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Abstract
This paper deals with the mathematical modeling of atherosclerosis based on a novel hypothesis proposed by a surgeon, 
Prof. Dr. Axel Haverich (Circulation 135(3):205–207, 2017). Atherosclerosis is referred as the thickening of the artery walls. 
Currently, there are two schools of thoughts for explaining the root of such phenomenon: thickening due to substance depo-
sition and thickening as a result of inflammatory overgrowth. The hypothesis favored here is the second paradigm stating 
that the atherosclerosis is nothing else than the inflammatory response of of the wall tissues as a result of disruption in wall 
nourishment. It is known that a network of capillaries called vasa vasorum (VV) accounts for the nourishment of the wall 
in addition to the natural diffusion of nutrient from the blood passing through the lumen. Disruption of nutrient flow to the 
wall tissues may take place due to the occlusion of vasa vasorums with viruses, bacteria and very fine dust particles such as 
air pollutants referred to as PM 2.5. They can enter the body through the respiratory system at the first place and then reach 
the circulatory system. Hence in the new hypothesis, the root of atherosclerotic vessel is perceived as the malfunction of 
microvessels that nourish the vessel. A large number of clinical observation support this hypothesis. Recently and highly 
related to this work, and after the COVID-19 pandemic, one of the most prevalent disease in the lungs are attributed to the 
atherosclerotic pulmonary arteries, see Boyle and Haverich (Eur J Cardio Thorac Surg 58(6):1109–1110, 2020). In this work, 
a general framework is developed based on a multiphysics mathematical model to capture the wall deformation, nutrient 
availability and the inflammatory response. For the mechanical response an anisotropic constitutive relation is invoked in 
order to account for the presence of collagen fibers in the artery wall. A diffusion–reaction equation governs the transport 
of the nutrient within the wall. The inflammation (overgrowth) is described using a phase-field type equation with a double 
well potential which captures a sharp interface between two regions of the tissues, namely the healthy and the overgrowing 
part. The kinematics of the growth is treated by classical multiplicative decomposition of the gradient deformation. The 
inflammation is represented by means of a phase-field variable. A novel driving mechanism for the phase field is proposed 
for modeling the progression of the pathology. The model is 3D and fully based on the continuum description of the problem. 
The numerical implementation is carried out using FEM. Predictions of the model are compared with the clinical observa-
tions. The versatility and applicability of the model and the numerical tool allow.

1  Introduction

Discovering the mystery of plaque formation (atheroscle-
rosis) in the arteries has always been a fascinating subject 
among the medical researchers since long time ago. In 1852, 
Rokitansky opined that an excessive accretion and depo-
sition of a thrombotic layer from the blood stream on the 
intima caused atherosclerosis. In 1913, Anitschkow’s experi-
ments conducted on aorta of rabbits have demonstrated a 
relation between elevated cholesterol level and lipid lesions. 
This led to intensive studies on relation of cholesterol metab-
olism to atherosclerosis [16]. Schwartz and team empha-
size initial influx and accumulation of lipoprotein (LDL), 
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and recruitment of monocytes as the primary events that 
contribute to the arterial lesions. Subsequently formation 
of foam cells and fatty streaks, and necrotic extracellular 
lipid ensue in these lesions. In later stages of inflamma-
tory and pathological processes plaque formation occurs 
accompanied by the roles played by blood cells, endothe-
lial cells and smooth muscle cells [37]. In 1993, Ross pos-
tulated that inflammatory response to the impaired intima 
and endothelium of arteries due to, e.g., mechanical injury, 
toxins, and oxygen radicals is the initiating event leading to 
endothelial dysfunction. Ross refers to atherosclerosis as a 
process in which endothelial inflammation is followed by 
the formation of fibrofatty and fibrous lesions [36]. Libby 
et al. has reviewed several clinical publications correspond-
ing to atherosclerosis and suggest that, based on compelling 
evidences, inflammatory events and alterations of cellular 
and molecular mechanics are the underlying causes of ath-
erosclerosis. Immune system response plays a key role in 
all stages of atherosclerosis. Scientific evidences favour the 
crucial role of inflammatory pathways in all stages of ath-
erosclerosis as well as in arterial thrombosis [29]. All these 
authors, however, claimed the intimal layer of the artery to 
represent the anatomic structure first affected by the disease 
(“inside-ou” theory).

Atherosclerosis is a multifocal, smoldering, chronic 
immunoinflammatory disease of medium-sized and large 
arteries fuelled by lipids [17, 19, 29]. Atherosclerosis is by 
far the most frequent underlying cause of coronary artery 
disease, carotid artery disease, and peripheral arterial dis-
ease. The most devastating consequences of atherosclerosis, 
such as heart attack and stroke, are caused by superimposed 
thrombosis.

The genesis of the atherosclerosis is majorly influenced 
by endothelial cells, leukocytes, and intimal smooth muscle 
cells. Higher plasma cholesterol level in arteries is solely suf-
ficient to promote atherosclerosis [17]. Experimental studies 
in mice suggest gene inactivation of immune cells’ receptor 
and immune cell (macrophage) colony-developing factor 
has significant influence on development of atherosclero-
sis [17]. Extravasation of plasma molecules and lipoprotein 
particles, depending on their size and concentration, through 
the leaky and impaired endothelium into the sub-endothelial 
space. In this space the atherogenic lipoproteins get retained, 
undergo changes (e.g., oxidation) and become cytotoxic, 
proinflammatory, chemotaxic, and proatherogenic. On set 
of atherosclerosis, the endothelial cells, macrophages and 
few T cells participate in developing the asymptotic foam 
cell-lesions and promote disease progression [11]. Inflam-
matory events play a vital role in atherogenesis. Mayerl et al. 
[30] have investigated atherosclerotic specimens from autop-
sies performed by Rokitansky up to 178 years ago using 
modern sophisticated immunohistochemical and immuno-
fluorescence techniques. Their study revealed the presence 

of various cellular intralesional components—essentially 
CD3+ cells in early lesions as well as extracellular matrix 
proteins supporting Virchow’s view that primarily inflam-
matory arterial changes initiate atherogenesis. However, 
the crucial first pathogenetic events of the disease remained 
unclear. Classical concepts of atherogenesis did not attribute 
a major relevance to inflammatory immunologic processes 
as possible pathogenetic factors. The study based on their 
historical materials, suggests that inflammatory immuno-
logic processes incite atherogenesis. However, the very first 
pathogenetic event remains to be elucidated [17].

