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Abstract
We present an approach to studying and predicting the spatio-temporal progression of infectious diseases. We treat the 
problem by adopting a partial differential equation (PDE) version of the Susceptible, Infected, Recovered, Deceased (SIRD) 
compartmental model of epidemiology, which is achieved by replacing compartmental populations by their densities. Build-
ing on our recent work (Computat Mech 66:1177, 2020), we replace our earlier use of global polynomial basis functions 
with those having local support, as epitomized in the finite element method, for the spatial representation of the SIRD 
parameters. The time dependence is treated by inferring constant parameters over time intervals that coincide with the time 
step in semi-discrete numerical implementations. In combination, this amounts to a scheme of field inversion of the SIRD 
parameters over each time step. Applied to data over ten months of 2020 for the pandemic in the US state of Michigan and to 
all of Mexico, our system inference via field inversion infers spatio-temporally varying PDE SIRD parameters that replicate 
the progression of the pandemic with high accuracy. It also produces accurate predictions, when compared against data, for 
a three week period into 2021. Of note is the insight that is suggested on the spatio-temporal variation of infection, recovery 
and death rates, as well as patterns of the population’s mobility revealed by diffusivities of the compartments.

1  Introduction

Classical mathematical treatments of epidemiology, such as 
the Susceptible-Infected-Recovered (SIRD) model [1], are 
ordinary differential equations (ODEs) defined by specify-
ing the compartmental sub-population numbers over some 
geographical region. Spatial effects have typically been 
introduced by resolving smaller regions and treating them 
individually [2–6]. During long-lasting and widespread epi-
demics, such as the COVID-19 Pandemic, the effects on the 
infection rate of imposing–and then lifting–mobility restric-
tions and social distancing mandates revolve on the question 
of the time and spatially varying mobility of the population. 

At the finest resolution, this must be approached via agent-
based models [7], using individuals’ mobility data. However, 
this data is not available for the entire population, and con-
tact tracing campaigns face challenges of recruiting work-
ers, access, technology, as well as socio-political resistance. 
Against these difficulties, an intriguing question to explore 
is whether simple reaction-diffusion models can detect the 
evidence of mobility in these data. Such an approach must 
start with a partial differential equation (PDE) version of 
the epidemiological models, which is easily defined by con-
verting compartmental sub-populations to densities over sub 
regions by normalizing with the corresponding areas. To 
address the mobility of the population, diffusion terms are 
introduced to the SIRD model, which is transformed to a set 
of reaction-diffusion PDEs in two spatial dimensions [8–11].

The widespread availability of data in the public domain 
[12–19] has spurred significant interest among computa-
tional and data scientists, who have sought to test and refine 
their methods against these repositories. This has opened 
up the possibility that advances in computational and data 
science may contribute to the existing and rapidly expanding 
body of work in epidemiology, in inferring the dynamics 
of COVID-19 and making projections. We have similarly 
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sought to build off our recent work in data-driven and 
machine learning approaches [20–29] and presented a class 
of system identification techniques for inference of ODE and 
PDE forms of the SIRD model, as well as Bayesian neural 
networks for representation and uncertainty quantification-
guided prediction [11]. That work focused on the US state 
of Michigan. In this communication, we revise our approach 
for inference of the PDE SIRD model with temporally and 
spatially evolving parameters and diffusivities. Importantly, 
instead of global polynomial representations of PDE SIRD 
parameters over the spatial and temporal domains, we adopt 
field inversion over time intervals that coincide with the time 
steps of our underlying numerical implementation. This 
affords much greater accuracy over the global polynomial 
ansatz. Adjoint-based gradient optimization for field inver-
sion of parameters at each time step replaces the use of step-
wise regression-based system identification in our previous 
work. We find that the improved accuracy with respect to 
the data over the time interval of inference, as well as of the 
predictions, is worth the increased expense. We have brought 
abundant high-quality, public domain, data [12–19] on the 
evolution of COVID-19 in both, the State of Michigan, with 
a population of 9.98 million, distributed in 83 counties, over 
250,493 km2 , and the country of Mexico, with a population 
of 126 million, distributed in 32 geographical entities (31 
states and Mexico City), on 1,972,550 km2 . The temporal 
resolution by days and spatial resolution by counties/states 
have allowed us to study the mobility in these data using our 
methods of system inference.

