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Abstract
The timing and sequence of safe campus reopening has remained the most controversial topic in higher education since the 
outbreak of the COVID-19 pandemic. By the end of March 2020, almost all colleges and universities in the United States 
had transitioned to an all online education and many institutions have not yet fully reopened to date. For a residential campus 
like Stanford University, the major challenge of reopening is to estimate the number of incoming infectious students at the 
first day of class. Here we learn the number of incoming infectious students using Bayesian inference and perform a series 
of retrospective and projective simulations to quantify the risk of campus reopening. We create a physics-based probabilis-
tic model to infer the local reproduction dynamics for each state and adopt a network SEIR model to simulate the return of 
all undergraduates, broken down by their year of enrollment and state of origin. From these returning student populations, 
we predict the outbreak dynamics throughout the spring, summer, fall, and winter quarters using the inferred reproduction 
dynamics of Santa Clara County. We compare three different scenarios: the true outbreak dynamics under the wild-type 
SARS-CoV-2, and the hypothetical outbreak dynamics under the new COVID-19 variants B.1.1.7 and B.1.351 with 56% and 
50% increased transmissibility. Our study reveals that even small changes in transmissibility can have an enormous impact 
on the overall case numbers. With no additional countermeasures, during the most affected quarter, the fall of 2020, there 
would have been 203 cases under baseline reproduction, compared to 4727 and 4256 cases for the B.1.1.7 and B.1.351 vari-
ants. Our results suggest that population mixing presents an increased risk for local outbreaks, especially with new and more 
infectious variants emerging across the globe. Tight outbreak control through mandatory quarantine and test-trace-isolate 
strategies will be critical in successfully managing these local outbreak dynamics.

1 � Motivation

More than half a million cases of COVID-19 have been 
reported at United States colleges and universities since the 
beginning of the pandemic. Although many students, staff, 
and faculty have been immunized since vaccination became 
available in December 2020, more than 120,000 of all cases 
have occurred since January 2021 [21]. This is alarming, 

especially in view of the newly emerging variants of COVID-
19 that are more infectious, and potentially more dangerous 
to the younger population [4]. American institutions of higher 
education remain faced with a difficult choice: maintaining 
campus life while exposing staff and students to a danger-
ous disease, or closing the campus at the risk of educational, 
mental, and financial disruption [19]. In most cases, univer-
sity administrations soon realized that the risks of maintaining 
normal in-person learning during the pandemic were too grave 
and switched to an all-online instruction. Stanford University 
was the first major university to announce this transition on 
March 6, 2020. Within the following week, many colleges and 
universities sent home their students and by April 4, 2020, 
1,400 university campuses had been closed [20]. While it 
became rapidly clear that campuses would not reopen for the 
remainder of the academic year, the next major question was 
to decide on possible reopening for the fall of 2020, especially 
in the light of the increase in prevalence among young adults. 
Indeed, young adults aged 20 through 29 years contributed 
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substantially to the increase in COVID-19 infections across 
the southern United States during June 2020 [1].

One of the main risks associated with campus reopening 
is bringing students from high prevalence regions to campus 
and allowing them to mix with other students, possibly from 
low prevalence regions [9, 17]. Despite various mitigating 
strategies including testing, quarantine, contact tracing, face-
mask usage, and disinfection [18, 30], the risk of creating an 
uncontrollable outbreak and spreading the disease to a large 
part of the campus population remains exceptionally high as 
demonstrated by the cautious reopening followed by the rapid 
closing of the University of North Carolina at Chapel Hill in 
August 2020 [29]. Despite some initial hopes of inviting stu-
dent back to campus for the winter term, Stanford University 
remained closed to the majority of its students until the end 
of winter 2020.

The objectives of this study are twofold: First, we perform a 
retrospective study to evaluate the risks that would have been 
associated with the reopening of Stanford University in the 
spring, summer, and fall of 2020, and winter of 2021. Our 
analysis accounts for the full regional diversity of the student 
population by tracking their origin states and each state’s 
COVID-19 prevalence. We infer the critical parameters of the 
underlying network SEIR model using Bayesian analysis and 
estimate the number of students who would have been infected 
if the campus had fully reopened. Second, we complement 
our analysis by exploring the possible effect of variants on the 
overall disease dynamics.