In 1910, the German chemist, Windaus showed that ather-
osclerotic plaques consist of calcified connective tissue and 
cholesterol [42]. At the beginning of atherosclerotic changes 
in the vessel wall [34, 35], a stress protein—heat shock pro-
tein 60 (HSP 60) as the potential (auto) antigen incites an 
immune response. Classical atherosclerosis risk factors, such 
as high blood pressure, smoking, diabetes, biochemically 
modified LDL, etc., result in the expression of HSP60 by 
endothelial cells (EC), especially at sites that are subjected 
to major (turbulent) haemodynamic stress and known to be 
predilection sites for the later development of atherosclerotic 
lesions [35]. Diffuse Intimal Thickening (DIT) is intimal 
fibro-cellular thickening localized to the non-branching 
long arterial segments that spreads out circumferentially 
and longitudinally. DIT consists of two layers—the inner 
layer known as the proteoglycan layer because it contains 
ECM with abundant proteoglycans including SMCs while 
the outer layer is known as the musculoelastic layer because 
of the abundance of SMCs and elastic fibers with smaller 
amount of proteoglycans. Nakashima et al. examined coro-
nary arteries of autopsy subjects with light microscopy and 
suggest that eccentric extracellular deposition of apolipopro-
tein B in the outer layer of DIT is the earliest stage of athero-
sclerosis (Type I lesion). Advanced stages of atherosclerosis 
is governed by macrophages infiltration in the deeper layer 
of the intima leading to formation of foam cells and eventu-
ally Type II lesions [34].

Kathryn and Tabas [33] suggest that accumulation of 
apolipoprotein B-lipoporotein (produced by liver and intes-
tinal cells) in sub-endothelium space leads to recruitment 
of immune cells—monocytes, which differentiate into mac-
rophages and dendritic cells. Williams and Tabas [41], based 
on their functional and morphological studies, claim that 
this accumulation is the primary initiation of atherosclero-
sis. Due to the deposition of cells, lipid and matrix, these 
macrophages incite the maladaptive, nonresolving inflam-
matory events causing the sub-endothelial layer to expand. 
As atherosclerotic lesions advances infiltration of smooth 
muscle and T cells into the intima takes place followed by 
amplification of apoB-lipoprotein retention. In succession 
lesions progress and form lipid filled necrotic core. Further 
progression of lesions makes them unstable and making 
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plaques vulnerable to rupture leading to thrombotic vascular 
disease, myocardial infarction, stroke, and sudden cardiac 
death [33].

A plethora of studies on atherosclerosis suggests and 
supports the response to injury and inflammation theories 
involving endothelial dysfunction as incitement to the pro-
gression of atherosclerosis. The second author, based on his 
observations made in hundreds of cardiovascular surger-
ies, proposes that the disrupted or occluded vasa vasorum 
(VV—a network of small blood vessels that supply blood to 
the large blood vessel walls) would be the early underlying 
pathophysiological mechanism that triggers the inflamma-
tion and propagate from adventitia to intima [21]. In large 
and medium sized arteries VV are need to supply nutrition 
to vessel walls. Ischemic events in VV due to constriction 
precipitate fatty streaks in the underlying arterial segments 
[23]. This would be the prime initiation of atherosclerosis. 
Haverich, from his cardiac surgeries, observed no presence 
of adventitial VV in atherosclerosis-free arteries. Areas pre-
dicted as non-atherosclerotic in large and medium arteries 
possess hardly any VV implicating no probability of wall 
ischemic events. On the basis of this observation—lack of 
VV in areas spared from atherosclerosis, Haverich devel-
oped the unified theory—Atherosclerosis represents rather 
a micro vascular disease initiated by VV occlusion within 
the outer layer of the blood vessel (adventitia) that gets 
translated into arterial functional impairment (“outside-in” 
theory) [21]. The mathematical model developed by the first 
and third author is essentially based on the hypothesis pro-
posed by the second author.

Unlike clinical investigations, the mathematical modeling 
and numerical simulation of the atherosclerosis, as a multi-
physics problem, has rarely been undertaken. Khatib et al. 
developed 1D and 2D models to simulate the initiation of 
atherosclerosis triggered by inflammation. Inflammation 
induced by the diffusion (concentrations) of oxidized low 
density lipoproteins in the intima can lead to chronic inflam-
matory reaction (traveling wave propagation). High ox-LDL 
concentrations correspond to unstable systems [27]. Hidalgo 
and Tello have developed a 1D mathematical model of non-
linear diffusion for initial stage of atherosclerosis develop-
ment. As the arterial wall is a porous medium, the nonlinear 
diffusion is added to the existing 1D model with linear dif-
fusion, implying that the current model is an extension to 
model in [24]. Lie and Tand have developed a 3D mathe-
matical model to simulate the plaque initiation and study the 
geometrical adaptation of atherosclerotic plaques. They pro-
posed a linear plaque growth function that relates coronary 
artery diameter change and wall shear stress. This plaque 
growth function in combination with 3D Navier–Stockes 
(NS) equations have been solved numerically. Numerical 
studies emphasized on effects of WSS, blood viscosity and 
the inlet flow rate on the growth of atherosclerotic plaques. 

They observed plaque growth at decreasing rate as the ath-
erosclerosis progresses. Results also indicated that a signifi-
cant influence of the haemodynamic characteristics such as 
blood viscosity and the flow rate on the plaque growth [4].

A 3D computational model has been developed for plaque 
formation and progression for human carotid artery by Fil-
ipovic et al. [12]. In this model plaque growth is driven by 
LDL penetration in intima followed by inflammatory pro-
cesses (recruitment of monocytes and cytokines). In this 
reference, the model utilizes various PDEs for mimicking 
various processes involved in atherosclerosis. This multi-
scale model simulates blood flow with continuity and NS-
equations and coupled with mass transfer into the arterial 
wall by a convection–diffusion equation. Kedem–Katchal-
sky equations are used to couple LDL transport in lumen 
and through vessel tissue. Furthermore, three additional 
reaction–diffusion PDEs have been incorporated for mod-
eling inflammatory processes triggering the plaque growth. 
Functions of plaque growth volume are linked with distribu-
tion of shear stress and effective wall stress. The numerical 
observations on plaque localization correspond to low shear 
stress regions. The location and characteristics of plaque 
progression comply with in vivo observations. In a similar 
way, Cilla et al. [8] presents a multi-scale approach to model 
plaque formation and progression in coronary arteries. Cilla 
et al. consider WSS as the influencing contributor to the ath-
erosclerosis and correlates therefore WSS to atherosclerotic 
plaques. Their mathematical model considers LDL, ox-LDL, 
monocytes, macrophages, foam cells, smooth muscle cells, 
cytokines and collagen as the contributors in early athero-
sclerosis development. PDEs incorporated in the model for 
fluid flow, mass balance and coupling are continuity and 
NS-equations, Darcy’s law, convection–diffusion–reaction 
equation and Kedem–Katchalsky equations. Numerical 
results performed on an axisymmetric geometrical coro-
nary artery model show that this mathematical model can 
qualitatively predict the atherosclerotic lesion development 
in tunica intima. LDL concentration at the low WSS obser-
vation complies with clinical hypothesis.

