari MR, Kumar G (2019) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Comput Methods Eng 27:1071–1092

  15. Mittal R, Arora S, Bansal V, Bhatia MPS (2021) An extensive study on deep learning: techniques, applications. Arch Comput Methods Eng 28:4471–4485

  16. Abbas Q, Ibrahim ME, Jaffar MA (2018) Video scene analysis: an overview and challenges on deep learning algorithms. Multimedia Tools Appl 77(16):20415–20453

    Article  Google Scholar 

  17. Abbas Q, Ibrahim ME, Jaffar MA (2019) A comprehensive review of recent advances on deep vision systems. Artif Intell Rev 52(1):39–76

    Article  Google Scholar 

  18. Bala MP, Rajalakshmi P, Sindhuja AM, Naganandhini S (2021) A review on recent development for diagnosis of glaucoma. Ann Rom Soc Cell Biol 25(3):2723–2736

    Google Scholar 

  19. Ahmad H, Yamin A, Shakeel A, Gillani SO, Ansari U (2014) Detection of glaucoma using retinal fundus images. In: 2014 International conference on robotics and emerging allied technologies in engineering (iCREATE), pp 321–324. IEEE

  20. Mirzania D, Thompson AC, Muir KW (2020) Applications of deep learning in detection of glaucoma: a systematic review. Eur J Ophthalmol 31:1618–1642

    Article  Google Scholar 

  21. Abdullah F, Imtiaz R, Madni HA, Khan HA, Khan TM, Khan MA, Naqvi SS (2021) A review on glaucoma disease detection using computerized techniques. IEEE Access 9:37311–37333

    Article  Google Scholar 

  22. Ştefan AM, Paraschiv EA, Ovreiu S, Ovreiu E (2020) A review of glaucoma detection from digital fundus images using machine learning techniques. In: 2020 International conference on e-health and bioengineering (EHB), pp 1–4. IEEE

  23. Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V (2018) Application of deep learning in fundus image processing for ophthalmic diagnosis—a review. arXiv preprint http://arxiv.org/abs/1812.07101

  24. Usman M, Fraz MM, Barman SA (2017) Computer vision techniques applied for diagnostic analysis of retinal OCT images: a review. Arch Comput Methods Eng 24(3):449–465

    Article  MathSciNet  MATH  Google Scholar 

  25. Ran AR, Tham CC, Chan PP, Cheng CY, Tham YC, Rim TH, Cheung CY (2021) Deep learning in glaucoma with optical coherence tomography: a review. Eye 35(1):188–201

    Article  Google Scholar 

  26. Mahum R, Rehman SU, Okon OD, Alabrah A, Meraj T, Rauf HT (2022) A novel hybrid approach based on deep CNN to detect glaucoma using fundus imaging. Electronics 11(1):26

    Article  Google Scholar 

  27. Pead E, Megaw R, Cameron J et al (2019) Aflibercept: a review of its effect on the treatment of exudative age-related macular degeneration. Eur J Ophthalmol 29(4):368–378

    Article  Google Scholar 

  28. Papadopoulos Z (2019) Automated detection of age-related macular degeneration in color fundus photography: a systematic review. Surv Ophthalmol 64:498–511

    Article  Google Scholar 

  29. Papadopoulos Z (2019) Aflibercept: a review of its effect on the treatment of exudative age-related macular degeneration. Eur J Ophthalmol 29:368–378

    Article  Google Scholar 

  30. Alyoubi WL, Shalash WM, Abulkhair MF (2020) Diabetic retinopathy detection through deep learning techniques: a review. Inform Med Unlocked 20:100377

    Article  Google Scholar 

  31. Stolte S, Fang R (2020) A survey on medical image analysis in diabetic retinopathy. Med Image Anal 64:101742

    Article  Google Scholar 

  32. Qureshi I, Ma J, Abbas Q (2019) Recent development on detection methods for the diagnosis of diabetic retinopathy. Symmetry 11(6):749

    Article  Google Scholar 

  33. Qureshi I, Sharif M, Yasmin M, Raza M, Javed YM (2016) Computer aided systems for diabetic retinopathy detection using digital fundus images: a survey. Curr Med Imaging 12(4):234–241

    Article  Google Scholar 

  34. Abbas Q, Alsheddy A (2021) A methodological review on prediction of multi-stage hypovigilance detection systems using multimodal features. IEEE Access 9:47530–47564

    Article  Google Scholar 

  35. Shaheed K, Mao A, Qureshi I, Kumar M, Abbas Q, Ullah I, Zhang X (2021) A systematic review on physiological-based biometric recognition systems: current and future trends. Arch Comput Methods Eng 28:4917–4960

  36. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42(11):1–13

    Article  Google Scholar 

  37. Khatami A, Nazari A, Khosravi A, Lim CP, Nahavandi S (2020) A weight perturbation-based regularisation technique for convolutional neural networks and the application in medical imaging. Expert Syst Appl 149:113196

    Article  Google Scholar 

  38. He T, Liu Y, Yu Y, Zhao Q, Hu Z (2020) Application of deep convolutional neural network on feature extraction and detection of wood defects. Measurement 152:107357

    Article  Google Scholar 

  39. Golestani N, Moghaddam M (2020) Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks. Nat Commun 11(1):1–11

    Google Scholar 

  40. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications. Comput Sci Rev 40:100379

    Article  MathSciNet  MATH  Google Scholar 

  41. Hati AS, Chakrabarti P, Abawajy JH, Keong NW (2021) Development of energy efficient drive for ventilation system using recurrent neural network. Neural Comput Appl 33:8659–8668

  42. Drif A, Zerrad HE, Cherifi H (2020) EnsVAE: ensemble variational autoencoders for recommendations. IEEE Access 8:188335–188351

    Article  Google Scholar 

  43. Sivaramakrishnan N, Subramaniyaswamy V, Viloria A, Vijayakumar V, Senthilselvan N (2020) A deep learning-based hybrid model for recommendation generation and ranking. Neural Comput Appl 33:10719–10736

  44. Shahamiri SR, Thabtah F (2020) An investigation towards speaker identification using a single-sound-frame. Multimedia Tools Appl 79(41):31265–31281

    Article  Google Scholar 

  45. Hassan MM, Gumaei A, Alsanad A, Alrubaian M, Fortino G (2020) A hybrid deep learning model for efficient intrusion detection in big data environment. Inf Sci 513:386–396

    Article  Google Scholar 

  46. Bharati S, Podder P, Mondal MRH (2020) Hybrid deep learning for detecting lung diseases from X-ray images. Inform Med Unlocked 20:100391

    Article  Google Scholar 

  47. Sindi H, Nour M, Rawa M, Öztürk Ş, Polat K (2021) A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification. Expert Syst Appli 174:114785

