Skip to main content
Log in

Application of Structural Control Systems for the Cables of Cable-Stayed Bridges: State-of-the-Art and State-of-the-Practice

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Stay cables are one of the key elements of cable-stayed bridges and are characterized by lightweight, low inherent damping, and high flexibility. They are continuously subjected to small-to large-amplitude vibrations due to various types of dynamic loads that may, in the long term, cause fatigue and fracture problems for the cable system, and may eventually compromise the safety of cable-stayed bridges. Thus, several countermeasures including surface profiling, cross-ties, and structural vibrational control systems have been used to improve the dynamic performance of stay cables. This article presents a comprehensive state-of-the-art and state-of-the-practice review of structural vibration control systems specifically designed and used for the cables in cable-stayed bridges. Generally, the stay cable dampers are classified as internal and external dampers. Consequently, important aspects of each control strategy are highlighted and various types of devices and their designs are discussed to find the best control solution for suppressing the cable vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

Abbreviations

CEC:

Cycle energy control

CFD:

Computational fluid dynamics

CVD:

Controlled viscous damping

D :

Diameter of the cable

DG:

Dry galloping

EHC:

Energy harvesting circuit

EIMD:

Electromagnetic inertial mass damper

EMD:

Electromagnetic device

EMDEH:

Electromagnetic damper cum energy harvester

EMSD:

Electromagnetic shunt damper

EMSD-ID:

Electromagnetic shunt damper-inerter damper device

FPB:

Friction pendulum bearing

FRP:

Fiber-reinforced polymer

HDR:

High-damping rubber

ID:

Inerter damper

IG:

Ice galloping

IMD:

Inertial mass damper

IVA:

Inerter-based vibration absorber

L:

Length of cable

LQG:

Linear–quadratic Gaussian

LQR:

Linear quadratic regulator

LRB:

Laminated rubber bearing

m :

Mass

MR:

Magneto-rheological

MSM:

Mode superposition method

NSD:

Negative stiffness damper

PSD:

Positive stiffness damper

P-VE:

Pseudo-viscoelastic

RWIV:

Rain-wind-induced vibration

S c :

Scruton number

SMA:

Shape memory alloy

TET:

Targeted-energy-transfer

TID:

Tuned inerter damper

TMD:

Tuned mass damper

TMD-MR:

Tuned mass damper-Magnetorheological

TM-HDR:

Tuned mass-high damping rubber

VID:

Viscous inerter damper

VIMD:

Viscous inertial mass damper

VIV:

Vortex-induced vibration

VSD:

Viscous-shear damper

WG:

Wake galloping

\(\zeta\) :

Damping ratio

\(\rho\) :

Density of air

References

  1. Shipyards A, Orleans N (1980) Dynamic behaviour of a cable-stayed bridge. Earthq Eng Struct Dyn 8:1–16

    Article  Google Scholar 

  2. Abdel-Ghaffar AM, Khalifa MA (1991) Importance of cable vibration in dynamics of cable-stayed bridges. J Eng Mechan 117:2571–2589

    Article  Google Scholar 

  3. H. Tabatabai, A. Mehrabi, Evaluations (2000), In: SPIE Proc. Ser., San Antonio, Texas, pp. 836–841

  4. Ali HM, Abdel-ghaffar AM (1994) Seismic energy dissipation for cable-stayed bridges using passive devices. Earthq Eng Struct Dyn 23:877–893

    Article  Google Scholar 

  5. B. fur Baudynamik (1996), Cable Vibrations, Report no. 1

  6. B. fur Baudynamik (1996) Cable Vibrations, Report no. 2

  7. Virlogeux M (2005) State-of-the-art in cable vibrations of cable-stayed bridges. Bridg Struct 1:133–168. https://doi.org/10.1080/15732480500301004

    Article  Google Scholar 

  8. Savor Z, Radic J, Hrelja G (2006) Cable vibrations at Dubrovnik bridge. Bridg Struct 2:97–106. https://doi.org/10.1080/15732480600855800

    Article  Google Scholar 

  9. R. Annan (2006) Friction damper test: report of test achieved with Hong Kong highways authorities on Kap Shui Mun Bridge

  10. E. de S. Caetano (2007) Control of Vibrations in Cable-Stayed Bridges

  11. Witthoft S, Kesner K, Poston RW (2008) Performance and repair design of stay cables with rain/wind-induced vibrations. J Perform Constr Facil 22:364–372. https://doi.org/10.1061/(asce)0887-3828(2008)22:6(364)

    Article  Google Scholar 

  12. Caetano E, Cunha A, Gattulli V, Lepidi M (2008) Cable–deck dynamic interactions at the International Guadiana bridge: on-site measurements and finite element modelling. Struct Control Heal Monit 15:237–264. https://doi.org/10.1002/stc

    Article  Google Scholar 

  13. Saaed TE, Nikolakopoulos G, Jonasson J-E, Hedlund H (2013) A state-of-the-art review of structural control systems. J Vib Control 21:919–937. https://doi.org/10.1177/1077546313478294

    Article  Google Scholar 

  14. Robinson WH, Tucker AG (1977) A lead-rubber shear damper. Bull New Zeal Natl Soc EarthquakeEngineering 10:151–153

    Article  Google Scholar 

  15. A. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Khatibi (2017) Numerical analysis of vertical pipe damper, in: 39th IABSE Symp. Eng. Futur., International Association for Bridge and Structural Engineering, Vancouver, Canada. Vol. 109. No. 13, pp. 2974–2980

  16. H Li, L Huo (2010), Advances in structural control in civil engineering in China. Math Probl Eng. https://doi.org/10.1155/2010/936081

  17. Fisco NR, Adeli H (2011) Smart structures: part I-Active and semi-active control. Sci Iran 18:275–284. https://doi.org/10.1016/j.scient.2011.05.034

    Article  Google Scholar 

  18. Fisco NR, Adeli H (2011) Smart structures: part II-Hybrid control systems and control strategies. Sci Iran 18:285–295. https://doi.org/10.1016/j.scient.2011.05.035