2 � Methods

2.1 � Epidemiology Modeling

We model the local epidemiology of the COVID-19 outbreak 
using an SEIR model [2, 6, 14, 23] with four compartments, 
the susceptible, exposed, infectious, and recovered popula-
tions, governed by the set of ordinary differential equations,

Here (◦̇) = d (◦)∕d t denotes the time-derivative of the com-
partment (◦) and N = S + E + I + R is the total population. 
Three parameters govern the transition from one compart-
ment to the next: the contact rate � , the latent rate � , and 
the infectious rate � . They are the inverses of the contact 
period B = 1∕� , the latent period A = 1∕� , and the infec-
tious period C = 1∕� . To keep the number of parameters 
manageable, we assume that latent rate � = 1∕2.5 days−1 and 
the infectious rate � = 1∕6.5 days−1 are disease-specific for 
COVID-19, and constant in space and time [10, 13, 27]. To 

(1)

Ṡ = − 𝛽(t) S I∕N

Ė = + 𝛽(t) S I∕N − 𝛼 E

İ = + 𝛼 E − 𝛾 I

Ṙ = + 𝛾 I .

account for social behavioral changes during the course of 
the pandemic, we employ a dynamic contact rate � = �(t) 
that varies both in space and time [15, 24]. For easier inter-
pretation, we express the contact rate,

in terms of the dynamic effective reproduction number �(t) . 
Here, we adopt a stochastic process approach to define �(t) 
and construct a Gaussian process latent variable model. We 
assume a one-mean Gaussian process prior [25],

which draws function values from a multivariate normal dis-
tribution. This normal distribution is parameterized in terms 
of the covariance function k [ t, t� ] and assumes that �(t) is 
constant within a time window of five days. To account for 
a smooth non-linear mapping from the latent to the data 
space, we choose an exponentiated quadratic form of the 
covariance function as

where �2 and �2 denote two kernel hyperparameters [7, 12].

2.2 � Mobility Modeling

We represent the disease dynamics in each state by its own 
local SEIR model and connect all 50 states to Stanford campus 
using a discrete mobility network [14]. Figure 1 shows that this 
network consists of nnd = 50 + 1 nodes, which represent the 
individual states, and neg = 50 weighted edges, which repre-
sent the strength of their connection to Stanford campus.

We approximate the weights of the edges by the number 
incoming students from each state and represent this informa-
tion in the adjacency matrix Aij and in the degree matrix DII,

The difference between the degree matrix DIJ and the adja-
cency matrix AIJ defines the weighted graph Laplacian LIJ , 
[3, 14, 23],

Since we focus on the return to campus, we only simulate 
the mobility to Stanford campus and neglect the intrastate 
mobility between individual states. This implies that only a 
single row and column of the adjacency matrix and degree 
matrix are populated [16], AI1 = A1J ≠ 0 and D11 ≠ 0 , 
while all other entries are zero, AIJ = 0 for all I, J ≠ 1 and 
DII = 0 for all I ≠ 1 . We assume that all students arrive at 

(2)�(t) = �(t) � ,

(3)�(t) ∼ G
{
1, k [ t, t� ]

}
,

(4)k
[
t, t�

]
= �2 exp

(
−

(
t − t�

)2

2�2

)
,

(5)DII = diag

nnd∑

J=1,J≠I

AIJ ,

(6)LIJ = DIJ − AIJ .



4227Effects of B.1.1.7 and B.1.351 on COVID‑19 Dynamics: A Campus Reopening Study﻿	

1 3

the beginning of a given term rather than continuously over 
time. In this sense, we only use the network structure to 
calculate the influx of students at the first day of the term as 
an initial condition for the model.

2.3 � Bayesian Inference

Our model local SEIR features four parameters: two parame-
ters that define the initial exposed and infectious populations 
E0 and I0 , and two kernel-hyperparameters for the Gaussian 
process prior �2 and l2 to model the dynamics of the effec-
tive reproduction number �(t) . This implies that our network 
SEIR model introduces four model parameters for each state,

We use Bayes’ theorem to estimate the posterior probability 
distribution of the parameters � , such that the statistics of the 
simulated daily new cases ΔI(�, t) agree with the reported 
daily new cases ΔÎ(�, t),

Here P(𝛥Î(t) |�) is the likelihood, the conditional probabil-
ity of the data Î(t) for given fixed parameters � ; P(�) is the 
prior, the probability distribution of the model parameters 
� ; P(𝛥Î(t)) is the marginal likelihood; and P(� |𝛥Î(t)) is the 
posterior, the conditional probability of parameters � for 
given data 𝛥Î(t).