Mirzaei and Fok [32] have developed a 2D mathemati-
cal model to study the behaviour of vessel wall in pre and 
post atherosclerosis. Morphoelasticity with anisotropic 
strain function is utilized to describe growth (a function of 
Platelet Derived Growth factor) in the mathematical model. 
Numerical simulations consider vessel wall as hyperelastic 
material by incorporating all three layers of arteries each 
assigned with its respective material properties. Resulting 
mechanical deformation and stress fields were studied in the 
intimal thickened regions due to underlying development 
of necrosis. Arterial thickening (morphological changes) 
from deformation behaviour were observed to comply with 
images acquired from ultrasounds scans. A 2D-mathematical 
model for simulating the initial pathophysiological processes 
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of atherosclerosis was developed by Silva et al. [38]. This 
model represents a chronic disease that is strongly influ-
enced by inflammatory events. The underlying mechanics 
such as dynamics of low-density-lipoproteins (LDL) and 
oxidized LDL, transport of monocytes from blood flow 
into the intima, and formation of foam cells due to mac-
rophages ingestion of oxidized LDL have been incorporated. 
To consider the series of events from LDL accumulation 
(from blood flow) to foam cells formation in early stages 
of atherosclerosis as described in Fig. 2, the model uses 
and couples various PDEs (Navier–Stokes equations, Biot 
equations, convection/chemotaxisreaction–diffusion equa-
tions) accounting for specific processes involved. One of the 
essential element of this model is quantifying the endothelial 
permeability to LDL and to the monocytes as a function of 
wall shear stress (WSS), cytokines and LDL on the endothe-
lial surface.

In this paper a coupled multi field continuum-based math-
ematical model is developed based on the newly presented 
hypothesis in [21]. As outcome of the model, for the first 
time, the mechanical deformation of the artery wall is initi-
ated from the adventitial layer of the wall due to the dis-
ruption of nutrition flow in VV. In fact, the inflammatory 
response starts at the middle layers of the artery and propa-
gates towards the innermost layer in an “outside-in” fashion. 
The formation a bulge as a result of inflammation give rise to 
the atherosclerosis and makes the lumen stenosed. The pro-
posed model is novel in the sense that a phase-field approach 
has been employed to capture the tissue inflammation and its 
propagation. Additionally, the nutrient transport is also mod-
eled in the presence of vasa vasorum network that serves as 
an auxiliary “perfusion” mechanism besides the classical 
“diffusion”. The large deformation of the artery is handled 
in a finite strain framework along with an anisotropic con-
stitutive behaviour stemming from the collagen fibers in the 
structure of the artery.

2 � Mathematical Modeling of Atherosclerosis

From a biological point of view, the wall artery consists of 3 
layers, namely intima, media and adventitia each of which is 
reinforced with circumferential collagen fibers. It is known 
that these layers differ in mechanical properties as well as 
the orientation of the collagen fibers, see Fig. 1.

The evolution of atherosclerosis is described using a 
coupled multi-field approach. The displacement field u cap-
tures the mechanical deformation. The availability of the 
nutrient is represented by scalar variable c dedicated to the 
concentration of the nutrient. Finally the tissue inflamma-
tion (overgrowth) is denoted by � that is treated as a phase-
field variable. While the mechanical part is governed by 
the well-known momentum conservation law, the nutrient 

Fig. 1   The structure of a typical elastic artery with vasa vasorum 
microvessels

Fig. 2   Geometrical representation of vasa vasorum using tree fractal 
concept and also initial occlusion
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transportation obeys a classical diffusion–reaction equa-
tion. Nevertheless, the phase-field variable is treated in a 
so-called Allen–Cahn type phase field modeling. In order 
to establish a physically meaningful coupling between these 
fields, one needs to know the underlying “Assumptions” as 
well as the “Hypotheses” which are listed below:

Assumptions 

1.	 For the sake of simplicity and avoidance of dealing with 
the discontinuities across the multi-layer structure, we 
do not make a distinction between the layers by assum-
ing the same material properties and collagen orienta-
tions for all layers.

2.	 The artery issues close to the innermost layer (intima) 
are fed through the diffusion mechanism from the blood 
flowing in the lumen. Nevertheless, due to the thick wall 
of the artery the diffusion mechanism is not sufficient 
for the nourishment of the farther tissues with respect 
to the lumen. Hence, the outer layers of the artery are 
supplied with the nutrient via a network of capillaries 
called “vasa vasorum (VV)”, see Fig. 1. This network is 
created stochastically using tree-like fractals that starts 
at the exterior of the wall and penetrates up to the mid-
dle of the artery wall. A 2D illustration of this structure 
is shown in Fig. 2. The parameters that quantitatively 
control the geometrical shape of VVs are shown in this 
figure. An open-source MATLAB code [10] is utilized 
to create the structure of VVs.

3.	 The blood flow is not modeled explicitly, neither in the 
lumen nor in the vasa vasorums. Instead, it is replaced 
with the boundary conditions that are physically related 
to the blood flow. In particular, the value of the maxi-
mum nutrient is prescribed on the surfaces that are in 
direct contact with the blood. Furthermore, the systolic 
mean pressure of the blood in the lumen is applied on 
the innermost surface of the wall.

4.	 The consumption rate of the cells is assumed to be uni-
form in the entire domain (artery wall). This simplifies 
the reaction term of the nutrient transport equation lead-
ing to a minimum number of model parameters. Simi-
larly, the diffusivity of the nutrient across the artery 
wall is taken to be constant prior to emergence of the 
inflammatory response. However, upon developing the 
inflammation we assume that the diffusivity decreases 
due to a histologically denser tissue resulting from the 
inflammation.

5.	 The mechanical deformation of the artery wall is formu-
lated in a finite strain framework that accounts for the 
large deformation arising from the overgrowth phenom-
enon. For the mathematical framework of the growth, 
the classical and well-known multiplicative split of the 
deformation gradient is adopted.

