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Abstract
The work provides an exhaustive comparison of some representative families of topology optimization methods for 3D 
structural optimization, such as the Solid Isotropic Material with Penalization (SIMP), the Level-set, the Bidirectional 
Evolutionary Structural Optimization (BESO), and the Variational Topology Optimization (VARTOP) methods. The main 
differences and similarities of these approaches are then highlighted from an algorithmic standpoint. The comparison is 
carried out via the study of a set of numerical benchmark cases using industrial-like fine-discretization meshes (around 1 
million finite elements), and Matlab as the common computational platform, to ensure fair comparisons. Then, the results 
obtained for every benchmark case with the different methods are compared in terms of computational cost, topology quality, 
achieved minimum value of the objective function, and robustness of the computations (convergence in objective function 
and topology). Finally, some quantitative and qualitative results are presented, from which, an attempt of qualification of 
the methods, in terms of their relative performance, is done.

1 Introduction

In the past three decades, topology optimization has become 
an active research field to seek new optimal counterintuitive 
designs in a wide range of problems governed by different 
physics, i.e., solid mechanics [1–6], fluid dynamics [7–9], 
thermal dynamics [10–12], acoustics [13–18] and electro-
magnetism [19–21], among others. Furthermore, topology 
optimization of coupled multiphysics problems has been 
addressed in recent works, combining structural-thermal 
interaction [22–24], structural-fluid interaction [25–28] or 
even thermal-fluid interaction [29–32]. As a result of this 
substantial effort, the optimal design obtained from the 

minimization of a given topology optimization problem can 
be used by engineers as a first approximation in the develop-
ment of new products in a wide range of applications.

All up-to-date approaches exhibit certain strengths and 
weaknesses. As a first approximation,1 optimization tech-
niques can be grouped into two main blocks: (I) methods 
based on trial-and-error schemes, e.g., Genetic Algorithms 
or Ant Colony Algorithms [39–44], and (II) methods rely-
ing on the gradient computation [3, 45–50]. The main 
disadvantage of the former group is their extremely high 
computational cost as the number of unknowns increases. 
This computational cost may become prohibitive for current 
computational systems since thousands of different layouts 
must be tested to find the optimal configuration. Conse-
quently, the algorithms included in the second set are the 
most widespread algorithms, e.g., (a) topology optimization 
within homogenization theory [51], (b) density-based opti-
mization (SIMP) techniques [45, 52, 53], (c) evolutionary 
methodologies (ESO)2 [54, 55], (d) Level-set approaches 
[2, 3, 56], (e) Topological Derivative method [57], (f) Phase 
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field approach [49, 58, 59], and (g) Variational Topology 
Optimization (VARTOP) method [60, 61], among others.

Starting with the seminal paper of Bendsøe and Kikuchi 
[51], numerical methods for topology optimization have 
been extensively developed. In particular, this article was 
the basis for a stream of density-based approaches, such 
as the Solid Isotropic Material with Penalization (SIMP) 
method [45, 52, 53], being nowadays one of the most widely 
used topology optimization methods. Simple continuous 
element-wise design variables are used in the formula-
tion and resolution of the topology optimization problem 
in a fixed design domain, for which Young’s modulus is 
defined as a polynomial function of the element-wise den-
sity, �e ∈ (0, 1) . The design variable must be first penal-
ized3 (normally a penalty exponent p ≥ 3 is used) and later 
regularized, thus providing almost black-and-white solutions 
(with semi-dense elements) not ensuring manufacturability. 
On the other hand, a large number of regularization schemes 
have been suggested to be used regarding topology optimi-
zation, including: (1) filtering, via the classical sensitivity 
[65–67] or density [4, 68] filters, projection techniques [69, 
70], morphology-based filters [71, 72] or Helmholtz-type 
filters [73, 74], among others, and (2) geometric constraint 
techniques, e.g., perimeter constraint [75, 76] or gradient 
constraints [77]. Through these mathematical techniques, 
significant numerical instabilities [67, 78] resulting from the 
ill-posedness of unconstrained topology optimization prob-
lems for continuous structures, including gray areas (semi-
dense intermediate elements), checkerboard patterns, and 
mesh-dependency issues are alleviated. Finally, the solution 
to the topology optimization problem is obtained via the 
update of the design variable, through the classical optimal-
ity criteria (OC) method [51, 79],4 the moving asymptotes 
(MMA) algorithm [81] or other mathematical programming-
based optimization algorithms, among others.

Besides the SIMP method, the Evolutionary Structural 
Optimization (ESO) method, firstly introduced by Xie 
and Steven [46, 54] although similar ideas were presented 
earlier [82, 83], is also one of the most used for industrial 
applications. In the recent years, the ESO approach has 
gained widespread popularity due its simplicity and ease of 

implementation in commercial FE codes. ESO, considered 
as a hard-kill method,5 relies on a simple heuristic crite-
rion to gradually remove inefficient material. The elements 
with low rejection criterion are gradually removed start-
ing from a full stiff design domain, thus evolving towards 
an optimum. Contrary to SIMP, a discrete element design 
variable, � ∈ {0, 1} , is used to define the topology layouts, 
which are free of gray elements. This change in design vari-
able results in convergence issues and a high dependency 
on the initial configuration, thus leading to local optimal 
solutions [84]. Despite these numerical issues, ESO has been 
applied to a large range of problems, from the well-known 
structural problems [85–88], including non-linear problems 
[89, 90], to thermal problems [10, 91, 92], and contact prob-
lems [93, 94]. In addition, the above mentioned issues are 
mitigated in its later version, the Bi-directional Evolution-
ary Structural Optimization (BESO) method [55, 95, 96], 
which extends the approach to allow for new elements to be 
added, while inefficient elements are removed at the same 
time. The new material is added either in the locations near 
to those elements with a high criterion function value [95, 
96] or in those void areas with higher criterion function val-
ues, computed via a linear interpolation of the displacement 
field [55]. However, these extrapolation techniques are not 
consistent with those used for the solid elements. As any 
other density-based method, the sensitivity is commonly 
regularized via a checkerboard suppression filter [97], a 
mesh-independent filter [98] or a perimeter control [99], 
similar to the ones used in SIMP, in order to reduce mesh-
dependencies. Nevertheless, such hard-kill BESO methods 
fail to obtain convergent solutions. For that reason, in later 
revisions, Huang and Xie [98] proposed a modified hard-
kill BESO to enhance the time-convergence via a stabiliza-
tion algorithm, where the historical information is used, in 
addition to a new mesh-independent filter and nodal sensi-
tivities. As an alternative to hard-kill ESO/BESO methods, 
soft-kill approaches retain the void elements as very soft ele-
ments, thus allowing the computation of the criterion func-
tion within the entire domain. Zhu et al. [100] and Huang 
and Xie [101] proposed independent approaches that used 
a penalized density variable. In particular, Huang and Xie 
[101] combined the modified BESO method with SIMP mate-
rial interpolation scheme, improving the numerical stability 
and the potential of the methodology. An excellent overview 
of some recent developments in topology optimization using 
ESO is provided in [102].

The last major stream is constituted by Level-set-based 
methods. In contrast to the previous topology optimization 
approaches, the optimal layout is implicitly defined by a 
scalar function � (with the sign). Additionally, the struc-
tural boundary of the design �  is represented by the zero-
level iso-contour (or iso-surface) of the level-set function 
(LSF) [103–105]. As a result, optimal designs with sharp 

3 Although existing other interpolation schemes, such as the Rational 
Approximation of Material Properties (RAMP) material interpolation 
[62] or the SINH method [63], the SIMP scheme [45, 64] is the most 
popular one in structural optimization due to its simplicity. However, 
these alternative schemes may be of interest for topology optimiza-
tion problems involving alternative physics, e.g.,  in dynamic prob-
lems.
4 Other heuristic techniques have been proposed to tackle non-con-
vex topology optimization problems, such as the modified optimality 
criteria technique (MOC) [80].
5 The removed elements are not included in the subsequent finite ele-
ment analysis. Consequently, no criterion function is computed for 
the void elements.
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and smooth edges are obtained, thus avoiding semi-dense 
(gray) elements, like those observed in density-based meth-
ods. Many formulations of Level-set-based approaches have 
been proposed over the years since Haber and Bendsoe [106] 
suggested its applications with topology optimization tech-
niques, e.g., [2, 48, 56, 107]. The most important ones rely-
ing on a level-set function are the Level-set (based on shape 
derivative), the Topological Derivative, and the Phase-field 
methods.

Regarding the original Level-set, Osher and Santosa [47], 
Allaire et al. [3, 56] and Wang et al. [2] took up the idea of 
using the level-set function for topology optimization and 
combined it with a shape-derivative-based topology opti-
mization framework. Therefore, only material boundaries 
are altered via shape-sensitivity analysis6 to seek the optimal 
design. As a consequence, this set of techniques can not 
nucleate new holes in the interior of the domain. There-
fore, the resulting optimal solutions are heavily dependent 
on the initial layouts, which must be made up of many small 
holes evenly distributed throughout the domain [3]. This 
initial configuration ensures the merging and cancellation 
of holes via the propagation of the boundaries, while avoid-
ing local optimal solutions. To overcome this limitation, a 
hole nucleation algorithm [109, 110], referenced as the bub-
ble technique, was introduced in the topology optimization 
approach. This technique allows the creation of new holes 
in the material domain. Instead of the density variable used 
in density-based methods to define the topology design, the 
level-set function is used here, with the material domain 
being those points where the LSF is positive. The geom-
etry in a fixed mesh is typically mapped to a mechanical 
model using either immersed boundary techniques (e.g., via 
X-FEM [111]) or density-based mapping (e.g., via relaxed 
Heaviside functions [2]) [112]. When using the second map-
ping, the stiffness coefficients are expressed in terms of the 
level-set function via approximated Heaviside functions, i.e., 
the ersatz material approximation is used [113, 114], where 
the void material is replaced with a soft material. In addi-
tion, the LSF is commonly updated using a Hamilton–Jacobi 
(HJ) equation [2, 3, 47],7 thus requiring the solution of a 
pseudo-time PDE equation. Although this updating scheme 
tends to converge to smooth topologies, it may require a 
huge number of iterations,8 as well as the regular application 

of reinitialization algorithms to a signed-distance function. 
These reinitializations must be applied each time there are 
significant shape-changes or after a hole nucleation process 
[2, 3], thus reducing the efficiency of the approach. Nev-
ertheless, it has been extensively used for a broad range of 
design problems, including structural problems [119], vibra-
tion problems [47, 119], thermal problems [120], among oth-
ers. As an alternative to HJ equations, updating procedures 
based on mathematical programming are used, e.g., using 
the parameters of the discretized level-set function as opti-
mization variables (for instance radial basis functions (RBF) 
and spectral methods) [115, 117]. Finally, as described for 
density-based approaches, the topology optimization prob-
lem must be regularized to ensure mesh-independence and 
improve convergence. It can be achieved either by a filtering 
procedure or a constraint equation, e.g., perimeter constraint 
[3, 121].

Alternatively to Level-set using the shape-derivative 
framework, and after the mathematical development of the 
topological derivatives [57, 122, 123], some researchers 
incorporated the concept of the topological derivative into 
a shape-sensitivity-based Level-set method, thus leading to 
the Topological Derivative approach [48, 124]. A similar 
algorithm as in classical Level-set is performed. However, 
in contrast to those prior methods, this topology optimi-
zation technique can nucleate holes in the interior of the 
material domain by using the topological gradient or topo-
logical derivative. The sensitivity is defined as the variation 
of the objective function due to the insertion of an infini-
tesimal spherical void at any point � in the design domain 
� , thus avoiding the stagnation in local optimal solutions. 
Nevertheless, the topological gradient must be analytically 
derived through rather complex mathematics for each of 
the topology optimization problems, e.g., structural linear 
optimization [123, 125, 126], thermal orthotropic optimiza-
tion [127, 128], microstructure topology optimization [129, 
130], among others. This mathematical operator represents 
an extra step required to proceed with the optimization, bur-
dening its potential against other techniques with sensitivi-
ties easier to compute. The topological derivative was first 
incorporated in conjunction with shape-derivative as a way 
to systematically nucleate holes [48, 124, 131, 132], similar 
as in Level-set with the bubble technique. In later revisions, 
the topological derivative was used exclusively to update 
the level-set function [122, 133]. Until then, only stiff mate-
rial could be removed from the material domain, making it 
impossible to add new material. It was not until Amstutz 
and Andrä [134] and He et al. [135] that fully bi-directional 
Topological Derivative approaches were introduced. In 
these techniques, the optimal layout, expressed in terms of 
the LSF, is defined as a function of the topological gradient. 
To improve stability, reaction and diffusive terms can be 
added to the classical HJ-equation, leading to the so-called 

6 The basis of this approach lies in computing the sensitivity of the 
functional when a normal infinitesimal deformation is applied on the 
boundaries of the domain [108].
7 However, other updating schemes have been proposed over the 
years, such as the resolution of a set of ordinary differential equations 
in the approaches using radial basis functions (RBFs) [115, 116] or 
a system of algebraic equations using compactly supported RBFs 
(CSRBFs) [117, 118], among others.
8 When an explicit scheme is performed, the time-step is limited by 
the CFL condition.
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Generalized HJ-equation. The diffusive term smooths out 
the design and suppresses sharp corners, avoiding the ill-
posedness of the topology optimization problem.

The last group of interest is the Phase field topology 
optimization approach, where the theory of phase transi-
tions is adapted to the resolution of topology optimization 
problems [136–138]. The design variable corresponds to 
the density, as other density-based approaches, but, in this 
case, a linear material interpolation is considered, without 
any exponent factor. In addition, an extra term is added to 
the objective function that controls the interface thickness 
while penalizing intermediate values, thus solving one of the 
main disadvantages of SIMP-like approaches. The optimal 
solutions present smooth material domains, almost black-
and-white designs separated by sharp thin finite thickness 
interfaces. The modified functional is minimized based on 
the Cahn-Hilliard equation, leading to the resolution of two 
coupled second-order equations without requiring a volume 
constraint, i.e., the volume stays constant through the opti-
mization procedure. However, some researchers have solved 
directly the modified topology optimization problem with 
the inclusion of a volume constraint [49, 50, 58, 139], resem-
bling SIMP with an explicit penalization in the density and a 
gradient regularization. The gradient regularization results 
in a smoothing similar to that obtained by the inclusion of 
diffusive terms in the level-set-based methods.9 Connected 
with this concept, Yamada et al. [140] suggested a Phase 
field approach based on a level-set function, used as the 
design variable, and a topological derivative incorporating 
a fictitious interface energy. This last mathematical tech-
nique allows to control the complexity of the optimal layout. 
Although being applied to other problems [12, 141], it still 
resorts to a Hamilton–Jacobi equation to update the topol-
ogy design, which may entail high computation resources to 
achieve convergence.