Likelihood The likelihood function evaluates the good-
ness of fit between the simulated new case numbers 
�I(�, t) = I(�, t + 1) − I(�, t) and the reported new case 
numbers 𝛥Î(t) . For the individual likelihood functions 
L(𝛥Î(ti) |�) , at each time point ti , we adopt a Student’s t-dis-
tribution with a case-number-dependent width,

(7)� = {E0, I0, �
2, �2} .

(8)P(� |𝛥Î(t)) = P(𝛥Î(t) |�)P(�)
P(𝛥Î(t))

.

We choose this distribution because it features heavy tails 
that makes the parameter inference more robust with respect 
to outliers [5, 11]. Here, we assume a half Cauchy distribu-
tion for the likelihood width � between the simulated and 
reported new cases �I(�, t) and 𝛥Î(t),

The product of all i = 0.., n likelihood functions L(𝛥Î(ti) |�) , 
evaluated at the daily time points ti , defines the overall likeli-
hood P(Î(t)|�),

where the product symbol 
∏n

i=0
 denotes the multiplication 

of all i = 0.., n daily likelihoods across the time window of 
the simulation.

Priors. For the prior probability distributions P(�) , we select 
log-normal distributions for the initial exposed and infec-
tious populations,

and

and the two kernel hyperparameters that define the expo-
nentiated quadratic form of the covariance function for the 
Gaussian process model, a relatively weakly-informative 
half Cauchy prior that controls the amplitude and confines 
the distribution to positive values as

and and the characteristic length-scale with a Gamma hyper-
prior, which we introduce for greater generality as

 Posteriors We evaluate Bayes’ theorem (8) using Markov 
Chain Monte Carlo sampling [15, 22, 24] to obtain 
the posterior distribution P(� |𝛥Î(t)) of the parameters 
� = {E0, I0, �

2, �2} in terms of the likelihood P(Î(t)|�) 
and prior probability distributions P(�) . We adopt the NO-
U-Turn sampler [8] implemented in the Python package 
PyMC3 [26]. From the converged posterior distributions, 
we sample multiple combinations of parameters � . From 
these posterior samples, we quantify and plot the means and 

(9)
L(𝛥Î(ti) ��) ∼ StudentT𝜈=4( mean = 𝛥I(�, ti),

width = 𝜎
√
𝛥I(�, ti)).

(10)� ∼ HalfCauchy(� = 1) .

(11)P(Î(t)|�) =
n∏

i=0

L(𝛥Î(ti) |�),

(12)E0 ∼ LogNormal(𝜇 = log(𝛥Î(t=3)), 𝜎 = 1.0)

(13)I0 ∼ LogNormal(𝜇 = log(𝛥Î(t=0)), 𝜎 = 1.0)

(14)�2 ∼ HalfCauchy(� = 0.5)

(15)�
2 ∼ Gamma(� = 2, � = 0.1) .

Fig. 1   Mobility modeling. Discrete graphs of the returning student 
network model with nnd = 51 nodes and neg = nnd − 1 edges that rep-
resent the mobility of students returning to Stanford University cam-
pus
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95% credible intervals of the reproduction number �(t) and 
the simulated daily new cases �I(�, t) for all 50 states.

2.4 � COVID‑19 Outbreak and Mobility Data

For the COVID-19 outbreak data, we draw the COVID-19 
history for all 50 states and Santa Clara County [28]. From 
these data, we extract the daily newly cases Î(t) . To eliminate 
weekday-weekend fluctuations, we smoothen the outbreak 
data by applying a moving averaging window of seven days. 
For the mobility data, we draw the student demographics 
of all Stanford University undergraduates enrolled in 2020, 
broken down by their origin state and their year of study, 
frosh, sophomore, junior, or senior year.

2.5 � Campus Opening Forecast

We analyze the COVID-19 dynamics for campus opening at 
four different quarters and for the three currently most com-
mon virus variants. To model the effect of campus opening, 
we allow students to travel back to Stanford campus using 
our network SEIR model. We investigate campus opening 
for the spring quarter on April 6, 2020, the summer quarter 
on June 22, 2020, the fall quarter September 14, 2020 and 
the winter quarter January 11, 2021. For each quarter, we 
estimate the effects of opening by assuming the dynamic 
reproduction number �(t) of Santa Clara County, that we 
infer directly from the local COVID-19 outbreak data from 
Santa Clara County. To model the effects of three differ-
ent virus variants, in addition to the baseline simulation, 
we consider the B.1.1.7 variant with an increased transmis-
sibility of 56% and the B.1.351 variant with an increased 
transmissibility of 50% [4]. For both virus variants, we scale 
our inferred effective reproduction number of Santa Clara 
by multiplication with the increased transmissibility and 
perform forward simulations for all four quarters, spring, 
summer, fall, and winter.

