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Abstract
Vibration absorption is a core research area in the design and control of structures and machines, and exploiting antireso-
nances is an effective approach for systems under harmonic excitation. This paper proposes a comparative study and a review 
of the main passive techniques to antiresonance assignment proposed in the recent literature, by discussing them through 
some numerical examples too. The techniques discussed include the well-known Tuned Mass Damper, which has been 
widely developed in the literature. However, as the title reveals, great attention is paid to the methods inherited from the 
field of dynamic structural modification that assign antiresonances without modifying the number of degrees of freedom, 
by exploiting a proper modification of the system inertial and stiffness parameters. Due to higher mathematical complexity, 
these approaches have been less investigated in the literature although they are an effective and less invasive approach to 
antiresonance assignment, especially for machines. To puzzle out the complicated subject matter of antiresonances, their 
background and their key features are also discussed by reviewing the main theoretical results and their relationship with 
the assignment techniques. The paper is also enriched with several numerical examples to compare different methods and 
investigate the features of antiresonances. The concluding remarks of the paper bring together some open issues in this field 
of research and outlines some possible research directions.

1  Introduction

Vibration absorption has been attractive over the decades to 
control mechanical systems such as structures or machines. 
In the case of vibrations due to harmonic excitation, an 
effective approach is exploiting antiresonances, i.e. those 
frequencies where the system experiences no (or very small) 
steady-state vibration at some coordinates. One of the more 
discussed ways, and probably the oldest one, to perform 
vibration absorption is the classical tuned mass damper 
(TMD), also denoted as the dynamic vibration absorber 
(DVA). The basic and simple idea of such a passive device is 

that the vibrating motion of a spring-mass system forced by 
a harmonic excitation can be absorbed by attaching a tuned 
oscillator to it. This result is commonly credit to Frahm in 
1909 [1], who formulated the absorber with reference to 
an undamped system with one degree of freedom (DOF) 
excited by an harmonic force. Starting from such a mile-
stone, thousands of developments and applications have 
been proposed (see e.g. the review in [2–4]).

Vibration absorption through passive antiresonance 
assignment (AA) however can be also solved through the 
theory of inverse dynamic structural modification (DSM), 
i.e. methods to compute the inertial, stiffness and damping 
system parameters ensuring the desired dynamic response. 
This problem is very interesting since it can be applied both 
to the design of new systems, and to the optimization of 
existing ones. Inverse DSM is, in practice, a model-based 
mechanical design: dynamic models are employed and 
inverted to compute the optimal parameters leading to the 
prescribed antiresonances. In the light of this idea, vibra-
tion absorption can be achieved both through the addition 
of TMDs and through the modification of the system param-
eters. This issue will be discussed in this paper, that provides 

 *	 Dario Richiedei 
	 dario.richiedei@unipd.it

	 Iacopo Tamellin 
	 iacopo.tamellin@unipd.it

	 Alberto Trevisani 
	 alberto.trevisani@unipd.it

1	 Department of Management and Engineering, University 
of Padova, 36100 Vicenza, Italy

Archives of Computational Methods in Engineering (2022) 29:519–544 

/ Published online: 28 April 2021

http://orcid.org/0000-0003-1180-3004
http://orcid.org/0000-0003-0333-4420
http://orcid.org/0000-0002-2868-3128
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-021-09583-w&domain=pdf


	 D. Richiedei et al.

1 3

a critical discussion of the theoretical concepts on AA and of 
the main passive methods to perform it. A detailed discus-
sion of the most relevant antiresonance properties, such as 
their existence or locations, is provided to puzzle out this 
complicated subject matter and to help developing effective 
solution methods. It should be pointed out that the goal is 
not just providing a list of papers available in the literature, 
but rather to show their applicability and help the readers to 
find the most suitable ones for their applications. Besides 
discussing the main theoretical points of the quoted meth-
ods, some numerical applications are provided, also merging 
ideas from different techniques.

2 � Theoretical Background

2.1 � Definitions

Let us consider a linear time-invariant, N-DOF, vibrat-
ing system modeled through mass � ∈ ℝ

N×N , stiffness 
� ∈ ℝ

N×N , and damping � ∈ ℝ
N×N matrices:

�(t) ∈ ℝ
N is the vector of the generalized, independent 

displacements, � (t) ∈ ℝ
N is the force vector and � ∈ ℝ

N×N 
is the force distribution matrix. If the excitation force is sinu-
soidal ( � is its frequency and j =

√
−1 ) the system response 

is written in the frequency domain as follows:

Hence, the relation between the input force and the dis-
placement of the system is:

where the receptance matrix �(j�) is:

Let us consider the transfer function hpq(j�) from force 
fq(j�) , applied at the q-th DOF, to the displacement of the 
p-th DOF, qp(j�):

Equation (5) introduces the so-called adjunct (or adjoint) 
system, defined through its mass, damping and stiffness 
matrices, ���, ���, ��� ∈ ℝ

(N−1)×(N−1) that are obtained 
by removing the q-th row and p-th column from the orig-
inal ones. The antiresonances of hpq(j�) are the frequen-
cies at which the numerator in Eq. (5) is null, and there-
fore the response of the p-th coordinate vanishes for such 

(1)��̈(t) + ��̇(t) +��(t) = �� (t)

(2)
(
−�2� + j�� +�

)
�(j�) = �� (j�)

(3)�(j�) = �(j�)�� (j�)

(4)�(j�) =
(
−�2� + j�� +�

)−1

(5)

hpq(j�) =
qp(j�)

fq(j�)
= (−1)p+q

det
(
−�2��� + j���� +���

)

det
(
−�2� + j�� +�

)

an excitation. Antiresonance frequencies will be henceforth 
denoted as �z,i ( 0 ≤ i ≤ N − 1 ). An antiresonance corre-
sponds to a pair of complex and conjugate zeros in the com-
plex plane, zi, z∗i = −�z,i�z,i ± j�z,i

√
1 − �z,i , where �z,i is the 

undamped antiresonance frequency and �z,i its damping ratio.
Antiresonances are therefore computed as the eigenvalues 

of the adjunct system:

An alternative formulation is inferred by formulating Eq. 
(6) as the eigenvalue problem of the adjunct system, by intro-
ducing the eigenvector of the adjunct system ��,� ∈ ℂ

N−1:

In [5], the physical meaning of the eigenvector of the 
adjunct system ��,� has been explained for undamped sys-
tems. Let us consider the response of the p-th coordinate 
under harmonic excitation applied at the q-th coordinate. 
Wang demonstrated that the i-th antiresonant response mode 
��,� , i.e. the vector of the steady-state displacement ampli-
tudes under such an excitation, is

where � =

(
� − �2

z,i
�
)
 , �

�
 is the canonical vector with all 

null entries except for the q-th, and �� ∈ ker
(
�T
�

)
 where ep 

is defined similarly to eq. The calculation of ��,� is performed 
regardless of the normalization of ��,� . Since 

(
�T
�
�����,�

)−1

�T
�
�
�
 

is a scalar, then the i-th adjunct system eigenvector ��,� 
defines the relative amplitude of the steady-state displace-
ments of the system coordinates at the i-th antiresonance 
frequency (obviously, the displacement at the response DOF, 
which is not included into ��,� , is zero).

2.1.1 � The Test‑Case: Analysis of the Antiresonances 
for a Sample Receptance

Along this paper, some numerical examples will be proposed 
through a common benchmark [6–9] sketched in Fig. 1. The 
system is made by lumped unitary masses and springs (1 kg 
for the masses and 1 Nm−1 for the springs). The system will 
be modified in some sections to provide a clearer explana-
tion of the theories therein discussed.

Let us consider now, for example, h3,3(jω). Antireso-
nances are shown in Table 1 and in Fig. 2. The antiresonant 
response, computed through Eq. (8), is shown in Fig. 3.

(6)det
(
−�2��� + j���� +���

)
= 0

(7)

(
−�2

z,i
��� + j�

z,i
��� +���

)
��,� = � with 0 ≤ i ≤ N − 1

(8)��,� =

(
�T
�
�����,�

)−1

�T
�
�
�
����,�
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2.2 � Existence and Locations of Antiresonances

2.2.1 � Point‑Receptances

A key point is the existence of antiresonances. In the case 
of point-receptances, i.e. a receptance with the same excita-
tion and measurement coordinates (p = q), such an issue is 
trivial due to � = �T > 0 , � = �T ≥ 0 and � = �T ≥ 0 . 
Indeed, the adjunct system is still symmetric with positive 
definite or semi-positive definite matrices. Resonances and 
the antiresonances alternate in the frequency spectrum due 
to the Cauchy interlace theorem [10]. Therefore, the number 
of the antiresonances will be exactly N-1. It should be noted 
that the adjunct system can be interpreted as the original 
system grounded at the p-th coordinate.

2.2.2 � Cross Receptances

In the case of a cross-receptance the excitation and the meas-
urement coordinates are different (p ≠ q). Hence, Eq. (7) no 
longer represents a physical vibrating system. The eigen-
value problem is not self-adjoint, with asymmetric matrices 
that might be negative definite, and its eigenvalues can be 
negative or complex (even in the case of undamped systems), 
giving rise to complex zeros that must not be considered as 
antiresonances (see Sect. 2.2.4). Therefore, the number of 
antiresonances in cross receptances is often lower than N-1.