As an alternative to all these well-established tech-
niques, the Variational Topology Optimization (VARTOP)10 
approach [60] combines the mathematical simplicity of 
SIMP-based methods, while considering the characteristic 
function � as the design variable. Thus a binary configu-
ration (black-and-white design) is obtained. The domain, 
and so the characteristic function, is implicitly represented 
through a 0-level-set function, termed as discrimination 
function, as in level-set-based methods. Nevertheless, the 
topology design is not updated neither via a Hamilton-Jac-
obi equation nor a Reaction-Diffusion equation, but via a 

fixed-point, non-linear, closed-form algebraic system result-
ing from the derivation of the topology optimization prob-
lem. In addition, an approximated topological derivative, 
in contrast to the exact Topological Derivative methods, is 
used in the formulation within an ersatz material approach, 
highly reducing the mathematical complexity independent 
of the tackled problem. The topology optimization problem 
is subjected to a volume constraint expressed in terms of 
a pseudo-time variable. This constraint equation is itera-
tively increased until the desired volume is achieved, thus 
obtaining converged topologies for intermediate volumes. 
By means of this procedure, referred to as time-advancing 
scheme, the corresponding Pareto Frontier is obtained. For 
each time-step, the closed-form optimality criteria has to be 
solved to compute both the Lagrange multiplier that fulfills 
the volume constraint and the optimal characteristic func-
tion. As for the regularization, a Laplacian regularization, 
similar to those used in SIMP and Phase-field approaches 
[49, 73, 74, 140], is applied to the discrimination function, 
providing not only smoothness in the optimal design but also 
mesh-size control. The technique has been already applied 
to linear static structural [60] and steady-state thermal [142] 
applications, considering the volume constraint as a single 
constraint equation, with promising results.

In the literature, there are plenty of articles that either 
theoretically compare several topology optimization meth-
ods as the ones presented above [33–38, 143], or compare 
the results obtained with the topology optimization approach 
proposed by the corresponding authors with those computed 
using a recognized topology optimization approach. How-
ever, not many articles compare in a practical way a set of 
cases with a wide range of techniques under the same con-
vergence criteria. This is one of the most relevant aspects of 
this work since the results of a set of widely used techniques 
are compared with each other: (1) SIMP (briefly described 
in Sect. 3.1), (2) BESO using a soft-kill criterion (detailed in 
Sect. 3.2), (3) VARTOP using a pure variational topological 
approach (presented in Sect. 3.3), and (4) Level-set (detailed 
in Sect. 3.4). These three well-known methods have been 
selected among all existing ones due to their wide use both 
at the professional and research level, as well as for the con-
venience of implementation and their documentation, thus 
facilitating their verification and assuring a fair comparison. 
Following the implementations proposed by the different 
methods’ authors, the studied topology optimization tech-
niques have been implemented including as few modifica-
tions as possible in order to match the original approaches. 
The modifications are detailed throughout the document for 
each of the addressed methods. Although the chosen topol-
ogy optimization techniques have been applied to a wide 
spectrum of different applications, the comparison in this 
article focuses at minimizing the static structural problem. 
The comparison of the results is addressed through a set 

10 The method abbreviation UNVARTOP used in previous papers has 
been here rebranded as VARTOP, which should be taken as equals.

9 Alternatively, Takezawa et al. [59] used a time-dependent reaction-
diffusion equation instead, called the Allen-Cahn equation, to evolve 
the phase function.
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of well-known benchmark cases, whose optimal layouts are 
easily recognized. Specifically, minimum mean compliance, 
multi-load mean compliance, and compliant mechanism 
topology optimization problems are carried out.

The remainder of this paper is organized as follows. The 
structural static problem as well as the three addressed topol-
ogy optimization problems are defined in Sect. 2, while in 
Sect. 3, the considered approaches are reviewed in terms of 
their formulation and algorithms. In addition, specific com-
ments are provided to address the studied topology optimiza-
tion problems with each of the techniques. These techniques 
are compared with each other in terms of the objective func-
tion, the quality of topology design, and the computational 
cost via a set of benchmark cases detailed in Sect. 4 and 
analyzed in Sect. 5.

2  Theoretical Aspects

2.1  Domain Definition

Let the design domain, � , denote a fixed smooth open 
domain of ℝn for n = {2, 3} , composed by two smooth 
subdomains 𝛺+,𝛺− ⊂ 𝛺 ,  with �

+
∪�

−
= �  and 

�+ ∩�− = � , as displayed in Fig. 1a.11 The boundary of 
the design domain, termed as �� , is also composed of the 
boundaries corresponding to the two subdomains ��+ and 
��− , satisfying ��+ ∩ ��− = �  . The material domain, �+ , 
consists of a stiff material with a high Young’s modulus, 
while the second subdomain, �− , is formed by a soft mate-
rial with a low Young’s modulus. The stiffness ratio between 
both materials is given by the contrast factor, 𝛼 ≪ 1.

The topology layout of the design domain can be defined 
via a characteristic function �(�) ∶ � → {0, 1} as

(1)

{
�+∶={� ∈ � ∕ �(�) = 1}

�−∶={� ∈ � ∕ �(�) = 0}
,

where �  corresponds to the Heaviside function of (� − �) in 
density-based approaches (SIMP), the Heaviside function of 
the level-set function � in Level-set-based methods, and the 
characteristic function � itself in VARTOP. Notice that the 
term � must be computed in density-based methods so that 
the constraint equation is satisfied (normally the volume), 
thus obtaining a white-and-black design.

In particular, for Level-set-based and VARTOP 
approaches, the subdomains can be defined through a con-
tinuous function, �(�) ∶ � → ℝ,� ∈ H1(�) (a level-set 
function � or a discrimination function � , respectively) 
such that

as illustrated in Fig. 1b. The characteristic function �  can 
be then obtained as �(�) = H(�(�)) , where H(⋅) stands for 
the Heaviside function.

2.2  The Topology Optimization Problem: 
Contextual Introduction

Topology optimization methods look for the optimal mate-
rial distribution that minimizes a given objective function, 
J  , subjected to one or more constraints Ck (e.g., a volume 
constraint, C0 ≤ 0 , and possibly other N design variable 
constraints, Ck ≤ 0, k ∶ 1…N  ) and governed by a linear 
or non-linear state equation. The material distribution is 
described by the density variable �(�) , the characteristic 
function �(�) or the level-set function �(�) , depending on 
the topology approach used to carry out the optimization. To 
keep the definition of the topology optimization problem as 
general as possible, let us define �(�) as the design variable 
at point � , which will be considered as �(�) , �(�) or �(�) for 
the density-based, VARTOP, and level-set-based methods, 
respectively. Based on this concept, the classical mathemati-
cal formulation of the corresponding topology optimization 
problem is given by

(2)

{
𝛺+∶={� ∈ 𝛺 ∕ 𝜑(�) > 0}

𝛺−∶={� ∈ 𝛺 ∕ 𝜑(�) < 0}
,

Fig. 1  Domain representation: 
a representation of the design 
domain, � , comprising two 
disjoint sub-domains �+ and �− 
and b implicit representation via 
the level-set function � or the 
discrimination function �

(a) (b)

11 (⋅) corresponds to the closure of the open domain (⋅).
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where the objective function J  can be expressed as a vol-
ume integral of a local function j(�(�), � , �) over the entire 
domain, and the constraint functional C0 represents the vol-
ume constraint in terms of the design variable � . Additional 
constraint equations Ck(�) can be incorporated into the 
topology optimization problem to explicitly include con-
straints to the design variables, particular to each approach.

The state equation gives as a solution the unknown field 
�(�) for a specific optimal design � included in the admis-
sible set of solutions, Uad . This unknown field must satisfy 
the boundary conditions applied to the design domain. In 
particular, the linear elasticity equilibrium problem, formu-
lated as

is considered as the state equation for all the topology opti-
mization problems addressed in this paper. In the preceding 
equation, �(� , �) and �(� , �) stand for the second-order stress 
tensor field and the volumetric force, respectively, which 
both depend on the topology layouts. Additionally, tn(�) 
and �(�) are respectively the boundary tractions applied on 
𝜕𝜎𝛺 ⊂ 𝜕𝛺 and the displacements prescribed on 𝜕u𝛺 ⊂ 𝜕𝛺 , 
and � corresponds to the unit outward normal. As for the 
material behavior, the elastic material is governed by the 
Hooke’s law, i.e., ��� = ℂ� ∶ ��� , with ��� being the strain tensor 
( ��� = �S�� (�) ) and ℂ� being the fourth-order, elastic consti-
tutive tensor. The constitutive tensor depends on the design 

(3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
�∈Uad

J(�(�), �) ≡ ��

j(�(�), � , �) d� (a)

subject to:

C0(�) ≡ ��

c0(� , �) d� ≤ 0 (b − 1)

Ck(�) ≤ 0, k ∶ 1…N (b − 2)

governed by:

State equation (c)

,

⎡
⎢⎢⎢⎢⎢⎣

Find �(� , �) such that

⎧⎪⎨⎪⎩

� ⋅ �(� , �) + �(� , �) = � in �

�(� , �) ⋅ � = t
n
(�) on ���,

�(� , �) = �(�) on �
u
�

(4)

variable � via the corresponding material interpolation of 
each topology optimization approach.

As depicted in Fig. 2, the boundary �� of the analysis 
domain � is made of two mutually disjoint subsets, �u� and 
��� , where the displacements and tractions are prescribed, 
respectively, as detailed in the previous equation.

Alternatively, the variational form of the linear elasticity 
problem (4) becomes

with �� and � being the displacement field and the virtual 
displacement field, respectively.

The linear elasticity problem (Eqs. (5) to (7)), discretized 
using the standard finite element method, reads

where the stiffness matrix and the external force vector are 
denoted by �� and � , respectively. For the sake of clarity, the 
dependence of the force vector on the design variable will 
be neglected, considering a constant force scenario � , inde-
pendent of the topology layout, with null volumetric forces. 
The displacement field, �� (�) , and its gradients, �S�� , are 
approximated as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Find the displacement field �� ∈ U(�) such that

a(�,�� ) = l(�) ∀� ∈ V(�) (5)

where

a(�,�� ) = ∫�

�S�(�) ∶ ℂ� (�) ∶ �S�� (�) d� , (6)

l(�) =∫���

�(�) ⋅ tn(�) d�

+ ∫�

�(�) ⋅ �� (�) d� ,

(7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝕂𝜁 �̂𝜁 = �𝜁 (8)

with

𝕂𝜁 = ∫𝛺

�T(�) ℂ𝜁 (�) �(�) d𝛺 , (9)

�𝜁 =∫𝜕𝜎𝛺

��
T(�)t

n
(�) d𝛤

+ ∫𝛺

��
T(�)�𝜁 (�) d𝛺 ,

(10)

(11)�𝜁 (�) ≡ �u(�)�̂𝜁

Fig. 2  Elastic problem sketch: 
a fixed analysis domain � with 
boundary conditions (in which 
the displacement �(�) or the 
normal traction tn(�) can be 
prescribed at �u� and ��� , 
respectively) and b Stiff and 
soft material domains, �+ and 
�− , respectively, with the same 
boundary conditions

(a) (b)
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where �u(�) and �(�) stand for the displacement, shape 
function matrix and the strain-displacement matrix, respec-
tively, and �̂𝜁 corresponds to the nodal displacement vector. 
Notice that the dependence on the design variable � is high-
lighted by the subscript (⋅)�.

2.2.1  Minimum Mean Compliance

The minimum mean compliance topology optimization prob-
lem seeks the optimal topology layout that minimizes the 
global stiffness of the structure, or equivalently, maximizes 
the external work on the structure. The objective function 
J
(I)(�� , �) , in variational form, is given by

and the corresponding discretized topology optimization 
problem can be written as

(12)�S�𝜁 (�) ≡ �(�)�̂𝜁

(13)J
(I)(�(�), �) ≡ l(�� ) ,

(14)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜁∈Uad

J
(I)(�(𝜁), 𝜁) ≡ �𝛺

�̂T
𝜁
�T(�) ℂ𝜁 (�) �(�)�̂𝜁 d𝛺 (a)

subject to:

C0(𝜁) ≡ �𝛺

c0(𝜁 , �) d𝛺 ≤ 0 (b − 1)

Ck(𝜁) ≤ 0, k ∶ 1…N (b − 2)

governed by:

𝕂𝜁 �̂𝜁 = � , with 𝕂𝜁 = �𝛺

�T(�) ℂ𝜁 (�) �(�) d𝛺 and � = �𝜕𝜎𝛺

��
T(�)tn(�) d𝛤 (c)

,

2.2.2  Multi‑Load Mean Compliance

Multi-load compliance topology optimization problems 
are a subfamily of minimum mean compliance problems 
(Sect. 2.2.1), in which a set of elastic problems with differ-
ent loading conditions are solved independently, instead of 
a single one with all the external loads applied at the same 
time. As a result, the topology optimization procedure aims 
at a trade-off between the optimal topology layouts for each 
specific loading state. Hence, the objective function (3-a) 
is computed as the weighted average sum of all individual 
compliances, i.e.,

where i and nl corresponds to the index of the i-th loading 

state12 and the number of loading states, respectively. Con-
sequently, the topology optimization problem (14) becomes

(15)

J
(II)(�(�), �) ≡

nl∑
i=1

l
(
�
(i)

�

)

≡
nl∑
i=1

��

�S�
(i)

�
(�) ∶ ℂ� (�) ∶ �S�

(i)

�
(�) d� ,

12 The displacements �� and the actual energy density U� for the i-th 
loading state are designated with the superscript (⋅)(i).

with j(�(�), � , �) being �S�� (�) ∶ ℂ� (�) ∶ �S�� (�) . The 
mean compliance can be also defined as �T�̂𝜁 , when nodal 
variables are used.

(16)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜁∈Uad

J
(II)(�(𝜁), 𝜁) ≡

nl�
i=1

�𝛺

�̂
(i)T

𝜁
�T(�) ℂ𝜁 (�) �(�)�̂

(i)

𝜁
d𝛺 =

nl�
i=1

� (i)T�̂
(i)

𝜁
(a)

subject to:

C0(𝜁) ≡ �𝛺

c0(𝜁 , �) d𝛺 ≤ 0 (b − 1)

Ck(𝜁) ≤ 0, k ∶ 1…N (b − 2)

governed by:

𝕂𝜁 �̂
(i)

𝜁
= � (i), with

𝕂𝜁 = �𝛺

�T(�) ℂ𝜁 (�) �(�) d𝛺

� (i) = �𝜕𝜎𝛺
(i)

��
T(�)tn

(i)(�) d𝛤 , i ∶ 1… nl

(c)

.
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Notice that nl independent linear elastic problems must be 
solved in order to obtain the displacement field �̂(i)

𝜁
 for each 

of the loading states.

2.2.3  Compliant Mechanism Synthesis

Contrary to the two previous sections where the main 
goal was to maximize the mean stiffness of the structure, 
the objective now is to design a flexible structure capable 
of transferring an action (force or displacement) from the 
input port to the output port, obtaining a desired force or 

displacement at that port. The corresponding objective func-
tion J(III)(�(�), �) can be expressed as

where l2
(
�
(1)

�

)
 corresponds to the rhs term (7) of the elastic 

problem (5) for � = �
(1)

�
 with the boundary traction t(2)

n
(�) 

being a dummy constant force value applied only at the out-
put port in the desired direction.