3 � Results

3.1 � COVID‑19 Outbreak Dynamics in the United 
States

Figure 2 illustrates the outbreak dynamics of COVID-19 in 
the United States from the beginning of the outbreak until 
January 17, 2021. For each state, the bottom graph repre-
sents the new confirmed cases �I(t) as dots and our inferred 
dynamic SEIR model fit 𝛥Î(t) as orange curves. The shaded 
regions represent our inferred 95% credible interval on the 
daily new cases. The top graph represents the inferred evo-
lution of the effective reproduction number �(t) . The solid 
lines describe the median values of �(t) and the shaded 

areas represent the 95% credible intervals. The side-by-side 
comparison of all 50 states showcases the different disease 
dynamics and the varying timing of the COVID-19 waves in 
each state. While most states saw high effective reproduction 
numbers and a strong increase in new COVID-19 cases dur-
ing the months of November and December 2020, the early 
outbreak dynamics displayed larger regional differences in 
waves between the individual states. These differences are of 
particular interest for informing the intrinsic risk that invit-
ing students back to campus entails for a university campus 
like Stanford. For example, New York had a large outbreak 
at the beginning of the pandemic but managed to keep its 
effective reproduction numbers low until the end of the 
summer. In contrast, states like Arizona, California, Flor-
ida, Nevada, South Carolina and Texas saw a high regional 
COVID-19 prevalence by the end of June 2020, around the 
time Stanford’s summer quarter was about to start.

To invite undergraduates from all of the United States 
back to campus, we need to consider the epidemiological 
status of each states at the time a new quarter starts, which 
is showcased in Fig. 3. The left plot summarizes the effective 
reproduction number variation and the right plot showcases 
the exposed and infectious population sizes throughout all 
the states at the beginning of each quarter. Figure 3 shows 
that, at the beginning of the spring, summer, and fall quar-
ters, most states across the United States saw imminent 
outbreaks with effective reproduction numbers well above 
one. At the same time, the relative sizes of the exposed and 
infectious populations were still relatively small. At the start 
of the winter quarter, the opposite situation occurred as most 
states were recovering from a new COVID-19 wave. Repro-
duction were well below one in most states, but the relative 
exposed E and infectious I population sizes were still sig-
nificantly larger than at the beginning of the other quarters.

For this study, these population sizes are of most inter-
est, as they determine how many infectious students will 
return to campus. The spring, summer, fall, and winter 
quarter started on April 6, June 22, September 14, 2020 
and Jan 11, 2021. Table  1 summarizes the infectious 
and exposed populations in each state for each of these 
potential campus reopening dates. On April 6, the larg-
est exposed and infectious populations were 0.43% in 
New York, 0.34% in New Jersey, and 0.20% in Massa-
chusetts. Consequently, for the spring quarter, students 
returning from the East Coast had the highest chances 
of bringing COVID-19 back to campus. On June 22, we 
inferred a 0.35%, 0.22% and 0.20% exposed and infec-
tious population in Arizona, Florida, and South Carolina. 
On September 14, students returning from North Dakota, 
South Dakota, and Wisconsin had a 0.41%, 0.29% and 
0.26% chance to be exposed or infectious. On Jan 11, 
peak exposed and infectious populations were recorded 
at 1.04%, 0.93%, and 0.84% in Arizona, California, and 
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South Carolina. These numbers clearly show the signifi-
cantly higher risk in inviting students back to campus at 
the beginning of the winter quarter: The average exposed 

and infectious populations across all states were 0.54% at 
the start of the winter quarter, compared to 0.13%, 0.08% 
and 0.06% for the fall, summer, and spring.

Fig. 2   Outbreak dynamics of COVID-19 in the United States. Effec-
tive reproduction number (red and green curves) and daily new cases 
(circles) with model fit (orange curves) for all 50 states from the 

beginning of the outbreak until January 17, 2021. Solid lines repre-
sent the median values, shaded areas highlight the 95% credible inter-
vals
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Table 1   Outbreak dynamics of 
COVID-19 in the United States

State Ispring Espring Isummer Esummer Ifall Efall Iwinter Ewinter 1st 2nd 3rd 4th 5th