As a rule of thumb, as the distance between the excita-
tion and the sensor increases, the number of antiresonances 
decreases [11]. This can be explained through systems 
modelled through a diagonal mass matrix: the degree of 
the polynomial det

(
−�2��� + j���� +���

)
 decreases as 

the difference p−q increases, since the number of not-null 
entries on the main diagonal of ��� decreases. Hence, the 
number of its possible roots decreases too. In the case of a 

Fig. 1   Sketch of the six-mass system

Table 1   Antiresonance frequencies of point-receptance h3,3(jω) 

ωz,1 [rads−1] ωz,2 [rads−1] ωz,3 [rads−1] ωz,4 [rads−1] ωz,5 [rads−1]

0.7203 1.1756 1.5202 1.9021 2.0421

Fig. 2   Point-receptance h3,3(jω): 
magnitude
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simply-connected system, i.e. a lumped parameter system 
where each mass is connected at most to the two adjacent 
masses and to the frame, the number of antiresonances of 
hpq(j�) is (N − 1) + (min (p, q) −max (p, q)) due to the tri-
diagonal damping and stiffness matrices, and diagonal mass 
matrix [12].

In the general case of sparse matrices, as those of systems 
modeled through finite elements, a general theory about the 
number and the location of the antiresonances lacks. A use-
ful rule to predict pole-zero interlacing in the low-frequency 
range of cross receptances has been proposed in [13, 14] for 
undamped systems. If the modal constants (i.e. the product 
of the two entries of the i-th eigenvector at the response 
point ��,�(p) and at the excitation point ��,�(q) ) of two con-
secutive modes have the same sign, then there will be an 
antiresonance �z,i between the natural frequencies of the two 
modes considered:

Intuitively, if the sign of the product of the modal coordi-
nates (i.e. the modal constant) of two consecutive modes for 
an undamped system is the same, it means that the two coor-
dinates oscillate in-phase. Since a resonance causes a phase 
decrease of -180°, those coordinates can oscillate in-phase 
once if-and-only-if an antiresonance frequency increases the 
phase of + 180°. Modal constants in cross-receptances tends 
to be positive when the input and the output coordinates 

(9)
sign

(
��,�(p)��,�(q)

)
= sign

(
��,�+�(p)��,�+�(q)

)
⇒ 𝜔r,i < 𝜔z,i < 𝜔r,i+1

are close, since low frequency modes varies slowly in space 
[12–14]. It should be noted that Eq. (9) does not always 
hold for high frequency modes. In the case of classically 
damped systems Eq. (9) still holds since the system features 
real mode shapes. Whenever, non-classical damping arises, 
if the system is lightly damped just a small phase differences 
between various parts of the system is introduced hence Eq. 
(9) can be adopted as an approximate rule.

2.2.3 � Numerical Example: Comparison of Point and Cross 
Receptances

Let us consider the test case and let us compare h3,3(jω) 
and h6,3(jω) (that is equal to h3,6(jω)). These receptances 
are the transfer functions of interest to implement collocated 
or non-collocated controls, respectively. In collocated con-
trol, sensor and actuator are placed in the same position, 
as in a point-receptance. In non-collocated control, sensor 
and actuator are placed in different positions, as in a cross 
receptance. Figure 4 shows the root-locus of the two recept-
ances by assuming a proportional controller on the response 
coordinate. For clarity of representation, the system has been 
lightly damped in this section. The poles and the zeros alter-
nate along the imaginary axis for h3,3(jω); in contrast, such 
a feature is lost for h6,3(jω). Consequently, h3,3(jω) is stable 
for any positive gain, i.e. all the poles will lie to the left half 
of the complex plane (LHCP) for any positive gain. In con-
trast, h6,3(jω). will feature unstable poles in the right half of 

Fig. 3   Antiresonant response 
for all the antiresonances of 
h3,3(jω)
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the complex plane (RHCP) for some gains. This statement 
is corroborated by the transfer functions in Fig. 5, together 
with the use of the Bode stability criteria. The pole-zero 
interlacing is evident for h3,3(jω), whose phase belongs to the 
interval [0, − 180°), hence ensuring a positive phase margin 
(0.313° at the cross frequency 1.060 rads−1) and an infinite 
gain margin. In h6,3(jω) the presence of two consecutive pair 
of poles decreases the phases below the threshold − 180°, 

thus causing negative phase margin (− 2.23°, with a cross 
frequency 1.260 rads−1) and reduced gain margin (− 8.54 dB 
at the cross frequency 0.786 rads−1).