Mimicking the procedure detailed for the other two topol-
ogy optimization problems in Sects. 2.2.1 and 2.2.2, the new 
mathematical problem is given by

(17)J
(III)(�(�), �) ≡ −l2

(
�
(1)

�

)
,

(18)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜁∈Uad

J
(III)(�(𝜁), 𝜁) ≡ −�𝛺

�̂
(1)T

𝜁
�T(�) ℂ𝜁 (�) �(�)�̂

(2)

𝜁
d𝛺 = −�T�̂

(1)

𝜁
(a)

subject to:

C0(𝜁) ≡ �𝛺

c0(𝜁 , �) d𝛺 ≤ 0 (b − 1)

Ck(𝜁) ≤ 0, k ∶ 1…N (b − 2)

governed by:

𝕂𝜁 �̂
(1)

𝜁
= � (1), with � (1) = �𝜕𝜎𝛺

(1)

��
T(�)tn

(1)(�) d𝛤

𝕂𝜁 �̂
(2)

𝜁
= � (2), with � (2) = � = �𝜕𝜎𝛺

(2)

��
T(�)tn

(2)(�) d𝛤

(c)

.

Fig. 3  The general flowchart 
for topology optimization 
approaches
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As anticipated in expression (17), the compliant mechanism 
problem (18) is not self-adjoint, so an auxiliary state prob-
lem must be solved in addition to the original state problem. 
The additional system presents the same stiffness matrix �� 
but a different force vector � (2) , consisting in a dummy con-
stant force at the output port, which solution is denoted as 
�
(2)

�
 . Additional springs, denoted by Kin and Kout , must be 

considered in the input and output ports, respectively, to 
ensure convergence.

2.3  General Algorithm

The flowchart of the general algorithm, used to obtain the 
optimal topology layouts, is illustrated in Fig. 3. Note that 
each technique will present variations of this optimization 
algorithm, which will be specified in the corresponding sec-
tions (Sects. 3.1–3.4). Nevertheless, the methods addressed 
in this paper exhibit a similar updating scheme.

The main part of the algorithm consists in solving the 
state equation (8) to obtain the unknown field �(�) , and 
computing the corresponding sensitivities along with the 
objective function value (Eqs. (14)-a, (16)-a or (18)-a). After 
computing the topological derivatives of the objective func-
tion, some type of regularization must be applied to them 
(e.g., sensitivity filtering and/or temporal regularization) to 
improve numerical stability and ensure convergence. The 
topology � is then updated accordingly to each approach fol-
lowing a optimality criterion so that the objective function 
is minimized. For a given volume constraint, topology and 
objective function convergence is sought, thus obtaining the 
optimal topology design.

Depending on the topology optimization method, a set 
of intermediate optimal topologies is obtained when using 
time-advancing schemes, while a single optimal design is 
only obtained (the last one) for single-time-step methods (see 
Sect. 1). For the first family of approaches, the algorithm 
previously described must be repeated for each time-step 
until the convergence criteria are met, thus obtaining a set 
of converged solutions over the Pareto Frontier of optimal 
solutions between the objective function and the volume 
constraint.

3  Topology Optimization Methods

In the following subsections, the specific details of each con-
sidered topology optimization method are described, focus-
ing on the differences among them.

3.1  SIMP Method

As aforementioned, the SIMP approach employs element-
wise density variables �e as design variables to describe the 
topology layout. Therefore, the design domain � is discre-
tized into cells or voxels13 and each element e is assigned 
a density �e . Although �e would ideally be equal to 1 for 
material and 0 for void, the design variable is here relaxed by 
allowing intermediate values 0 ≤ �e ≤ 1 . As a consequence, 
additional constraints (3-b-2) must be added to the origi-
nal topology optimization problem subject to the volume 
constraint. Furthermore, the material interpolation of the 
constitutive tensor ℂ� is defined as

where ℂ+ and ℂ− correspond to the constitutive tensor of the 
stiff and soft materials, respectively. In addition, the param-
eter p stands for the penalization factor (typically p ≥ 3 ). For 
a constant Poisson ratio, Eq. (19) can be written in terms of 
the Young’s modulus E as

where E+ and E− represent the Young’s modulus for the 
stiff and soft materials, respectively, and ℂ(1) corresponds to 
the constitutive tensor with unit Young’s modulus. Assum-
ing that E− can be defined proportional to the high Young’s 
modulus, E+ , via the contrast factor � , the resultant constitu-
tive tensor ℂ�(�e) is defined as ℂ+ multiplied by a coefficient, 
which depends on the design variable of the element, i.e., 

The global stiffness matrix �� is obtained via the assembly 
of element stiffness matrices defined as

with �+
e
 being the element stiffness matrix considering stiff 

material for element e.
Taking into account these two characteristics, the topol-

ogy optimization problem (3) becomes

(19)ℂ�(�e) = ℂ
− + �p

e

(
ℂ

+ − ℂ
−
)
, �e ∈ [0, 1] ,

(20)ℂ�(�e) =
(
E− + �p

e

(
E+ − E−

))
ℂ(1) ,

(21)ℂ�(�e) =
(
� + �p

e
(1 − �)

)
ℂ

+ .

(22)

𝕂e(�e) = ∫�e

�T(�) ℂ�(�) �(�) d�

=
(
� + �p

e
(1 − �)

)
∫�e

�T(�) ℂ+ �(�) d�

=
(
� + �p

e
(1 − �)

)
𝕂

+
e
,

13 Henceforth, both cells and voxels will be referred to as elements.
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where |�(���)| and |�| are respectively the stiff material vol-
ume and the design domain volume, and f is the prescribed 
volume fraction.14

The sensitivity of the objective function (23-a), 
�J(�(���),���)∕��e , is obtained via the adjoint technique, so 
that the derivative of the unknown field �� with respect to 
the density �e , ��(���)∕��e , is not required to be computed. 
Additionally, the sensitivity of the volume constraint (23-
b-1) with respect to the density of the element e is equal to 
|�e|∕|�| . According to [53], the sensitivity of the objec-
tive function for the three topology optimization problems 
addressed in this work are given by

where �e(�e) = p�
p−1
e (1 − �) and �̂(i)

e
(𝜌𝜌𝜌) denotes the nodal 

displacements of element e and the state equation (i).
As mentioned in Sect. 1, a regularization technique must 

be applied to the original topology optimization problem to 
ensure the existence of a solution and avoid the formation 
of the so-called checkerboard patterns. Different filtering 
techniques modifying the element sensitivity are studied for 
the comparison, including a radial sensitivity filter computed 
using the convolution function (see Sect. 3.1.3) and the filter 
based on Helmholtz type differential equation (Sect. 3.1.1). 
The solution to the filtering technique is denoted by (̃⋅) and 
replaces the non-filtered sensitivity.

Considering the sensitivities of the objective function and 
volume constraint, the corresponding topology optimization 
problem can be solved by means of the Optimality Criteria 

(23)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜌∈Uad

J(�(𝜌𝜌𝜌),𝜌𝜌𝜌) ≡ �𝛺

j(�(𝜌𝜌𝜌),𝜌𝜌𝜌, �) d𝛺 (a)

subject to:

C0(𝜌𝜌𝜌) ≡ �𝛺(𝜌𝜌𝜌)�
�𝛺� − f ≤ 0 (b − 1)

Ce(𝜌e) ≤ 0 → 0 ≤ 𝜌e ≤ 1, e ∶ 1…Ne (b − 2)

governed by:

�𝜌�̂
(i)
𝜌
= � (i) (c)

,

(24)
𝜕J(I)(�(𝜌𝜌𝜌),𝜌𝜌𝜌)

𝜕𝜌e
= −𝜔e(𝜌e) �̂e(𝜌𝜌𝜌)�

+
e
�̂e(𝜌𝜌𝜌)

(25)
𝜕J(II)(�(𝜌𝜌𝜌),𝜌𝜌𝜌)

𝜕𝜌e
= −𝜔e(𝜌e)

nl∑
i=1

�̂(i)
e
(𝜌𝜌𝜌)�+

e
�̂(i)
e
(𝜌𝜌𝜌)

(26)
𝜕J(III)(�(𝜌𝜌𝜌),𝜌𝜌𝜌)

𝜕𝜌e
= 𝜔e(𝜌e) �̂

(1)
e
(𝜌𝜌𝜌)�+

e
�̂(2)
e
(𝜌𝜌𝜌)

(OC) method. The OC method seeks the fulfillment of the 
Karush-Kuhn-Tucker (KKT) conditions

where � is the Lagrange multiplier associated with the vol-
ume constraint C0(���) such that the volume constraint is met, 
and must be computed via a root-finding algorithm (e.g., a 
bisection method). Note that the element density �e must 
be in the range of 0 to 1. The optimality conditions can be 
expressed as Be = 1 , where

A heuristic updating scheme, proposed by Bendsøe and 
Kikuchi [51], is used to update the design variables and 
achieve convergence. For minimum mean compliance, the 
scheme is defined as

where m is a positive move limit, � is a numerical damping 
coefficient and k represents the iteration counter. These two 
numerical parameters are typically set 0.2 and 0.5, respec-
tively, for minimum mean compliance. Eq. (28) is modified 
for compliant mechanism optimization problems to just 
account for positive sensitivities as

with � being a small positive value. Equivalently, the updat-
ing scheme (29) can be expressed as

with m = 0.1 and � = 0.3.
In the following subsections, three variations of the SIMP 

approach are introduced, mainly by changing the filter used 
to regularize the sensitivity (for instance, using a distance 
filter computed via a convolution function and a Helmholtz-
type filter) or by trying a time-advancing strategy (with mul-
tiple steps).

(27)�̃J

��e
+ �

�C0
��e

= 0, e ∶ 1…Ne ,

(28)Be = −
�̃J

��e

(
�
�C0
��e

)−1

.

(29)

�(k+1)
e

=

⎧⎪⎨⎪⎩

max
�
0, �(k)

e
− m

�
if �(k)

e
B�
e
≤ max

�
0, �(k)

e
− m

�

min
�
1, �(k)

e
+ m

�
if �(k)

e
B�
e
≥ min

�
1, �(k)

e
+ m

�

�(k)
e
B�
e

otherwise

,

(30)Be = max

(
�,−

�̃J

��e

)(
�
�C0
��e

)−1

,

(31)

�(k+1)
e

=

⎧⎪⎨⎪⎩

max
�
0, �(k)

e
− m

�
if �(k)

e
B�
e
≤ max

�
�, �(k)

e
− m

�

min
�
1, �(k)

e
+ m

�
if �(k)

e
B�
e
≥ min

�
1, �(k)

e
+ m

�

�(k)
e
B�
e

otherwise

,

14 The term |(⋅)| denotes the Lebesgue measure of (⋅).
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3.1.1  SIMP Method Using PDE‑Like Filter: SIMP
(I)

In this case, the sensitivities are regularized via a Helmholtz-
type PDE equation with homogeneous Neumann boundary 
conditions, as detailed in [73, 144]. The regularized sensi-
tivities �̃J∕��e correspond to the solution of

where � and �̃  are �e �J∕��e and �e �̃J∕��e , respectively, and 
��(�, ⋅) and ∇�(�, ⋅) are the Laplacian and gradient operators. 
The filter radius Rmin is equal to rmin∕(2

√
3) , with rmin being 

the filter radius of distance-based filters (see Sect. 3.1.3).
As reported by Lazarov and Sigmund [73], this type 

of filtering technique provides computational advantages 
when regularizing the sensitivities for complex non-uni-
form meshes in terms of memory storage and computational 
complexity when compared to classical filtering procedures. 
Although, for structured meshes, as in the cases addressed 
in this paper, this performance improvement may not be 
observed.

3.1.2  SIMP Method Using a Time‑Advancing Scheme: 
SIMP

(II)

An incremental-time-advancing scheme can be implemented 
on top of SIMP(I) . The volume reference of the volume con-
straint is iteratively updated, thus obtaining a set of interme-
diate converged solutions. Once the convergence is achieved, 
the reference volume fraction f in Eq. (23-b-1) is decreased 
and the topology optimization procedure is repeated for the 
new volume constraint. At the first iteration of each time-
step, the volume constraint must be fulfilled, so that the 
Helmholtz-type PDE filter keeps the volume constant.

3.1.3  SIMP Method Using Convolution Filter: SIMP
(III)

The filter in this approach modifies the sensitivities �J∕��e 
by means of a standard distance filter as follows

where � is a small positive number to avoid division by 
zero and Nei denotes the set of elements i for which the 
center-to-center distance, dist(e, i) , of element i to element 
e is smaller than a filter radius rmin , defined by the user, 
i.e., Nei = {i ∈ Ne ∕ dist(e, i) ≤ rmin} . The function Hei cor-
responds to the weight factor function (of a linearly decaying 
filter kernel) given by

(32)

{
�̃ − R2

min
���̃ = � in �

∇��̃ ⋅ � = 0 on ��
,

(33)
�̃J

��e
=

1

max (� , �e)
∑

i∈Nei
Hei

�
i∈Nei

Hei�i
�J

��i
,

This sensitivity filter can be mathematically written using a 
convolution product of the filter function H(� − �) and the 
sensitivity of the objective function �J∕��(�) as

where �r is a sphere in 3D and a circle in 2D with center at 
� , and radius rmin and �̂� is equal to max (� , �e).

3.2  SOFTBESO Method

The original ESO and BESO methods use a discrete den-
sity variable �e = {0, 1} as design variable in a hard-kill 
topology optimization procedure where elements with low 
rejection criterion are removed from the topology layout. In 
particular, in BESO, elements can be added in specific areas 
by using extrapolation techniques. However, as mentioned in 
Sect. 1, this set of hard-kill approaches suffers from numeri-
cal instabilities failing in some circumstances to obtain 
convergent solutions. For that reason, this paper focuses on 
soft-kill evolutionary techniques, and in particular, in the 
bi-directional evolutionary (BESO) approach proposed by 
Huang and Xie [101].

In this context, the design variable, now termed as the 
element-wise density variable �e = {�min, 1} , is defined using 
the original SIMP material interpolation, thus relaxing the 
design variable with a penalization factor p. Therefore, the 
material interpolation of the constitutive tensor is given by

Assuming that the Young’s modulus of the void material, 
E− , can be expressed, in terms of � , as � times the Young’s 
modulus of the stiff material E+ , then �min must be equal to 
p
√
� . A similar procedure as the one defined for SIMP-based 

approaches is used here to compute the element stiffness 
matrix, i.e.,

with �+
e
 being the element stiffness matrix considering stiff 

material for element e.
The corresponding topology optimization problem (3) for 

BESO can be written as

(34)Hei = max (0, rmin − dist(e, i)) .