    Article  Google Scholar 

  19. Korkmaz S (2011) A review of active structural control: challenges for engineering informatics. Comput Struct 89:2113–2132. https://doi.org/10.1016/j.compstruc.2011.07.010

    Article  Google Scholar 

  20. K Ghaedi, Z Ibrahim, H Adeli, A Javanmardi (2017) , Invited review recent developments in vibration control of building and bridge structures, J Vibroengineering, Vol. 19, Issue 5, 2017, p. 3564–3580. https://doi.org/10.21595/jve.2017.18900

  21. L Design, B Shrestha, H Hao, K Bi (2016), Devices for protecting bridge superstructure from pounding and unseating damages: an overview, Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2016.117015

  22. K Ghaedi, Z Ibrahim, M Jameel, A Javanmardi, H Khatibi (2018) Seismic Response Analysis of Fully Base Isolated Adjacent Buildings with Segregated Foundations, Adv Civ Eng. Vol. 2018, Article ID 4517940, 21 pages. https://www.hindawi.com/journals/ace/aip/4517940/

  23. Ghaedi K, Ibrahim Z, Javanmardi A, Rupakhety R (2018) Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads. J Earthq Eng 00:1–19. https://doi.org/10.1080/13632469.2018.1515796

    Article  Google Scholar 

  24. Ghaedi K, Ibrahim Z, Javanmardi A (2018) A new metallic bar damper device for seismic energy dissipation of civil structures. IOP Conf Ser Mater Sci Eng 431:122009. https://doi.org/10.1088/1757-899X/431/12/122009

    Article  Google Scholar 

  25. Javanmardi A, Ghaedi K, Ibrahim Z, Huang F, Xu P (2020) Development of a new hexagonal honeycomb steel damper. Arch Civ Mech Eng 9:1–19. https://doi.org/10.1007/s43452-020-00063-9

    Article  Google Scholar 

  26. GW Housner, LA Bergman, TK Caughey, AG Chassiakos, RO Claus, SF Masri, RE Skelton, TT Soong, S Member, BF Spencer, JTP Yao (1997) Structural control: past present and future, J Eng Mech. 897–971

  27. Soong TT, Spencer BF (2002) Supplemental energy dissipation: state-of-the-art and state-of-the- practice. Eng Struct 24:243–259. https://doi.org/10.1016/S0141-0296(01)00092-X

    Article  Google Scholar 

  28. MD Symans, FA Charney, AS Whittaker, MC Constantinou, CA Kircher, MW Johnson, RJ McNamara (2008) Energy dissipation systems for seismic applications: current practice and recent developments, J Struct Eng. 134, 3–21

  29. M Gutierrez Soto, H Adeli (2013), Tuned mass dampers. Arch Comput Methods Eng. 20, 419–431. Doi: https://doi.org/10.1007/s11831-013-9091-7

  30. A Javanmardi, Z Ibrahim, K Ghaedi, H Benisi Ghadim, MU Hanif (2019), State-of-the-art review of metallic dampers: testing, development and implementation, Arch Comput Methods Eng 27:2, 455–478.  https://doi.org/10.1007/s11831-019-09329-9

  31. Ali HM, Abdel-ghaffar AM (1995) Seismic passive control of cable-stayed bridges. Shock Vib 2:259–272. https://doi.org/10.1155/1995/918721

    Article  MATH  Google Scholar 

  32. A. Javanmardi (2019), Seismic behavior investigation of a cable-stayed bridge with hybrid passive control system, University of Malaya

  33. A. Javanmardi, K. Ghaedi, Z. Ibrahim, K.U. Muthu (2018), Seismic Pounding Mitigation of an Existing Cable-Stayed Bridge Using Metallic Dampers, in: IABSE Conf. – Eng. Dev. World, International Association for Bridge and Structural Engineering, Kuala Lumpur, Malaysia, pp. 617–623

  34. Javanmardi A, Ibrahim Z, Ghaedi K, Khan NB, Ghadim HB (2018) Seismic isolation retrofitting solution for an existing steel cable-stayed bridge. PLoS ONE 13:1–22. https://doi.org/10.1371/journal.pone.0200482

    Article  Google Scholar 

  35. Javanmardi A, Ibrahim Z, Ghaedi K, Jameel M, Khatibi H, Suhatril M (2017) Seismic response characteristics of a base isolated cable-stayed bridge under moderate and strong ground motions. Arch Civ Mech Eng 17:419–432. https://doi.org/10.1016/j.acme.2016.12.002

    Article  Google Scholar 

  36. Han Q, Wen J, Du X, Zhong Z, Hao H (2018) Simplified seismic resistant design of base isolated single pylon cable-stayed bridge. Bull Earthq Eng 16:5041–5059. https://doi.org/10.1007/s10518-018-0382-0

    Article  Google Scholar 

  37. Han Q, Wen J, Du X, Zhong Z, Hao H (2018) Nonlinear seismic response of a base isolated single pylon cable-stayed bridge. Eng Struct 175:806–821. https://doi.org/10.1016/j.engstruct.2018.08.077

    Article  Google Scholar 

  38. Q. Han, J. Wen, X. Du (2018) Seismic Mitigation of Single Pylon Cable-Stayed Bridge, in: Eng. Dyn. Vib., CRC Press, pp. 302–335

  39. Cheng S, Larose GL, Savage MG, Tanaka H, Irwin PA (2008) Experimental study on the wind-induced vibration of a dry inclined cable-Part I: phenomena. J Wind Eng Ind Aerodyn 96:2231–2253. https://doi.org/10.1016/j.jweia.2008.01.008

    Article  Google Scholar 

  40. Cheng S, Irwin PA, Tanaka H (2008) Experimental study on the wind-induced vibration of a dry inclined cable—Part II : proposed mechanisms. J Wind Eng Ind Aerodyn 96:2254–2272. https://doi.org/10.1016/j.jweia.2008.01.007

    Article  Google Scholar 

  41. Larsen A, Larose GL (2015) Dynamic wind effects on suspension and cable-stayed bridges. J Sound Vib 334:2–28. https://doi.org/10.1016/j.jsv.2014.06.009