    Article  Google Scholar 

  48. Wan Z, Yang R, Huang M, Zeng N, Liu X (2021) A review on transfer learning in EEG signal analysis. Neurocomputing 421:1–14

    Article  Google Scholar 

  49. Abbas Q, Ibrahim ME, Khan S, Baig AR (2022) Hypo-driver: a multiview driver fatigue and distraction level detection system. CMC-computers Mater Contin 71(1):1999–2017

  50. Niu S, Liu Y, Wang J, Song H (2020) A decade survey of transfer learning (2010–2020). IEEE Trans Artif Intell 1(2):151–166

    Article  Google Scholar 

  51. Salaken SM, Khosravi A, Nguyen T, Nahavandi S (2017) Extreme learning machine based transfer learning algorithms: a survey. Neurocomputing 267:516–524

    Article  Google Scholar 

  52. Day O, Khoshgoftaar TM (2017) A survey on heterogeneous transfer learning. J Big Data 4(1):1–42

    Article  Google Scholar 

  53. Medicine JH Age-Related Macular Degeneration (AMD). https://www.hopkinsmedicine.org/health/conditions-and-diseases/agerelated-macular-degeneration-amd. Accessed 19 Mar 2021

  54. Khalid S, Akram MU, Shehryar T, Ahmed W, Sadiq M, Manzoor M, Nosheen N (2021) Automated diagnosis system for age-related macular degeneration using hybrid features set from fundus images. Int J Imaging Syst Technol 31(1):236–252

    Article  Google Scholar 

  55. Mohaimin SM, Saha SK, Khan AM, Arif ASM, Kanagasingam Y (2018) Automated method for the detection and segmentation of drusen in colour fundus image for the diagnosis of age-related macular degeneration. IET Image Proc 12(6):919–927

    Article  Google Scholar 

  56. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Asari VK (2018) The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv preprint http://arxiv.org/abs/1803.01164

  57. Tang P, Wang H, Kwong S (2017) G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition. Neurocomputing 225:188–197

    Article  Google Scholar 

  58. Nan F, Zeng Q, Xing Y, Qian Y (2020) Single image super-resolution reconstruction based on the ResNeXt network. Multimedia Tools Appl 79(45):34459–34470

    Article  Google Scholar 

  59. Ucar F, Korkmaz D (2020) COVIDiagnosis-Net: deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med Hypotheses 140:109761

    Article  Google Scholar 

  60. Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M (2021) Transformers in vision: a survey. arXiv preprint http://arxiv.org/abs/2101.01169

  61. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby, N (2020) An image is worth 16×16 words: transformers for image recognition at scale. arXiv preprint http://arxiv.org/abs/2010.11929

  62. Chen CF, Fan Q, Panda R (2021) Crossvit: cross-attention multi-scale vision transformer for image classification. arXiv preprint http://arxiv.org/abs/2103.14899

  63. Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L (2021) Cvt: introducing convolutions to vision transformers. arXiv preprint http://arxiv.org/abs/2103.15808

  64. Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D (2021) Image segmentation using deep learning: a survey. IEEE Trans Pattern Anal Mach Intell. arXiv:2001.05566

  65. Wang Y, Yao Q, Kwok JT, Ni LM (2020) Generalizing from a few examples: a survey on few-shot learning. ACM Comput Surv (CSUR) 53(3):1–34

    Article  Google Scholar 

  66. Kotia J, Kotwal A, Bharti R, Mangrulkar R (2021) Few shot learning for medical imaging. In: Machine learning algorithms for industrial applications, pp 107–132. Springer, Cham

  67. Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Yang X (2020) Medical imaging synthesis using deep learning and its clinical applications: a review. arXiv preprint http://arxiv.org/abs/2004.10322

  68. Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Summers RM (2021) A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. In: Proceedings of the IEEE

  69. Al Chanti D, Duque VG, Crouzier M, Nordez A, Lacourpaille L, Mateus D (2021) Ifss-net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound. IEEE Trans Med Imaging 40:1–14

  70. Huang B, Tian J, Zhang H, Luo Z, Qin J, Huang C, Yuan C (2020) Deep semantic segmentation feature-based radiomics for the classification tasks in medical image analysis. IEEE J Biomed Health Inform 7:2655–2664

  71. Taghanaki SA, Abhishek K, Cohen JP, Cohen-Adad J, Hamarneh G (2021) Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev 54(1):137–178

    Article  Google Scholar 

  72. Wang EK, Chen CM, Hassan MM, Almogren A (2020) A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain. Future Gener Comput Syst 108:135–144

    Article  Google Scholar 

  73. Rezaei M, Yang H, Meinel C (2020) Recurrent generative adversarial network for learning imbalanced medical image semantic segmentation. Multimedia Tools Appl 79(21):15329–15348

    Article  Google Scholar 

  74. Mathew A, Amudha P, Sivakumari S (2020) Deep learning techniques: an overview. In: International conference on advanced machine learning technologies and applications, pp 599–608. Springer, Singapore

  75. Khalil T, Akram MU, Khalid S, Dar SH, Ali N (2021) A study to identify limitations of existing automated systems to detect glaucoma at initial and curable stage. Int J Imaging Syst Technol 31(3):1155–1173

  76. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267

    Article  Google Scholar 

  77. Jamous KF, Kalloniatis M, Hennessy MP, Agar A, Hayen A, Zangerl B (2015) Clinical model assisting with the collaborative care of glaucoma patients and suspects. Clin Exp Ophthalmol 43(4):308–319

    Article  Google Scholar 

  78. Shingleton BJ, Gamell LS, O’Donoghue MW, Baylus SL, King R (1999) Long-term changes in intraocular pressure after clear corneal phacoemulsification: normal patients versus glaucoma suspect and glaucoma patients. J Cataract Refract Surg 25(7):885–890

    Article  Google Scholar 

  79. Li L, Xu M, Wang X, Jiang L, Liu H (2019) Attention based glaucoma detection: a large-scale database and CNN model. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 10571–10580

  80. Verma OP, Roy S, Pandey SC, Mittal M (eds) (2019) Advancement of machine intelligence in interactive medical image analysis. Springer

    Google Scholar 

  81. Kim YK, Jeoung JW, Park KH (2017) Inferior macular damage in glaucoma: its relationship to retinal nerve fiber layer defect in macular vulnerability zone. J Glaucoma 26(2):126–132

    Article  Google Scholar 

  82. Khan MW, Sharif M, Yasmin M, Fernandes SL (2016) A new approach of cup to disk ratio based glaucoma detection using fundus images. J Integr Des Process Sci 20(1):77–94