(35)

�𝜕J

𝜕𝜌
(�) =

1

�̂�(�)

(
H ∗

(
𝜌
𝜕J

𝜕𝜌

))
(�)

=
1

�̂�(�) ∫
�r
H(� − �) d� �

�r

H(� − �)𝜌(�)
𝜕J

𝜕𝜌
(�) d� ,

(36)ℂ�(�e) = �p
e
ℂ

+ = �p
e
E+

ℂ(1), �e = {�min, 1} .

(37)

𝕂e(�e) = ∫�e

�T(�) ℂ�(�) �(�) d�

= �p
e ∫�e

�T(�) ℂ+ �(�) d� = �p
e
𝕂

+
e
,
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where the volume fraction f is decreased at each iteration 
until the desired final fraction f  , following an exponential 
expression fk+1 = max (f , (1 − ER)fk) . The evolutionary vol-
ume ratio ER ≪ 1 corresponds to the maximum volume frac-
tion decreased at each iteration. Notice that the convergence 
in topology and objective are not met until the desired final 
fraction f  is reached.

As detailed in Sect. 3.1, the sensitivities of the objective 
function (38-a) �J∕��e for the considered topology optimi-
zation problems are defined as

with �e(�e) being equal to p�p−1e .
For the regularization procedure, a linear distance-based 

filter, similar as the one used in SIMP(III) , is applied to the 
sensitivities �J∕��e . The filtered sensitivities are obtained as

which can also be computed using the convolution function 
of Hei (34) and the non-regularized sensitivities �J∕��e . In 
addition to the spatial filtering (used to address the mesh-
dependency problem), a temporal filtering is also applied by 
averaging the sensitivity numbers with historical informa-
tion, thus improving convergence. The temporal filter can 
be expressed as

(38)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜌∈Uad

J(�(𝜌𝜌𝜌),𝜌𝜌𝜌) ≡ �𝛺

j(�(𝜌𝜌𝜌),𝜌𝜌𝜌, �) d𝛺 (a)

subject to:

C0(𝜌𝜌𝜌) ≡ �𝛺(𝜌𝜌𝜌)�
�𝛺� − f ≤ 0 (b − 1)

Ce(𝜌e) ≤ 0 → 𝜌e = {𝜌min, 1}, e ∶ 1…Ne (b − 2)

governed by:

�𝜌�̂
(i)
𝜌
= � (i) (c)

,

(39)
𝜕J(I)(�(𝜌𝜌𝜌),𝜌𝜌𝜌)

𝜕𝜌e
= −𝜔e(𝜌e) �̂e(𝜌𝜌𝜌)�

+
e
�̂e(𝜌𝜌𝜌) ,

(40)
𝜕J(II)(�(𝜌𝜌𝜌),𝜌𝜌𝜌)

𝜕𝜌e
= −𝜔e(𝜌e)

nl∑
i=1

�̂(i)
e
(𝜌𝜌𝜌)�+

e
�̂(i)
e
(𝜌𝜌𝜌) ,

(41)
𝜕J(III)(�(𝜌𝜌𝜌),𝜌𝜌𝜌)

𝜕𝜌e
= 𝜔e(𝜌e) �̂

(1)
e
(𝜌𝜌𝜌)�+

e
�̂(2)
e
(𝜌𝜌𝜌) ,

(42)
�̃J

��e
=

1∑
i∈Nei

Hei

�
i∈Nei

Hei

�J

��i
,

(43)
�̃J

��e

|||||e,k
=

1

2

(
�̃J

��e

|||||e,k
+

�̃J

��e

|||||e,k−1

)
,

where k corresponds to the iteration number. Notice that the 
temporal-filtered sensitivity used in the optimality criteria 
(44) replaces the spatial-filtered sensitivity.

The optimality criterion for the topology optimiza-
tion problem (38) can easily be derived if no restriction is 
imposed on the design variable, i.e.,

where the Lagrange multiplier � must be computed so that 
the volume constraint C0(���) is fulfilled. For minimum mean 
compliance problem, the corresponding updating scheme 
can be expressed as

although the number of elements changing from the void 
domain to the material domain (or equivalently a volume 
fraction) is limited by a factor ARmax . Consequently, if the 
number of elements changing from the void domain to the 
material domain is greater than the maximum volume addi-
tion ratio, only the ARmax elements from the void domain 
with the highest sensitivity are added to the material domain. 
In the material domain, the ARmax + ER elements with the 
lowest sensitivity are removed from the material domain 
and replaced with void material, thus satisfying the volume 
constraint. This procedure ensures that not many elements 
are added in a single iteration, causing the structure to loose 
its integrity.

For compliant mechanism synthesis [102, 145], the updat-
ing equation (45) is relaxed to

with m = 0.1 , where the design variable �e can now take 
intermediate values.

3.3  VARTOP Method

As in Level-set, the zero-level of the level-set function is 
used to precisely define the boundaries of the material 
domain, although no updating equation is defined in terms 
of the discrimination function � . Instead, the characteristic 
function �(�) = {�, 1} is employed as the design variable, 
which is computed from the discrimination function at each 

(44)�̃J

��e
+ �

�C0
��e

= 0, e ∶ 1…Ne ,

(45)𝜌k+1
e

=

⎧
⎪⎨⎪⎩

1 if
�
−

�𝜕J

𝜕𝜌e
∕
𝜕C0
𝜕𝜌e

− 𝜆
� ≥ 0

𝜌min if
�
−

�𝜕J

𝜕𝜌e
∕
𝜕C0
𝜕𝜌e

− 𝜆
�
< 0

,

(46)

𝜌k+1
e

=

⎧⎪⎨⎪⎩

min
�
𝜌(k)
e

+ m, 1
�

if
�
−

�𝜕J

𝜕𝜌e
∕
𝜕C0
𝜕𝜌e

− 𝜆
� ≥ 0

max
�
𝜌(k)
e

− m, 𝜌min
�

if
�
−

�𝜕J

𝜕𝜌e
∕
𝜕C0
𝜕𝜌e

− 𝜆
�
< 0



1537Topology Optimization Methods for 3D Structural Problems: A Comparative Study  

1 3

iteration via the Heaviside function H�(�(�))15 (see Fig. 1). 
As result, the material interpolation of the constitutive ten-
sor ℂ� is given by

with � being the relaxation factor. It is important to stress 
that, once the domain is discretized by finite elements, the 
characteristic function will take 1 or � in the majority of 
the domain, whereas it will only take values ranging 1 to � 
in the elements bisected by the material boundary �  . The 
relaxation factor � is defined such that the Young’s modulus 
for the void material is � times that of the stiff material, i.e.,

with � being

where m is an exponential factor defined by the user and � 
is the contrast factor for the Young’s modulus. The element 
stiffness matrix �e(�(�), �) is obtained as

The topology optimization problem (3) is now written as

where the volume constraint C0(�) has been expressed in 
terms of the soft material fraction in contrast to Eqs. (23) 
and (38). The term t stands for the pseudo-time variable, 
used as time-advancing parameter.

The relaxed topological derivative (RTD), used as an 
approximation to the exact geometric topological derivative, 
for a functional F(�) ∶ L2(�) → ℝ is defined as

(47)ℂ� (�) = �m(�)ℂ+, �(�) ∈ [�, 1] ,

(48)
ℂ

−
�
(�) = �ℂ+ = �mℂ+ = �mE+

ℂ(1) for � ∈ �− ,

(49)� = m
√
� ,

(50)

𝕂e(�(�), �) = ∫�e

�T(�) ℂ� (�) �(�) d�

= ∫�e

�T(�) �m(�)ℂ+ �(�) d� .

(51)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜒∈Uad

J(�(𝜒),𝜒) ≡ �𝛺

j(�(𝜒),𝜒 , �) d𝛺 (a)

subject to:

C0(𝜒) ≡ �𝛺−�
�𝛺� −

1

�𝛺� �𝛺

1 − 𝜒(�)

1 − 𝛽
d𝛺

= t −
�𝛺−(𝜒)�
�𝛺� = 0

(b − 1)

governed by:

�𝜒 �̂
(i)
𝜒
= � (i) (c)

,

where 𝛥𝜒(�̂) is termed the exchange function and stands 
for the signed variation of 𝜒(�̂) , due to that material 
exchange. The sensitivity of the volume constraint (51-b-
1) with respect to the characteristic function is equal to 
sgn(𝛥𝜒(�̂))∕|𝛺| , where sgn(⋅) denotes the sign function of 
(⋅) . The optimality condition for the constrained topology 
optimization problem can be written as

where � stands for a Lagrange multiplier enforcing volume 
constraint C0(�) = 0 . Therefore, the closed-form non-linear 
solution for the topology optimization problem (51), termed 
as cutting&bisection algorithm, can be expressed as

where �(�(�),� , �) is termed the pseudo-energy and depends 
on the specific objective function. The Lagrange multiplier 
� is computed using an efficient bisection algorithm and 
its value fulfils the volume constraint, as in the previous 
approaches.

For the three topology optimization problems, the pseudo-
energies at point �̂ are given by

for non-bisected elements, with 𝜔(�̂) being equal to 
m𝜒m−1(�̂)(1 − 𝛽).16 However, the pseudo-energy must be 
first shifted and normalized, according to

(52)

𝛿F(𝜒)

𝛿𝜒
(�̂) =

[
𝜕f (�(𝜒),𝜒 , �)

𝜕𝜒

]

�=�̂

𝛥𝜒(�̂),

with 𝛥𝜒(�̂) =

{
−(1 − 𝛽) < 0 for �̂ ∈ 𝛺+

(1 − 𝛽) > 0 for �̂ ∈ 𝛺−
,

(53)

(
𝜕j(�(𝜒),𝜒 , �̂)

𝜕𝜒
𝛥𝜒(�̂) + 𝜆

sgn(𝛥𝜒(�̂))

|𝛺|
)

> 0 ∀�̂ ∈ 𝛺 ,

(54)

⎧⎪⎨⎪⎩

�� (�, �)∶=�(�(�),� , �) − �∕���
�(�, �) = H�

�
�� (�, �)

�

C0(�(�, �)) = 0

,

(55)𝜉(I)(�(𝜒),𝜒 , �̂) = 𝜔(�̂) �̂(𝜒 , �̂)�+
e
�̂(𝜒 , �̂) ,

(56)𝜉(II)(�(𝜒),𝜒 , �̂) = 𝜔(�̂)

nl∑
i=1

�̂(i)(𝜒 , �̂)�+
e
�̂(i)(𝜒 , �̂) ,

(57)𝜉(III)(�(𝜒),𝜒 , �̂) = −𝜔(�̂) �̂(1)(𝜒 , �̂)�+
e
�̂(2)(𝜒 , �̂) ,

(58)𝜉(�(𝜒),𝜒 , �̂) =
𝜉(�(𝜒),𝜒 , �̂) − 𝜒(�̂)𝛥shift

𝛥norm

,

15 The image set {1, 0} of the Heaviside function is relaxed to {1, �} , 
this being highlighted with the subscript (⋅)� in the Heaviside function 
symbol.

16 For points in the boundary material, the characteristic function 
and the element stiffness matrix should be replaced with the corre-
sponding ones, as detailed in [60].
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thus obtaining a modified energy density 𝜉(�(𝜒),𝜒 , �̂) . The 
terms �shift and �norm correspond, respectively, to the shifting 
and normalization parameters defined at the first iteration.17 
This variable must be later regularized using a Laplacian 
regularization (similar as the one described in Sect. 3.1.1 
for SIMP(I) ). The pseudo-energy density actually used in the 
closed-form solution (54) comes from the resolution of

where, ��(�, ⋅) and ∇�(�, ⋅) are respectively the Laplacian 
and Gradient operators, and � is the outward normal to the 
boundary of the design domain, �� . � and he stand for the 
dimensionless regularization parameter and the typical size 
of the finite element mesh, respectively.

Contrary to the common SIMP implementations ( SIMP(I) 
and SIMP(III) ) or the BESO method, the VARTOP is formu-
lated under a time-advancing framework, where the pseudo-
time t in Eq. (51-b-1) is iteratively increased, thus obtaining 
intermediate converged solutions, which are local minima 
and provide a Pareto Frontier in terms of the volume frac-
tion. Notice that, at every time-step, convergence is achieved 
unlike the algorithm used for BESO.

3.4  Level‑Set Method via a Hamilton–Jacobi 
Equation

As previously mentioned in the introduction, Level-set meth-
ods use a level-set function (LSF) to implicitly represent the 
optimal material domain via Eq. (2), and the material bound-
ary via the 0-level of the level-set function. It is important 
to note that originally Level-set approaches only updated 
the material boundary based on a differential equation, pre-
venting them from creating new voids. This drawback was 
first overcome by inserting new voids every certain iteration. 
However, Yamada et al. [140], among other researchers, sug-
gested an approach in which a Level-set method was used 
to update not only the boundary of the material domain, 
but also the material domain itself, thus allowing to nucle-
ate new voids. This specific approach will be taken as the 
reference in this article in conjunction with the relaxed topo-
logical derivative (RTD), defined in Eq. (52), to obtain the 
sensitivity function.

In contrast to VARTOP, the LSF is updated via a time-
dependent updating equation, typically using a Hamil-
ton–Jacobi equation, although other updating schemes can 
be used. From the level-set function, a characteristic func-
tion �  can be defined as

(59)

{
𝜉𝜏 − (𝜏he)

2𝛥�𝜉𝜏 = 𝜉 in 𝛺

∇�𝜉𝜏 ⋅ � = 0 on 𝜕𝛺
,

with � being the relaxation factor. Based on the preceding 
definition of the characteristic function, the correspond-
ing material interpolations (Eqs. (47–50)) are defined. The 
topology optimization problem (3), in terms of the level-set 
function, becomes

where the nodal level-set function �̂�n must be bounded 
between −1 and 1, for convergence reasons. From Eq. (61), 
the Lagrangian function can be expressed as

when an Augmented Lagrangian method is used to fulfill the 
volume constraint. Therefore, the optimality condition (53) 
for the characteristic function �(�,�(�)) reads

where � and s stand for the Lagrange multiplier and the 
penalty factor of the Augmented Lagrangian method. Notice 
that the same pseudo-energy functions as in VARTOP (Eqs. 
(55–57)) are obtained for the three topology optimization 
methods.