    Article  Google Scholar 

  42. Fujino Y, Siringoringo D (2013) Vibration mechanisms and controls of long-span bridges: A review. Struct Eng Int J Int Assoc Bridg Struct Eng 23:248–268. https://doi.org/10.2749/101686613X13439149156886

    Article  Google Scholar 

  43. NM Telang, CM Minervino, PG Norton (2000), Retrofit of aerodynamic cable instability on a cable-stayed bridge: case study. Transp Res Rec. Doi: https://doi.org/10.3141/1740-08

  44. Phelan RS, Sarkar PP, Mehta KC (2006) Full-scale measurements to investigate rain-wind induced cable-stay vibration and its mitigation. J Bridg Eng 11:293–304. https://doi.org/10.1061/(asce)1084-0702(2006)11:3(293)

    Article  Google Scholar 

  45. Ni YQ, Wang XY, Chen ZQ, Ko JM (2007) Field observations of rain-wind-induced cable vibration in cable-stayed dongting lake bridge. J Wind Eng Ind Aerodyn 95:303–328. https://doi.org/10.1016/j.jweia.2006.07.001

    Article  Google Scholar 

  46. S. Kumarasena, N.P. Jones, P. Irwin, P. Taylor (2007) Wind induced vibration of stay cables: FHWA-HRT-05–083

  47. Taylor IJ, Robertson AC, Wilson SK, Duffy BR, Sullivan JM (2010) New developments in rain-wind-induced vibrations of cables. Proc Inst Civ Eng Struct Build 163:73–86. https://doi.org/10.1680/stbu.2010.163.2.73

    Article  Google Scholar 

  48. H. Svensson (2013) Cable-stayed bridges: 40 years of experience worldwide, John Wiley & Sons

  49. Jafari M, Hou F, Abdelkefi A (2020) Wind-induced vibration of structural cables. Nonlinear Dyn 100:351–421. https://doi.org/10.1007/s11071-020-05541-6

    Article  Google Scholar 

  50. Y.. Ni, Y.F. Duan, Z.Q. Chen, J.M. Ko (2002), Damping identification of MR- damped bridge cables from in situ monitoring under wind-rain-excited conditions, in: L. SC (Ed.), Smart Struct. Mater. 2002 Smart Syst. Bridg. Struct. Highw., Bellingham, pp. 41–51

  51. Li S, Chen Z, Wu T, Kareem A (2013) Rain-wind-induced in-plane and out-of-plane vibrations of stay cables. J Eng Mech 139:1688–1698. https://doi.org/10.1061/(asce)em.1943-7889.0000612

    Article  Google Scholar 

  52. Liu M-Y, Zuo D, Jones NP (2013) Analytical and numerical study of deck-stay interaction in a cable-stayed bridge in the context of field observations. J Eng Mech 139:1636–1652. https://doi.org/10.1061/(asce)em.1943-7889.0000596

    Article  Google Scholar 

  53. P. Irwin (1997) Wind vibrations of cables on cable-stayed bridges, in: Build. to Last Struct. Congr. Proc. 15th Struct. Congr., Reston, VA, pp. 383–387

  54. PTI (Post-Tensioning Institute) (2008), Recommendations for Stay-Cable Design, Testing and Installation, Fifith

  55. M. De Miranda (2016) Long-span bridges, Elsevier Inc., https://doi.org/10.1016/B978-0-12-800058-8.00015-3.

  56. M. Matsumoto, N. Shiraishi, H. Shirato (1992) Rain-wind induced vibration of cables of cable- stayed bridges, J Wind Eng Ind. Aero@namics. 53, 1689–1699

  57. Mctavish S, Auteuil AD, Raeesi A (2020) Journal of wind engineering & industrial aerodynamics effect of cable surface characteristics and fl ow turbulence on the aerodynamic behaviour of stay cables in dry conditions. J Wind Eng Ind Aerodyn 207:104414. https://doi.org/10.1016/j.jweia.2020.104414

    Article  Google Scholar 

  58. Chang Y, Zhao L, Ge Y (2019) Experimental investigation on mechanism and mitigation of rain–wind-induced vibration of stay cables. J Fluids Struct 88:257–274. https://doi.org/10.1016/j.jfluidstructs.2019.05.012

    Article  Google Scholar 

  59. D Zuo, L Caracoglia, NP Jones (2007) Assessment of cross-tie performance in mitigating wind and rain-wind-induced stay cable vibrations, in: 12th Int. Conf Wind Eng, Cairns, Australia. pp. 903–910

  60. L. Caracoglia, N.P. Jones, In-plane dynamic behavior of cable networks . Part 1 : formulation and basic solutions, J. Sound Vib. 279, 969–991. https://doi.org/10.1016/j.jsv.2003.11.058.

  61. L. Caracoglia, N.P. Jones (2005), In-plane dynamic behavior of cable networks . Part 2 : prototype prediction and validation, J. Sound Vib. 279, 993–1014. https://doi.org/10.1016/j.jsv.2003.11.059

  62. Yamaguchi H, Jayawardena L (1992) Analytical estimation of structural damping in cable structures. J Wind Eng Ind Aerodyn 44:1961–1972

    Article  Google Scholar 

  63. Yamaguchi H, Nagahawatta HD (1995) Damping effects of cable cross ties in cable-stayed bridges. J Wind Eng Ind Aerodyn 55:35–43

    Article  Google Scholar 

  64. Caracoglia L, Zuo D (2009) Effectiveness of cable networks of various configurations in suppressing stay-cable vibration. Eng Struct 31:2851–2864. https://doi.org/10.1016/j.engstruct.2009.07.012

    Article  Google Scholar 

  65. J. Wianecki (1983), Cables Wind Excited Vibrations of Cable-Stayed Bridge., Pergamon Press Ltd. https://doi.org/10.1016/b978-1-4832-8367-8.50127-3

  66. Asctirafi H, Hirsch GH (1983) Control of wind-induced vibrations of cable-stayed bridges h. J Wind Eng Ind Aerodyn 14:235–246

    Article  Google Scholar 

  67. Fournier JA, Cheng S (2014) Impact of damper stiffness and damper support stiffness on the efficiency of a linear viscous damper in controlling stay cable vibrations. J Bridg Eng 19:04013022. https://doi.org/10.1061/(asce)be.1943-5592.0000562