The mathematical model proposed here for the athero-
sclerosis is based on three simple hypotheses:

Hypothesis 1  The “inflammation (overgrowth)” is initiated 
and evolves in response to “nutrient scarcity”. From a bio-
logical point of view, as newly proposed in [21], the disrup-
tion of the nutrient flow within the outer layer of the wall 
tissue triggers the lesion evolution. As mentioned before, the 
occlusion of the vasa vasorum due to viruses, bacteria and 
very fine dust may lead to such situation, see Fig. 3. From a 
mathematical point of view, we introduce a threshold for the 
nutrient below which the inflammation starts. This postulate 
couples the nutrient transport equation to the phase field 
equation governing the inflammation.

Hypothesis 2  The lesion develops in the direction of maxi-
mum nutrient change. Mathematically speaking, the bounda-
ries of the inflammation, as a finite region, is advected in 
the direction of nutrient gradient. Keep in mind that the cell 
inflammation is captured using a phase field variable called 
� . If the cell is inflammatory it means � = 1 and if the tis-
sue is healthy it is represented by � = 0 . The sharp interface 

Fig. 3   Inflammation as a response to the vasa vasorum occlusion due 
to viruses, bacteria and fine particle
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between these two regions can be perceived as the boundary 
of the lesion, see Fig. 3.

Hypothesis 3  The overgrowth which is the mechanical 
reflection of the inflammation is proportional to the inflam-
mation ( � ). The coupling between the mechanical deforma-
tion and the phase-field variable is established based on this 
hypothesis.

Now one can construct the governing equations based on 
the assumptions and the hypotheses listed above.

2.1 � Mechanical Equilibrium Equation

Since the atherosclerosis is a very slow process, the quasi 
static balance equation of the linear momentum in the 
absence of the body force is employed according to

where � is the Cauchy stress and ∇⋅ refers to the divergence 
operator with respect to the spatial coordinate. We need to 
emphasize that the so-called “non-compliant” terms pertain-
ing to the growth process are neglected in the balance equation 
of linear momentum due to the assumption of “slow growth” 
[18]. This is why the mechanical balance equation of the artery 
as a “viable system” is exactly similar to that of an “non-viable 
system”. In order to compute the stress tensor, the existence of 
a free energy function ( Ψ ) is postulated. One can write

in which Fe designates the elastic part of the mechanical 
deformation with Je being its determinant ( Je = Det(Fe) ). 
As mentioned in Assumption 4, the gradient deformation 
tensor F is decomposed multiplicatively using

in which Fg is going to capture the overgrowth as a result 
of inflammation. Deformation gradient F can be computed 
using the spatial gradient of the displacement field u , as a 
primal variable, according to

where ∇ signifies the spatial gradient operator. It will be 
utilized frequently.

For the free energy Ψ a so-called poly convex function 
needs to be utilized in order to ensure the existence of a 
stable solution for the hyperelasic boundary value problem 
in hand, see [20]. Here a Holzapfel–Gasser–Ogden (HGO) 
type anisotropic hyperelastic free energy function [15] is 
utilized as follows

(1)∇ ⋅ � = 0,

(2)� =
1

Je

�Ψ

�Fe

F
T
e
,

(3)F = FeFg,

(4)F = (I − ∇u)−1,

with I1e , and I4e being the invariants of the isochoric right 
Cauchy–Green tensor defined as Ce = J

−
2

3

e F
T
e
Fe . The param-

eters � , � , � , � and � signify the material parameters. One 
should note that this particular form of free energy function 
accounts for the well-known exponential stiffening response 
of the wall once its reinforcing wavy fibers reach their strait-
ened length. Moreover, these fibers are active only when 
they are under tensile load. Hence, the so-called Macaulay’s 
parenthesis < ∙ > appearing in Eq. (5) is defined as

Finally, one can compute the invariants of Ce using 

 in which the vector n refers the direction of the collagen 
fiber at the point of interest. It is assumed that collagen fibers 
helically wound along the arterial axis. Vector n is nothing 
else than the unit vector that is tangent to the helical curve. 
It is obvious that a generic vector n in 3D space that vector 
can be expressed in terms of the azimuth angle ( �az ) and 
elevation angle ( �el ). Thus, one can write

While �az changes in the interval [0, 2 � ] depending on the 
circumferential location of a point, the elevation angel ( �el ) 
is assumed to be constant. It is actually a material parameter 
listed in Table 2.

One may refer to [13, 25] for more details regarding this 
particular form of free energy function and the underlying 
assumptions.

2.2 � Nutrient Transport Equation

It is assumed that the transport of the nutrient in the artery 
wall obeys the classical diffusion–reaction equation as 
follows

where c represents the nutrient concentration and Rc refers to 
the rate of the nutrient consumption in the cells. It is, indeed, 

(5)

Ψ =
𝜇

2
(I1e − 3)

�������
Matrix energy

+
𝜂

𝛽
e𝛽[𝜌<I4e−1>

2+(1−𝜌)(I1e−3)
2]

���������������������������������
Collagen fiber energy

+
𝜈

𝜇(1 − 2𝜈)
(Je − 1)2 − 𝜇LogJe

�����������������������������������������
Volumetric energy contribution

,

(6)< ∙ >=

{
∙ If ∙ ≥ 0

0 If ∙ < 0

(7a)I1e = tr(Ce)

(7b)I4e = tr(n ⋅ Ce ⋅ n)

(8)n = [−Cos(�el)Sin(�az), Cos(�el)Cos(�az), Sin(�el)].

(9)∇ ⋅ (D∇c) − Rc = 0,
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the sink term for this equation. As stated in Assumption 4, Rc 
is held constant and uniform (all the cells consume the nutri-
ent equally). Besides, D denotes the diffusivity coefficient. 
It is assumed that the inflammation leads to a reduction in 
the nutrient diffusivity. The simplest transition model for 
the diffusivity coefficient can be established using a liner 
equation depending on the inflammation state �.

where Dmax and Dmin correspond to the diffusivity in the 
healthy and inflammatory tissue, respectively.

Remark   The time scale of the diffusion process is substan-
tially smaller than that of the inflammation process. In fact, 
the diffusion process is so fast that it reaches its steady state 
quickly during the extremely slow inflammation. This is 
why the time dependent term is eliminated from the nutri-
ent transport equation.

2.3 � Inflammation Phase‑Field Equation

Whether a particular region of the tissue has undergone 
inflammation process or not is captured using a phase-field 
variable called � . From a mathematical point of view, � is, 
indeed, a binary marker showing the state of inflammatory 
status at the point of interest. Hence it is bounded in the inter-
val [0, 1]. While � = 0 means no inflammation, � = 1 cor-
responds to inflammation occurrence. The sharp interface 
between 0 and 1 characterize the boundary of inflammatory 
cells.