Hence, a negative-feedback proportional control on 
h6,3(jω) makes the system unstable; stability could be 
achieved through high-order or state-feedback controllers 
(e.g. to damp the vibrational modes for avoiding 0 dB cross-
ings at high frequencies). This explanation corroborates 

Fig. 4   Comparison of the root-
locus for a sample point and 
cross receptance

Fig. 5   Magnitude and phase 
comparison between h3,3(jω) 
and h6,3(jω)
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the importance of antiresonance to enable stable control 
in vibrating systems and proves the benefits of collocated 
control [10].

2.2.4 � Complex Zeros of Cross Receptances

Let us consider the adjunct system eigenproblem of a cross-
receptance hpq in an undamped system:

Complex eigenvalues zi might appear in complex con-
jugate pairs (since 

(
���, ���

)
 are real), z

i
, z∗

i
, z

i+1
, z∗

i+1

= ±�z,i�z,i ± j�z,i

√
1 − �z,i . Unlike imaginary zeros, com-

plex zeros in undamped systems cause no phase change, and 
no sharp reduction in the magnitude plot of the receptance. 
Hence, vibration is not eliminated [15]. Under a control 
perspective, these zeros have no positive effects on stabil-
ity margins, and the presence of zeros in the RHCP leads 
to non-minimum phase systems that are difficult to control 
and experience undershoot. Furthermore, the sensitivity to 

(10)
(
zi ��� +���

)
��,� = �

parameter uncertainty increases in the case of complex zeros 
[16].

2.2.5 � Numerical Example: Complex Zeros

Let us consider the test case by placing a spring k0 con-
necting m1 and m6. h3,5(jω) has complex zeros when 0 
Nm−1 < k0 < 1 Nm−1. The zeros of h3,5(jω) for three sam-
ple values of k0 are reported in Table 2, showing that the 
complex zeros ± 0.151 ± 1.286j appears when k0 = 0.1 
Nm−1. Additionally, since the numerator of h3,5(jω) 
is a 3rd degree polynomial with respect to � = −�2 , 
det

(
���� +���

)
= �3 + 6.2 �2 + 11 � + 6.1 , two antires-

onances vanish.
The magnitude and the phase of h3,5(jω) with k0 = 0.1 

Nm−1 is shown in Fig. 6: the purely imaginary zero is clearly 
an antiresonance frequency, i.e. it has a sharp notch at such 
frequency (1.907 rads−1). In contrast, the four complex 
zeros (1.135 rads−1) just lead to a slight reduction in the 
receptance magnitude (as highlighted by the dotted vertical 
line) while the phase is unchanged.

2.3 � Sensitivity of Antiresonances to Parameter 
Variations

Sensitivity is a useful tool to understand which model vari-
ables have no or negligible impact on antiresonances. This 
is useful to identify which are the best design variables that 
impose require small modifications in DSM. On the other 

Table 2   Zeros of receptance h3,5(jω) for different values of k0

Zeros k0 = 0.1 Nm−1 Zeros k0 = 1 Nm−1 Zeros k0 = 1.5 Nm−1

0.082 ± 1.135j  ± 1.414j  ± 1.316j
− 0.082 ± 1.135j  ± 1.414j  ± 1.656j
 ± 1.907j  ± 2.000j  ± 2.127j

Fig. 6   Cross-receptance 
h3,5(jω): magnitude, k0 = 0.1 
Nm−1
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hand, a lower sensitivity means that uncertainty on such a 
parameter will marginally affect the prediction of the antires-
onance frequency provided by the numerical model or makes 
such a frequency robust to variation of the parameter under 
investigation.

The sensitivity of an antiresonance frequency with 
respect to an arbitrary parameter x (e.g. a mass or a stiff-
ness) is computed through the relation proposed in [17] for 
undamped systems:

��,� and �
�,�

 are respectively the right and left eigenvectors 
related to the i-th eigenvalue of the adjunct system.

A different formulation of sensitivity is provided in [6] 
for undamped systems, without using the system matrices, 
i.e. by writing sensitivity as a linear combination of natural 
frequencies and mode-shapes sensitivities. Such a formula 
also reveals that the sensitivities of the nearest eigenvalues 
and eigenvectors are the leading contributors to the antireso-
nance sensitivity.

2.3.1 � Numerical Example: Antiresonance Sensitivities

The sensitivity analysis of the antiresonance of h3,3(jω), with 
respect to the mass and stiffness parameters of the example 
(with the original parameters stated in Sect. 2.1.1) is shown 
in Table 3.