    Article  Google Scholar 

  68. Nakamura A, Kasuga A, Arai H (1998) The effects of mechanical dampers on stay cables with high-damping rubber. Constr Build Mater 12:115–123. https://doi.org/10.1016/s0950-0618(97)00013-5

    Article  Google Scholar 

  69. BBR VT International Ltd, BBR HiAm CONA Strand stay cable damping systems, (2017) 8. https://www.bbrnetwork.com/

  70. S. Freyssinet, Freyssinet HD stay cables, (2016) 12. www.freyssinet.com

  71. K. Crouch, D. Dock (2011) Selection factors for cable damping systems, Mod Steel Constr. 40–43

  72. Hwang I, Lee JS, Spencer BF (2009) Isolation system for vibration control of stay cables. J Eng Mech 135:62–66. https://doi.org/10.1061/(asce)0733-9399(2009)135:1(62)

    Article  Google Scholar 

  73. Hwang I, Lee JS, Lee H (2011) Movable anchorage system with FPB for vibration control of stay cables. KSCE J Civ Eng 15:841–847. https://doi.org/10.1007/s12205-011-0816-6

    Article  Google Scholar 

  74. Wang X, Wu Z (2011) Modal damping evaluation of hybrid FRP cable with smart dampers for long-span cable-stayed bridges. Compos Struct 93:1231–1238. https://doi.org/10.1016/j.compstruct.2010.10.018

    Article  Google Scholar 

  75. Yang Y, Wang X, Wu Z (2017) Damping behavior of hybrid fiber-reinforced polymer cable with self-damping for long-span bridges. J Bridg Eng 22:05017005. https://doi.org/10.1061/(asce)be.1943-5592.0001058

    Article  Google Scholar 

  76. Egger P, Caracoglia L, Kollegger J (2016) Modeling and experimental validation of a multiple-mass-particle impact damper for controlling stay-cable oscillations. Struct Control Heal Monit 23:960–978. https://doi.org/10.1002/stc

    Article  Google Scholar 

  77. Chen L, Sun L (2015) Laboratory-scale experimental setup for studying cable dampers. J Eng Mech 141:04014159. https://doi.org/10.1061/(asce)em.1943-7889.0000878

    Article  Google Scholar 

  78. S. Maurer (2006), Maurer Cable damper systems, 13. https://www.maurer.eu

  79. S Takeichi, Daisuke Saito BEng, K Terada (2018), Low-impact cable system adopted for the Awa Shirasagi Ohashi Bridge, Japan, Bridg Eng. 171, 106–117

  80. C Geurts, T Vrouwenvelder, P van Staalduinen, J. Reusink (1998) Numerical modelling of rain-wind-induced vibration: erasmus bridge, Rotterdam, Struct Eng Int. 129–135

  81. Pacheco B, Fujino Y, Sulekh A (1993) Estimation curve for modal damping in stay cables with viscous damper. J Struct Eng 119:1961–1979

    Article  Google Scholar 

  82. Z Yu, YL Xu, Z Yu (1998) Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers—i formulation, J Sound Vib. 214, 659–673

  83. YL Xu, Z Yu (1998) Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers—ii application, J Sound Vib. 214, 659–673

  84. Xu YL, Yu Z, Ko JM (1998) Forced vibration studies of sagged cables with oil damper using a hybrid method. Eng Struct 20:692–705. https://doi.org/10.1016/S0141-0296(97)00100-4

    Article  Google Scholar 

  85. Xu YL, Zhan S, Ko JM, Yu Z (2000) Experimental study of vibration mitigation of bridge stay cables. J Struct Eng 4:18–27

    Google Scholar 

  86. Tabatabai H, Mehrabi AB (2000) Design of mechanical viscous dampers for stay cables. J Bridg Eng 5:114–123. https://doi.org/10.1061/(ASCE)1084-0702(2000)5

    Article  Google Scholar 

  87. Wang XY, Ni YQ, Ko JM, Chen ZQ (2005) Optimal design of viscous dampers for multi-mode vibration control of bridge cables. Eng Struct 27:792–800. https://doi.org/10.1016/j.engstruct.2004.12.013

    Article  Google Scholar 

  88. Fujino Y, Hoang N (2008) Design formulas for damping of a stay cable with a damper. J Struct Eng 134:269–278. https://doi.org/10.1061/(asce)0733-9445(2008)134:2(269)

    Article  Google Scholar 

  89. Weber F, Feltrin G, Maślanka M, Fobo W, Distl H (2009) Design of viscous dampers targeting multiple cable modes. Eng Struct 31:2797–2800. https://doi.org/10.1016/j.engstruct.2009.06.020

    Article  Google Scholar 

  90. Cheng S, Darivandi N, Ghrib F (2010) The design of an optimal viscous damper for a bridge stay cable using energy-based approach. J Sound Vib 329:4689–4704. https://doi.org/10.1016/j.jsv.2010.05.027

    Article  Google Scholar 

  91. Zhou Q, Nielsen SRK, Qu W (2010) Stochastic response of an inclined shallow cable with linear viscous dampers under stochastic excitation. J Eng Mech 136:1411–1421. https://doi.org/10.1061/(asce)em.1943-7889.0000188

    Article  Google Scholar 

  92. Javanbakht M, Cheng S, Ghrib F (2019) Control-oriented model for the dynamic response of a damped cable. J Sound Vib 442:249–267. https://doi.org/10.1016/j.jsv.2018.10.036

    Article  Google Scholar 

  93. Sun L, Xu Y, Chen L (2019) Damping effects of nonlinear dampers on a shallow cable. Eng Struct 196:109305. https://doi.org/10.1016/j.engstruct.2019.109305

    Article  Google Scholar 

  94. Main JA, Jones NP (2001) Evaluation of viscous dampers for stay-cable vibration mitigation. J Bridg Eng 6:385–397. https://doi.org/10.1061/(ASCE)1084-0702(2001)6

    Article  Google Scholar 

  95. Zhou HJ, Xu YL (2007) Wind–rain-induced vibration and control of stay cables in a cable-stayed bridge. Struct Control Heal Monit. https://doi.org/10.1002/stc