Alabama 0.024 0.013 0.097 0.051 0.124 0.054 0.460 0.154 4 5 5 5 1
Alaska 0.010 0.004 0.021 0.012 0.070 0.030 0.241 0.088 5 3 5 6 1
Arizona 0.015 0.007 0.230 0.124 0.056 0.030 0.765 0.279 31 28 32 28 11
Arkansas 0.013 0.007 0.112 0.053 0.158 0.075 0.562 0.210 3 3 6 8 –
California 0.019 0.008 0.076 0.043 0.060 0.025 0.670 0.257 530 593 607 591 280
Colorado 0.037 0.017 0.025 0.012 0.047 0.028 0.263 0.090 25 37 35 35 17
Connecticut 0.125 0.068 0.018 0.006 0.028 0.013 0.448 0.175 15 15 20 21 9
Delaware 0.064 0.040 0.047 0.027 0.071 0.028 0.489 0.196 4 2 3 2 4
Florida 0.030 0.013 0.134 0.088 0.084 0.036 0.428 0.160 58 53 58 42 17
Georgia 0.041 0.019 0.080 0.049 0.103 0.042 0.533 0.209 39 35 27 40 10
Hawaii 0.009 0.003 0.005 0.003 0.060 0.020 0.073 0.026 14 10 7 13 3
Idaho 0.024 0.006 0.054 0.037 0.103 0.050 0.320 0.120 4 3 4 4 2
Illinois 0.056 0.030 0.037 0.016 0.096 0.041 0.317 0.116 52 52 62 53 23
Indiana 0.041 0.020 0.035 0.016 0.083 0.033 0.427 0.147 14 18 15 13 5
Iowa 0.018 0.010 0.069 0.034 0.157 0.076 0.287 0.099 7 4 6 6 1
Kansas 0.015 0.007 0.044 0.026 0.122 0.059 0.449 0.166 7 7 10 4 –
Kentucky 0.015 0.008 0.029 0.014 0.100 0.043 0.500 0.194 6 8 5 5 –
Louisiana 0.145 0.046 0.096 0.058 0.088 0.034 0.458 0.169 3 5 8 4 4
Maine 0.014 0.006 0.015 0.007 0.014 0.006 0.274 0.120 1 2 4 5 3
Maryland 0.052 0.031 0.043 0.017 0.061 0.024 0.308 0.122 27 28 28 33 15
Massachusetts 0.125 0.075 0.023 0.008 0.033 0.016 0.530 0.195 24 26 21 26 10
Michigan 0.083 0.032 0.019 0.010 0.051 0.021 0.197 0.070 19 21 18 19 8
Minnesota 0.008 0.004 0.043 0.019 0.080 0.043 0.201 0.066 14 25 19 23 7
Mississippi 0.031 0.017 0.103 0.059 0.108 0.047 0.458 0.177 3 – 1 3 2
Missouri 0.023 0.011 0.036 0.019 0.157 0.072 0.307 0.097 10 11 12 9 1
Montana 0.009 0.003 0.012 0.008 0.093 0.056 0.283 0.102 2 2 3 5 4
Nebraska 0.014 0.009 0.052 0.022 0.120 0.058 0.303 0.113 1 5 6 4 3
Nevada 0.028 0.012 0.088 0.056 0.068 0.030 0.442 0.149 7 12 13 11 11
New Hampshire 0.023 0.010 0.015 0.006 0.016 0.007 0.364 0.159 2 2 3 2 2
New Jersey 0.234 0.107 0.033 0.015 0.029 0.014 0.434 0.178 40 36 36 28 15
New Mexico 0.021 0.012 0.045 0.024 0.035 0.017 0.373 0.132 6 13 13 9 7
New York 0.297 0.133 0.023 0.009 0.025 0.011 0.509 0.214 79 81 70 64 28
North Carolina 0.014 0.007 0.080 0.039 0.078 0.034 0.475 0.188 19 27 25 21 6
North Dakota 0.013 0.007 0.026 0.013 0.269 0.138 0.167 0.056 3 – – 2 1
Ohio 0.019 0.010 0.035 0.020 0.056 0.022 0.412 0.154 27 17 23 17 4
Oklahoma 0.017 0.007 0.053 0.027 0.155 0.079 0.606 0.207 14 9 5 3 2
Oregon 0.010 0.004 0.028 0.014 0.032 0.015 0.173 0.065 36 26 27 34 14
Pennsylvania 0.067 0.034 0.025 0.013 0.040 0.017 0.379 0.135 15 17 19 33 13
Rhode Island 0.094 0.070 0.033 0.012 0.061 0.029 0.599 0.213 2 3 1 6 –
South Carolina 0.021 0.009 0.130 0.074 0.130 0.059 0.573 0.264 6 5 7 3 3
South Dakota 0.034 0.030 0.042 0.018 0.193 0.101 0.264 0.093 1 4 5 3 2
Tennessee 0.022 0.009 0.069 0.041 0.134 0.060 0.520 0.165 7 9 13 9 5
Texas 0.017 0.009 0.100 0.058 0.112 0.065 0.478 0.202 91 87 90 101 41
Utah 0.021 0.009 0.097 0.048 0.128 0.078 0.555 0.192 11 12 8 14 5
Vermont 0.035 0.012 0.007 0.003 0.005 0.002 0.162 0.069 2 1 3 – 2
Virginia 0.021 0.013 0.040 0.017 0.073 0.029 0.404 0.195 29 26 25 28 15
Washington 0.033 0.011 0.038 0.019 0.038 0.017 0.209 0.072 60 62 63 56 32
West Virginia 0.012 0.006 0.013 0.008 0.068 0.031 0.469 0.166 3 1 3 – 1
Wisconsin 0.016 0.007 0.046 0.023 0.161 0.094 0.317 0.110 13 13 10 11 9
Wyoming 0.020 0.010 0.029 0.015 0.067 0.040 0.347 0.133 2 2 2 1 3