The phase-field method has proven to be one of the 
most elegant ways in dealing with multiphasic problems 
(in particular, biphasic systems) in which the distinction 
between the phases matters and the objective is to cap-
ture the interface. In such problems, a secondary phase is 
embedded in in a primary phase and the boundary between 
the phases dynamically changes as a result of phases evo-
lution. Since its advent in 1961 for binary alloys decom-
position [7], phase field has successfully applied to image 
inpainting [3], crack propagation within a solid [31], mul-
tiphase flow [2], topology optimization [5] and solidifica-
tion of a molten material [9]. Nevertheless, this method is 
relatively new to the computational biomechanics com-
munity. Although some researchers have employed phase-
field in modeling the tumor growth [43], to the best of the 
authors knowledge, this work is the first attempt in which 
the phase field approach is utilized to model the evolution 
of atherosclerosis.

The central idea is that the interface between the inflamma-
tory cells and the surrounding healthy tissue is to be captured 
by a phase field model of the type Allen–Cahn [1] as follows

(10)D = �Dmin + (1 − �)Dmax,

in which the two parameters � and M are meant to control the 
width of the interface between the phases and the energy jump 
therein, respectively. f �(�) is a short notation for �f (�)

��
 . The 

description of each term in the equation is self-explanatory and 
standard in any application of the phase-field modeling. The 
function f (� ) is a so-called double-well potential and charac-
terizes the barrier to be overcome in order to have a phase 
transformation (here, phase transformation means a healthy 
tissue becomes inflammatory). It is a common choice to take

in which M = f (
1

2
) is the local maximum value of the func-

tion between the two wells at � = 1 and � = 0.
The corner stone of the phase-field modeling is how to 

define the source term S(�, c) which is, in fact, the driver of 
the phase field. It should be thermodynamically consistent or, 
at least, physically meaningful. For example, in the crack prop-
agation application, there exist a well-established and ther-
modynamically consistent expression for this term using the 
elastic energy associated with the tensile stresses that make the 
crack grow. Here we use a “physically meaningful rationale” 
based on Hypothesis 2. The function S(�, c) can be written as

where Rs is a parameter that controls the magnitude of the 
source term. The function H(c − ccri) is the Heaviside step 
function with a jump at critical concentration ccri . A general 
definition of H(∙ − ∙cri) with a jump at ∙cri is defined accord-
ing to

We shed more light on the structure of function S(�, c) due 
to the fact the novelty of this work relies on that. The role of 
function H(c − ccri) is to activate the source term S(c,�) only 
in case of the nutrient concentration drops below a critical 
value, namely ccri . This function accommodates the first 
hypothesis in the construction of S(�, c) . Furthermore, the 
term ∇c

|∇c| is a unit vector pointing to the direction of maxi-
mum change in the nutrient. Considering the second 

(11)

��

�t
⏟⏟⏟

Phase evolution

in pseudo time

= −Mf �(�)
⏟⏞⏟⏞⏟

Bulk contribution

+ �2∇2�
⏟⏟⏟

Sharp interface

contribution

+ S(�, c)
⏟⏟⏟

Driver (source)

of phase-field

,

(12)f (�) = 16M�2(1 − �)2,

(13)S(�, c) = RsH(c − ccri)
∇� ⋅ ∇c

|∇c|
,

(14)H(∙ − ∙cri) =

{
1 If ∙ ≤ ∙cri
0 If ∙ > ∙cri.



4270	 M. Soleimani et al.

1 3

hypothesis, the dot product of this vector and ∇� is an 
advection-like term which tends to move the interface. Now, 
it is obvious that Rs is nothing else than the magnitude of the 
advection velocity.

Remark   The authors are aware of the torturous complexity 
arising naturally from the advection term in form of v ⋅ ∇� 
with v = KsH(c − ccri)

∇c

|∇c| being the advection velocity. An 
unsymmetric contribution to the stiffness matrix is one of 
the cumbersome consequences. Furthermore, if the diver-
gence of v is positive, it leads to the loss of coercivity in the 
corresponding billinear of this equation and ultimately to 
stability issues, see [26, 40]. If the advection term becomes 
dominant, the resulting instability becomes so tenacious that 
it necessitates employing particular numerical remedies. 
Since the inflammatory process is slow, we can use small 
values for Rs and hence the numerical code does not fail even 
in the absence of stabilizing terms.

in which kg is the proportionality coefficient that is, in fact, 
a model parameter. The Heaviside function H(� − �cri) 
[defined in Eq. (14)] is introduced to prevent the variable 
� from growing unboundedly. In other words, � cease to 
increase further if it reaches the critical value �cri . One 
should note that among several other choices, this approach 
is only one of the simplest method to mathematically regu-
late a variable and keep it bounded. Without the imposition 
of limiting constraints on the growth function, it can literally 
approach infinity that is physically inadmissible.

3 � Numerical Implementation Using FEM

In order to implement the equations discussed in the previ-
ous section, we adopt a standard Galerkin FEM. Combining 
the week form of Eqs. (1), (10) and (11). One can construct 
a Lagrangian L as a function of primary variables u , c and � 
whose stationary conditions retrieve those set of equations. 
It reads

where the parameters K� and Kc are are numerical param-
eters introduced to obtain a good condition number of the 
final multi-field stiffness matrix. Their choice strongly 
affects the performance of the monolithic approach in 
solving the multi-field system. Furthermore, Kp is the pen-
alty parameter for the penalty function P(�) that enforce 
the boundedness of the phase-field variable � in the 
interval [0, 1]. The penalty function P(�) whose deriva-
tive appears in Eq. (18) can be defined using Macaulay’s 
parenthesis defined in Eq. (6) and commonly used quad-
ratic terms according to

Upon applying the integration by parts to the integrals in 
Eq. (18), the boundary terms defined on the boundary �B 
emerge. Furthermore, a backward (implicit) Euler scheme 
is invoked in order to express the only temporal term ( 𝜙̇ ) in 
a finite difference manner. Altogether this leads to

(18)
𝛿L(u, c,𝜙) = ∫

B

(∇ ⋅ �) ⋅ 𝛿u dv + Kc ∫
B

[∇ ⋅ (D∇c)𝛿c + Rc𝛿c]dv

+ K𝜙 ∫
B

[(𝜖2∇ ⋅ ∇𝜙)𝛿𝜙 +Mf �(𝜙)𝛿𝜙 − S(𝜙, c)𝛿𝜙 + 𝜙̇ 𝛿𝜙 + KpP
�(𝜙)𝛿𝜙] dv = 0

(19)P(𝜙) =< 𝜙 − 1 >2 + < −𝜙 >2

The closure of the mathematical modeling is to invoke the 
third hypothesis and link the mechanical part of the growth 
tensor Fg to the inflammation state � . If Fg is assumed to 
be isotropic, it can be characterized by a scalar � and the 
identity tensor I , as follows

Here, the scalar � is introduced to capture the overgrowth. 
The initial value of � is set to be zero. The velocity gradi-
ent corresponding to the rate of the growth tensor can be 
computed using

in which the time derivative is denoted by a dot overhead. 
The parameter � is treated as an internal variable. As an 
intuitive and simple choice, we postulate that the overgrowth 
magnitude is linearly proportional to the inflammation state 
according to

(15)Fg = (1 + �)I.