In Sect. 2 we review our previous work of system infer-
ence for the spatio-temporal SIRD model first, and then 
extend it by incorporating temporal and spatial parameters 
and diffusivities using a finite element representation. Our 
PDE SIRD model-constrained inference approach is pre-
sented in Sect. 3. Section 4 is on data preparation. The 
results for inference of classical SIRD parameters as well 
as the diffusivities, and forward prediction are presented in 
Sect. 5. Our conclusions appear in Sect. 6.

2 � Compartmental Differential Equations 
Models of Infectious Disease Dynamics

We begin with the conventional SIRD compartmental epi-
demiology model. The population, taken to remain constant 
at N, is divided into four disjoint compartments with time-
dependent sub-populations: S(t) for susceptible, I(t) for 
infected, R(t) for recovered and D(t) for deceased individu-
als. The governing system of ordinary differential equations 
(ODEs) is:

This is the canonical form of the model where the sub-
populations are assumed to be well-mixed so that spatial 
variations can be ignored over the domain of interest. Here 
� is the infection rate, � is the recovery rate, � is the rate of 
immunity loss, and � is the death rate.

We have extended the SIRD model to a system of par-
tial differential equations (PDEs) in two spatial dimensions 
using the same compartments [11]. However, the population 
variables are now replaced with spatio-temporally varying 
densities, Ŝ(x, t), Î(x, t), R̂(x, t), D̂(x, t) defined as numbers 
per unit area.

where DS,DI,DR are diffusivities of the correspond-
ing compartments, and represent the mobility of the sub-
population via random walks. We define (̂∙) = (∙)∕ ∫

Ω
dA 

where Ω is the domain of study: either the lower peninsula 
of the State of Michigan, or the territory of the country 
of Mexico. Furthermore the population constraint holds: 
∫
Ω
N̂dA = ∫

Ω
Ŝ(t)dA + ∫

Ω
Î(t)dA + ∫

Ω
R̂(t)dA + ∫

Ω
D̂(t)dA   . 

In what follows of this communication, we only consider 
the PDE SIRD model, and, for the sake of readability, we 
dispense with the hats on the compartments.

We adopt the weak form, and specifically, the finite 
element framework for the above system of PDEs. 
For a generic, finite-dimensional field uh , the prob-
lem is stated as follows: find uh ∈ S

h ⊂ S  , where 

(1)dS

dt
= −

�

N
SI + �R

(2)dI

dt
=

�

N
SI − �I − �I

(3)
dR

dt
= �I − �R

(4)
dD

dt
= �I

(5)N = S(t) + I(t) + R(t) + D(t).

(6)
�Ŝ

�t
= DS∇

2Ŝ −
�

N̂
Ŝ̂I + �R̂

(7)
�Î

�t
= DI∇

2 Î +
�

N̂
Ŝ̂I − �Î − �Î

(8)�R̂

�t
= DR∇

2R̂ + �Î − �R̂

(9)�D̂

�t
= �Î
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S
h = {uh ∈ H

1(Ω) | uh = ū on Γu}  ,  s u c h  t h a t 
∀ wh ∈ V

h ⊂ V  , where Vh = {wh ∈ H
1(Ω) | wh = 0 on Γu} , 

the finite-dimensional (Galerkin) weak form of the problem is 
satisfied. The variations wh and trial solutions uh are defined 
component-wise using a finite number of basis functions,

where nb is the dimensionality of the function spaces Sh 
and Vh , and Na represents the basis functions. To obtain the 
Galerkin weak forms, we multiply each equation in strong 
form in (6-9) by a weighting function wh

S
,wh

I
,wh

R
,wh

D
 , respec-

tively, integrate by parts, apply boundary conditions appro-
priately, and use the Backward Euler method for time-dis-
cretization with (∙)n denoting a discretized quantity at time 
tn and Δt being the time step. See Ref. [11] for details. This 
leads to:

(10)wh =

nb∑

a=1

caNa, uh =

nb∑

a=1

daNa,

(11)
∫Ω

wh
S

Sh
n
− Sh

n−1

Δt
ds = − ∫Ω

DS∇w
h
S
⋅ ∇Sh

n
ds

− ∫Ω

wh
S

(
�

N
Sh
n
Ih
n
+ �Rh

n

)
ds

where the boundary terms vanish because we assume that 
the sub-populations do not leave the region, thus enforcing 
zero flux boundary conditions.