Percentages of infectious, and exposed populations for four consecutive quarters and number of 1st, 2nd, 
3rd, 4th, and 5th year undergraduates originating from each state
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3.2 � COVID‑19 Influx into Stanford Campus

The risk of bringing students back to campus depends on 
both the regional covid prevalence and the state-specific 
origin of the returning student population. The last five 
columns of Table 1 report the origin of Stanford Univer-
sity’s current undergraduate population. Figure 4 show-
cases the inferred amount of exposed and infectious stu-
dents returning to campus from each state. We estimate 
the COVID-19 influx by multiplying the state-specific 
prevalence with the number of students returning from 
each state, and summarize these values in Table 2. For a 
potential opening in the spring quarter, we inferred one 
COVID-19 exposed or infectious student returning from 
New York, one from California, and one from New Jersey. 
For a summer opening, our results suggest that we could 
have expected three exposed or infectious students return-
ing from California and one exposed or infectious student 
from Texas and Florida. For a fall opening, we would have 
seen two exposed or infectious individuals returning from 
California and one from Texas. At the beginning of the 
winter quarter, the high COVID-19 prevalence throughout 
the United States would have resulted in 24 exposed or 
infectious students returning from within the state, three 
from Texas, two from New York, and one from Arizona, 
Florida, Georgia, Illinois, New Jersey, Massachusetts, 
Washington, Virginia, North Carolina, Maryland, and 
Colorado each.

3.3 � Local Outbreak Dynamics in Santa Clara County

Figure 5 illustrates the local outbreak dynamics for Santa 
Clara County, home of Stanford University.

The bottom graph depicts the reported daily new cases �I(t) 
as dots and our inferred dynamic SEIR model fit 𝛥Î(t) as orange 
curve. The shaded regions highlight the inferred 95% credible 

interval on the new confirmed cases. The top graph showcases 
the inferred temporal evolution of the effective reproduction 
number �(t) in Santa Clara County, which serves as the input 
to our forward predictions in the following example. The solid 
lines describe the median values of �(t) and the shaded area 
depicts the 95% credible interval. Similar to the state of Califor-
nia in Fig. 2, Santa Clara County saw two significant COVID-
19 prevalence waves, the first at the beginning of July and the 
second from early November to the beginning of December.

3.4 � Risk Assessment of new B.1.1.7 and B.1.351 
Variants

Figures 6, 7 and 8 summarize our forward risk analysis 
for reopening campus under three different transmissibil-
ity scenarios: the true outbreak dynamics under the wild-
type SARS-CoV-2, and the hypothetical outbreak dynamics 
under the new COVID-19 variants B.1.1.7 and B.1.351 with 
56% and 50% increased transmissibility.

Figure 6 represents a scenario for the wild-type SARS-
CoV-2, where no new COVID-19 virus variants are brought 
into campus by the returning students. In this scenario, the 
amount of new cases per day within the first 100 days after 
campus reopening remains limited to a maximum of two 
students if Stanford University reopened in the spring of 
2020. For the same scenario, we would expect a maximum 
of three, six, and five cases per day after reopening campus 
for the summer, fall, and winter quarters. In total, reopen-
ing for spring, summer, or fall quarter would have resulted 
in 58 cases, 162 cases, and 203 cases during the first 100 
days after reopening. For reopening campus at the beginning 
of the winter quarter, a total of 86 cases would have to be 
expected by March 3, 2021.