    Article  Google Scholar 

  96. JA Main, NP Jones (2002) Free vibrations of taut cable with attached damper ii: nonlinear damper, J Eng Mech. 128, 1062–1071

  97. Main JA, Jones NP (2002) Free vibrations of taut cable with attached damper. ii.: nonlinear damper. J Eng Mech. 128:1072–1081

    Article  Google Scholar 

  98. Hoang N, Fujino Y (2009) Multi-mode control performance of nonlinear dampers in stay cable vibrations. Struct Control Heal Monit 16:860–868. https://doi.org/10.1002/stc

    Article  Google Scholar 

  99. Chen L, Sun L (2017) Steady-state analysis of cable with nonlinear damper via harmonic balance method for maximizing damping. J Struct Eng 143:04016172. https://doi.org/10.1061/(asce)st.1943-541x.0001645

    Article  Google Scholar 

  100. Danhui D, Yanyang C, Rong X (2014) Dynamic properties analysis of a stay cable-damper system in consideration of design and construction factors. Earthq Eng Eng Vib 13:317–326. https://doi.org/10.1007/s11803-014-0233-1

    Article  Google Scholar 

  101. Zhou H, Sun L, Xing F (2014) Damping of full-scale stay cable with viscous damper: experiment and analysis. Adv Struct Eng 17:265–274. https://doi.org/10.1260/1369-4332.17.2.265

    Article  Google Scholar 

  102. Caracoglia L, Jones NP (2007) Damping of taut-cable systems: two dampers on a single stay. J Eng Mech 133:1050–1060. https://doi.org/10.1061/(asce)0733-9399(2007)133:10(1050)

    Article  Google Scholar 

  103. Hoang N, Fujino Y (2008) Combined damping effect of two dampers on a stay cable. J Bridg Eng 13:299–303. https://doi.org/10.1061/(asce)1084-0702(2008)13:3(299)

    Article  Google Scholar 

  104. Le LX, Katsuchi H, Yamada H (2020) Effect of rotational restraint at damper location on damping of a taut cable with a viscous damper. J Bridg Eng 25:04019139. https://doi.org/10.1061/(asce)be.1943-5592.0001520

    Article  Google Scholar 

  105. Nguyen CH, Macdonald JHG (2018) Galloping analysis of a stay cable with an attached viscous damper considering complex modes. J Eng Mech 144:04017175. https://doi.org/10.1061/(asce)em.1943-7889.0001403

    Article  Google Scholar 

  106. Chen L, Sun L, Nagarajaiah S (2016) Cable vibration control with both lateral and rotational dampers attached at an intermediate location. J Sound Vib 377:38–57. https://doi.org/10.1016/j.jsv.2016.04.028

    Article  Google Scholar 

  107. Jensen CN, Nielsen SRK, Sørensen JD (2002) Optimal damping of stays in cable-stayed bridges for in-plane vibrations. J Sound Vib 256:499–513. https://doi.org/10.1006/jsvi.2002.5002

    Article  Google Scholar 

  108. Hijmissen JW, van den Heuvel NW, van Horssen WT (2009) On the effect of the bending stiffness on the damping properties of a tensioned cable with an attached tuned-mass-damper. Eng Struct 31:1276–1285. https://doi.org/10.1016/j.engstruct.2009.02.001

    Article  Google Scholar 

  109. Sun L, Hong D, Chen L (2017) Cables interconnected with tuned inerter damper for vibration mitigation. Eng Struct 151:57–67. https://doi.org/10.1016/j.engstruct.2017.08.009

    Article  Google Scholar 

  110. Argentini T, Rosa L, Zasso A (2016) Wind-induced vibrations of the stay cables of a roundabout flyover: assessment, repair, and countermeasures. J Perform Constr Facil 30:04016046. https://doi.org/10.1061/(asce)cf.1943-5509.0000897

    Article  Google Scholar 

  111. Cu VH, Han B (2015) High-damping rubber damper for taut cable vibration reduction. Aust J Struct Eng 16:1–9. https://doi.org/10.1080/13287982.2015.1092690

    Article  Google Scholar 

  112. Le LX, Katsuchi H, Yamada H (2020) Damping of cable with hdr damper accounting for restraint boundary conditions. J Bridg Eng 25:04020105. https://doi.org/10.1061/(asce)be.1943-5592.0001641

    Article  Google Scholar 

  113. Ni YQ, Chen Y, Ko JM, Cao DQ (2002) Neuro-control of cable vibration using semi-active magneto-rheological dampers. Eng Struct 24:295–307. https://doi.org/10.1016/S0141-0296(01)00096-7

    Article  Google Scholar 

  114. Johnson EA, Christenson RE, Spencer BF (2003) Semiactive damping of cables with sag. Comput Civ Infrastruct Eng 18:132–146. https://doi.org/10.1111/1467-8667.00305

    Article  Google Scholar 

  115. Wu WJ, Cai CS (2006) Experimental study of magnetorheological dampers and application to cable vibration control. J Vib Control 12:67–82. https://doi.org/10.1177/1077546306061128

    Article  Google Scholar 

  116. Weber F, Feltrin G, Motavalli M (2005) Passive damping of cables with MR dampers. Mater Struct Constr 38:568–577. https://doi.org/10.1617/14313

    Article  Google Scholar 

  117. Ko JM, Ni YQ (2003) Structural health monitoring and intelligent vibration control of cable-supported bridges: research and application. KSCE J Civ Eng 7:701–716. https://doi.org/10.1007/bf02829139

    Article  Google Scholar 

  118. Wang W, Hua X, Wang X, Wu J, Sun H, Song G (2019) Mechanical behavior of magnetorheological dampers after long-term operation in a cable vibration control system. Struct Control Heal Monit 26:1–19. https://doi.org/10.1002/stc.2280

    Article  Google Scholar 

  119. Duan YF, Ni YQ, Ko JM (2005) State-derivative feedback control of cable vibration using semiactive magnetorheological dampers. Comput Civ Infrastruct Eng 20:431–449. https://doi.org/10.1111/j.1467-8667.2005.00396.x