Instead of the closed-form non-linear solution described 
in Sect. 3.3, for each time-step the topology in this approach, 
� , is updated via a Hamilton-Jacobi equation, i.e.,

where the shape derivative of the Lagrangian has been 
replaced with the corresponding relaxed topological deriva-
tive (52), and � corresponds to a coefficient of proportional-
ity. Substituting Eq. (63) to the preceding equation gives

(60)𝜒(�,𝜙(�)) = H𝛽(𝜙(�)) =

{
1 for 𝜙(�) ≥ 0

𝛽 for 𝜙(�) < 0

(61)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
𝜙∈Uad

J
�
�(𝜙),𝜒(𝜙)

� ≡ �𝛺

j(�(𝜙),𝜒(𝜙), �) d𝛺 (a)

subject to:

C0(𝜙) ≡ t −
�𝛺−(𝜒(𝜙))�

�𝛺� = 0 (b − 1)

Cn(�̂�n) ≤ 0 → −1 ≤ �̂�n ≤ 1, n ∶ 1…Nn (b − 2)

governed by:

�𝜙�̂
(i)

𝜙
= � (i) (c)

,

(62)
L(�(�(�)),�(�), �) = J(�(�(�)),�(�))

+
(
� +

1

2
s C0(�(�))

)
C0(�(�)) ,

(63)

𝛿L(�(𝜒(𝜙)),𝜒(𝜙), 𝜆)

𝛿𝜒
(�̂) =

(
𝜕j
(
�(𝜒(𝜙)),𝜒(𝜙), �̂

)

𝜕𝜒
𝛥𝜒(�̂)

+
(
𝜆 + s C0(𝜒(𝜙))

) sgn(𝛥𝜒(�̂))
|𝛺|

)
> 0 ∀�̂ ∈ 𝛺 ,

(64)
��

�t
= �

�L(�(�(�)),�(�), �)

��
in � ,

17 The terms �
shift

 and �
norm

 are defined as min(�0, 0) and 
max(range(�0), max(�0)) , respectively.
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with

The new level-set function �k+1 is then regularized via the 
Laplacian regularization (59), and the corresponding char-
acteristic function ��,k+1(�,��,k+1(�)) is computed based on 
the regularized LSF, ��,k+1(�) , using Eq. (60).

As defined in Eq. (61), a time-advancing framework can 
be formulated, thus obtaining a set of intermediate, con-
verged optimal solutions. However, in addition to the topol-
ogy and objective function criteria, the volume constraint 
must be checked to ensure convergence for every time-step, 
since it is no longer enforced at each iteration.

4  Benchmark Cases

A set of four numerical examples in 3D problems is used to 
compare the six different implementations with each other. 
The set of benchmark cases contains two minimum com-
pliance problems (Sect. 2.2.1), one multi-load compliance 
problem (Sect. 2.2.2) and one compliant mechanism syn-
thesis (Sect. 2.2.3). In all cases and methods, eight-node 

(65)
𝜙k+1 = 𝜙k + 𝛥t 𝜅

(
𝜕j
(
�(𝜒(𝜙k)),𝜒(𝜙k), �̂

)

𝜕𝜒
𝛥𝜒(�̂)

−
𝜆k + s C0(𝜒(𝜙k))

|𝛺|
)

(66)�k = �k−1 + s C0(�(�k)) .

hexahedral ( Q1 ) finite elements18 are used in the solution of 
the state Eq. (8).

This set of 3D problems has been carefully selected to be 
used as benchmark cases using a variety of topology opti-
mization techniques, which have been widely used for this 
purpose by different researchers. All of them exhibit a high 
geometric complexity and represent a significant challenge 
for the considered methods when solving the optimization 
problems. They are defined in the following subsections.

4.1  Cantilever Beam

This first numerical example refers to the minimization of 
the structural mean compliance of a cantilever beam in a 
prismatic domain subjected to specific Dirichlet and Neu-
mann boundary conditions. The displacements are pre-
scribed on the left face of the design domain and a distrib-
uted vertical load is applied on the bottom-right edge of it. 
The analysis domain � , displayed in Fig. 4, corresponds to 
a prism of (relative) dimensions 1 × 2 × 1 , with the largest 
dimension oriented in the y-axis. Thanks to the symmetry 
with respect to the y − z plane, half of the domain is discre-
tized with 50 × 200 × 100 unit cubic hexahedral elements.

This benchmark will be used to check the correctness of 
the implementations as well as to have a first comparison 
of the results obtained with each technique in terms of the 

Fig. 4  Cantilever beam: topology optimization domain with boundary 
conditions and dimensions. A distributed vertical load F is applied on 
the bottom-right edge while the displacements � are prescribed to � 
on the left surface of the domain. The rear surface of the domain, in 
soft gray, represents the surface of symmetry

Fig. 5  L-shaped structure: topology optimization domain with bound-
ary conditions. A point-wise vertical force F is applied on the right-
bottom surface while the displacements � are prescribed on the top-
left boundary of the design domain. The rear boundary corresponds 
to the y − z symmetry surface. A considerable fraction of the domain 
(on the top-right side of the domain) is prescribed to void material

18 The design domains are assumed to be prismatic domains discre-
tized with hexahedral unit cubic finite elements, i.e., a regular finite 
element mesh. Consequently, some of the advantages of Laplacian 
filters over distance-based filters may not be noticed.
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number of iterations, objective function and topology qual-
ity. Some optimal layouts for different volume fractions can 
be found in [73, 146].

4.2  L‑Shaped Structure

This second example tackles the optimization of a simplified 
version of a hook, as it is shown in Fig. 5. This optimization 
problem, as the previous one, also corresponds to the mini-
mization of the mean compliance (14). The analysis domain 
is split into two regions: (1) the L-shaped structure, which 
corresponds to the design domain � , and (2) a prismatic 
volume prescribed as void in the top right area, defined by 
y ≥ 1

3
 and z ≥ 1

3
 . A single vertical load is applied as illus-

trated in Fig. 5 at point x = 0 , y = 1 and z = 1

6
 and the dis-

placements at the top side, near the left edge, are prescribed 
(i.e., y ≤ 1

3
 and z = 1 ). The design domain, with symmetry 

in the y − z plane, is discretized with a structured mesh of 
30 × 180 × 180 hexahedral elements.

Similarly to the previous problem, this example will pro-
vide a comparison between the approaches, but now with a 
more complex design domain (a rough edge domain with a 
point-wise load), thus showing the performance of the meth-
ods against point loads and non-rectangular design domains. 
The reader is sent to [147] for the reference optimal solution.

4.3  Multi‑Load Cantilever Beam

A multi-load topology optimization problem with two dif-
ferent loading conditions not applied at once is optimized in 
this example. Both the dimensions of the prismatic domain, 
� , and the discretization mesh are the same ones as in the 
first example (see Sect. 4.1). However, in this case, the dis-
placements of all the nodes on the left side are imposed and 
two loading conditions are applied on the top and bottom-
right edges. In the first loading condition, a vertical distrib-
uted downward force is applied on the bottom-right edge 

while in the second one, a distributed force with the same 
magnitude is applied upwards on the upper-right edge, as 
displayed in Fig. 6.

Through this numerical case, it is aimed at determining 
whether the methods are capable of obtaining symmetric 
designs when two opposite forces are applied in the design 
domain, as well as to compare the topology quality and com-
putational cost of the resultant optimal topologies with all 
the considered techniques.

4.4  Gripper Compliant Mechanism

In this last numerical example, a compliant mechanism 
is designed where the vertical displacement at the output 
port is maximized. The displacements are prescribed near 
the bottom edge at the left side of the domain ( y = 0 and 
z ≤ 0.2 ). As illustrated in Fig. 7, a positive, horizontal dis-
tributed load is applied at the input port ( y = 0 and z ≥ 1.8 ), 

Fig. 6  Multi-load Cantilever 
beam: a topology optimization 
domain with boundary condi-
tions. The displacements are 
prescribed on the left surface 
of the domain, and a vertical 
distributed downward force F

1
 

is applied in the first loading 
case (b), whereas a vertical 
distributed upward force F

2
 , in 

the second loading case (c). The 
rear boundary of the domain 
corresponds to the symmetry 
surface

(a) (b)

(c)

Fig. 7  Gripper (compliant mechanism): a topology optimization 
domain with boundary conditions. The displacements are prescribed 
at the bottom part of the left surface of the domain, and a positive, 
horizontal distributed load is applied at the top of the left surface for 
the state equation (b), while a positive, vertical distributed dummy 
load is applied at the jaws of the gripper for the additional state equa-
tion (c). The top and rear surfaces correspond to the x − y and x − z 
symmetries, respectively
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while a vertical upward dummy load is applied at the output 
port ( z = 1.8 and y ≥ 3.6 ). The analysis domain � , whose 
(relative) dimensions are 2 × 4 × 4 , is discretized with a 
mesh of 100 × 200 × 200 hexahedral elements. However, 
thanks to the two existing symmetries, only a quarter of the 
domain is analyzed, thus leading to 1.000.000 finite ele-
ments. In addition, two regions near the input and output 
ports are prescribed to stiff material to guarantee stiff mate-
rial in those areas ( �z = 0.2).

Additionally, surface distributed springs are included in 
the input and output ports (in the same direction as the target 
displacement) to restrict the displacement amplitude at these 
areas and simulate both the input work of the actuator and the 
elastic reaction work at the output port. The corresponding 
numerical values for the springs are Kin = 1.5 × 10−1 N/m3 
and Kout = 1.5N/m3 , while the distributed forces are 
f1 = 3.81 × 10−3 N/m2 and f2 = 3.81 × 10−4 N/m2 , respec-
tively. Note that the optimal solution will heavily depend 
on the ratios of these parameters, however not all parameter 
combinations will ensure a convergent admissible solutions. 
For that reason and due to the non-semi-definite topologi-
cal derivative, this last example will provide an analysis of 
the performance of the different techniques with respect to 
the design of compliant mechanisms, produced either with 
localized hinges or deformable bars (for optimal reference 
solutions refer to [59, 140, 145]).

5  Comparison of Methods

5.1  Comparison Settings

In the following subsections, the basis of the comparison 
will be detailed, specifying the platform on which Matlab 
will be executed, the versions for the Matlab codes of each 
approach as well as the specific parameters used in each 
method and numerical example. In addition, it is important 
to define equivalent convergence criteria for the different 
techniques in order to guarantee a fair comparison in terms 
of the computational cost.

5.1.1  Computing Cluster Features

The benchmark cases are solved on a cluster, in which each 
node consists of two AMD EPYC 7451 with 24 cores (48 
threads) each one at 2.9 GHz and 1 TB DDR4 RAM mem-
ory at 2666 MHz. Each example is solved using eight cores 
and 99 GB of RAM memory to ensure enough memory for 
each of the numerical benchmarks. In this way, a greater 
number of cases can be solved at once without affecting the 
result of each approach. All these cases are computed using 
modified codes in Matlab 2018b under Scientific Linux 7.2 
(based on RedHat Enterprise 7.2).

5.1.2  Matlab Codes

All the codes used in this paper are 3D extensions of the 
respective 2D codes, already published by their respective 
developers, preserving the original algorithmic structure.

Firstly, SIMP-based method codes are based on the 2D 
implementation initially introduced by Sigmund [148] in 
the 99-line program for two-dimensional topology optimiza-
tion. This program was later improved by Andreassen et al. 
[144], who vectorized the element loops in the assembly and 
filtering strategies. The code in Matlab was later extended 
to three-dimensional topology optimization problems by 
Liu and Tovar [147], who provided the analytical element 
stiffness matrix for a cubic hexahedral element. Therefore, 
the SIMP method with PDE-filtering ( SIMP(I) ) and SIMP 
method with convolution filter ( SIMP(III) ) take the basic 
scheme from the 82-line program (using a PDE filter) and 
the 71-line program (with the conv2 function) from [149], 
respectively, and implement the formulation for the 3D elas-
tic problem from [147]. Both approaches use the optimality 
criteria (OC) method combined with a sensitivity filtering 
( ft = 1 ) to solve the corresponding topology optimization 
problem. It is worth noticing that the L∞ norm of the design 
variable has been replaced by a L2 norm normalized with 
the size of the domain. In addition, some minor changes to 
the OC Matlab function have been done to correctly con-
sider active and passive elements. As mentioned, the SIMP 
method using time-advancing scheme ( SIMP(II) ) employs 
the same scheme as the SIMP method with PDE-filtering 
( SIMP(I) ), but this time using a time-advancing scheme, 
similar as the one implemented in VARTOP [60, 61].

Secondly, a Soft-kill BESO code, implemented in Matlab, 
has been adapted from the one presented by Huang and Xie 
[102] in chapter 4 for 2D topological stiffness optimization. 
This code has been extended to three-dimensional prob-
lems mimicking the Matlab code for SIMP(III) , since they 
share most of the general scheme of the algorithm. Some 
modifications have been done to adapt the specific updating 
scheme, the sensitivity filtering along with the correspond-
ing temporal filtering (the so-called averaging scheme in 
[102]). Additional minor changes must be implemented in 
the sensitivity and stiffness computations, since the origi-
nal SIMP material interpolation is used instead of the one 
implemented in [144], with two unique discrete values: 
� = {1, �min} for the minimum mean compliance problem 
(see Sect. 3.2). In this particular scenario, the minimum 
value �min is imposed to elements in the void domain to avoid 
zero stiffness elements. Additionally, a similar L2 norm of the 
topology, implemented for SIMP-based methods, is here also 
used to check if the topology has converged in addition to 
the existing one in objective function.

Thirdly, the Matlab code for VARTOP is a 3D extension 
of the corresponding program for 2D topology optimization 
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problems provided in [61]. The element stiffness matrices, as 
a product of the strain-displacement matrix with the nominal 
constitutive tensor, are precomputed for the non-bisected and 
bisected elements, here termed mixed elements. In this way, 
once the type of element has been determined, the global 
stiffness matrix can be quickly computed and assembled. In 
addition, the pseudo-energy density is also easily computed 
from the matrices calculated with the reference element. In 
this case, a Laplacian smoothing, applied to the pseudo-
energy density at each iteration, is precomputed at the first 
iteration as implemented in SIMP(I) . Finally, the Lagrange 
multiplier is computed using the closed-form optimality 
method in conjunction with a modified marching cubes 
method to compute the volume, explained in Oliver et al. 
[60]. The convergence criteria defined in [60] are replaced 
with the objective function criterion and the topology crite-
rion in terms of a relaxed design variable, in addition to the 
volume constraint.

Finally, the Level-set method using the Relaxed Topo-
logical Derivative (RTD) corresponds to a modification of 
the previous code for VARTOP, where the updating scheme 
is changed. Instead of the original closed-form optimality 
criteria, a Hamilton-Jacobi equation is used to update the 
level-set function with a given �t , as detailed in Oliver et al. 
[60]. An Augmented Lagrangian method is used to ensure 
the volume constraint equation C0 . The stiffness matrices as 
well as the different terms required to compute the pseudo-
energy density are precomputed at the initial iteration. The 
same Laplacian smoothing as in VARTOP is here applied to 
the level-set function at each iteration. In addition to the two 
existing convergence criteria, the volume constraint must be 
also considered in the outer loop.

5.1.3  Guidelines for the Comparison

The general guidelines for a fair comparison are listed 
below: 

1. Benchmark cases: the same numerical benchmark cases 
and finite element meshes must be used for every topol-
ogy optimization approach. Four benchmark cases will 
be carried out using dense meshes (around 1 million 
finite element) in order to obtain high-quality designs.

2. Target volume fraction: the same ratio of the final mate-
rial domain is imposed by the constraint equation in each 
approach, which is fulfilled through different techniques. 
The desired volume fraction corresponds to a small ratio 
of material with respect to the initial design domain, so 
that a large material reduction is achieved throughout the 
topology optimization. For three-dimensional problems 
using high dense meshes, this value will commonly be 
between 80 and 95% of the design domain, � , depend-
ing on user requirements. Nevertheless, it will depend 

on each specific numerical example and its respective 
boundary conditions as connections between the differ-
ent boundary conditions areas must be preserved. This 
ensures a stiff connection between the nodes in which 
the loads are applied and those where the displacements 
are prescribed in the elastic problem.