(16)Lg = ḞgF
−1
g

=
𝛼̇

1 + 𝛼
I,

(17)
𝛼̇

1 + 𝛼
= kgH(𝛼 − 𝛼cri)𝜙,
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where n , that appears in the boundary integrals, is the nor-
mal vector of the boundary surface. It is a common and justi-
fiable assumption that the boundary flux term for the phase-
field variable is prescribed to zero. Hence, one can drop 
the term K� ∫�B �2∇� ⋅ n �� ds . Moreover, t = � ⋅ n denotes 

(20)

∫
B

� ∶ ∇sym�u dv

+ Kc ∫
B

[D∇c ⋅ ∇�c + Rc�c] dv

+ K� ∫
B

[�2∇� ⋅ ∇�� +Mf �(�)�� +
� − �n−1

Δt
��

− S(�, c)�� + KpP
�(�)��] dv

− ∫�B

t ⋅ �u ds − Kc ∫�B

D∇c ⋅ n �c ds

− K� ∫�B

�2∇� ⋅ n �� ds = 0

the traction (mechanical flux) applied on the boundaries. 
Similarly, D∇c.n refers to the nutrient flux at the boundary.

The implementation of the multi-field problem 
(mechanical deformation, nutrient concentration and the 
inflammation) in hand has been carried out using Ace-Gen, 
see [28] which is a powerful tool in automatic differentia-
tion (hybrid symbolic/numeric differentiation). The gener-
ated FORTRAN code can be invoked by any FEM solver. 
Here we selected ANSYS due to its rich pre-processor and 
post-processor features. The topology of the element is a 
regular 3D brick element with linear Ansatz function and 
8 nodes. Each node has five degrees of freedom. Three of 
them represent the displacement vector u components. The 
remaining two are allocated to the nutrient concentration 
field c and the phase field variable � . Furthermore, at the 
Gauss points the variable � is treated as an internal vari-
able. It is assumed that all internal and field variables are 
known at the previous time step. This is underlined using 

Table 1   Implementation algorithm in the AceGen
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an n subscript for those variables. An implicit iterative 
procedure is utilized based on Newton–Raphson method. 
The solution of the global system yields the current values 
for the primary variables, namely u , c and � . The current 
values are denoted using n + 1 superscript. The imple-
mented algorithm is summarized in Table 1.

4 � Numerical Examples

Two and three-dimensional examples are considered to 
show the features of the new framework for the predic-
tion of the atherosclerosis development. The 2D examples 
concentrate on the verification of the model, while the 
3D example demonstrate the entire evolution process. All 
geometrical data as well as numerical/material parameters 
are listed in Table 2. Moreover, the boundary conditions 
setting is illustrated in Fig. 4.

4.1 � 2D Simulation of Atherosclerosis in an Artery

4.1.1 � Artery Without Collagen Fibers and Without Vasa 
Vasorum

In this example, a 2D representation of the artery (artery 
cross section at the mid-plane shown in Fig. 4) is mod-
eled. This is the simplest case where both collagen fibers 
and vasa vasorum network are excluded from the analysis 
so that one can verify the numerical tool. The artery has 
neither collagen fibers nor the vasa vasorum. It is known 
that this scenario is the case for some so-called muscular 
arteries that are generally small-sized. Since these arteries 
are generally far from the heart and not subjected to rela-
tively high pressure, they do not have any fiber. Moreover 
the nutrient diffusion from the lumen suffices due very thin 
wall thickness. From a modeling point of view, this sim-
plification is translated in disregarding the fiber-associated 
term in the free energy function. In other words, the con-
stitutive behaviour of the artery wall is isotropic. In the 
next test case, the impact of reinforcing collagen fibers 
is investigated in terms of wall deformation. As shown 
in the Fig. 4, the maximum concentration is prescribed 
on the inner surface of the artery. Furthermore, an initial 
nutrient perturbation (nutrient depletion) is artificially 
inserted at the location shown in this figure. This serves 
as the initiation of the phase-field parameter that is going 
to capture the inflammation. Figure 5 shows the snapshots 
of lesion development as well as the deformation of the 
artery wall. One can observe that the inflammation front 

advances dominantly in the radial direction where the 
nutrient concentration is maximal.

4.1.2 � Artery with Collagen Fibers and Without Vasa 
Vasorum

For this example, all material parameters are the same 
as the previous one except for those associated with the 
fiber contribution in the free energy. It is assumed that the 
fibers are placed circumstantially and in the plane of 2D 
cross section ( �el = 0 ). The boundary and initial conditions 
remain intact. This way one can clearly see the impact 
of the reinforcing collagen fibers on the formation of the 
bulge due to the inflammation. Analogous to the previ-
ous test case, in Fig. 6 one can observe the inflammatory 
response of the artery wall as a result of lesion develop-
ment. The interesting observation is that the collagen fib-
ers reinforce the artery wall in the circumferential direc-
tion and hence the bulge tends to be guided in the radial 
direction both inward and outward.