In our previous work [11], we have characterized the 
coefficients to vary via a global-in-time polynomial basis. 
While the inferred model reproduced the trends, there was 
a notable error over time of the statewide sub-population 
estimates S(t, x), I(t, x),R(t, x),D(t, x) obtained by forward 
simulation with inferred quantities (See Figs. 14 and 15 in 
[11]).

Additionally, the highly complex geometry of the State 
of Michigan, and of Mexico (See maps in Fig. 1), and 
potentially highly nonuniform distributions of the coef-
ficients in space makes it challenging to characterize them 

(12)
∫Ω

wh
I

Ih
n
− Ih

n−1

Δt
ds = − ∫Ω

DI∇w
h
I
⋅ ∇Ih

n
ds

+ ∫Ω

wh
I

(
�

N
Sh
n
Ih
n
− �Ih

n
− �Ih

n

)
ds

(13)
∫Ω

wh
R

Rh
n
− Rh

n−1

Δt
ds = − ∫Ω

DR∇w
h
R
⋅ ∇Rh

n
ds

+ ∫Ω

wh
R

(
�Ih

n
− �Rh

n

)
ds

(14)∫Ω

wh
D

Dn − Dn−1

Δt
ds =∫Ω

wh
D
�Ih

n
ds

Fig. 1   Reconstructed maps of Michigan State and Mexico with finite element mesh
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with simple basis functions. Global polynomials in space 
could not sufficiently resolve the emergence and disappear-
ance of “hot spots" and “cold spots" [11]. In this commu-
nication, we allow the coefficients �, � ,�, �,DS,… ,DR of 
the PDE SIRD model to vary over space via finite-dimen-
sional, locally supported representations as we do for the 
primary variables S(t, x), I(t, x),R(t, x),D(t, x) . Further 
more, we allow the coefficients to vary daily, leading to:

where, as for the primary variables, the subscripts (∙)n 
denote the coefficients on day n. With this, the PDE SIRD 
equations become:

where the parameters are interpolated from nodal variables 
as defined in Eqs. (15) and (16).

(15)

�h
n
=

np∑

a=1

�a
n
Na, �h

n
=

np∑

a=1

�a
n
Na,

�h
n
=

np∑

a=1

�a
n
Na �h

n
=

np∑

a=1

�a
n
Na

(16)

D
h
Sn

=

np∑

a=1

D
a
Sn
Na, D

h
In
=

np∑

a=1

D
a
In
Na,

D
h
Rn

=

np∑

a=1

D
a
Rn
Na

(17)
∫Ω

wh
S

Sh
n
− Sh

n−1

Δt
ds = − ∫Ω

D
h
Sn
∇wh

S
⋅ ∇Sh

n
ds

− ∫Ω

wh
S

(
�h
n

N
Sh
n
Ih
n
+ �h

n
Rh
n

)
ds

(18)

∫Ω

wh
I

Ih
n
− Ih

n−1

Δt
ds = − ∫Ω

D
h
In
∇wh

I
⋅ ∇Ih

n
ds

+ ∫Ω

wh
I

(
�h
n

N
Sh
n
Ih
n
− �h

n
Ih
n
− �h

n
Ih
n

)
ds

(19)
∫Ω

wh
R

Rh
n
− Rh

n−1

Δt
ds = − ∫Ω

D
h
Rn
∇wh

R
⋅ ∇Rh

n
ds

+ ∫Ω

wh
R

(
�h
n
Ih
n
− �h

n
Rh
n

)
ds

(20)∫Ω

wh
D

Dn − Dn−1

Δt
ds = ∫Ω

wh
D
�h
n
Ih
n
ds

3 � System Inference by Field Inversion Using 
Adjoint‑Based Gradient Optimization