    Article  Google Scholar 

  120. RE Christenson, BFS Jr., EA Johnson, Experimental verification of smart cable damping, J Eng. Mech. 132 (2006) 268–278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132

  121. Zhou Q, Nielsen SRK, Qu WL (2006) Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. J Sound Vib 296:1–22. https://doi.org/10.1016/j.jsv.2005.10.028

    Article  Google Scholar 

  122. Ying ZG, Ni YQ, Ko JM (2007) Parametrically excited instability analysis of a semi-actively controlled cable. Eng Struct 29:567–575. https://doi.org/10.1016/j.engstruct.2006.05.020

    Article  Google Scholar 

  123. Johnson EA, Baker GA, Spencer BF, Fujino Y (2007) Semiactive damping of stay cables. J Eng Mech 133:1–11. https://doi.org/10.1061/(asce)0733-9399(2007)133:1(1)

    Article  Google Scholar 

  124. Li H, Liu M, Li J, Guan X, Ou J (2007) Vibration control of stay cables of the shandong binzhou yellow river highway bridge using magnetorheological fluid dampers. J Bridg Eng 12:401–409. https://doi.org/10.1061/(asce)1084-0702(2007)12:4(401)

    Article  Google Scholar 

  125. Li H, Liu M, Ou J (2008) Negative stiffness characteristics of active and semi-active control systems for stay cables. Struct Control Heal Monit. https://doi.org/10.1002/stc

    Article  Google Scholar 

  126. JR Casas, AC Aparicio (2010), Rain-wind-induced cable vibrations in the Alamillo cable-stayed bridge (Sevilla, Spain). Assessment and remedial action, Struct Infrastruct Eng. 6, 549–556. https://doi.org/10.1080/15732470903068607

  127. Zhou Q, Nielsen SRK, Qu WL (2008) Semi-active control of shallow cables with magnetorheological dampers under harmonic axial support motion. J Sound Vib 311:683–706. https://doi.org/10.1016/j.jsv.2007.09.022

    Article  Google Scholar 

  128. Weber F, Distl H (2015) Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers. Struct Control Heal Monit. https://doi.org/10.1002/stc

    Article  Google Scholar 

  129. Zhao YL, Xu ZD, Wang C (2019) Wind vibration control of stay cables using magnetorheological dampers under optimal equivalent control algorithm. J Sound Vib 443:732–747. https://doi.org/10.1016/j.jsv.2018.12.016

    Article  Google Scholar 

  130. Shen W, Zhu S (2015) Harvesting energy via electromagnetic damper: Application to bridge stay cables. J Intell Mater Syst Struct 26:3–19. https://doi.org/10.1177/1045389X13519003

    Article  Google Scholar 

  131. Q lin Cai, S Zhu (2019), Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: concept and experiment validation, Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2019.106339

  132. Lu L, Duan YF, Spencer BF, Lu X, Zhou Y (2017) Inertial mass damper for mitigating cable vibration. Struct Control Heal Monit 24:1–12. https://doi.org/10.1002/stc.1986

    Article  Google Scholar 

  133. Wang ZH, Gao H, Fan BQ, Chen ZQ (2020) Inertial mass damper for vibration control of cable with sag. J Low Freq Noise Vib Act Control 39:749–760. https://doi.org/10.1177/1461348418814967

    Article  Google Scholar 

  134. X Shi, S Zhu, J Li, BFS Jr (2016) Dynamic behavior of stay cables with passive negative stiffness dampers, Smart Mater Struct. 25

  135. Shi X, Zhu S, Spencer BF (2017) Experimental study on passive negative stiffness damper for cable vibration mitigation. J Eng Mech 143:04017070. https://doi.org/10.1061/(asce)em.1943-7889.0001289

    Article  Google Scholar 

  136. Shi X, Zhu S (2015) Magnetic negative stiffness dampers. Smart Mater Struct FAST 24:072002. https://doi.org/10.1088/0964-1726/24/7/072002

    Article  Google Scholar 

  137. Shi X, Zhu S, Nagarajaiah S (2017) Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation. J Bridg Eng 22:04017054. https://doi.org/10.1061/(asce)be.1943-5592.0001088

    Article  Google Scholar 

  138. Zhou P, Li H (2016) Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations. Struct Control Heal Monit 23:764–782. https://doi.org/10.1002/stc

    Article  Google Scholar 

  139. Javanbakht M, Cheng S, Ghrib F (2018) Refined damper design formula for a cable equipped with a positive or negative stiffness damper. Struct Control Heal Monit 25:1–23. https://doi.org/10.1002/stc.2236

    Article  Google Scholar 

  140. Javanbakht M, Cheng S, Ghrib F (2020) Multimode vibration control of stay cables using optimized negative stiffness damper. Struct Control Heal Monit 27:1–25. https://doi.org/10.1002/stc.2503

    Article  Google Scholar 

  141. Javanbakht M, Cheng S, Ghrib F (2020) Impact of support stiffness on the performance of negative stiffness dampers for vibration control of stay cables. Struct Control Heal Monit 27:4–7. https://doi.org/10.1002/stc.2610

    Article  Google Scholar 

  142. Dong Q, Cheng S, Asce M (2021) Impact of damper stiffness and damper support stiffness on the performance of a negative stiffness damper in mitigating cable vibrations. J Bridg Eng 26:1–12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001683

    Article  Google Scholar 

  143. L Chen, S Nagarajaiah, L Sun (2020) A unified analysis of negative stiffness dampers and inerter-based absorbers for multimode cable vibration control, J Sound Vib. https://doi.org/10.1016/j.jsv.2020.115814

  144. Gao H, Wang H, Li J, Wang Z, Liang R, Xu Z, Ni Y (2021) Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables. Eng Struct 226:111375. https://doi.org/10.1016/j.engstruct.2020.111375

    Article  Google Scholar 

  145. Shi X, Zhu S (2018) Dynamic characteristics of stay cables with inerter dampers. J Sound Vib 423:287–305. https://doi.org/10.1016/j.jsv.2018.02.042