Table 2   Geometrical parameters of the test cases and material con-
stants

Discreption Parameter Value Unit

Inner diameter D 50.0 μm

Wall thickness t 15.0 μm

Artery length L 100.0 μm

Initial occlusion location S 30.0 μm

Fiber helix angle (elevation) �el 60 Degree
Overgrowth constant kg 0.25 Time−1

Max. concentration cmax 1.0 μg μm−3

Max. internal pressure pmax 3.3 kPa
Cell consumption Rc 10−3 μg μm−3 Time−1

Max. diffusion coefficient Dmax 1.0 μm2 Time−1

Min. diffusion coefficient Dmin 0.1 μm2 Time−1

Critical nutrient concentration ccri 1.0 μg μm−3

Critical growth �cri 10−3 –
Inflammation rate Rs 0.1 μmTime−1

Shear modulus � 10 kPa
Poisson ratio � 0.49 –
Free energy parameter � 100 kPa
Free energy parameter � 1 –
Free energy parameter � 0.5 –
Phase-field parameter � 1 –
Phase-field parameter M 10 -
Phase-field penalty parameter Kp 104 –
Numerical parameter K� 1 –
Numerical parameter Kc 1 –
Mesh size 0.5 μm
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4.1.3 � Artery with Both Collagen Fibers and Vasa Vasorum

In the last 2D case, we have included both collagen fibers 
and vasa vasorum in the model. To accommodate the role 
of the vasa vasorum network, one needs to find all elements 
that are cut by tree fractals representing the vasa vasorum 
network. The tree fractal is generated using a MATLAB 
algorithm. The parameters that control the structure of the 
network are listed in the Table 3. In order to introduce some 
stochastic features to the formation of the network, some 
random values can be chosen according to the mean value 
and the standard deviation. Undoubtedly, one can have a 
more decent and realistic representation of the vasa vaso-
rum by utilizing real microscopic images and reconstruction 
techniques. Here, the focus is on the “applicability” of the 
proposed model, rather than using the real clinical data. As 
the future extension of this work, one can certainly apply the 
real histological data of the artery.

The vasa vasorum network affects the nutrient field 
directly because they are, indeed, tiny vessels supplying the 
wall with the nutrient in addition to the diffusion mechanism. 
In practice, the maximum value of the nutrient concentra-
tion is prescribed on all elements lying on the tree fractal. In 
other words, the presence of vasa vasorum is equivalent to 
the modification of the boundary condition for the nutrient 
transport equation.

The interesting outcome of vasa vasorum model is 
that it substantially changes the nutrient distribution and 

consequently its gradient. Since the phase field parameter, 
that captures the inflammation, is derived and regulated by 
the nutrient gradient, one can notice a significant change in 
the appearance of the pathology. Figure 7 depicts the pro-
gression of the inflammation in the presence of vasa vaso-
rums. All the parameters were kept as in the two previous 
examples. An irregular shape of the inflammation region 
is reproduced naturally due to the application of phase-
field approach. Loosely speaking, the inflammation spreads 
spatially as if if would crawl in the ducts with the “lower 
nutrient level”. One can see that it turns around the regions 
nourished sufficiently by the vasa vasorums. One can find 
that the phase-field modeling reveals its beauty and amazing 
strength in capturing such phenomena. There is no need for 
interface tracking. The sharp interface between the binary 
phases (inflammation and the surrounding tissue) is self-
produced. Dealing with evolving irregular binary phases of 
biphasic problems is highly challenging if one intends to 
track the interface explicitly and to enforce the compatibility 
condition across it.

In order to have a comparative and quantitative study 
between the three cases discussed above, we plot the per-
centage of the stenosis related to three cases in Fig. 8. It 
reflects to what extent the lumen cross section has reduced 
due to the emergence of atherosclerosis. One can extract two 
important results from this graph. First, the positive role of 
collagen fibers in making the artery more resilient to the 
lumen area reduction. The second interesting phenomenon 

Fig. 4   Boundary conditions an 
the artery for the multi-field 
problem
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Fig. 5   Variation of dimensionless nutrient and inflammation progression in the course of the time (without collagen fiber/without vasa vasorum)
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Fig. 6   Variation of dimensionless nutrient and inflammation progression in the course of the time (with collagen fiber/without vasa vasorum)
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Fig. 7   Variation of dimensionless nutrient and inflammation progression in the course of the time (with collagen fiber/with vasa vasorum)
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is that the presence of vasa vasorum influences the wall 
response in favor of the stenosis. We found that the vasa 
vasorum affects the inflammation pattern by diverting the 
lesion spread into an “enlarged and dendritic” pattern from a 
purely “radial and compact” morphology. As a consequence, 
the bulge creation is not as in tense as the case without 
vasa vasorum. Furthermore, the abundance of nutrient as 
a result of vasa vasorum-assisted nourishment hinders the 
development of the inflammation. One should not forget that 
the inflammation starts and spreads as a result of nutrient 
scarcity.

4.2 � 3D Simulation of Atherosclerosis

The mathematical modeling and the numerical implemen-
tation have been conducted in a 3D framework. Hence the 
final test case is dedicated to a full 3D model of the athero-
sclerosis. Figure 9 displays a randomly generated network 
of vasa vasorum in a 3D fashion. Establishment of proper 
boundary conditions plays an important role in this example. 
One should keep in mind that the artery model with a finite 
length here should be as close as possible to the physiologi-
cal conditions under which the artery functions. Isolation of 
a cut partition of the artery from the original artery network 
should be replaced with “appropriate” boundary conditions, 
see Fig. 4. The reason is that it used to be a part of a longer 
artery embedded in the surrounding tissues. For example, 
if the artery is mistakenly and fully constrained in the axial 
direction, the overgrowth may lead to intense compressive 
loads and finally buckling of the artery that is not physical. 
Hence, the axial freedom of the artery needs to be insured 
to avoid such artifacts. The impact of the background elas-
tic tissue, that serves as an elastic matrix for the artery, is 
neglected in this work.

In principal, it is known that the arteries are not neces-
sarily stress-free even in load-free state. it manifests itself in 
the emergence of an open sector if the artery is radially cut 
in the laboratory [25]. Here, the pre-stressed configuration 
is neglected meaning that the free energy function [Eq. (5)] 
has been built in such a way that it gives zero stress if the 
artery is not loaded. In this test case, the internal pressure 
of the blood ( pmax ) is assumed to be 25 mmHg (3.3 kPa) 
that is the typical blood pressure in the pulmonary arteries 
[14]. It is smaller than the typical systolic pressure, namely 
120 mmHg. The reason is that the blood pressure drops as 
one travels along the vessels of circulatory system and gets 
farther from the heart.

Similar to 2D cases, Fig. 10 depicts the applicability and 
robustness of the proposed method in modeling atheroscle-
rosis in a 3D framework. For visualization purposes, only 
one half of the artery is plotted. As expected, the concentra-
tion field reaches its maximum value near the sources (vasa 
vasorum and the inner surface) and it gradually decays in 

farther points. The inflammation starts to develop from the 
initial seed that was introduced artificially in the mid-plane 
of the artery (see Fig. 4) similar to 2D cases (see Fig. 2). 
Looking at the stress evolution is also informative in this 
case. Figure 11 demonstrates the maximum principal stress 
in the wall and particularly in the proximity of the inflam-
matory region. One can notice that while the internal regions 
of the inflammations are under compressive stress due to 
the overgrowth, the surrounding healthy tissues develop 
relatively high tensile stresses. It means that a very steep 
gradient in the stresses is one of the natural characteristics of 
atherosclerotic arteries. The impact of stress on the growth 
regulation is not included in this work. It is left for the future 
work.