3. Objective function normalization: since not all the 
methods start from a full material configuration, an ini-
tial iteration with this material layout is computed in 
all Matlab codes as a reference iteration. The objective 
function value at this iteration, J0 , is used to normalize 
the subsequent iterations in each method, thus obtain-
ing equivalent values for each numerical example, tech-
nique and volume fraction. However, the use of differ-
ent design variables, nodal19 versus element20 variables, 
produces huge discrepancies in the actual objective 
function value since the stiffness of semi-dense elements 
is underestimated [71]. For that reason, an additional 
final iteration is computed with an element black-and-
white configuration, i.e � , � = {1, 10−9} , thus obtaining 
a fully equivalent objective function value. Neverthe-
less, it is important to point out that this configuration 
is not practical from a design standpoint as the smooth-
ness of the design is lost in the projection. The reader is 
addressed to “Appendix 2” for further details.

4. Contrast factor: since each compared topology optimiza-
tion approach defines a different material interpolation 
for the constitutive tensor ℂ� , it is important to ensure 
the same contrast factor � , so that the same Young’s 
modulus is used for the soft material when using the 
ersatz material approach. This parameter may strongly 
affect the objective function value and the convergence 
of the topology optimization. A preliminary study has 
revealed that topology convergence can be achieved 
for contrast factors up to � = 10−6 , for minimum mean 
compliance problems. Thus, this value will be used as 
contrast factor for this type of problems.

5. Convergence criteria: in order to guarantee a fair com-
parison, the convergence criteria of each approach must 
be replaced with the same equivalent conditions:

– Volume constraint: the same tolerance TolC0 = 10−3 
in the volume constraint (3-b-1) is assumed for all 
the topology optimization approaches, except in 
Level-set. In this approach, the tolerance is slightly 

19 The characteristic function, defined through the discrimination 
function, is used as design variable in the Level-set and VARTOP 
methods. Therefore, the material interface is precisely defined by the 
level-set function or discrimination function, respectively.
20 The density is defined for each element either using a continu-
ous material interpolation for the SIMP-like approaches or a discrete 
solution for the Soft-kill BESO method.
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relaxed to 5 × 10−3 , in order to improve convergence 
when using the Augmented Lagrangian method.

– Objective function criterion: a (weighted) moving 
mean of the relative objective function J  is evalu-
ated along n consecutive iterations as 

 where the parameter k denotes the k-th iteration 
and J0 stands for the objective function at the ini-
tial iteration. The appropriate number of iterations 
n depends on the topology optimization technique, 
as the number of iterations per time-step will not be 
the same. Notice that, for time-advancing schemes, 
the n + 1 iterations correspond to the same time-step, 
thus avoiding variations in the objective function due 
to the change of volume constraint. For all the bench-
mark cases, a tolerance TolJ = 10−3 in the objective 
function is prescribed.

– Topology criterion: a L2 norm between two consecu-
tive iterations is evaluated in a relaxed design vari-
able � as 

 where k represents the iteration number and |�0| 
stands for the material volume at the first iteration. 
The design variable �k corresponds to a relaxed char-
acteristic function for discrete design variables (for 
instance, in the VARTOP, SOFTBESO, and Level-
set methods) or to the density variable for the SIMP 
approaches. In “Appendix 1”, the reader can find the 
exact definition of this topology criterion for discrete 
design variables. For this criterion, the convergence 
tolerance is Tol� = 2.5 × 10−3.

   For incremental time-advancing methods, such as 
the VARTOP, SIMP(II) , and Level-set methods, a lin-
ear variation of the tolerances in cost and topology is 
defined, starting from a higher value for the first time-
step (around one order of magnitude higher) to the 
value established in the last time-step. Consequently, all 
approaches obtain the convergence with the same crite-
ria for the last increment (i.e., for the same stiff material 
fraction), thus resulting in a fair comparison. It is impor-
tant to stress that the objective function criterion is not 
a reliable indicator of convergence in compliant mecha-
nism synthesis problems. The normalized objective func-
tion oscillates significantly more than in minimum mean 
compliance problems in all methods, thus preventing 
to obtain an optimal solution. This oscillation may be 
related to this specific type of problem, and, in particu-

(67)�Jk =
1

n

i=k∑
i=k−n

|Ji − Ji−1|
J0

,

(68)��k =
1

|�0|1∕2
(
∫�

(
�k − �k−1

)2
d�

)1∕2

,

lar, to the initial value of the objective function which 
may be null. As a consequence, the normalization of the 
objective function can not be performed, thus invalidat-
ing this convergence criterion. For these reasons, the 
objective function criterion has not been considered in 
the last numerical benchmark of this paper. However, it 
can be used in the other three benchmark cases since a 
proportionality between the objective and topology cri-
teria is observed, both monotonously converging to the 
optimal values. In addition, the normalization problem 
is not detected in minimum mean compliance problems 
as the external work is different from 0 in any case. In 
case it would also be omitted in these examples, no sub-
stantial change would be observed with respect to the 
obtained results, just resulting in minimal variations in 
the number of iterations to converge.

5.1.4  Parameter Definition

For each topology optimization method and benchmark case, 
a specific set of parameters must be defined. These param-
eters define the material behavior (via the contrast factor 
or minimum Young’s modulus), the volume fraction, the 
convergence tolerances, the exact updating parameters for 
the design variable, and the the ones for the regularization 
technique.

Whenever possible, common values in material prop-
erties, volume fraction, and convergence tolerances will 
be imposed for the different benchmark cases and topol-
ogy optimization methods. However, the specific updating 
parameters depend on each approach and numerical example 
due to convergence issues. In particular, a consistent differ-
ence is noticed regarding the definition of the parameters 
for minimum mean compliance and compliant mechanism 
synthesis problems, as already commented.

Regarding the target volume fraction, a 10% volume 
fraction of stiff material and a contrast factor � = 10−6 are 
imposed for minimum mean compliance problems. As for 
compliant mechanism synthesis problem, the volume con-
straint is applied for a 15% volume fraction, while contrast 
factor is increased to � = 10−2 . In both problems, a linear 
isotropic material with a Young’s modulus E = 1 and Pois-
son’s ratio � = 0.3 is used.

The updating and regularization parameters depend on 
each approach, and in certain cases, on the optimization 
problem. The exact values of these parameters are detailed 
in “Appendix 3”. In general, the parameters of each method 
are given as follows:

– SIMP-based methods: the penalty value and the mini-
mum radius are prescribed to p = 3 and rmin = 3 , respec-
tively. A sensitivity filtering ( ft = 1 ) is used for the 
topology optimization, as aforementioned. The updating 
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Table 1  Comparison of the results of topology optimization methods for the Cantilever beam

The number of iterations, objective function values, and mean bar widths h are given for each of the addressed approaches. The optimal topology 
is also illustrated in the last two columns, via an isometric view and a side view

Method Total iterations Objective 
function

h Optimal solutions

SIMP
(I) 175 6.4710 2.1012

 
SIMP

(II) 231 5.9609 1.7888

 
SIMP

(III) 124 6.7285 1.9700

 
SOFTBESO 272 6.4369 1.4586

 
VARTOP 116 6.3981 2.2783

 
Level-set 1266 6.9494 2.8121

 



1545Topology Optimization Methods for 3D Structural Problems: A Comparative Study  

1 3

parameters m and � are defined according to the optimi-
zation problem, corresponding to 0.2 and 0.5 for mini-
mum compliance problems, and 0.1 and 0.3, respectively, 
for compliant mechanism design problem.

– SOFTBESO: the same values for the penalty factor and 
minimum radius as those in SIMP are used. The evolu-
tionary ratio ER and the maximum volume addition ratio 
ARmax are prescribed to 0.01 and 0.1, respectively.

– VARTOP: the number of steps nsteps , the exponential 
factor m and the regularization factor � depend on each 
problem. However, the same value of time-steps as 
SIMP(II) is used for each benchmark case.

– Level-set: in contrast to SIMP(II) and VARTOP, the opti-
mizations are carried out with a single time-step. How-
ever, the same exponential factors as the ones in VAR-
TOP are employed, and the regularization factor � is set 
to 1. In addition, the time-increment �t and the penalty 
coefficient s of the Augmented Lagrangian method also 
change with the optimization problem.

For incremental time-advancing techniques with multiple 
time-steps, the volume fraction of stiff material at each step 
is reduced following an exponential evolution

with factor k = −2.

5.2  Results

The results obtained from the six topology optimization 
approaches are now compared with each other for every of 
the numerical benchmarks (see Sect. 4). The comparison 
is carried out in terms of the optimal topology, objective 
function value, and the computational cost, discussing the 
relative objective function values and the relative computa-
tion costs. In addition, an analysis of the convergence is also 
performed. Finally, an overall comparison of the different 
methods is made according to the results.

5.2.1  General Discussion of Results

The optimal topology layout for the required material vol-
ume is here compared for the six different approaches from 
a quantitative and qualitative standpoint. In particular, the 
quality of the optimal solution is discussed together with the 
minimum filament size of the resulting (linear) pieces of the 
final design (bars), the computational cost in terms of the 
iterations, and the normalized value of the objective function 
for the four addressed benchmark cases.

Cantilever beam The final solutions of the Cantilever 
beam problem for each topology optimization technique are 

(69)fj = f0 +
f − f0

1 − ek

(
1 − e

k
j

nsteps

)
, j ∶ 1… nsteps

displayed in Table 1. Although the resultant topologies are 
quite different, all methodologies except for SIMP(II) obtain 
a similar overall optimal design consisting of two separated 
webs. However, these webs present a different internal lay-
out and topology complexity. The designs obtained from 
SIMP(I) , SIMP(III) , VARTOP, and Level-set illustrate a much 
simpler design based on bars, while SOFTBESO produces 
an optimal design with a thin web (or a high number of 
close bars), with almost constant thickness. On the other 
side, SIMP(II) finds a different optimal layout with a single 
continuous central web.

The mean bar width value h , computed as the ratio 
between the stiff volume and the surface area of the solu-
tion, provides feedback on the complexity of the optimal 
design. For low h values, as in SOFTBESO, the optimal solu-
tion is made of a large number of thin bars, making it more 
difficult to manufacture and more likely to buckle. As this 
number increases, the width of the bars tends to increase, 
thus simplifying the complexity of the design, as in SIMP(I) , 
VARTOP, or Level-set. Furthermore, these topologies are 
less prone to buckling effects.

The topologies can be also compared in terms of the cor-
responding value of the objective function. It can be noted 
that as the number of bars increases and/or the size of these 
bars decreases (tending to a single continuous web in the 
limit), the value of the objective function decreases, as it is 
observed in the SOFTBESO and SIMP(II) approaches. On 
the contrary, Level-set and VARTOP optimize the design lay-
out using thicker bars, thus obtaining a higher compliance 
value.21 Similar designs and objective function values are 
obtained via SIMP(I) and SIMP(III).

Finally, the techniques can be compared in terms of the 
number of iterations (i.e., a computational cost-measure). 
As detailed in Table 1, VARTOP requires fewer iterations 
(116) to achieve the optimal topology layout while not being 
so far from the optimal topologies obtained by the other 
approaches. It is closely followed by SIMP(III) with 124 itera-
tions, and with a few iterations more one can find SIMP(I) , 
SIMP(II) , and SOFTBESO with 175, 231 and 272 iterations, 
respectively. The Level-set method takes many more itera-
tions (1266) to converge.

L-shaped structure The obtained results for the L-shaped 
structure are presented in Table 2. As it can be noticed, the 
overall design of the structure is similar in all the methods. 
The vertical part, at the left, is almost identical in all the 
solutions. The most significant differences are found in the 
lower part of the structure, in which the topological com-
plexity changes with the method. In this case, designs with 
2 or 3 webs are obtained according to the approach, which 

21 The bar width could be reduced by modifying the value of the reg-
ularization parameter, �.
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Table 2  Comparison of the results of topology optimization methods for the L-shaped structure

Method Total iterations Objective function h Optimal solutions

SIMP
(I) 66 2.4823 2.1194

 

SIMP
(II) 140 2.4229 1.7722

 

SIMP
(III) 76 2.4882 2.1108

 
SOFTBESO 190 2.6171 1.5100

 
VARTOP 62 2.4811 2.4903
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connects the vertical part of the structure with the load appli-
cation point. In particular, all the methods present a 2 web 
design except for the solutions of SIMP(II) , which displays 
an internal central structure. Additionally, all the designs 
are mainly constituted by bars, being thinner in SIMP(II) and 
SOFTBESO, as displayed by the mean bar width value h.

Regarding the objective function value, the values for all 
the solutions are around a compliance value of 2.40–2.60 
with respect to the initial reference compliance.22 SIMP(II) 
achieves the topology design with the lowest objective func-
tion value, while other approaches produce solutions with 
a value closer to 2.5. SOFTBESO obtains the solution with 
the highest objective function value (2.6).

Finally, a comparison of the number of iterations shows 
that, again, VARTOP requires fewer iterations than the other 
considered topology optimization techniques. There is not a 
large difference in the number of iterations with SIMP(I) or 
SIMP(III) (66 and 76 versus 62 of the VARTOP), although the 
difference in iterations increases when compared to SIMP(II) , 
SOFTBESO or Level-set techniques, as observed in the pre-
vious example.

Multi-load Cantilever beam Table 3 presents the results 
obtained regarding the multi-load problem for the cor-
responding approaches. In contrast to the previous cases, 
the resultant optimal solutions are quite different from each 
other. Although all six methodologies find symmetrical opti-
mal solutions (with respect to the horizontal midplane of the 
domain), the resulting topologies do not correspond to the 
symmetrical solutions obtained for the first example (see 
Table 1), which could be intuitively presumed.

Most of the solutions are based on bar designs except for 
the SOFTBESO approach, which consists of a continuous 
core. For this reason, the mean bar size h is the lowest of all 

techniques. Nevertheless, the solutions obtained with VAR-
TOP, SIMP(I) , and SIMP(III) have many similarities, being 
the design of these last two techniques practically the same. 
Furthermore, the optimal layout achieved with SIMP(II) is 
made of 3 webs with thinner bars, having a similar overall 
design. It is important to stress that the solutions obtained 
using VARTOP and Level-set present the highest mean bar 
width, thus achieving the best designs from a manufacturing 
standpoint and buckling resistance. However, the solution of 
the Level-set method corresponds to a different local mini-
mum than the previous ones.

The lowest objective function values are obtained by 
SOFTBESO and SIMP(II) even though the designs are quite 
complex and can not be easily manufactured. Conversely, 
Level-set finds the topology layout with the highest value. 
The other approaches (VARTOP, SIMP(III) , and SIMP(I) ) 
provide sufficiently manufacturable (low complexity) solu-
tions with intermediate values. Similar to the previous cases, 
methods SIMP(I) , SIMP(III) , and VARTOP are the ones with 
the lowest computational cost, method SIMP(I) being 30% 
faster than the other two methods.