Let us discuss, for example, the effect of m1: it just affects 
the second and the fourth antiresonance frequencies while 
the remaining ones are unchanged by variations of m1. A 
particular situation arises for m3: since the adjunct system for 
h3,3(jω) is obtained by grounding the motion of such mass, 
any modification of m3 does not affect all its antiresonance 
frequencies.

3 � AA Through Dynamic Vibration Absorbers 
and TMDs

3.1 � The Frahm’s Dynamic Absorber

In the following of the paper, as usually done in the litera-
ture too [18–20], DVA and TMD will be used as synonyms. 
As already mentioned in the Introduction, the basic idea 
of the TMD is that the vibrating motion of a spring-mass 
system forced by a harmonic excitation can be absorbed by 
attaching a tuned oscillator to it. In the formulation proposed 
by Frahm [1], the absorber is developed with reference to 
an undamped, single-DOF system excited by an harmonic 
force (with arbitrary amplitude F0 and known frequency ωf). 

(11)
��2

z,i

�x
=

�T
�,�

(
����

�x
− �2

z,i

����

�x

)
��,�

�T
�,�
�����,�

,

Additionally, he neglected damping of the spring connection 
between the TMD and the primary system, as sketched in 
Fig. 7. The equation of motion is:

The absorber is tuned in such a way that �f =

√
ka

ma

 , 
where ka and ma are the stiffness of the connection spring and 
the absorber mass to be chosen. Since there is no energy 

(12)

[
m 0

0 ma

]{
q̈(t)

q̈a(t)

}
+

[
k + ka −ka
−ka ka

]{
q(t)

qa(t)

}
=

{
F0 sin(𝜔f t)

0

}

Table 3   Antiresonance frequencies sensitivities of h3,3(jω) 

Antiresonance 
index i

1 2 3 4 5

∂(ωz,i)2/∂m1 
[rads−2 kg−1]

0 − 1.000 0 − 1.000 0

∂(ωz,i)2/∂m2 
[rads−2 kg−1]

0 − 0.382 0 − 2.618 0

∂(ωz,i)2/∂m3 
[rads−2 kg−1]

0 0 0 0 0

∂(ωz,i)2/∂m4 
[rads−2 kg−1]

− 0.015 0 − 1.320 0 − 1.664

∂(ωz,i)2/∂m5 
[rads−2 kg−1]

− 0.095 0 − 0.627 0 − 2.279

∂(ωz,i)2/∂m6 
[rads−2 kg−1]

− 0.409 0 − 0.364 0 − 0.227

∂(ωz,i)2/∂k1 
[rads−2 N−1 m]

0 0.724 0 0.276 0

∂(ωz,i)2/∂k2 
[rads−2 N−1 m]

0 0.276 0 0.724 0

∂(ωz,i)2/∂k3 
[rads−2 N−1 m]

0 0.106 0 1.894 0

∂(ωz,i)2/∂k4 
[rads−2 N−1 m]

0 0.276 0 0.724 0

∂(ωz,i)2/∂k5 
[rads−2 N−1 m]

0.030 0 0.571 0 0.399

∂(ωz,i)2/∂k6 
[rads−2 N−1 m]

0.030 0 0.571 0 0.399

∂(ωz,i)2/∂k7 
[rads−2 N−1 m]

0.065 0 0.055 0 1.880

∂(ωz,i)2/∂k8 
[rads−2 N−1 m]

0.182 0 0.271 0 0.546

∂(ωz,i)2/∂k9 
[rads−2 N−1 m]

0.212 0 0.842 0 0.946

Fig. 7   Sketch of the single DOF TMD
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dissipation in the primary system, vibration is completely 
confined to the mass of the absorber. The larger the absorber 
mass is, and the smaller its oscillations are, since 
qa(t) = −

m

ma

F0

k
sin(�f t) . Larger absorber masses, although 

difficult to implement, have another advantage: increasing 
the mass ratio � =

ma

m
 shifts the resonance frequency away 

from ωf, by increasing the TMD robustness as the excitation 
frequency differs from the nominal one. Fig. 8 shows the 
effect of � on the amplitude of the primary system. The capa-
bility to absorb vibrations quickly degrades as the excitation 
frequency differs from the nominal one. On the other hand, 
the presence of damping either in the primary or in the sec-
ondary system, downgrades the absorber effectiveness too.

4 � Research Developments on Passive TMDs

Some of the main achievements and issues of passive TMDs 
are here briefly discussed. Based on the structure and the 
number of DOFs, three classes can be defined:

• Single TMDs (TMD): the auxiliary system has a single-
DOF (SDOF) and is composed by a mass, a damper and 
a spring.
• Multiple TMDs (MTMD): the auxiliary system is com-
posed by more masses, dampers and springs, attached at 
one point of a SDOF or MDOF primary system.