    Article  Google Scholar 

  83. Soltani A, Battikh T, Jabri I, Lakhoua N (2018) A new expert system based on fuzzy logic and image processing algorithms for early glaucoma diagnosis. Biomed Signal Process Control 40:366–377

    Article  Google Scholar 

  84. Keerthanashree T, Bala MP (2016) Extraction of retinal features in fundus images for glaucoma diagnosis. Curr Trends Inf Technol 6(1):21–28

    Google Scholar 

  85. Bowd C, Belghith A, Proudfoot JA, Zangwill LM, Christopher M, Goldbaum MH, Weinreb RN (2020) Gradient-boosting classifiers combining vessel density and tissue thickness measurements for classifying early to moderate glaucoma. Am J Ophthalmol 217:131–139

    Article  Google Scholar 

  86. Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H, Weinreb RN (2019) Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 126(7):980–988

    Article  Google Scholar 

  87. Mangipudi PS, Pandey HM, Choudhary A (2021) Improved optic disc and cup segmentation in Glaucomatic images using deep learning architecture. Multimedia Tools Appl 80:30143–30163

  88. Bibiloni P, González-Hidalgo M, Massanet S (2019) A real-time fuzzy morphological algorithm for retinal vessel segmentation. J Real-Time Image Proc 16(6):2337–2350

    Article  Google Scholar 

  89. Agarwal A, Issac A, Singh A, Dutta MK (2016) Automatic imaging method for optic disc segmentation using morphological techniques and active contour fitting. In: 2016 Ninth international conference on contemporary computing (IC3), pp 1–5. IEEE

  90. Ingle R, Mishra P (2013) Cup segmentation by gradient method for the assessment of glaucoma from retinal image. Int J Eng Trends Technol 4(6):2540–2543

    Google Scholar 

  91. Khalid NEA, Noor NM, Ariff NM (2014) Fuzzy c-means (FCM) for optic cup and disc segmentation with morphological operation. Procedia Comput Sci 42:255–262

    Article  Google Scholar 

  92. Pal S, Chatterjee S (2017) Mathematical morphology aided optic disk segmentation from retinal images. In: 2017 3rd International conference on condition assessment techniques in electrical systems (CATCON). pp 380–385. IEEE

  93. Sun X, Xu Y, Zhao W, You T, Liu J (2018) Optic disc segmentation from retinal fundus images via deep object detection networks. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5954–5957. IEEE

  94. Zhang L, Fisher M, Wang W (2015) Retinal vessel segmentation using multi-scale textons derived from keypoints. Comput Med Imaging Graph 45:47–56

    Article  Google Scholar 

  95. Septiarini A, Harjoko A, Pulungan R, Ekantini R (2018) Automated detection of retinal nerve fiber layer by texture-based analysis for glaucoma evaluation. Healthcare Inform Res 24(4):335–345

    Article  Google Scholar 

  96. Kirar BS, Agrawal DK (2018) Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images. IET Image Proc 13(1):73–82

    Article  Google Scholar 

  97. Elseid AAG, Hamza AO (2019) Glaucoma detection using retinal nerve fiber layer texture features. J Clin Eng 44(4):180–185

    Article  Google Scholar 

  98. Nirmala K, Venkateswaran N, Kumar CV, Christobel JS (2017) Glaucoma detection using wavelet based contourlet transform. In: 2017 International conference on intelligent computing and control (I2C2), pp 1–5. IEEE

  99. Yin F, Liu J, Wong DWK, Tan NM, Cheung C, Baskaran M, Wong TY (2012) Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th IEEE international symposium on computer-based medical systems (CBMS), pp 1–6. IEEE

  100. Chang HT, Liu CH, Pai TW (2008) Estimation and extraction of B-cell linear epitopes predicted by mathematical morphology approaches. J Mol Recognit Interdiscip J 21(6):431–441

    Article  Google Scholar 

  101. Aslam MA, Salik MN, Chughtai F, Ali N, Dar SH, Khalil T (2019) Image classification based on mid-level feature fusion. In: 2019 15th International conference on emerging technologies (ICET), pp 1–6. IEEE

  102. Nugroho HA, Oktoeberza WK, Erasari A, Utami A, Cahyono C (2017) Segmentation of optic disc and optic cup in colour fundus images based on morphological reconstruction. In: 2017 9th International conference on information technology and electrical engineering (ICITEE), pp 1–5. IEEE

  103. Acharya UR, Bhat S, Koh JE, Bhandary SV, Adeli H (2017) A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput Biol Med 88:72–83

    Article  Google Scholar 

  104. Dey A, Bandyopadhyay SK (2016) Automated glaucoma detection using support vector machine classification method. J Adv Med Med Res 1–12

  105. Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl Based Syst 33:73–82

    Article  Google Scholar 

  106. Akram MU, Tariq A, Khalid S, Javed MY, Abbas S, Yasin UU (2015) Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Aust Phys Eng Sci Med 38(4):643–655

    Article  Google Scholar 

  107. Vidotti VG, Costa VP, Silva FR, Resende GM, Cremasco F, Dias M, Gomi ES (2013) Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma. Eur J Ophthalmol 23(1):61–69

    Article  Google Scholar 

  108. Nithya R, Venkateswaran N (2015) Analysis of segmentation algorithms in colour fundus and OCT images for glaucoma detection. Indian J Sci Technol 8(24):1

    Article  Google Scholar 

  109. Chan YM, Ng EYK, Jahmunah V, Koh JEW, Lih OS, Leon LYW, Acharya UR (2019) Automated detection of glaucoma using optical coherence tomography angiogram images. Comput Biol Med 115:103483

    Article  Google Scholar 

  110. Rajan A, Ramesh GP (2015) Automated early detection of glaucoma in wavelet domain using optical coherence tomography images. Biosci Biotechnol Res Asia 12(3):2821–2828

    Article  Google Scholar 

  111. Ramzan A, Akram MU, Ramzan J, Salam AA, Yasin UU (2018) Automated inner limiting membrane segmentation in OCT retinal images for glaucoma detection. In: Science and information conference, pp 1278–1291. Springer, Cham

  112. Babu TR, Devi S, Venkatesh R (2015) Optic nerve head segmentation using fundus images and optical coherence tomography images for glaucoma detection. Biomed Pap 159(4):607–615

    Article  Google Scholar 

  113. Chen X, Xu Y, Wong DWK, Wong TY, Liu J (2015) Glaucoma detection based on deep convolutional neural network. In: 2015 37th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 715–718. IEEE

  114. Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci 20:70–79

    Article  Google Scholar 

  115. Chai Y, Liu H, Xu J (2018) Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models. Knowl Based Syst 161:147–156

    Article  Google Scholar 

  116. Pal A, Moorthy MR, Shahina A (2018) G-eyenet: a convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images. In: 2018 25th IEEE international conference on image processing (ICIP), pp 2775–2779. IEEE