The system inference problem is to invert for the quantities 
�a
n
, �a

n
,�a

n
, �a

n
,Da

Sn
,… ,Da

Rn
 . Since these quantities are inter-

polated via Eqs. (15) and (16) to be expressed as the cor-
responding fields �h

n
, �h

n
,�h

n
, �h

n
,Dh

Sn
,… ,Dh

Rn
 in (17-18), the 

system inference problems is one of field inversion. It is 
stated in Eqs. (21-22) as:

 Given (15–16), at each

and �i is the loss function defined:

where (∙)d denotes data for the corresponding quantity. Due 
to the large differences in the magnitudes of different sub-
populations, we choose the weights WS,⋯ ,WD to be:

The weights normalize the sub-populations and prioritize 
regions with higher infected populations. These regions are 
of greater interest for studying the progression of the disease 
as they tend to have a higher population density and, there-
fore, infected populations.

This PDE-constrained optimization problem is solved 
iteratively, and requires the gradient of the PDE constraint, 
Eqs. (17-20), with respect to parameters. We adopt classical 
adjoint-based gradient optimization. This approach involves 
a single linear solution of the adjoint equation of the original 
PDE constraint at each iteration, followed by solution of the 
fields to be inverted: (�h

n
, �h

n
,�h

n
, �h

n
,Dh

Sn
,… ,Dh

Rn
) and the 

updated forward solution Sh
n
, Ih

n
,Rh

n
,Dh

n
 . In this work we use 

the L-BFGS-B optimization algorithm from SciPy [30] 
and the dolfin-adjoint software library [31] to compute 
the gradient.

(21)
tn ∶

(
�a
n
,… ,Da

Rn

)np

a=1

= arg min
(�a

n
,…,Da

Rn
)a=1np

�i, such that(17 − 20)hold

(22)

�i =∫Ω

WS

(
Sh
n
− Sd

n

)2
+WI

(
Ih
n
− Id

i

)2
+WR

(
Rh
n
− Rd

n

)2

+WD

(
Dh

n
− Dd

n

)2
dv

(23)

WS =
Id
n

mean
(
Sd
n

) , WI =
Id
n

mean
(
Id
n

) ,

WR =
Id
n

mean
(
Rd
n

) ,WD =
Id
n

mean
(
Dd

n

) .
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4 � Data Preparation on Maps of Michigan 
and Mexico

First, we constructed two-dimensional meshes for Michigan 
and Mexico that fully resolve the counties/states as shown in 
Fig. 1. The data are available as cumulative sub-population 
numbers Id

n
,Rd

n
,Dd

n
 at the county/state level. Note that an 

individual was considered recovered if they did not die 15 
days after their symptoms onset. We adopted this defini-
tion based on reporting of compartmental population data 
in the State of Michigan. Moreover, in Michigan, recovery 
data was reported at the State level, not by county, so the 
distribution of recovered cases across counties was approx-
imated to be the same as the distribution of cumulative 
infected cases across counties. In Mexico, the data reported 
allowed us to calculate the recovered by entity–states and 
Mexico City–using this definition. We used a uniform den-
sity of each sub-population to compute Id

n
,Rd

n
,Dd

n
 within the 

county/state, and applied Gaussian filtering to smooth the 
discontinuities at the county/state boundaries. Note that the 
discrete Gaussian filter can not be applied in a straightfor-
ward manner to unstructured meshes. Starting with a field 
u that represents any of the four sub-population densities, 
and G(x0, x) =

1

2��2
e
−

||x||2

2�2  as the two dimensional Gaussian 
distribution function centered at 0 with standard deviation 
� , which is related to the kernel size in the discrete Gaussian 
filter, we scale the filtered solution denoted by u(x0) at each 
finite element node:

The spatio-temporal evolution of these fields was used in the 
system inference problem as described in Sect. 3.