A parameter study can be done for all test cases presented 
here. Such parameter studies are dismissed in this work 
due to conciseness. The main objective of this paper is to 
demonstrate the applicability of our mathematical model in 
simulating the atherosclerosis. Undoubtedly, the prediction 
capability of such a mathematical model can be improved 
by performing experimental and clinical investigations. 

Table 3   Geometrical parameters of vasa vasorum tree fractal

Discreption Parameter Value Unit

Tree trunk L0 3 μm

Second branching parameter �2 1.0 –
Third branching parameter �3 1.0 –
Forth branching parameter �4 1.0 –
Second branch angle 2D �2

2�

3
–

Third branch angle 2D �3
2�

3
–

Forth branch angle 2D �4
2�

3
–

Azimuth angles for 3D branching �az [0,
2�

3
,
4�

3
] –

Elevation angles for 3D branching �el [
�

3
,
�

3
,
�

3
] –

Fig. 8   Percentage of reduction in the lumen cross section (stenosis 
degree) for different cases
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Sparsity and scatteredness of the available experimental 
data due to the difficulties of in-vitro measurements are the 
main challenges in this regard, see [15] for example. This is 
why we have taken approximate and nominal values from 
the literature [15] for the material parameters in this work 
without conducting an experimental validation.

Remark   It is obvious that one needs to carry out a so-called 
”convergence analysis” in order to show that the results are 
mesh independent. Apart from accuracy that improves upon 
refining the mesh, some factors dictate the maximum allow-
able mesh size. It is known that the length scale parameters 
in the phase field equation (11), namely ( � ), determines the 
sharpness of the interface and consequently the maximum 
allowable element size. Furthermore, the fractal-shaped tree 
of vasa vasorum necessitates the usage of sufficiently fine 
mesh in order to capture such small features, see Table 3. 
Nevertheless, the computational cost increases rapidly if 
the discretization size decreases . For all 2D and 3D prob-
lems presented in this work, the typical mesh size is 0.5 μm . 
We found that this value is, on one hand, small enough to 
address the the aforementioned concerns and, on the other 

hand, computationally affordable. Taking into account 4 and 
5 degrees of freedom per node in 2D and 3D respectively, it 
led to a system with approximately 120,000 and 2,000,000 
unknowns in 2D and 3D, respectively. It reveals clearly why 
the 3D cases are substantially expensive compared to 2D 
ones in terms of computational costs. While the computa-
tional running time for 2D cases reaches barely 1 h, the 3D 
cases need more than 15 hours assuming that an ordinary 
personal computer (PC) is used.

5 � Conclusion

A new mathematical model for the simulation of atheroscle-
rosis was proposed and implemented in an FEM framework. 
The model is based on years of clinical observations during 
heart and vascular operations by cardiac surgeon Professor 
Haverich who proposed a new theory on the cause of the 
atheriosclerosis which differs from the old doctrine of fat 
deposition (calcification). A multi-field approach consist-
ing of three governing equations was developed to describe 
mechanical deformation, nutrient transport and biological 
inflammatory response. The simplifying assumptions and the 
underlying hypotheses were clarified. The model is capable 
of capturing atherosclerosis as a result of disruption in the 
nutrient flow inside the vasa vasorum, the network of micro 
vessels nourishing the artery. In practice, the occlusion of 
vasa vasorum may happen due to an inflammatory reactions 
caused by viruses, bacteria, fine dusts, as well as fat particles 
(oxidized LDL cholesterol). A clear correlation between an 
increased heart attack rate and the occurrence of flu epidem-
ics with pneumonia and also exposure to fine dust has been 
established that support the newly proposed hypothesis for 
the atherosclerotic plaque. Especially the recent COVID-19 
pandemic is of high relevance to this matter, since it does 
affect the microcirculatory blood vessels in many organs. 
The involvement of vasa vasorum has clearly been shown 
by Kawasaki syndrome, an inflammatory disease affection 
children with COVID 19 infection [6]. Mathematical mod-
eling of atherosclerosis is inevitably necessary in developing 
any preventative or therapeutic measure against the disease. 
Both 2D histological examination and 3D full model were 
provided to demonstrate the robustness, versatility and appli-
cability of the developed numerical tool.

Despite promising results, this work can be improved and 
extended in a few directions. Firstly, the thermodynamical 
consistency of the proposed phase-field model should be 
investigated. In particular, more clinical observations are 
required about the progression pattern (evolution pattern) 
of the atherosclerotic plaques. Secondly, a more realistic 
representation of the artery wall including multiple layers 
(intima, media, adventia) , several laminae within each layer, 
elastin, collagen and ground substance can improve the 

Fig. 9   Geometry of the vasa vasorum in 3D
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Fig. 10   Variation of dimensionless nutrient and inflammation progression in the course of the time (with collagen fiber/with vasa vasorum)
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Fig. 11   Stress evolution and the deformation of the wall artery due to the inflammation
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predictiveness of the model. Thirdly, the presented model 
can be applied to other relevant pathological situation such 
as arterial “dissection” and “aneurysm”. The Second author 
believes that the aortic dissection and atherosclerosis are 
two sides of the same coin and one can hopefully establish a 
unified theory to explain the pathogenesis based on the vasa 
vasorum dysfunction, see [22]. As the next possibility and 
very interesting path for the extension of this work, one can 
incorporate the impact of stress development into regulat-
ing the inflammatory response and the resultant overgrowth. 
From a mathematical point of view, it results in a two way 
coupling between the inflammation and stress instead of cur-
rently existing connection that is one way. It means that in 
this work, the inflammation is the “cause” and the deforma-
tion and the stress are the “effects” not vise versa. A recipro-
cal causal relation might be more physical and undoubtedly 
more challenging. The first author has developed a stress-
regulated growth model by means of the principal directions 
of the stress tensor that can be integrated into this work, see 
[39]. Finally and needless to say that the computational costs 
of 3D cases are not comparable to 2D ones. Especially, due 
to the presence of phase field method, one should be care-
ful about the maximum allowable mesh size for a particular 
degree of interface sharpness. The narrower the interface 
is, the finer mesh should be applied and consequently the 
more expensive the simulation becomes. Hence, extending 
the numerical tool concerning the “adaptivity” is crucial if 
one intends to resolve the variable in fine length scales.
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