  117. Asaoka R, Tanito M, Shibata N, Mitsuhashi K, Nakahara K, Fujino Y, Kiuchi Y (2019) Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data augmentation. Ophthalmol Glaucoma 2(4):224–231

    Article  Google Scholar 

  118. Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J (2015). Automatic feature learning for glaucoma detection based on deep learning. In: International conference on medical image computing and computer-assisted intervention, pp 669–677. Springer, Cham

  119. Maheshwari S, Kanhangad V, Pachori RB (2020) CNN-based approach for glaucoma diagnosis using transfer learning and LBP-based data augmentation. arXiv preprint http://arxiv.org/abs/2002.08013

  120. Hemelings R, Elen B, Breda JB, Blaschko MB, De Boever P, Stalmans I (2021) Glaucoma detection beyond the optic disc: The importance of the peripapillary region using explainable deep learning. arXiv preprint http://arxiv.org/abs/2103.11895

  121. Zilly J, Buhmann JM, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41

    Article  Google Scholar 

  122. Maetschke S, Antony B, Ishikawa H, Wollstein G, Schuman J, Garnavi R (2019) A feature agnostic approach for glaucoma detection in OCT volumes. PLoS ONE 14(7):e0219126

    Article  Google Scholar 

  123. Raja H, Akram MU, Shaukat A, Khan SA, Alghamdi N, Khawaja SG, Nazir N (2020) Extraction of retinal layers through convolution neural network (CNN) in an OCT image for glaucoma diagnosis. J Digit Imaging 33(6):1428–1442

    Article  Google Scholar 

  124. An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, Nakazawa T (2019) Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthcare Eng 2019:1–9

  125. Gheisari S, Shariflou S, Phu J, Kennedy PJ, Agar A, Kalloniatis M, Golzan SM (2021) A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci Rep 11(1):1–11

    Article  Google Scholar 

  126. García G, Colomer A, Naranjo V (2021) Glaucoma detection from raw SD-OCT volumes: a novel approach focused on spatial dependencies. Comput Methods Programs Biomed 200:105855

    Article  Google Scholar 

  127. Nayak DR, Das D, Majhi B, Bhandary SV, Acharya UR (2021) ECNet: an evolutionary convolutional network for automated glaucoma detection using fundus images. Biomed Signal Process Control 67:102559

    Article  Google Scholar 

  128. Lee T, Jammal AA, Mariottoni EB, Medeiros FA (2021) Predicting glaucoma development with longitudinal deep learning predictions from fundus photographs. Am J Ophthalmol 225:86–94

    Article  Google Scholar 

  129. Cho H, Hwang YH, Chung JK, Lee KB, Park JS, Kim HG, Jeong JH (2021) Deep learning ensemble method for classifying glaucoma stages using fundus photographs and convolutional neural networks. Curr Eye Res 46(10):1516–1524

  130. Medeiros FA, Jammal AA, Mariottoni EB (2021) Detection of progressive glaucomatous optic nerve damage on fundus photographs with deep learning. Ophthalmology 128(3):383–392

    Article  Google Scholar 

  131. Singh LK, Garg H, Khanna M, Bhadoria RS (2021) An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus. Med Biol Eng Compu 59(2):333–353

    Article  Google Scholar 

  132. Asano S, Asaoka R, Murata H, Hashimoto Y, Miki A, Mori K, Inoue K (2021) Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images. Sci Rep 11(1):1–10

    Article  Google Scholar 

  133. Chang J, Lee J, Ha A, Han YS, Bak E, Choi S, Park SM (2021) Explaining the rationale of deep learning glaucoma decisions with adversarial examples. Ophthalmology 128(1):78–88

    Article  Google Scholar 

  134. Priyanka V, Vaishnavi D (2021) An automated glaucoma detection in fundus images—a survey. In: Intelligent system design, pp 347–359. Springer, Singapore

  135. Nawaz M, Nazir T, Javed A, Tariq U, Yong HS, Khan MA, Cha J (2022) An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization. Sensors 22(2):434

    Article  Google Scholar 

  136. Saravanan V, Samuel R, Krishnamoorthy S, Manickam A (2022) Deep learning assisted convolutional auto-encoders framework for glaucoma detection and anterior visual pathway recognition from retinal fundus images. J Ambient Intell Humaniz Comput 1–11. https://doi.org/10.1007/s12652-021-02928-0

  137. Natarajan D, Sankaralingam E, Balraj K, Karuppusamy S (2022) A deep learning framework for glaucoma detection based on robust optic disc segmentation and transfer learning. Int J Imaging Syst Technol 32(1):230–250

    Article  Google Scholar 

  138. Ibrahim MH, Hacibeyoglu M, Agaoglu A, Ucar F (2022) Glaucoma disease diagnosis with an artificial algae-based deep learning algorithm. Med Biol Eng Comput 1–12. https://doi.org/10.1007/s11517-022-02510-6

  139. Abdel-Hamid L (2022) TWEEC: computer-aided glaucoma diagnosis from retinal images using deep learning techniques. Int J Imaging Syst Technol 32(1):387–401

    Article  Google Scholar 

  140. Deperlioglu O, Kose U, Gupta D, Khanna A, Giampaolo F, Fortino G (2022) Explainable framework for Glaucoma diagnosis by image processing and convolutional neural network synergy: analysis with doctor evaluation. Future Gener Comput Syst 129:152–169

    Article  Google Scholar 

  141. Tékouabou SCK, Chabbar I, Toulni H, Cherif W, Silkan H (2022) Optimizing the early glaucoma detection from visual fields by combining preprocessing techniques and ensemble classifier with selection strategies. Expert Syst Appl 189:115975

    Article  Google Scholar 

  142. Jain S, Indora S, Atal DK (2022) Rider Manta ray foraging optimization-based generative adversarial network and CNN feature for detecting glaucoma. Biomed Signal Process Control 73:103425

    Article  Google Scholar 

  143. Singh LK, Khanna M (2022) A novel multimodality based dual fusion integrated approach for efficient and early prediction of glaucoma. Biomed Signal Process Control 73:103468

    Article  Google Scholar 

  144. Bhuiyan A, Kawasaki R, Sasaki M, Lamoureux E, Ramamohanarao K, Guymer R, Kanagasingam Y (2013) Drusen detection and quantification for early identification of age related macular degeneration using color fundus imaging. J Clin Exp Ophthalmol 4(305):2

    Google Scholar 

  145. Waseem S, Akram MU, Ahmed BA (2014) Drusen detection from colored fundus images for diagnosis of age related Macular degeneration. In: 7th International conference on information and automation for sustainability, pp 1–5. IEEE