5 � Results

F i g u r e   2  s h o w s  t h e  s u b - p o p u l a t i o n s 
S(x, t), I(x, t),R(x, t),D(x, t) in both Michigan and Mexico 
obtained by forward simulation with inferred quantities 
compared with data on December 29, 2020 ( t = 281 days). 
In the model t = 0 corresponds to March 23, 2020, the start 
of the lockdown in Michigan, though the figures show the 
simulations from t = 15 to account for the lag introduced by 
the definition of recovered (See Sect. 4). The inferred model 
for Michigan accurately replicates the initial burst of disease 
and the following multiple waves around Detroit (please see 
the SI movie: michigan_prediction.mp4). It also captures the 
second burst in the southwest of Michigan around the city of 
Grand Rapids. The high burden of the disease in these, the 
largest and second largest cities, respectively, in Michigan, 
reflects well-known socio-economic challenges related to 

(24)u(x0) =
1

∫
Ω
G(x0, x)dv�Ω

G(x0, x)uraw(x)dv

Detroit in particular, and more generally reflected in other 
urban centers. Similarly, Mexico City, with highest popu-
lation density in Mexico ( 6, 200∕km2 [18]), was the worst 
affected area in that country and dominated the evolution of 
the disease (See SI movie: mexico_prediction.mp4).

The low error between the simulation and data leads to 
greater confidence in the inferred parameters. Fig. 3 shows 
the inferred infection rate, death rate, the recovery rate, and 
the reproduction number r0 =

�

�
 in Michigan’s lower penin-

sula at days t = 15, 70, 140, 210, 281 (the time-resolved 
dynamics are shown in SI movie: michigan_parameter.mp4). 
The evolution of these inferred parameters reveals that the 
population’s infection rate, �(t) , declined from the initially 
higher values in highly infected areas (such as Detroit), and 
spread to the western parts of Michigan. The death rate was 
mostly stable after May 2020 ( t > 69 ), and remained low in 
the more highly infected areas. This can be attributed to the 
ramp up of the public health campaign, hospitalizations and 
emergency response of the medical system, and prioritiza-
tion to the more highly infected areas. The recovery rate 
around Detroit city evolved in multiple stages: increasing→ 
decreasing → increasing, which was consistent with the mul-
tiple waves reflected in the data on the recovered population 
in this region (SI movie: michigan_prediction.mp4). Note 
that the large heterogeneity of the parameters is because in 
the PDE SIRD model, the parameters are scaled by division 
with the population densities, and � by the square of the 
population density. This affects their values. In particular, it 
should be borne in mind that the effective reproduction num-
ber reported here is “per unit population density”. Therefore, 
a high r0 could be reflective of a low population density. 
Nevertheless, the actual effective reproduction number could 
be low in low density regions. Such scaling underlies the 
high r0 reported in the northwestern part of Michigan’s lower 
peninsula.

At the finest resolution, the mobility of the population 
during disease evolution may be approached via agent-based 
models refined to resolve individuals. However, given the 
difficulties encountered in effective contact tracing, and 
its acceptance by the population [9, 32, 33], an intriguing 
question to explore is whether simple reaction-diffusion 
models can detect the evidence of mobility in these data. 
Figure 4 shows the inferred diffusivities of the susceptible, 
infected, and recovered sub-populations. Note that for field 
inversion, the population density data for each compartment 
was taken to be uniform within each county/state, since no 
finer grained information was available, and then subject 
to Gaussian smoothing before inference. Thus the density 
gradients, which drive the inference of diffusivities, arise 
at the counties/states scale more than they do at the intra-
county/intra-state. Accordingly, the inferred diffusivities are 
meaningful on this scale. The lower Peninsula of Michigan 
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is about 446 km long from north to south and 314 km wide 
from east to west–scales that can help place the diffusivities 
in Fig. 4 in perspective. The mobility of the infected popu-
lation was always high around the highly infected areas. In 
Michigan, this infected population gradually shifted to the 

southwestern part of the state from the initial burst around 
Detroit. This finding is consistent with the second burst 
around Grand Rapids during the evolution of the pandemic. 
The recovered population demonstrated a similar pattern 
of mobility, and was more active in the southern part of 