    Article  Google Scholar 

  146. Li Y, Shen W, Zhu H (2019) Vibration mitigation of stay cables using electromagnetic inertial mass dampers: full-scale experiment and analysis. Eng Struct 200:109–693. https://doi.org/10.1016/j.engstruct.2019.109693

    Article  Google Scholar 

  147. Li J-Y, Zhu S, Shi X, Shen W (2020) Electromagnetic shunt damper for bridge cable vibration mitigation: full-scale experimental study. J Struct Eng 146:04019175. https://doi.org/10.1061/(asce)st.1943-541x.0002477

    Article  Google Scholar 

  148. Li H, Liu M, Ou J (2004) Vibration mitigation of a stay cable with one shape memory alloy damper. Struct Control Heal Monit 11:21–36. https://doi.org/10.1002/stc.29

    Article  Google Scholar 

  149. XB Zuo, AQ Li, Wei Sun, XH Sun (2009), Optimal design of shape memory alloy damper for cable vibration control, J Vib Control. 15, 897–921. https://doi.org/10.1177/1077546308094916.

  150. Zuo X-B, Li A-Q (2011) Numerical and experimental investigation on cable vibration mitigation using shape memory alloy damper. Struct Control Heal Monit 18:20–39. https://doi.org/10.1002/stc

    Article  Google Scholar 

  151. V. Torra, C. Auguet, A. Isalgue, G. Carreras, P. Terriault, F.C. Lovey, Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: a mesoscopic and macroscopic experimental analysis with numerical simulations, Eng. Struct. 49 (2013) 43–57. https://doi.org/10.1016/j.engstruct.2012.11.011.

  152. Dieng L, Helbert G, Chirani SA, Lecompte T, Pilvin P (2013) Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables. Eng Struct 56:1547–1556. https://doi.org/10.1016/j.engstruct.2013.07.018

    Article  Google Scholar 

  153. O Ben Mekki, F Auricchio (2011), Performance evaluation of shape-memory-alloy superelastic behavior to control a stay cable in cable-stayed bridges, Int J Non Linear Mech. 46, 470–477. https://doi.org/10.1016/j.ijnonlinmec.2010.12.002

  154. Torra V, Isalgue A, Auguet C, Carreras G, Lovey FC, Terriault P (2013) Damping in civil engineering using SMA Part 2–particular properties of NiTi for damping of stayed cables in bridges. Can Metall Q 52:81–89. https://doi.org/10.1179/1879139512Y.0000000036

    Article  Google Scholar 

  155. H Takano, M Ogasawara, N Ito, T Shimosato, KT B, T Murakami (1997), Vibrational damper for cables of the Tsurumi Tsubasa Bridge, J Wind Eng Ind Aerodyn. 71, 807–818

  156. Zhou H, Sun L, Xing F (2014) Free vibration of taut cable with a damper and a spring. Struct Control Heal Monit. https://doi.org/10.1002/stc

    Article  Google Scholar 

  157. Zhou H, Yang X, Sun L, Xing F (2015) Free vibrations of a two-cable network with near-support dampers and a cross-link. Struct Control Heal Monit. https://doi.org/10.1002/stc

    Article  Google Scholar 

  158. Ahmad J, Cheng S, Ghrib F (2018) Efficiency of an external damper in two-cable hybrid systems. J Bridg Eng 23:04017138. https://doi.org/10.1061/(asce)be.1943-5592.0001185

    Article  Google Scholar 

  159. Ahmad J, Cheng S, Ghrib F (2018) Combined effect of external damper and cross-tie on the modal response of hybrid two-cable networks. J Sound Vib 417:132–148. https://doi.org/10.1016/j.jsv.2017.12.023

    Article  Google Scholar 

  160. Zhou H, Huang X, Xiang N, He J, Sun L, Xing F (2018) Free vibration of a taut cable with a damper and a concentrated mass. Struct Control Heal Monit 25:1–21. https://doi.org/10.1002/stc.2251

    Article  Google Scholar 

  161. Zhou H, Zhou X, Yao G, Sun L, Xing F (2019) Free vibration of two taut cables interconnected by a damper. Struct Control Heal Monit 26:1–17. https://doi.org/10.1002/stc.2423

    Article  Google Scholar 

  162. Liu M, Yang W, Chen W, Xiao H, Li H (2019) Experimental investigation on vortex-induced vibration mitigation of stay cables in long-span bridges equipped with damped crossties. J Aerosp Eng 32:04019072. https://doi.org/10.1061/(asce)as.1943-5525.0001061

    Article  Google Scholar 

  163. Jiang J, Li GQ, Lu Y (2013) Vibration control of cables with damped flexible end restraint: theoretical model and experimental verification. J Sound Vib 332:3626–3645. https://doi.org/10.1016/j.jsv.2013.02.001

    Article  Google Scholar 

  164. CS Cai, WJ Wu, XM SHI (2006), Cable vibration reduction with a hung-on TMD system, Part I: theoretical study, J Vib Control. 12, 881–899. https://doi.org/10.1177/1077546306065858

  165. CS Cai, WJ Wu, XM SHI (2006), Cable vibration reduction with a hung-on TMD system, part II: parametric study, J Vib Control. 12, 881–899. https://doi.org/10.1177/1077546306065858.

  166. Cai CS, Wu WJ, Araujo M (2007) Cable vibration control with a TMD-MR damper system: experimental exploration. J Struct Eng 133:629–637. https://doi.org/10.1061/(asce)0733-9445(2007)133:5(629)

    Article  Google Scholar 

  167. Salari S, Javadinasab Hormozabad S, Ghorbani-Tanha AK, Rahimian M (2019) Innovative mobile TMD system for semi-active vibration control of inclined sagged cables. KSCE J Civ Eng 23:641–653. https://doi.org/10.1007/s12205-018-0161-0

    Article  Google Scholar 

  168. Cu VH, Han B (2015) A stay cable with viscous damper and tuned mass damper. Aust J Struct Eng 16:1–8. https://doi.org/10.1080/13287982.2015.1092693

    Article  Google Scholar 

  169. Cu VH, Han B, Pham DH (2017) Tuned mass-high damping rubber damper on a taut cable. KSCE J Civ Eng 21:928–936. https://doi.org/10.1007/s12205-016-0857-y