• Spatially distributed TMDs (D-MTMD): the auxil-
iary system is composed by more masses, dampers and 
springs, with several attachment point to the multi-DOF 
(MDOF) primary system.

Another classification of TMDs could be done based on 
the motion of the added coordinates. While “traditional” 
TMDs are made by translational masses, rotational inertias 
have been less frequently proposed (see e.g. [21]), although 
rotational inertias can be effective with small devices. Pen-
dulum TMDs have been proposed too (see e.g. [22, 23]).

The performances of TMDs have been improved recently 
through the implementation of inerters, to be placed in paral-
lel or in series with the spring-damper arrangement of the 
TMD to improve the dynamic response and the bandwidth 
of TMDs, leading to the TMD Inerter (TMDI). Inerters are 
mechanical devices where the forces applied at their termi-
nals are proportional to the relative acceleration between 
them [24], thus leading to a virtual mass amplification [25]. 
The TMDI has been introduced in [26] with three differ-
ent configurations and the optimal parameters are derived 
through a global optimization routine. Three different meth-
odologies for the design of TMDI have been proposed in 
[27]. The analytical solutions for the design of the TMDI 
with different inerter configurations have been obtained in 
[28] exploiting the invariant points theory.

Most of the works proposed linear TMDs applied to lin-
ear primary systems. Some extensions have been proposed 
through nonlinear TMDs, usually to cope with nonlinearities 
in the primary system or to exploit nonlinearities in the aux-
iliary system (e.g. [29–31]). A review is proposed in [32].

4.1 � The Single‑DOF TMD

To increase the range of frequencies where the absorber is 
effective, i.e. reducing its sensitivity, a viscously damped 
spring-mass system can be exploited as a TMD. This has 
been proposed by Ormondroyd and Den Hartog [33, 34]. 
The key point is that there are two invariant frequencies of 
the system response that do not depend on damping, see 
Fig. 9. Starting from such an observation, analytical expres-
sions of the damper design parameters has been proposed for 
both the case of mass and base excitation of the primary sys-
tem (ω0 is the frequency of primary system without TMD, 
and �d is the damping ratio of the TMD alone, assumed as 
grounded):

(13)
�f

�0

=

⎧⎪⎨⎪⎩

1

1+�
(mass excitation)

1

1+�

��
2−�

2

�
(base excitation)

�d =

⎧⎪⎨⎪⎩

�
3�

8(1+�)
(mass excitation)�

3�

8(1+�)

��
2

2−�

�
(base excitation)

Fig. 8   Influence of the mass ratio on the amplitude of the response of 
the primary system: m = 1, k = 1, ωf = ω0
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For example, by tuning ωf accordingly to Eq. (13) it is 
possible to obtain invariant points with the same amplitude 
while �d is varying, as reported in Fig. 10.

The basic theory of Den Hartog is effective if the origi-
nal system is undamped or lightly damped. As damping 
increases, invariant points do not exist anymore. Therefore, 
the parameters in Eq. (13) are no more optimal. Several 
improvements of Eq. (13) have been proposed to minimize 
different performance indexes. A comparison of different 
definition of the optimal ωf/ω0 and �d for lightly damped 
SDOF primary systems is proposed in [35] and here sum-
marized in Table 4.

Other methods have been developed through approximate 
solutions usually obtained solving optimization problems. 
Just to mention some examples, an approach based on the 
frequency locus has been adopted in [41, 42] to minimize 
the vibration of the primary system over the whole range of 
exciting frequencies, while reducing the oscillation of the 
auxiliary mass of the absorber. A non-linear programming 
technique is exploited in [43] to minimize the maximum 
displacement of the primary system, as well as the maxi-
mum speed under white noise excitation. In [44], several 
goal functions over narrow and broad frequency bands are 
examined, to minimize the absolute or relative displace-
ments, the mass ratio m, or maximize the broadness of the 
band of attenuation of vibrations. A numerical searching 
procedure is exploited in [45] to design a TMD for a damped 
primary system. The authors demonstrated that the higher 
is the damping on the primary system and the less effective 
the TMD is in attenuating vibrations.

Four fundamental design topologies have been pro-
posed over the decades for the TMD and here summarized 
in Table 5. The vibration absorbers are classified first with 
respect to the main system damping leading respectively to 
TMDs for US (Undamped main System) or DS (Damped 
main System). Further, another classifier is related to the 
position of the absorber dashpot with respect to the absorber 
mass, leading to the so-called V-TMD (Variant TMD) [46] 
if the damper is located between the absorber mass and the 
ground.