Fig. 2   Comparison of the data on distributions of the susceptible (S), 
infected (I), recovered (R) and deceased (D) sub-populations against 
forward PDE SIRD simulations with inferred quantities respectively. 
Data and simulation results are shown for Day 281 starting from 
March 23, 2020. The inset adjacent to the map of Mexico is a magni-

fied view of the region surrounding Mexico City. The populations are 
shown per unit square kilometers. The time-resolved dynamics may 
be seen as movies in Supplementary Information: michigan_predic-
tion.mp4 and mexico_prediction.mp4



4289System Inference Via Field Inversion for the Spatio‑Temporal Progression of Infectious…

1 3

Michigan around the more highly infected regions. On the 
other hand, the susceptible population closely tracks the total 
population. Since the population at large has low mobility, 
the susceptible population’s mobility is low in high popula-
tion density areas. See SI movie michigan_prediction.mp4 
for these dynamics.

Figure 5 shows the inferred infection rate, death rate and 
the recovery rate of the inferred model for Mexico. We can 
clearly see the spreading of the disease from Mexico City. 
Similar to the case of Michigan, infection rates, and to a 
lesser extent, death rates, were relatively lower in Mexico 
City, which is the most densely populated region of the 

Fig. 3   Inferred infection rate ( � ), death rate(� ), recovery rate ( � ) and 
effective reproduction rate ( r

0
 ) over the lower peninsula of Michigan 

starting from the lockdown on March 23, 2020. The time-resolved 

dynamics may be seen as movies in Supplementary Information: 
michigan_parameter.mp4
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country, than that in the surrounding cities. The recovery 
rate was high in Mexico city, in part due to the relatively 
greater resources of the medical system there. The infection 
and death rates tended to be stable for five months following 
March 23, 2020, and the recovery rate gradually increased in 
more areas. Notably, far from the Mexico city, Baja Califor-
nia also displayed a high inferred rate of infection. We sus-
pect this to be because it borders California, USA, and the 

international border restrictions did not contain the spread 
of the virus between the two regions. Unlike Mexico City, 
the death rate remained high, and the recovery rate did not 
increase to levels comparable to the capital, perhaps because 
of the looser restrictions in this popular tourist destination. 
The reproduction number r0 at t = 15 (April 7, 2020) was 
high only around Mexico City. By t = 70 it increased near 
the other two most populated cities, Guadalajara in the West, 

Fig. 4   Inferred diffusivities of the susceptible, infected, and recov-
ered sub-populations in Michigan starting from lockdown, March 
23, 2020. The lower Peninsula of Michigan is about 446 km long 
from north to south and 314 km wide from east to west–scales that 

can help place the diffusivities in perspective. Time-resolved dynam-
ics maybe seen as movies in Supplementary Information: mexico_
parameter.mp4
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and Monterrey in the Northeast. By t = 140 (August 20, 
2020) less populated areas saw a higher infection rate and 
reproduction number.

The diffusivities of the corresponding sub-populations 
of the inferred model for Mexico are shown in Fig. 6. 

Similar to Michigan, the mobility of infected and recov-
ered sub-populations are higher around the highly infected 
Mexico City. Mexico is about 3000 km long from north to 
south and 1900 km wide from east to west–scales that can 

Fig. 5   Inferred infection rate ( � ), death rate(� ), recovery rate ( � ), effective reproduction rate ( r
0
 ) in Mexico starting from lockdown, March 23, 

2020. Time-resolved dynamics may be seen as movies in Supplementary Information: mexico_parameter.mp4
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help place the diffusivities in Fig. 6 in perspective. Unlike 
the case in Michigan where there were multiple bursts 
in different cities, the mobilities of all sub-populations 

became stable after about 5 months from March 23, 2020. 
This may reflect differences in the proclivity toward 
domestic/local mobility of the populations of Michigan 
and Mexico–two regions with strongly contrasting social, 
economic and cultural characteristics.