  146. Mittal D, Kumari K (2015) Automated detection and segmentation of drusen in retinal fundus images. Comput Electr Eng 47:82–95

    Article  Google Scholar 

  147. Acharya UR, Hagiwara Y, Koh JE, Tan JH, Bhandary SV, Rao AK, Raghavendra U (2017) Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. J Comput Sci 20:41–51

    Article  Google Scholar 

  148. Kim YJ, Kim KG (2018) Automated segmentation methods of drusen to diagnose age-related macular degeneration screening in retinal images. Comput Math Methods Med 2018:1–8

  149. Graham KW, Chakravarthy U, Hogg RE, Muldrew KA, Young IS, Kee F (2018) Identifying features of early and late age-related macular degeneration: a comparison of multicolor versus traditional color fundus photography. Retina 38(9):1751–1758

    Article  Google Scholar 

  150. Jacintha V, Simon J, Tamilarasu S, Thamizhmani R, Nagarajan J (2019) A review on facial emotion recognition techniques. In: 2019 International conference on communication and signal processing (ICCSP), pp 0517–0521. IEEE

  151. von der Emde L, Pfau M, Thiele S, Möller PT, Hassenrik R, Fleckenstein M, Schmitz-Valckenberg S (2019) Mesopic and dark-adapted two-color fundus-controlled perimetry in choroidal neovascularization secondary to age-related macular degeneration. Transl Vis Sci Technol 8(1):7–7

    Article  Google Scholar 

  152. Pfau M, Lindner M, Gliem M, Steinberg JS, Thiele S, Finger RP, Schmitz-Valckenberg S (2018) Mesopic and dark-adapted two-color fundus-controlled perimetry in patients with cuticular, reticular, and soft drusen. Eye 32(12):1819–1830

    Article  Google Scholar 

  153. Thee EF, Meester-Smoor MA, Luttikhuizen DT, Colijn JM, Enthoven CA, Haarman AE, Klaver CC (2020) Performance of classification systems for age-related macular degeneration in the Rotterdam study. Transl Vis Sci Technol 9(2):26–26

    Article  Google Scholar 

  154. Rapantzikos K, Zervakis M, Balas K (2003) Detection and segmentation of drusen deposits on human retina: Potential in the diagnosis of age-related macular degeneration. Med Image Anal 7(1):95–108

    Article  Google Scholar 

  155. Barriga ES, Murray V, Agurto C, Pattichis MS, Russell S, Abramoff MD, Soliz P (2009) Multi-scale AM-FM for lesion phenotyping on age-related macular degeneration. In: 2009 22nd IEEE international symposium on computer-based medical systems, pp 1–5. IEEE

  156. Liang Z, Wong DW, Liu J, Chan KL, Wong TY (2010) Towards automatic detection of age-related macular degeneration in retinal fundus images. In: 2010 Annual international conference of the IEEE engineering in medicine and biology, pp 4100–4103. IEEE

  157. Seddon JM, Dossett J, Widjajahakim R, Rosner B (2019) Association between drusen burden determined by OCT and genetic risk in early and intermediate age-related macular degeneration. bioRxiv 743633. https://doi.org/10.1101/743633

  158. Tan AC, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, Curcio CA (2018) Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med 10(466):1–49

  159. Sadda SR, Guymer R, Holz FG, Schmitz-Valckenberg S, Curcio CA, Bird AC, Staurenghi G (2018) Consensus definition for atrophy associated with age-related macular degeneration on OCT: classification of atrophy report 3. Ophthalmology 125(4):537–548

    Article  Google Scholar 

  160. Lek JJ, Caruso E, Baglin EK, Sharangan P, Hodgson LA, Harper CA, Guymer RH (2018) Interpretation of subretinal fluid using OCT in intermediate age-related macular degeneration. Ophthalmol Retina 2(8):792–802

    Article  Google Scholar 

  161. Shi Y, Motulsky EH, Goldhardt R, Zohar Y, Thulliez M, Feuer W, Rosenfeld PJ (2019) Predictive value of the OCT double-layer sign for identifying subclinical neovascularization in age-related macular degeneration. Ophthalmol Retina 3(3):211–219

    Article  Google Scholar 

  162. Vujosevic S, Toma C, Villani E, Muraca A, Torti E, Florimbi G, De Cillà S (2019) Quantitative choriocapillaris evaluation in intermediate age-related macular degeneration by swept-source optical coherence tomography angiography. Acta Ophthalmol 97(6):e919–e926

    Article  Google Scholar 

  163. Corvi F, Srinivas S, Nittala MG, Corradetti G, Velaga SB, Stambolian D, Sadda SR (2020) Reproducibility of qualitative assessment of drusen volume in eyes with age related macular degeneration. Eye 35:2594–2600

  164. Sadda SR, Abdelfattah NS, Lei J, Shi Y, Marion KM, Morgenthien E, Balasubramanian S (2020) Spectral-domain OCT analysis of risk factors for macular atrophy development in the HARBOR study for neovascular age-related macular degeneration. Ophthalmology 127(10):1360–1370

    Article  Google Scholar 

  165. Jaffe GJ, Martin DF, Toth CA, Daniel E, Maguire MG, Ying GS, Huang J (2013) Comparison of agerelated macular degeneration treatments trials research group. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology 120(9):1860–1870

    Article  Google Scholar 

  166. Sadda SR, Tuomi LL, Ding B, Fung AE, Hopkins JJ (2018) Macular atrophy in the HARBOR study for neovascular age-related macular degeneration. Ophthalmology 125(6):878–886

    Article  Google Scholar 

  167. Thomas A, Sunija AP, Manoj R, Ramachandran R, Ramachandran S, Varun PG, Palanisamy P (2021) RPE layer detection and baseline estimation using statistical methods and randomization for classification of AMD from retinal OCT. Comput Methods Programs Biomed 200:105822

    Article  Google Scholar 

  168. Guymer R, Wu Z (2020) Age-related macular degeneration (AMD): more than meets the eye. The role of multimodal imaging in today’s management of AMD—a review. Clin Exp Ophthalmol 48(7):983–995

    Article  Google Scholar 

  169. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S (2014) Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express 5(10):3568–3577

    Article  Google Scholar 

  170. Alsaih K, Lemaître G, Vall JM, Rastgoo M, Sidibé D, Wong TY, Mériaudeau F (2016) Classification of SD-OCT volumes with multi pyramids, LBP and HOG descriptors: application to DME detections. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1344–1347. IEEE

  171. Sugmk J, Kiattisin S, Leelasantitham A (2014) Automated classification between age-related macular degeneration and diabetic macular edema in OCT image using image segmentation. In: The 7th 2014 biomedical engineering international conference, pp 1–4. IEEE