Figure 7 represents the scenario where returning stu-
dents bring in the new B.1.1.7 COVID variant which has 
an increased transmissibility of 56%. In this scenario, our 

Fig. 3   Epidemiological status of 
the incoming student population 
for four consecutive quarters. 
Effective reproduction statistics 
and size of the exposed and 
infectious populations at the 
beginning of the spring, sum-
mer, fall, and winter quarters
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forward predictions estimate significantly higher daily con-
firmed case numbers compared to the previous scenario. 
If students would have brought in the new B.1.1.7 COVID 
variant during spring quarter campus reopening, we would 
expect to see a significant outbreak amounting to 146 new 
cases per day on day 92 after reopening. Bringing students 
back campus during the summer quarter under the B.1.1.7 
COVID-19 variant scenario would have led to a more flat-
tened outbreak curve peaking at 44 new daily cases on day 
55. Reopening Stanford University for the fall quarter with 
the new B.1.1.7. variant circulating on campus would have 
led to a steep outbreak wave reaching a maximum amount 
of 158 new confirmed cases on day 81. Finally, reopening in 
winter would have generated a slow and controlled spread-
ing. Within the first 52 days, the maximum amount of daily 
new daily cases would have amounted to 6 on day 50. In 
total, reopening campus under the reproduction dynamics of 
the new B.1.1.7 variant would have led to 3329, 2555, and 

4727 cases 100 days after reopening for the spring, summer, 
and fall quarters.

Figure 8 represents a similar scenario in which we assume 
that the new B.1.351. variant would be the dominant vari-
ant in the undergraduate population. Similar to the B.1.1.7 
scenario, an increased transmissibility would have resulted 
in a steep wave when reopening campus at the beginning of 
the spring and fall quarters. More specifically, we could have 
expected 117 new cases on day 97 and 139 new cases on day 
84 for the spring and fall quarters. A more flattened COVID-
19 wave upon summer reopening would have peaked at 34 
daily new cases on day 55. For winter quarter reopening, the 
amount of new cases would have stayed relatively constant at 
approximately four to five new cases per day during the first 
52 days of the quarter. In total, the B.1.351 variant scenario 
predicts 2581, 2117, and 4256 cases 100 days after reopen-
ing for the spring, summer, and fall quarters and 237 cases 
52 days after reopening for the winter quarter.

Fig. 4   COVID-19 influx into Stanford campus. Incoming infectious and exposed students from the United States at the beginning of the spring, 
summer, fall, and winter quarters
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4 � Conclusion

The COVID-19 pandemic remains an enormous challenge 
for higher education, especially for residential college cam-
puses with a diverse student population from all across the 
country. Most institutions have cautiously limited student 
access to campus throughout the first year of the pandemic, 
but are now gradually inviting their students back to cam-
pus. In view of massive immunization campaigns, it seems 
natural to assume that it would now be safe to now transition 
back to in person instruction. However, since the early out-
break of the COVID-19 pandemic in December 2019, new 
and more contagious variants of the virus have emerged and 
COVID-19 is now beginning to spread predominantly into 
younger age groups. Taken together, these events bring back 
the question about safe campus opening.

In this study, we explore the effects of campus reopening 
for the example of Stanford University, a residential campus 
in Santa Clara County, California, with an undergraduate 
enrollment of 6479 students. For four consecutive quarters, 
spring, summer, fall, and winter, we virtually open Stanford 
campus and invite the undergraduate population from all 50 
United States to return to campus under the current outbreak 
conditions of their home states. We use a Bayesian analysis 
to infer the disease parameters of each state using reported 
case data and extract the exposed and infectious populations 
at the first day of class for all four quarters. We find that 4, 7, 
6, and 46 infected students would have brought the SARS-
CoV-2 virus to campus if Stanford had opened in spring, 
summer, fall, and winter.

With these initial conditions, we perform a forward analy-
sis and compare three scenarios: the true outbreak dynamics 
under the initial wild-type SARS-CoV-2, and the hypotheti-
cal outbreak dynamics under the new B.1.1.7 and B.1.351 
variants with 56% and 50% increased transmissibility. We 
assume that the local outbreak dynamics on Stanford campus 
are driven by the effective reproduction number of Santa 
Clara County that we infer from the counties reported case 
data using Bayesian inference. Our study suggests that, with 
no additional countermeasures, the most affected quarter 
would have been the fall of 2020, with 203 cases under base-
line reproduction, and 4727 and 4256 cases for the B.1.1.7 
and B.1.351 variants.