Finally, taking the inferred parameters on the last day 
used for inference (Day 281), we predicted the evolution of 
sub-populations for three weeks (Days 282 to 303) using 
the inferred model. Figs. 7 and 8 show the predicted spa-
tio-temporal evolution of the infected population against 
the raw data for both Michigan and Mexico. The inferred 
models captured closely the evolution of the infected-sub-
populations, indicating that the dynamics of the disease 
tended to be steady in January 2021. The prediction of 
recovered and deceased sub-populations are shown in 
Figs. 9 and 10 under "Appendix".

6 � Conclusion

This communication builds upon our previous work [11] 
on system inference and machine learning from data to 
study the progression of COVID-19 across the state of 

Fig. 6   Inferred diffusivities of the susceptible, infected, and recov-
ered sub-populations at day 281 at Mexico starting from lockdown, 
March 23, 2020. Mexico is about 3000 km long from north to south 

and 1900 km wide from east to west–scales that can help place the 
diffusivities in perspective. The time-resolved dynamics may be seen 
as movies in Supplementary Information: mexico_parameter.mp4

Fig. 7   Prediction of infected population for 3 weeks against the data 
for Michigan
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Michigan. We extended the PDE SIRD model by allowing 
the infection rate, death rate and the recovery rate, as well 
as the diffusivities of the susceptible, infected, and recov-
ered sub-populations to vary over space and time. Using 
field inversion to infer the parameters as finite-dimensional 
fields on time scales of a single day, we obtained mod-
els to predict the evolution of disease with high accuracy. 
This provides us with the ability to analyze the dynamics 
of the disease through the inferred parameters, and make 
accurate predictions within a reasonable time frame. Par-
ticularly, we can detect the evidence of time and spatially 
varying mobility of the population through the simple 
diffusion-reaction models instead of the relying on the 
agent-based models which require individual’s mobility 
data. The latter can prove challenging, technically as well 
as politically, to obtain.

As discussed in Sect. 5, our inferred models capture the 
geographical spread of infection, the number of deaths and 
the size of the recovered population starting from one highly 
infected area to its surrounding cities and eventually spread-
ing to further areas. Particularly, the higher infection and 
death rates in areas with low infection at later times suggests 
that more attention is needed in such locations. This may be 
due to a lack of medical services, or a lack of compliance 
with mitigation strategies. Our inferred models also reveal 
higher mobility surrounding the highly infected areas sug-
gesting the importance of quarantine and social distancing.

The spread of COVID-19 has exhibited large variations 
in space and time, and the data has shown that its repro-
duction is very dependent upon each regional population: 
its population densities, culture and political environments 

(e.g. compliance with government mandates, resources, 
etc.) Our model introduces seven spatio-temporal param-
eters that, although they can lead to overfitting, are needed 
to resolve variations and make accurate and specific popula-
tion predictions over short times of the order of two weeks. 
In such settings, health policy makers can make decisions 
and issue mandates by relying on two week predictions in 
their specific populations. This is what our model was able 
to achieve.

Finite-dimensional representation allows the parameters 
to accurately capture the spatial dependence, however the 
non-parametric representation makes the projection of these 
parameters beyond the data range extremely challenging. A 
prediction cannot be made with confidence if the dynamics 
of the disease reflected by these parameters are not stable. Of 
course, extrapolation is challenging in almost all data-driven 
methods. One possible alternate is to develop surrogate mod-
els of these parameters via time dependent neural networks 
under the constraints of the SIRD model to learn the spatial 
variation in time, and thus to make reasonable prediction of 
the dynamics in the evolution the disease, such as we have 
demonstrated previously [11]. Nevertheless, without includ-
ing factors such as mobility restrictions or other mandates, 
only short time predictions may be accurate.

A Appendix: Additional Results

See Figs. 9 and 10.

Fig. 8   Prediction of infected 
population for 3 weeks against 
the data for Mexico. The inset 
adjacent to the map of Mexico 
is a magnified view of the 
region around Mexico City
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Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11831-​021-​09643-1.
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