  172. Hani M, Ben Slama A, Zghal I, Trabelsi H (2021) Appropriate identification of age-related macular degeneration using OCT images. Comput Methods Biomech Biomed Eng Imaging Vis 9(2):146–156

    Article  Google Scholar 

  173. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Weber BH (2018) A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9):1410–1420

    Article  Google Scholar 

  174. Govindaiah A, Smith RT, Bhuiyan A (2018) A new and improved method for automated screening of age-related macular degeneration using ensemble deep neural networks. In: 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 702–705. IEEE

  175. Yellapragada B, Hornhauer S, Snyder K, Yu S, Yiu G (2020) Unsupervised deep learning for grading of age-related macular degeneration using retinal fundus images. arXiv preprint http://arxiv.org/abs/2010.11993

  176. von der Emde L, Pfau M, Dysli C, Thiele S, Möller PT, Lindner M, Schmitz-Valckenberg S (2019) Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration. Sci Rep 9(1):1–12

    Google Scholar 

  177. Bhuiyan A, Wong TY, Ting DSW, Govindaiah A, Souied EH, Smith RT (2020) Artificial intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD. Transl Vis Sci Technol 9(2):25–25

    Article  Google Scholar 

  178. Govindaiah A, Hussain MA, Smith RT, Bhuiyan A (2018) Deep convolutional neural network based screening and assessment of age-related macular degeneration from fundus images. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), pp 1525–1528. IEEE

  179. Peng Y, Dharssi S, Chen Q, Keenan TD, Agrón E, Wong WT, Lu Z (2019) DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology 126(4):565–575

    Article  Google Scholar 

  180. Keel S, Li Z, Scheetz J, Robman L, Phung J, Makeyeva G, He M (2019) Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs. Clin Exp Ophthalmol 47(8):1009–1018

    Article  Google Scholar 

  181. González-Gonzalo C, Sánchez-Gutiérrez V, Hernández-Martínez P, Contreras I, Lechanteur YT, Domanian A, Sánchez CI (2020) Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration. Acta Ophthalmol 98(4):368–377

    Article  Google Scholar 

  182. Babenko B, Balasubramanian S, Blumer KE, Corrado GS, Peng L, Webster DR, Varadarajan AV (2019) Predicting progression of age-related macular degeneration from fundus images using deep learning. arXiv preprint http://arxiv.org/abs/1904.05478

  183. Peng Y, Keenan TD, Chen Q, Agrón E, Allot A, Wong WT, Lu Z (2020) Predicting risk of late age-related macular degeneration using deep learning. NPJ Digit Med 3(1):1–10

    Article  Google Scholar 

  184. Zapata MA, Royo-Fibla D, Font O, Vela JI, Marcantonio I, Moya-Sánchez EU, Labarta J (2020) Artificial intelligence to identify retinal fundus images, quality validation, laterality evaluation, macular degeneration, and suspected glaucoma. Clin Ophthalmol (Auckland, NZ) 14:419

    Article  Google Scholar 

  185. Kaymak S, Serener A (2018) Automated age-related macular degeneration and diabetic macular edema detection on OCT images using deep learning. In: 2018 IEEE 14th international conference on intelligent computer communication and processing (ICCP), pp 265–269. IEEE

  186. Serener A, Serte S (2019) Dry and wet age-related macular degeneration classification using OCT images and deep learning. In: 2019 Scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT), pp 1–4. IEEE

  187. Motozawa N, An G, Takagi S, Kitahata S, Mandai M, Hirami Y, Kurimoto Y (2019) Optical coherence tomography-based deep-learning models for classifying normal and age-related macular degeneration and exudative and non-exudative age-related macular degeneration changes. Ophthalmol Therapy 8(4):527–539

    Article  Google Scholar 

  188. Das V, Dandapat S, Bora PK (2020) Unsupervised super-resolution of OCT images using generative adversarial network for improved age-related macular degeneration diagnosis. IEEE Sens J 20(15):8746–8756

    Article  Google Scholar 

  189. Abbas Q, Ibrahim ME (2020) DenseHyper: an automatic recognition system for detection of hypertensive retinopathy using dense features transform and deep-residual learning. Multimedia Tools Appl 79(41):31595–31623

    Article  Google Scholar 

  190. Akagi S, Matsubara H, Nakamura K, Ito H (2018) Modern treatment to reduce pulmonary arterial pressure in pulmonary arterial hypertension. J Cardiol 72(6):466–472

    Article  Google Scholar 

  191. Suryani E (2019) The review of computer aided diagnostic hypertensive retinopathy based on the retinal image processing. In: IOP conference series: materials science and engineering, vol 620, no 1, p 012099. IOP Publishing

  192. Abraha B HYPERTENSIVE RETINOPATHY. https://www.sunopticaltechnologies.com/hypertensive-retinopathy. Accessed 19 Mar 2021

  193. Grisan E, Foracchia M, Ruggeri A (2008) A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans Med Imaging 27(3):310–319

    Article  Google Scholar 

  194. Muramatsu C, Hatanaka Y, Iwase T, Hara T, Fujita H (2011) Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images. Comput Med Imaging Graph 35(6):472–480

    Article  Google Scholar 

  195. Akbar S, Akram MU, Sharif M, Tariq A, ullah Yasin, U. (2018) Arteriovenous ratio and papilledema based hybrid decision support system for detection and grading of hypertensive retinopathy. Comput Methods Programs Biomed 154:123–141

    Article  Google Scholar 

  196. Manikis GC, Sakkalis V, Zabulis X, Karamaounas P, Triantafyllou A, Douma S, Marias K (2011) An image analysis framework for the early assessment of hypertensive retinopathy signs. In: 2011 E-health and bioengineering conference (EHB), pp 1–6. IEEE

  197. Tramontan L, Ruggeri A (2009) Computer estimation of the AVR parameter in diabetic retinopathy. In: World congress on medical physics and biomedical engineering, September 7–12, 2009, Munich, Germany, pp 141–144. Springer, Berlin

  198. Narasimhan K, Neha VC, Vijayarekha K (2012) Hypertensive retinopathy diagnosis from fundus images by estimation of Avr. Procedia Eng 38:980–993

    Article  Google Scholar 

  199. Cavallari M, Stamile C, Umeton R, Calimeri F, Orzi F (2015) Novel method for automated analysis of retinal images: results in subjects with hypertensive retinopathy and CADASIL. BioMed Res Int 2015

  200. Goswami S, Goswami S, De S (2017) Automatic measurement and analysis of vessel width in retinal fundus image. In: Proceedings of the first international conference on intelligent computing and communication, pp 451–458. Springer, Singapore

  201. Chua J, Chin CWL, Hong J, Chee ML, Le TT, Ting DSW, Schmetterer L (2019) Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens 37(3):572