Gripper compliant mechanism The results of this last 
numerical example are summarized in Table 4. The opti-
mal solutions exhibit resemblance to each other, obtaining 
the desired mechanism. However, the topology layouts can 
be grouped into two groups: obtaining 3D-like designs for 
SIMP and SOFTBESO methods, while almost 2D-extruded 
designs are obtained for VARTOP and Level-set. The con-
sidered approaches can also be split into two main groups 
depending on their capability to generate the mechanism 
either by creating localized hinges or deformable bars. All 
methods except SOFTBESO achieve a design based on local-
ized hinges, thus significantly increasing the value of the 
objective function. In other words, the same force applied at 
the input port results in a smaller displacement in the target 
direction at the output port. For this reason, it is concluded 
that SOFTBESO has not fully converged to the same local 

Table 2  (continued)

The number of iterations, objective function values, and mean bar widths h are given for each of the addressed approaches. The optimal topology 
is also illustrated in the last two columns

Method Total iterations Objective function h Optimal solutions

Level-set 1071 2.5163 2.4532

 

22 An initial iteration with a full stiff material is computed. The pas-
sive elements/nodes are accounted for in this initial design.
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Table 3  Comparison of the results of topology optimization methods for the Multi-load cantilever beam

The number of iterations, objective function values, and mean bar widths h are given for each of the addressed approaches. The optimal topology 
is also illustrated in the last two columns

Method Total iterations Objective  
function

h Optimal solutions

SIMP
(I) 81 7.4271 1.8343

 
SIMP

(II) 208 6.7774 1.4312

 
SIMP

(III) 111 7.3156 1.8300

 
SOFTBESO 249 6.6406 1.3108

 
VARTOP 115 7.0459 2.5573

 
Level-set 694 8.2108 2.5669
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minimum under the given parameters. Regarding the mean 
bar width, the values for all approaches range between 2.4 
and 2.5, being equal to 2.7 for SIMP(I) as the design is based 
on a smaller number of thicker bars.

Except for the SOFTBESO, the objective function val-
ues of the other approaches range between −260 and −331 , 
showing a larger discrepancy than in the previous bench-
mark cases. On the other hand, unlike the previous bench-
mark cases, the best topology design is obtained using the 
Level-set method, even though the layout almost resembles 
a 2D-extruded design.

Finally, the comparison of the number of iterations 
reveals that VARTOP requires much fewer iterations than the 
other methods. The other topology optimization techniques 
require between 200 and 300 iterations. Therefore, the con-
sidered methods can be sorted according to the number of 
iterations, in increasing order, as follows: VARTOP, Level-
set, SOFTBESO, SIMP(III) , SIMP(II) and SIMP(I).

After analyzing all the results, it can be stated that topolo-
gies resulting from Level-set and VARTOP have smooth and 
accurate interfaces since the solution is defined via a level-
set or a discrimination function. Thus, low complexity topol-
ogy designs are obtained. On the contrary, SIMP-based and 
SOFTBESO methods produce element-wise discontinuous 
designs. In addition, SIMP-based approaches require spe-
cial post-processing as the design has semi-dense elements, 
thus requiring an extra projection procedure to determine the 
density value that defines the material interface. In this pro-
cedure, bars might be disconnected or broken up, giving as 
solution non-optimal topologies. Additionally, a smoothing 
post-processing should be done to achieve crisp and smooth 
edges from these two family of approaches.

5.2.2  Objective Function Value

In Fig. 8, the objective function values for each example and 
topology optimization method are illustrated. The values are 
normalized with respect to SIMP(I) . As aforementioned, the 
objective function for each of the numerical benchmarks 
does not differ much from one approach to another. The 
values are between a range of ±15% of the ones obtained 
using SIMP(I).

As observed in the graphic, SIMP(II) achieves consistently 
the optimal solutions with the lowest objective function 
value as a consequence of the larger number of thin straight 
bars (high topology complexity), as detailed in Sect. 5.2.1. 
Nevertheless, two exceptions are observed, the first one 
for the multi-load cantilever problem where SOFTBESO 
achieves a solution with a lower objective function, and the 
second one for the Gripper case and the Level-set.

It is important to emphasize that a greater variance is only 
observed in the Gripper due to the fact that there is a greater 
difference in topology among the different approaches. Each 

technique achieves a characteristic compliant design with the 
exception of SOFTBESO. This approach obtains a topology 
layout with an objective function value that is almost two 
times higher than the one obtained using SIMP(I).

5.2.3  CPU Computation Cost: Iterations

The computational cost is assessed in this paper according to 
the number of iterations instead of the computational time. 
In this way, it is possible to decouple the solution from the 
platform used to run the topology optimization technique 
(i.e., OS, programming language, and hardware, among 
others) as well as from the solver used to solve the state 
problem. It has been observed that the selection of a specific 
iterative solver may significantly increase the computational 
time of some approaches with respect to others. Therefore, 
to remain as unbiased as possible, and in the hypothetical 
case that all methods would use a direct solver with equiva-
lent computational cost per iteration, the computational 
cost could be evaluated with the number of iterations, thus 
obtaining a fair comparison.

The comparison of the computation cost in terms of the 
number of iterations is shown in Table 5. The values of the 
computational cost, normalized with respect to SIMP(I) , are 
illustrated in Fig. 9. As can be seen, the relative computa-
tional cost depends on each numerical example. However, 
it keeps a certain tendency along the considered approaches 
for minimum mean compliance problems.

Regarding the Cantilever beam, VARTOP and SIMP(III) 
are up to 1.4 times faster than SIMP(I) , and up to 2 times 
faster than SIMP(II) or SOFTBESO. Level-set turns out to 
be 7 times more computationally expensive than SIMP(I) . In 
addition, it is important to stress that VARTOP is 7% faster 
than SIMP(III) , even though it provides not only the optimal 
solution but a set of solutions for different volume fractions 
(Pareto Frontier).

For the L-shaped structure and the multi-load cantilever 
beam optimizations, the relative computation costs increase 
from the previous example, except in VARTOP. Its relative 
computational cost becomes almost 1 for the L-shaped struc-
ture and even 1.4 for the multi-load cantilever case. SIMP(I) 
results in the the fastest approach for this latter benchmark. 
The advantage over the SOFTBESO, Level-set, and SIMP(II) 
methods is still present, although no significant improvement 
in computational cost is obtained with respect to SIMP(III) 
and VARTOP.

As for the compliant mechanism example, the previously 
observed trend does not apply any more. In this case, VAR-
TOP is the fastest approach by far (almost an order of mag-
nitude faster), followed by the Level-set and SOFTBESO 
approaches. Both methods require approximately half as 
many iterations as SIMP(I) . SIMP(III) and SIMP(II) tech-
niques are respectively 20% and 10% faster than the reference 
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Table 4  Comparison of the results of topology optimization methods for the Gripper compliant mechanism

Method Total iterations Objective function h Optimal solutions

SIMP
(I) 325 − 261.6980 2.7041

 

SIMP
(II) 297 − 305.3930 2.5020

 

SIMP
(III) 264 − 297.0620 2.4805

 
SOFTBESO 207 − 135.7380 2.5441

 
VARTOP 32 − 269.4409 2.4553

 
Level-set 176 − 331.0203 2.5128
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method. This trend change in the computational cost may be 
caused by the change in the topology optimization problem 
(i.e., the non self-adjoint character of the problem).

5.2.4  Robustness: Monotonic Convergence Degree

The convergence robustness is analyzed through the evo-
lution of the objective function and volume fraction, and 
the criteria in topology and objective function throughout 
the optimization. For each technique, the analysis of these 
variables determine the monotonic convergence degree of 
every method. The discussion is performed only through 
the first two examples, since they are representative enough 
to provide a complete overview of the issue of robustness.

The evolution of the objective function for the Cantile-
ver beam is illustrated in Fig. 10. Single-time-step methods 
are represented in the first column while incremental time-
advancing techniques (i.e., SIMP(II) , VARTOP, and Level-
set) are depicted in the second column. Each time-step is 
shaded with a different color to improve its visualization. 
The normalized objective function value J∕J0 (solid line 
colored in black) is illustrated in the left y-axis, while the 
stiff material fraction (dash-dotted line, colored in gray) is 
associated with the right y-axis.

Based on the convergence, the following features can be 
highlighted: (1) SIMP(I) and SIMP(III) prescribe a constant 
stiff material fraction (i.e., f = 0.1 ) from the initial itera-
tion, and the objective function converges monotonically to 
a value close to 7.8,23 (2) in SOFTBESO, the stiff mate-
rial fraction is gradually reduced from the initial value 1 
to the target value 0.1, consequently, the objective function 
increases until the target volume is achieved, (3) in SIMP(II) 
and VARTOP, the target stiff material fraction is reduced 
from 1 to 0.1 in 12 time-steps, thereby the objective function 
is minimized at each time-step, and (4) Level-set, which even 
though it can also be an incremental time-advancing method, 
it has a particular response since the volume constraint is not 
strictly enforced on each iteration, but it oscillates ruled by 
an Augmented Lagrangian method.

As illustrated in “Appendix 4”, the order of convergence 
of the objective function is close to 1 for all the techniques. 
Therefore, all topology optimization methods have a linear 
convergence in the objective function.

The convergence curves of the objective function and 
topology criteria are depicted in Fig. 11. The objective 
function criterion (solid black line) is represented in the 
left y-axis, while the topology criterion (gray dash-dotted 
line) in the right y-axis. As in Fig. 10, the previous four 
different groups can be distinguished, but now in terms of 
the convergence criteria. Both SIMP(II) and VARTOP show 
a strictly monotonous convergence within each time-step, 
only noticing some small oscillations in the second last time-
step where a change in topology has taken place. As for the 
other methods, SIMP(I) and SIMP(III) present monotonous 
convergence with small amplitude oscillations, while some 
important variations are noticed in SOFTBESO once the 
final stiff material fraction is achieved. Finally, the conver-
gence criterion in the Level-set method mimics the trend 
detected in the objective function and volume fraction with 
small amplitude oscillations. As a global comment, it can 
be stated that the objective function criterion corresponds 
to the most restrictive criterion in all topology optimization 
approaches, except in the Level-set method, in which the 
volume constraint is the limiting one.

The convergences corresponding to the other examples 
have been also analyzed in detail. The graphics do not pre-
sent any significant difference with respect to those already 
analyzed for the Cantilever beam. However, for complete-
ness reasons the corresponding graphics of the second exam-
ple are depicted in “Appendix 5”.

5.2.5  Overall Performance

In this last subsection, instead of comparing the different 
methods in a quantitative and analytical way, a more quali-
tative comparison is presented according to the following 
aspects: (1) Surface smoothness, (2) Topology complexity, 
(3) Objective function, and (4) Computational cost.

The first aspect refers to the surface smoothness required 
by several manufacturing techniques. In these technolo-
gies, sharp edges and noise shells (i.e., abrupt continuous 
changes) must be avoided in the boundary of the opti-
mal solution. The second criterion takes into account the 
complexity of the optimal design obtained by each tech-
nique, considering other mechanical properties not directly 
included in the optimization. For instance, designs based on 
thick bars will have a better structural behavior in buckling 
or fatigue compared to designs with a greater number of 
thin bars. These two aspects will also have an impact on 
the manufacturing challenges, which will decrease as the 
design becomes smoother and less complex. The third one 

Table 4  (continued)

The number of iterations, objective function values, and mean bar widths h are given for each of the addressed approaches. The optimal topology 
is also illustrated in the last two columns

23 Note that the objective function value in the graph does differ from 
Table 1, since different contrast factor � are used in the optimization 
and in the post-processing iteration.
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considers the value of the objective function, or equiva-
lently the efficiency of each method of finding a better local 
minimum. This criterion gathers the information shown in 
Fig. 8 regarding the relative objective function values. The 
last point of comparison globally assesses the computational 
cost of each method to perform the optimization. Analogous 
to the last aspect, this criterion gathers the information rep-
resented in Fig. 9 with respect to the relative computational 
cost.

In Fig. 12, each one of the aspects is represented with a 
column bar rated between A and D, with A being the best 
qualification in that section and D being the worst one. For 
each approach, four bars of different colors and patterns are 
represented, each one corresponding to an analyzed aspect.

Regarding the surface smoothness, VARTOP and Level-
set provide designs whose surfaces are smooth. On the con-
trary, all other approaches only achieve element-wise opti-
mal designs, thus the boundary of the solution is defined 
through abrupt continuous changes. Consequently, addi-
tional post-processing procedures are required to manufac-
ture these solutions with smooth boundaries. For this reason, 
VARTOP and Level-set are evaluated with an A, while the 
others are rated with a C grade.

Concerning the topology complexity, it has been noticed 
in Sect. 5.2.1 that the quality of the solutions is reasonably 
high in almost all the techniques, being this slightly lower 
for SIMP(II) and BESO methods. In this two techniques, the 
complexity of the optimal topology increases, obtaining 
designs based on thinner bars (i.e. lower bar width) with 
lower buckling prevention. Accordingly, this two approaches 
are rated with a B while the others, with an A.

In terms of the objective function, all approaches obtain 
a similar optimal value, although SIMP(II) consistently 
obtains marginally lower values than the other techniques, 
as detailed in Sect. 5.2.2. For this reason, SIMP(II) obtains 
an A qualification, while the other methods are left with a B. 
Finally, the comparison of the computational cost, discussed 
in Sect. 5.2.3, is represented in the last column. The compu-
tational cost is lower and of similar magnitude for SIMP(I) , 
SIMP(III) and VARTOP, followed by the SIMP(II) and BESO 
approaches, and finally by Level-set. These three groups are 
respectively rated with an A, B, and C.

Figure 12 can be further simplified by combining the 
two topology-related features in a single criterion referred 
to as topology quality, and the two criteria related to the 
objective function and the computational cost in a single 
criterion called computational efficiency. These two criteria 
are equivalently represented by a bar chart in Fig. 13. From 
this figure, it can be concluded that VARTOP, although not 
being the best approach in all considered aspects in Fig. 12, 
is presented as a competitive technique to more conven-
tional topology optimization approaches, such as SIMP(I) 
and SIMP(III) . On the other hand, SOFTBESO and Level-set 

do not provide any significant advantages, exhibiting mostly 
deficiencies in topology complexity or computational cost, 
respectively, for the cases studied in this paper.

6  Concluding Remarks

This contribution presents a thorough comparison among 
most of the well-established topology optimization 
approaches, i.e.  the SIMP, Level-set, and SOFTBESO 
methods, and the VARTOP approach. A set of well-known 
3D numerical benchmarks in the field of structural topol-
ogy optimization has been addressed to analyze their per-
formance. The corresponding results have been assessed 
in terms of the optimal topology, the robustness in conver-
gence, the objective function, and the computational cost.