4.2 � Multiple TMDs for Single‑DOF Systems

Other arrangements of the classical TMD have been pro-
posed to increase robustness and effectiveness by introduc-
ing multiple oscillators to a SDOF primary system. In [53] 
and [54] the idea of Multiple TMDs (MTMD) is introduced. 
MTMD consist of more single-DOF oscillators attached to 
the original system, whose natural frequencies are distrib-
uted around the natural frequency of a controlled mode of 
the structure. A sketch of a MTMD is proposed in Fig. 11a 
in its parallel topology. Series topologies, as sketched in 
Fig. 11b, have been proposed too (see e.g. [55]). Clearly, 
increasing the number of DOFs of the TMD enlarges the 
achievable performances and allows handling several sec-
ondary tasks. Design of MTMDs has been therefore often 
solved through multi-objective optimization (see e.g. [54] 
and [56]), also including stochastic representation of the 
disturbances (see e.g. [55, 57, 58]).

4.3 � TMDs for Multi‑DOF Systems

The extension of the TMD to MDOF primary systems has 
been proposed too. In [59] a similar approach as the one of 
Den Hartog for SDOF systems, is extended to undamped 

Fig. 9   Invariant points on the amplitude of the response of the pri-
mary system: m = 1, k = 1, ωf = ω0, μ = 0.05

Fig. 10   Invariant points with the same amplitudes: m = 1, k = 1, 
ωf = ω0/(1 + μ), μ = 0.05
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MDOF primary systems, and the optimal absorber location, 
stiffness and damping are then obtained. It is also proved 
that the invariant points, defined by Den Hartog, still exist.

The MDOF TMD has been generalized by Ram and Elhay 
[60] for both SDOF and MDOF original systems, with MDOF 
attached auxiliary systems. Let us consider a simply con-
nected vibratory system, the so-called primary system, and 
suppose that the forced response of the N-th mass to some 
harmonic excitations ωf,i (i = 1,…,nf) should be absorbed. 
Let us suppose that a Na-DOF simply-connected system (the 
secondary system) is attached to the primary one by link-
ing it, without loss of generality, to mass N through a spring 
(Fig. 12). Let Na be not smaller than the number of harmonic 
forces to be absorbed. The meaningful results proved in [60] is 
that the natural frequencies of the secondary system (obtained 
assuming fixed boundary constraint at the point of attachment 
to the original system) are antiresonance frequencies from 
the forces applied to any DOF of the primary system, to the 
response of mass N. Hence, at those frequencies, one line 
and one row of the receptance matrix of the primary system 
are 0. The design of the suitable masses and springs of the 
secondary systems is an eigenvalue assignment problem to 
be solved with state-of-the-art methods. Indeed, paper [60] 
does not discuss the computational issues of finding the value 
of masses and springs. The numerical example in Sect. 3.5.1 
will provide a deeper insight on this powerful theory, by sug-
gesting a new solution method to the assignment problem.

Beyond the general theory in [60], MTMDs have been 
employed in the last decades by several researchers to cope 
with different tasks. For example, a graphical approach to 
the design of MTMD to suppress multiple modes have been 

recently proposed in [61]. In [62], D-MTMDs are exploited 
to improve the response of a bridge-like structure when it 
is affected by moving loads. A method to simultaneously 
tune mass and stiffness of D-MTMD with arbitrary topol-
ogy, together with the modifications of the parameters of the 
primary system, is proposed in [63], by exploiting numerical 
minimization. This method will be discussed in Sect. 4.4.

4.3.1 � Numerical Example: Design of a MDOF TMD

Let us assume that the six-mass system is composed by a 
primary system composed by just masses m1, m2, m3, m4, 
and that the subsystem made by m5, m6 must be designed to 
be a simply connected MDOF-TMD for the primary system, 
as sketched in Fig. 13.

The assignment of two antiresonances at 0.500 rads−1 
and 1.500 rads−1 for all the receptances hi,4(jω), i = 1,…,4, 
is performed. As discussed in Sect. 3.5, such antiresonances 
�d
z,i

 will be the resonances of the auxiliary subsystem alone 
(and grounded), i.e. the solve the following equation

where ��∶� and ��∶� are respectively the mass and stiff-
ness matrices of the subsystem composed by auxiliary sys-
tem itself and ���∶� , ���∶� are the modification matrices 
employed to assign the prescribed antiresonance frequen-
cies. Besides solving Eq. (14), antiresonances can be also 
assigned by solving the following eigenproblem (with ��,� 
as the eigenvector):