    Article  Google Scholar 

  202. Chua J, Chin CWL, Tan B, Wong SH, Devarajan K, Le TT, Schmetterer L (2019) Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension. Sci Rep 9(1):1–11

    Article  Google Scholar 

  203. Pascual-Prieto J, Burgos-Blasco B, Avila Sanchez-Torija M, Fernández-Vigo JI, Arriola-Villalobos P, Barbero Pedraz MA, Martínez-de-la-Casa JM (2020) Utility of optical coherence tomography angiography in detecting vascular retinal damage caused by arterial hypertension. Eur J Ophthalmol 30(3):579–585

    Article  Google Scholar 

  204. Hua D, Xu Y, Zeng X, Yang N, Jiang M, Zhang X, Xing Y (2020) Use of optical coherence tomography angiography for assessment of microvascular changes in the macula and optic nerve head in hypertensive patients without hypertensive retinopathy. Microvasc Res 129:103969

    Article  Google Scholar 

  205. Holm S, Russell G, Nourrit V, McLoughlin N (2017) DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. J Med Imaging 4(1):014503

    Article  Google Scholar 

  206. Agurto C, Joshi V, Nemeth S, Soliz P, Barriga S (2014) Detection of hypertensive retinopathy using vessel measurements and textural features. In: 2014 36th Annual international conference of the IEEE engineering in medicine and biology society, pp 5406–5409. IEEE

  207. Triwijoyo BK, Budiharto W, Abdurachman E (2017) The classification of hypertensive retinopathy using convolutional neural network. Procedia Comput Sci 116:166–173

    Article  Google Scholar 

  208. Triwijoyo BK, Pradipto YD (2017) Detection of hypertension retinopathy using deep learning and Boltzmann machines. In: Journal of physics: conference series, vol 801, no 1, p 012039. IOP Publishing

  209. AlBadawi S, Fraz MM (2018). Arterioles and venules classification in retinal images using fully convolutional deep neural network. In: International conference image analysis and recognition, pp 659–668. Springer, Cham

  210. Welikala RA, Foster PJ, Whincup PH, Rudnicka AR, Owen CG, Strachan DP, Barman SA (2017) Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Comput Biol Med 90:23–32

    Article  Google Scholar 

  211. Yao Z, Zhang Z, Xu LQ (2016) Convolutional neural network for retinal blood vessel segmentation. In: 2016 9th International symposium on computational intelligence and design (ISCID), vol 1, pp 406–409. IEEE

  212. Prentašić P, Lončarić S (2016) Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput Methods Programs Biomed 137:281–292

    Article  Google Scholar 

  213. Sridhar S, Pradeep Kandhasamy J, Sinthuja M, Minish TS (2021) Diabetic retinopathy detection using convolutional nueral networks algorithm. In: Materials today: proceedings

  214. Qureshi I, Ma J, Abbas Q (2021) Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimedia Tools Appl 80(8):11691–11721

    Article  Google Scholar 

  215. Qureshi I, Ma J, Shaheed K (2019) A hybrid proposed fundus image enhancement framework for diabetic retinopathy. Algorithms 12(1):14

    Article  Google Scholar 

  216. Diabetic Retinopathy Detection—DEV Community, (n.d.). https://dev.to/erol/diabetic-retinopathy-detection-5ha7. Accessed 3 June 2021

  217. Walter T, Klein JC, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging 21(10):1236–1243

    Article  Google Scholar 

  218. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727

    Article  Google Scholar 

  219. Quellec G, Lamard M, Abràmoff MD, Decencière E, Lay B, Erginay A, Cazuguel G (2012) A multiple-instance learning framework for diabetic retinopathy screening. Med Image Anal 16(6):1228–1240

    Article  Google Scholar 

  220. Amel F, Mohammed M, Abdelhafid B (2012) Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int J Image Graph Signal Process 4(4):19

    Article  Google Scholar 

  221. Abràmoff MD, Folk JC, Han DP, Walker JD, Williams DF, Russell SR, Niemeijer M (2013) Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 131(3):351–357

    Article  Google Scholar 

  222. Mookiah MRK, Acharya UR, Martis RJ, Chua CK, Lim CM, Ng EYK, Laude A (2013) Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach. Knowl Based Syst 39:9–22

    Article  Google Scholar 

  223. Zhang X, Thibault G, Decencière E, Marcotegui B, Laÿ B, Danno R, Erginay A (2014) Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal 18(7):1026–1043

    Article  Google Scholar 

  224. Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Article  Google Scholar 

  225. Colomer A, Igual J, Naranjo V (2020) Detection of early signs of diabetic retinopathy based on textural and morphological information in fundus images. Sensors 20(4):1005

    Article  Google Scholar 

  226. ElTanboly A, Ismail M, Shalaby A, Switala A, El-Baz A, Schaal S, El-Azab M (2017) A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. Med Phys 44(3):914–923

    Article  Google Scholar 

  227. Sandhu HS, Eltanboly A, Shalaby A, Keynton RS, Schaal S, El-Baz A (2018) Automated diagnosis and grading of diabetic retinopathy using optical coherence tomography. Invest Ophthalmol Vis Sci 59(7):3155–3160

    Article  Google Scholar 

  228. Szymkowski M, Saeed E, Saeed K, Mariak Z (2019) A simple algorithm for hard exudate detection in diabetic retinopathy using spectral-domain optical coherence tomography. In: Computer graphics international conference, pp 179–189. Springer, Cham

  229. Khansari MM, Zhang J, Qiao Y, Gahm JK, Sarabi MS, Kashani AH, Shi Y (2019) Automated deformation-based analysis of 3D optical coherence tomography in diabetic retinopathy. IEEE Trans Med Imaging 39(1):236–245

    Article  Google Scholar 

  230. Sandhu HS, Elmogy M, Sharafeldeen AT, Elsharkawy M, El-Adawy N, Eltanboly A, El-Baz A (2020) Automated diagnosis of diabetic retinopathy using clinical biomarkers, optical coherence tomography, and optical coherence tomography angiography. Am J Ophthalmol 216:201–206

    Article  Google Scholar 

  231. Schwartz R, Khalid H, Sivaprasad S, Nicholson L, Anikina E, Sullivan P, Keane PA (2020) Objective evaluation of proliferative diabetic retinopathy using OCT. Ophthalmol Retina 4(2):164–174

    Article  Google Scholar 

  232. Sharafeldeen A, Elsharkawy M, Khalifa F, Soliman A, Ghazal M, AlHalabi M, El-Baz A (2021) Precise higher-order reflectivity and morphology models for early diagnosis of diabetic retinopathy using OCT images. Sci Rep 11(1):1–16