Regarding the topology, a quality dependence has been 
observed among the assessed methods, being slightly lower 
for SIMP(II) and BESO methods. The quality and complexity 
of the topologies can depend on the type of design variable: 
continuous vs discrete and nodal vs element, as well as the 
approach to impose the volume constraint.

Regarding the design variable, the methods can be split 
into three groups:

– Level-set and VARTOP use nodal scalar functions to 
precisely describe the interface, as well as a discrete 
characteristic function to define sharp white-and-black 
configurations.

– SOFTBESO uses an element-wise discrete functions to 
define the topology layout.24 Although obtaining white-
and-black designs, the material boundary is only defined 
through elements.

– SIMP-based methods use an element-wise continuous 
variable. Consequently, these techniques can not pre-
cisely define the boundary, but instead get a blurred inter-
face with gray semi-dense elements. By using a projec-
tion technique, white-and-black designs can be obtained, 
which interface is defined through elements.

As a consequence, SOFTBESO and SIMP techniques may 
not obtain the best possible optimal solution and would 
require post-processing techniques to obtain smooth designs 
which could be easily manufactured. However, there is no 
guarantee that the resultant topologies are actually optimal 
layouts.

As aforementioned, the volume constraint methodology 
may also affect the resultant topology. In those techniques 
where the volume constraint is gradually imposed using 

24 As aforementioned, a relaxed characteristic function (or density 
variable) is used for compliant mechanism synthesis.
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element-wise variables (e.g. SOFTBESO and SIMP(II) ), the 
final topologies tend to be more complex and consist of a 
larger number of thin bars. As a result, these topologies have 
worse mechanical behavior and are more challenging and 
expensive to manufacture.

In terms of the topology, it can be concluded that both a 
combination of nodal scalar design variables with a grad-
ual incremental volume constraint, and a combination of a 
continuous element-wise variable with a constant volume 
constraint provide optimal topologies with high quality. In 
the comparison, SIMP(I) , SIMP(III) , VARTOP, and Level-set 
achieve optimal designs that are based on thicker bars (with 
higher mean bar size), thus improving manufacturability 
with high-quality optimal designs and reducing the buck-
ling proneness.

Concerning the robustness of each method, it has been 
confirmed that all the techniques have a linear convergence 
in the objective function regardless of the methodology 
used to impose the volume constraint. This fact supports 
the selection of the techniques for the comparison, and the 
independence with respect to the filtering technique (i.e. spa-
tial or Helmholtz-type filtering) and the updating scheme of 
the design variable (i.e. incremental or absolute). These two 
differences may have an effect on the optimal solution, but 
not on the order of convergence.

In regard to the objective function value, a small varia-
tion of ±15% is observed in the four numerical benchmarks 
among the studied methods with the exception of two tests in 
the Gripper mechanism. However, SIMP(II) achieves system-
atically the lowest objective function values, as the major-
ity of its optimal designs are based on smaller, thinner bars 
(i.e., high complex designs), as mentioned before. Due to 
this characteristic, these designs are proclive to buckling.

For the first three examples, all studied techniques can be 
sorted according to a descending number of required itera-
tions as follows: Level-set, SOFTBESO, SIMP(II) , VARTOP, 
SIMP(III) and SIMP(I) . However, the relative computational 
cost depends on each example and technique, but the same 
trend is observed. It is important to emphasize that incre-
mental time-advancing techniques such as SIMP(II) and VAR-
TOP obtain not only the final optimal solution but also a 
set of intermediate converged solutions at almost the same 
computational cost (Pareto frontier for the volume fraction). 
In this scenario, VARTOP is up to 1.5 times faster than the 
corresponding SIMP(II) implementation. As for the Gripper 
compliant mechanism, the tendency in computational cost 
completely changes from the previous examples, observ-
ing a very significant reduction with VARTOP compared 
to SIMP(I) . Contrary to the other numerical examples, 

Fig. 8  Objective function value 
for each example and topology 
optimization approach normal-
ized with the results obtained 
with the SIMP(I) method. 
Legend: (1) the Cantilever 
case is represented with a solid 
black line, (2) the L-shaped 
case, with a dotted black line, 
(3) the Cantilever multi-load 
case, with a dash-dotted line 
and (4) the Gripper mechanism 
with a dashed line, which is 
interrupted for the SOFTBESO 
method due to lack of conver-
gence

Table 5  Comparison of 
computational cost in terms 
of iterations of the considered 
topology optimization methods

Numerical Example SIMP
(I)

SIMP
(II)

SIMP
(III) BESO VARTOP Level-set

Cantilever beam 175 231 124 272 116 1266
L-shaped structure 66 140 76 190 62 1071
Multi-load cantilever beam 81 208 111 249 115 694
Gripper 325 297 264 207 32 176
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Fig. 9  Relative computational 
cost in terms of the number 
of iterations. Each numerical 
example is normalized with 
the number of iterations of 
the SIMP(I) . Legend: (1) the 
Cantilever case is represented 
with a solid black line, (2) the 
L-shaped case, with a dotted 
black line, (3) the Cantilever 
multi-load case, with a dash-
dotted line and (4) the Gripper 
mechanism with a dashed line

SOFTBESO and Level-set also require a lower number of 
iterations than SIMP-based implementations.

In conclusion, the VARTOP, SIMP(I) , and SIMP(III) 
approaches present topology layouts with a higher topol-
ogy quality than the other methods at a lower computational 
cost, even though their objective function is not minimized 
as much as in other approaches.

The authors are aware that, in spite of the efforts done 
for a fair comparison, a certain degree of subjectivity can 
still remain in this kind of studies, but they also think that 
those studies should be presented to the community of struc-
tural topology optimization even to be argued and discussed 
with the aim of the progress of computational topology 
optimization.

Appendix 1: Convergence Criteria

Convergence is evaluated in terms of the volume constraint, 
the objective function, and the topology design, as men-
tioned in Sect. 5.1.3. In particular, the topology criterion 
must be analyzed in detail, since this criterion must be stand-
ardized in all methods, each one using a different design 
variable.

For density-based methods, such as SIMP, the topology 
criterion can be written as a L2 norm of the element density 
variable �e between two consecutive iterations as

where e corresponds to the element number and k to the 
iteration number, and |�e| is the volume of element e.

However, for the other approaches, a relaxed character-
istic function must be used to compute the topology cri-
terion. The element density variable or the corresponding 
element characteristic function are regularized via a Lapla-
cian regularization (32). Therefore, the topology criterion 
is computed as

with �̂�𝜌𝜌k being the solution to

The element variable �e corresponds to element density vari-
able �e , the element characteristic function �e,� or the ele-
ment characteristic function �e,� for the BESO, VARTOP, 
or Level-set methods, respectively. The matrices � , � and 

(70)

��k =
1

|�0|1∕2
(
∫�

(
�k − �k−1

)2
d�

)1∕2

=
1

|�0|1∕2
(

Ne∑
e=1

(
�e,k − �e,k−1

)2|�e|
)1∕2

,

(71)

𝛥�̂�k =
1

|𝛺0|1∕2
(
∫𝛺

(
��̂�𝜌𝜌k − ��̂�𝜌𝜌k−1

)2
d𝛺

)1∕2

=

√(
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)T
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(
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,

(72)
(
� + (𝜏h)2�

)
�̂�𝜌𝜌k = ∫𝛺

�T𝜑e d𝛺 .
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Fig. 10  Evolution histories of the values of the objective function and 
volume fraction throughout the iterations of the Cantilever beam 
topology optimization for the six considered methods. Single-time-
step approaches are illustrated in the first column, while incremental 
time-advancing techniques are depicted in the second column, each 

time-step being shaded with a different color. The normalized objec-
tive function J� or J� is associated with the left y-axis and repre-
sented with a solid black line. On the other side, the volume fraction 
(i.e.,  the stiff material fraction) |�

+|
|�|  is represented by a dash-dotted 

gray line in the right y-axis of each graphic

� stand for the shape function matrix, the mass matrix and 
the stiffness matrix, and � corresponds to the regulariza-
tion parameter of the topology criterion. It is important to 
stress that the regularization parameter � must be chosen 
thoroughly so that the two topology criteria are equivalent. 
Based on the authors’ experience, it has been prescribed to 
� = 8.

Appendix 2: Post‑Processing Iteration

Due to the discrepancies in the design variables (nodal vs 
element and continuous vs discrete) and the existence of 
semi-dense elements, the objective function value J  can 
not be directly compared between topology optimization 
approaches. For that reason, once the optimal topology has 
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Fig. 11  Evolution histories of the criteria values in the objective 
function and in the topology throughout iterations of the Cantilever 
beam topology optimization for the six considered methods. Single-
time-step approaches are illustrated in the first column, while incre-
mental time-advancing techniques are depicted on the second col-
umn, each time-step being shaded with a different color. The criterion 
in objective function, associated with the left y-axis, is represented 

with a solid black line, while the criterion in the topology is repre-
sented by a dash-dotted gray line in the right y-axis of each graphic. 
In addition, the corresponding maximum tolerances TolJ  and Tol� 
allowed in the last time-step (or in the entire optimization for single-
time-step methods) are also displayed in every graphic as horizontal 
lines with the same properties
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converged, an additional iteration must be computed using a 
black-and-white element-wise design with a uniform small 
contrast factor � = 10−9 for all the studied methods. In this 
scenario, the topology design is expressed via the charac-
teristic function �e = {1, �} , as defined in Eq. (1), with � 
depending on each method so that a constant soft Young’s 
modulus is used throughout the methods, as detailed in 
Sect. 3.

Bear in mind that a projection technique on the den-
sity or on the characteristic function (based on its element 

definition) is required to obtain an optimal topology layout 
represented only by elements completely contained in the 
stiff material domain or in the soft material domain. In this 
projection technique, the volume must be kept unmodified 
so that the objective function is computed with the same 
stiff material fraction. Depending on the topology optimiza-
tion approach, the element-wise characteristic function �e 
is computed as

SIMP(I) SIMP(II) SIMP(III) BESO VARTOP Level-set
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Fig. 12  Qualitative comparison of the studied methods regarding the 
smoothness of the design (dotted column), the topology complexity 
(right-inclined lines pattern), the value of the objective function (left-
inclined lines pattern) and the computational cost in terms of itera-

tions (column with crosshatch pattern). Each one of the areas is rated 
qualitatively with the levels A, B, C, or D, being A the best qualifica-
tion and D the worst one
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Fig. 13  Qualitative comparison of the studied methods, combining 
the topology related properties and the computational ones in a single 
bar. The topology quality is represented with a light blue colored bar 
and a right tilted line pattern, while the computational efficiency is 

represented using a dark blue bar with a left tilted line pattern. Each 
of the criteria is rated qualitatively with the levels A, B+ B, C+ , C, D+ 
or D, being A the best qualification and D the worst one
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– For VARTOP and Level-set, a Heaviside function with the 
actual characteristic function �̂�e,𝜓 (or �̂�e,𝜙 for the Level-
set method) and a reference value computed via a bisec-
tion algorithm, i.e., 

 with 𝛽 < 𝛾 < 1 being computed such that the volume 
constraint C0(�e) in the entire domain is enforced (Eqs. 
(51-b-1) and (61-b-1)).

– For density-based approaches (including Soft-kill 
BESO), a Heaviside function with the element density 
variable �e and a reference value � computed via a bisec-
tion algorithm, i.e., 

 with � being 0 for SIMP methods or p
√
� for BESO.

Appendix 3: Parameter Definition

In order to ensure replicability, all the relevant parameters 
are provided in Tables 6 and 7. Table 6 details the val-
ues related to the tolerances as well as the values for the 
contrast factor and the volume fraction for each topology 

(73)𝜒e = H𝛽

(
�̂�e,𝜓 − 𝛾

)
for ∀e ∈ Ne ,

(74)�e = H�

(
�e − �

)
for ∀e ∈ Ne ,

optimization. On the other hand, Table 7 provides the spe-
cific parameters for updating and regularizing the design 
variable.

Appendix 4: Order of Convergence

In this “Appendix”, the order of convergence of the objective 
function for the different methods will be evaluated to define 
an additional parameter regarding the computational robust-
ness (Sect. 5.2.4). As a result, it will be possible to verify 
whether one method stands out from the others in terms of 
the order of convergence.

The order of convergence, p, for the objective function 
can be computed from the sequence of iterative values 
Jn∕J0 (from n = 0 to n = ∞ ) that converges to J∗∕J0 , when

with p > 0 and � ≠ 0 corresponding to the order of conver-
gence and rate of convergence. The en+1 and en denote the 
errors of the objective function at n-th and (n + 1)-th itera-
tions, respectively, with respect to the converged one, J∗∕J0 . 
The error at each iteration is evaluated as

(75)lim
n→∞

|en+1|
|en|p = � ,

Table 6  Global parameters and tolerances used for each benchmark case and topology optimization method

Volume fraction, contrast factor, and objective function tolerance are detailed for each benchmark, while tolerances in volume fraction and topol-
ogy are defined for each method
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with J∗∕J0 being approximated to the normalized objective 
function value for the last converged optimal solution. For 
incremental time-advancing techniques, the order of con-
vergence can be evaluated for each time-step using the cor-
responding converged objective function value.

The iterative sequence of the error in the objective func-
tion en is illustrated in Fig. 14 for the Cantilever beam bench-
mark case. As in Figs. 10 and 11, single-time-step methods 
are displayed in the first column while incremental time-
advancing techniques are depicted in the second column, 
the order of convergence being computed for an intermedi-
ate time-step. The corresponding linear regression, used to 

(76)en =
Jn

J0

−
J
∗

J0

,
compute the order of convergence, is represented in all the 
graphics with a dashed line. The exact value for the order 
of convergence is displayed at the top-left corner. As can be 
observed, the order of convergence for all the approaches 
is close to 1, thus all the addressed methods have a linear 
convergence in the objective function.

Appendix 5: Robustness of L‑Shaped 
Structure

Mimicking Figs. 10 and 11, the evolution of the objec-
tive function and the stiff material fraction is illustrated in 
Fig. 15, while the evolution of the criteria is depicted in 
Fig. 16.

Table 7  Parameters used for each benchmark case and topology optimization method
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Fig. 14  Iterative sequence of the objective function errors throughout 
the iterations of the Cantilever beam topology optimization for the 
six considered methods. Single-time-step approaches are illustrated 
in the first column, while incremental time-advancing techniques 

are depicted in the second column. The objective function error en 
is represented with a solid black line, while the corresponding linear 
regression is represented with a dashed gray line. The order of con-
vergence is included in the top-left corner
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Fig. 15  Evolution histories of the values of the objective function and 
volume fraction throughout the iterations of the L-shaped structure 
topology optimization for the six considered methods. Single-time-
step approaches are illustrated in the first column, while incremental 
time-advancing techniques are depicted in the second column, each 

time-step being shaded with a different color. The normalized objec-
tive function J� or J� is associated with the left y-axis and repre-
sented with a solid black line. On the other side, the volume fraction 
(i.e.,  the stiff material fraction) |�

+|
|�|  is represented by a dash-dotted 

gray line in the right y-axis of each graphic
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