Strikingly, the outbreak dynamics of the B.1.1.7 and 
B.1.351 variants are significantly different from those of the 
wild-type SARS-CoV-2 version. In fall, the wild-type curve 
increases monotonically until the end of the quarter. In con-
trast, for both variants, the outbreak curves peak towards the 
last third of the quarter, with 158 daily new cases for B.1.1.7 
and 139 for B.1.351, and then steadily decline. This sug-
gests that both variants are sufficiently infectious to create a 
state of herd immunity: A large enough group of students, 

Table 2   COVID-19 influx into Stanford campus

Incoming infectious and exposed students from the United States at 
the beginning of the spring, summer, fall, and winter quarters

States spring summer fall winter enrolled

Alabama 0 0 0 0 20
Alaska 0 0 0 0 20
Arizona 0 0 0 1 130
Arkansas 0 0 0 0 20
California 1 3 2 24 2601
Colorado 0 0 0 1 149
Connecticut 0 0 0 0 80
Delaware 0 0 0 0 15
Florida 0 1 0 1 228
Georgia 0 0 0 1 151
Hawaii 0 0 0 0 47
Idaho 0 0 0 0 17
Illinois 0 0 0 1 242
Indiana 0 0 0 0 65
Iowa 0 0 0 0 24
Kansas 0 0 0 0 28
Kentucky 0 0 0 0 24
Louisiana 0 0 0 0 24
Maine 0 0 0 0 15
Maryland 0 0 0 1 131
Massachusetts 0 0 0 1 107
Michigan 0 0 0 0 85
Minnesota 0 0 0 0 88
Mississippi 0 0 0 0 9
Missouri 0 0 0 0 43
Montana 0 0 0 0 16
Nebraska 0 0 0 0 19
Nevada 0 0 0 0 54
New Hampshire 0 0 0 0 11
New Jersey 1 0 0 1 155
New Mexico 0 0 0 0 48
New York 1 0 0 2 322
North Carolina 0 0 0 1 98
North Dakota 0 0 0 0 6
Ohio 0 0 0 0 88
Oklahoma 0 0 0 0 33
Oregon 0 0 0 0 137
Pennsylvania 0 0 0 0 97
Rhode Island 0 0 0 0 12
South Carolina 0 0 0 0 24
South Dakota 0 0 0 0 15
Tennessee 0 0 0 0 43
Texas 0 1 1 3 410
Utah 0 0 0 0 50
Vermont 0 0 0 0 8
Virginia 0 0 0 1 123
Washington 0 0 0 1 273
West Virginia 0 0 0 0 8
Wisconsin 0 0 0 0 56
Wyoming 0 0 0 0 10
Total 4 7 6 46 6479
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Fig. 5   Local outbreak dynamics 
of COVID-19 in Santa Clara 
County. Effective reproduction 
number (red and green curves) 
and daily new cases (circles) 
with model fit (orange curves) 
for Santa Clara County from 
the beginning of the outbreak 
until March 3, 2021. Solid lines 
represent the median values, 
shaded areas highlight the 95% 
credible intervals

Fig. 6   Forward prediction 
of new COVID cases for the 
wild-type SARS-CoV-2. Each 
simulation begins with the num-
ber of returning exposed and 
infectious cases on the first day 
of class and uses the inferred 
effective reproduction number 
�(t) of Santa Clara County for 
the forward prediction through-
out the entire quarter

Fig. 7   Forward prediction 
of new COVID cases for the 
B.1.1.7 variant. Each simula-
tion begins with the number of 
returning exposed and infec-
tious cases on the first day of 
class and uses the inferred effec-
tive reproduction number �(t) 
of Santa Clara County, scaled 
by the 56% higher infectious-
ness of B.1.1.7, for the forward 
prediction throughout the entire 
quarter
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4727 for B.1.1.7 and 4256 for B.1.351, recover from infec-
tion throughout the fall quarter to protect the community 
from further spreading, although the reproduction number 
remains well above one. While these case numbers are cer-
tainly only an upper limit, since we neglect additional coun-
termeasures and test-trace-isolate strategies, they clearly 
highlight the effects of more infectious variants of the virus.

Infectious disease experts agree that it is highly likely that 
more infectious variants of the virus will emerge in the near 
future. Our study shows that, even if a new variant is only a 
few percent more contagious than the wild-type version of 
SARS-CoV-2, this can have tremendous consequences on 
the overall case numbers, and, ultimately, on the health care 
system. College campus administrators will need to maintain 
tight outbreak measures, quarantine, and isolation, to con-
tinue to successfully manage their local outbreak dynamics 
as more campuses reopen towards the fall.
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