    Article  Google Scholar 

  233. ElTanboly A, Ghazal M, Khalil A, Shalaby A, Mahmoud A, Switala A, El-Baz A (2018) An integrated framework for automatic clinical assessment of diabetic retinopathy grade using spectral domain OCT images. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp 1431–1435. IEEE

  234. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Maddikunta PKR, Srivastava G (2020) Deep neural networks to predict diabetic retinopathy. J Ambient Intell Humaniz Comput 1–14. https://doi.org/10.1007/s12652-020-01963-7

  235. Katada Y, Ozawa N, Masayoshi K, Ofuji Y, Tsubota K, Kurihara T (2020) Automatic screening for diabetic retinopathy in interracial fundus images using artificial intelligence. Intell Based Med 3:100024

    Article  Google Scholar 

  236. Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K, Kaski K (2019) Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep 9(1):1–11

    Article  Google Scholar 

  237. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  Google Scholar 

  238. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M (2016) Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13):5200–5206

    Article  Google Scholar 

  239. Swapna G, Vinayakumar R, Soman KP (2018) Diabetes detection using deep learning algorithms. ICT Express 4(4):243–246

    Article  Google Scholar 

  240. Hemanth DJ, Deperlioglu O, Kose U (2020) An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Comput Appl 32(3):707–721

    Article  Google Scholar 

  241. Shanthi T, Sabeenian RS (2019) Modified Alexnet architecture for classification of diabetic retinopathy images. Comput Electr Eng 76:56–64

    Article  Google Scholar 

  242. Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed Signal Process Control 62:102115

    Article  Google Scholar 

  243. Zago GT, Andreão RV, Dorizzi B, Salles EOT (2020) Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Comput Biol Med 116:103537

    Article  Google Scholar 

  244. Vives-Boix V, Ruiz-Fernández D (2021) Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity. Comput Methods Programs Biomed 206:106094

    Article  Google Scholar 

  245. Li C, Ye J, He J, Wang S, Qiao Y, Gu L (2020) Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI), pp 1–4. IEEE

  246. Chen W, Yang B, Li J, Wang J (2020) An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access 8:178552–178562

    Article  Google Scholar 

  247. Guo Y, Camino A, Wang J, Huang D, Hwang TS, Jia Y (2018) MEDnet, a neural network for automated detection of avascular area in OCT angiography. Biomed Opt Express 9(11):5147–5158

    Article  Google Scholar 

  248. Li X, Shen L, Shen M, Tan F, Qiu CS (2019) Deep learning based early stage diabetic retinopathy detection using optical coherence tomography. Neurocomputing 369:134–144

    Article  Google Scholar 

  249. Ghazal M, Ali SS, Mahmoud AH, Shalaby AM, El-Baz A (2020) Accurate detection of non-proliferative diabetic retinopathy in optical coherence tomography images using convolutional neural networks. IEEE Access 8:34387–34397

    Article  Google Scholar 

  250. Heisler M, Karst S, Lo J, Mammo Z, Yu T, Warner S, Sarunic MV (2020) Ensemble deep learning for diabetic retinopathy detection using optical coherence tomography angiography. Transl Vis Sci Technol 9(2):20–20

    Article  Google Scholar 

  251. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, Zhang K (2018) Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5):1122–1131

    Article  Google Scholar 

  252. Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y (2018) Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl Vis Sci Technol 7(6):41–41

    Article  Google Scholar 

  253. Islam KT, Wijewickrema S, O’Leary S (2019) Identifying diabetic retinopathy from oct images using deep transfer learning with artificial neural networks. In: 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS), pp 281–286. IEEE

  254. Shaban M, Ogur Z, Mahmoud A, Switala A, Shalaby A, Abu Khalifeh H, El-Baz AS (2020) A convolutional neural network for the screening and staging of diabetic retinopathy. PLoS ONE 15(6):e0233514

    Article  Google Scholar 

  255. Abbas Q, Qureshi I, Ibrahim ME (2021) An automatic detection and classification system of five stages for hypertensive retinopathy using semantic and instance segmentation in DenseNet architecture. Sensors 21(20):6936

    Article  Google Scholar 

  256. Chan HP, Hadjiiski LM, Samala RK (2020) Computer-aided diagnosis in the era of deep learning. Med Phys 47(5):e218–e227

    Article  Google Scholar 

  257. Georgiou T, Liu Y, Chen W, Lew M (2020) A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision. Int J Multimedia Inf Retr 9(3):135–170

    Article  Google Scholar 

  258. Nguyen ND, Do T, Ngo TD, Le DD (2020) An evaluation of deep learning methods for small object detection. J Electr Comput Eng 2020

  259. Wong KK, Fortino G, Abbott D (2020) Deep learning-based cardiovascular image diagnosis: a promising challenge. Future Gener Comput Syst 110:802–811

    Article  Google Scholar 

  260. Hong S, Zhou Y, Shang J, Xiao C, Sun J (2020) Opportunities and challenges of deep learning methods for electrocardiogram data: a systematic review. Comput Biol Med 122:1–15

  261. Costa P, Galdran A, Meyer MI, Abramoff MD, Niemeijer M, Mendonça AM, Campilho A (2017) Towards adversarial retinal image synthesis. arXiv preprint http://arxiv.org/abs/1701.08974

  262. Korot E, Guan Z, Ferraz D, Wagner SK, Zhang G, Liu X, Keane PA (2021) Code-free deep learning for multi-modality medical image classification. Nat Mach Intell 3(4):288–298

    Article  Google Scholar 

  263. Zhang Q, Bai C, Liu Z, Yang LT, Yu H, Zhao J, Yuan H (2020) A GPU-based residual network for medical image classification in smart medicine. Inf Sci 536:91–100

    Article  MathSciNet  Google Scholar 

  264. Yadav SS, Jadhav SM (2019) Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data 6(1):1–18

    Article  Google Scholar 

  265. Zhang J, Xie Y, Wu Q, Xia Y (2019) Medical image classification using synergic deep learning. Med Image Anal 54:10–19

    Article  Google Scholar 

  266. Shams R, Sadeghi P, Kennedy RA, Hartley RI (2010) A survey of medical image registration on multicore and the GPU. IEEE Signal Process Mag 27(2):50–60

    Article  Google Scholar 

  267. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    MATH  Google Scholar 

  268. Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi AF (2019) Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans Med Imaging 38(9):2211–2218

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, Grant No. (20-13-09-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaisar Abbas.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Q., Qureshi, I., Yan, J. et al. Machine Learning Methods for Diagnosis of Eye-Related Diseases: A Systematic Review Study Based on Ophthalmic Imaging Modalities. Arch Computat Methods Eng 29, 3861–3918 (2022). https://doi.org/10.1007/s11831-022-09720-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09720-z

Navigation