    Article  Google Scholar 

  170. Xu YL, Zhou HJ (2007) Damping cable vibration for a cable-stayed bridge using adjustable fluid dampers. J Sound Vib 306:349–360. https://doi.org/10.1016/j.jsv.2007.05.032

    Article  Google Scholar 

  171. Weber F, Høgsberg J, Krenk S (2010) Optimal tuning of amplitude proportional coulomb friction damper for maximum cable damping. J Struct Eng 136:123–134. https://doi.org/10.1061/(asce)0733-9445(2010)136:2(123)

    Article  Google Scholar 

  172. Izzi M, Caracoglia L, Noè S (2016) Investigating the use of targeted-energy-transfer devices for stay-cable vibration mitigation. Struct Control Heal Monit 23:315–332. https://doi.org/10.1002/stc

    Article  Google Scholar 

  173. Weiss M, Vaurigaud B, Ture Savadkoohi A, Lamarque CH (2018) Control of vertical oscillations of a cable by a piecewise linear absorber. J Sound Vib 435:281–300. https://doi.org/10.1016/j.jsv.2018.07.033

    Article  Google Scholar 

  174. Chen L, Di F, Xu Y, Sun L, Xu Y, Wang L (2020) Multimode cable vibration control using a viscous-shear damper: case studies on the Sutong Bridge. Struct Control Heal Monit 27:1–20. https://doi.org/10.1002/stc.2536

    Article  Google Scholar 

  175. Bernardo H, Tarquis F, Lucas C, Viartola LM (2019) Rande bridge widening: a 400-m-span cable-stayed bridge expansion. Pract Period Struct Des Constr 24:05019004. https://doi.org/10.1061/(asce)sc.1943-5576.0000439

    Article  Google Scholar 

  176. AB Mehrabi (2014) Performance of cable-stayed bridges: evaluation methods , observations , and a rehabilitation case, J Perform Constr Facil. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000715

  177. T. Yoshimura, A. Inoue, K. Kaji, M. Savage (1989) A study on the aerodynamic stability of the Aratsu Bridge, in: Proc. Canada-Japan Work. Bridg. Aerodyn.,: pp. 41–50

  178. Ito M (1998) The cable-stayed meiko grand bridges, Nagoya. Struct Eng Int 8:168–171. https://doi.org/10.2749/101686698780489180

    Article  Google Scholar 

  179. H. Nilsson, C. Hansvold (1999), Uddevalla Bridge, Sweden, Struct Eng Int. 103–105

  180. E. Hjorth-Hansen, E. Strømmen, F. Myrvoll, C. Hansvold, R. Ronnebrant (2001) Performance of a friction damping device for the cables on Uddevalla cable-stayed bridge, In: 4th Int Symp Cable Dyn, pp. 179–186.

  181. Chandra V, Ricci AL, Donington K (2003) A landmark cable-stayed bridge over the charles river, boston, massachusetts. Transp Res Rec 18:53–68. https://doi.org/10.1680/stco.3.4.203.38961

    Article  Google Scholar 

  182. Bonzon WS (2008) The I-280 Veterans’ glass city skyway: New landmark cable-stayed bridge, Ohio. Struct Eng Int 18:43–48. https://doi.org/10.2749/101686608783726542

    Article  Google Scholar 

  183. Jomvinya K, Vicat E (2009) Kanchanapisek bridge over the chao phraya river, Thailand. Struct Eng Int 19:58–62. https://doi.org/10.2749/101686609787398434

    Article  Google Scholar 

  184. You Q, He P, Dong X, Zhang X, Wu S (2008) Sutong bridge - The longest cable-stayed bridge in the world. Struct Eng Int J Int Assoc Bridg Struct Eng 18:390–395. https://doi.org/10.2749/101686608786455298

    Article  Google Scholar 

  185. Ge C, Chen A (2019) Vibration characteristics identification of ultra-long cables of a cable-stayed bridge in normal operation based on half-year monitoring data. Struct Infrastruct Eng 15:1567–1582. https://doi.org/10.1080/15732479.2019.1625416

    Article  Google Scholar 

  186. Löckmann H, Marzahn GA (2009) Spanning the rhine river with a new cable-stayed bridge. Struct Eng Int 19:271–276. https://doi.org/10.2749/101686609788957748

    Article  Google Scholar 

  187. De Miranda M, De Palma A, Zanchettin A (2010) “Ponte del mare”: conceptual design and realization of a long span cable-stayed footbridge in Pescara, Italy. Struct Eng Int J Int Assoc Bridg Struct Eng 20:21–25. https://doi.org/10.2749/101686610791555577

    Article  Google Scholar 

  188. Wang Z, Wang B, Chai X (2015) Research advancement of damping techniques for stay cables of long-span cable-stayed bridges. Bridg Constr 45:13–19 ((In Chinese))

    Google Scholar 

  189. Y Wang, Z Gao, Z Zonghui Chen, W Zhao, J Shi, M Liao (2019), The design and construction of cable-stayed bridge over Bouregreg River, Morocco, Bautechnik. 96, 150–159. https://doi.org/10.1002/bate.201800063

  190. Fujino Y (2002) Vibration, control and monitoring of long-span bridges-Recent research, developments and practice in Japan. J Constr Steel Res 58:71–97. https://doi.org/10.1016/S0143-974X(01)00049-9

    Article  Google Scholar 

  191. Cárdenas RA, Viramontes FJC, González AD, Ruiz GH (2008) Analysis for the optimal location of cable damping systems on stayed bridges. Nonlinear Dyn 52:347–359. https://doi.org/10.1007/s11071-007-9283-5

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The discussion expressed in this paper are those of the authors and do not represent the above-mentioned companies.

Funding

The authors greatly acknowledge the support of the China Postdoctoral Science Foundation (2020M682074) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyun Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanmardi, A., Ghaedi, K., Huang, F. et al. Application of Structural Control Systems for the Cables of Cable-Stayed Bridges: State-of-the-Art and State-of-the-Practice. Arch Computat Methods Eng 29, 1611–1641 (2022). https://doi.org/10.1007/s11831-021-09632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09632-4

Navigation