(14)

det

(
−

(
�d
z,i

)2(
��∶� + ���∶�

)
+��∶� + ���∶�

)
= 0

Table 4   Tuning methods for the SDOF-TMD: comparison

Paper references Objective of the minimisation Optimal tuning parameters

[33, 36] Maximum displacement of the primary mass Eq. (13), Mass excitation
[37] Total displacement of the primary mass over all frequencies �f

�0

=
1

1+�

√
2+�

2

�d =

√
�(4+3�)

8(1+�)(2+�)

[38, 39] Minimizing the transient vibration of the system and maximize the stability �f

�0

=
1

1+�

�d =
√

�

1+�

[40] Primary mass displacement and the relative displacement �f

�0

=
1

1+�

�d =
√

�

2(1+�)

[37] Total kinetic energy of the primary mass over all frequencies �f

�0

=
1√
1+�

�d =

√
�

2

[35] Power dissipated by the absorber �f

�0

≈
1√
1+�

�d ≈

√
�

2
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Table 5   Topologies of the SDOF-TMD: summary

Topology of the TMD Refs. Topology of the TMD Refs.

(a) TMD-US [33, 34, 38–41] (b) TMD-DS [35–37, 
42–45]

(c) V-TMD-US [47–50] (d) V-TMD-DS [46, 51, 52]

Two examples are proposed in this Section. The resulting 
parameter modifications are reported in Table 6 and the antires-
onances are listed in Table 7.

In the first test proposed it is assumed that just ���∶� is 
allowed, with “large” constraints, and ���∶� is set to zero. 
Indeed, due to the difficulties in solving Eq. (14), only mass mod-
ifications have been assumed in the numerical example in [60]. 
The test has been here also solved through Eq. (15) and through 
the method proposed in [64] for assigning natural frequencies. 
It should be noted that the present paper provides the first appli-
cation of such a method within the frame of the MDOF-TMD 

(15)
(
−

(
�d
z,i

)2(
��∶� + ���∶�

)
+��∶� + ���∶�

)
��,� = 0

proposed by Ram and Elhay and is therefore another contribution 
of this paper.

A second test including stiffness modification is also 
proposed, to cope with tighter constraints on the allowable 
mass modifications that does not allow obtaining the desired 
antiresonances with just two design parameters. The use of 
more design parameters, and the availability of numerical 
methods, are of primary importance to tackle tight con-
straints. The test has been solved just through Eq. (15) and 
the method in [64]; the benefits of exploiting numerical solu-
tions are evident.

The analysis of the receptance matrices of the primary 
system evaluated at the assigned antiresonance frequencies, 
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i.e. �
�∶�, mod

(j�) , shows that they that have a line and a col-
umn of zero, as expected:

4.4 � Discussion on the Attachment Location of TMDs

A proper choice of the attachment location is crucial for 
ensuring effectiveness of the TMD in MDOF primary 
systems. A widespread approach [65] states that the opti-
mal TMD attachment location corresponds to the coordi-
nate where the i-th mode shape, i.e. the one that mostly 

(16)�
�∶�, mod

�
0.5

rad

s

�
=

⎡⎢⎢⎢⎣

0.775 0.356 0.203 0

0.356 0.622 0.356 0

0.203 0.356 0.775 0

0 0 0 0

⎤⎥⎥⎥⎦
�

�∶�, mod

�
1.5

rad

s

�
=

⎡⎢⎢⎢⎣

−2.171 −0.457 1.829 0

−0.457 0.114 −0.457 0

1.829 −0.457 −2.171 0

0 0 0 0

⎤⎥⎥⎥⎦

participates to the system response, attains its maximum 
value. This simplified approach is usually named the “sin-

gle mode approach” and provides effective placement when 
using absorbers with adequately small mass and when the 
primary system eigenfrequencies are well separated.

The “single-mode approach” effectiveness decreases 
for systems with closely spaced natural frequencies and 
large absorber mass as demonstrated in [66] in the case of 
weakly coupled systems. In the light of this limitation, a 

Fig. 11   Sketch of a MTMD: parallel topology (a), series topology (b)

Fig. 12   Sketch of a primary system with attached a MDOF TMD
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great contribution is provided in [67], where the attachment 
location of the TMD is discussed by evaluating the shift in 
the eigenfrequencies of the modified system caused by the 
introduction of the TMD as sketched for a sample system 
in Fig. 14. For a given absorber mass, the device is placed 
in the location that ensures the largest spectral gap (also 
called as frequency shift), i.e. the distance between the i-th 
resonant mode ( �r,i ) and the new i-th and (i + 1)-th eigen-
frequency close to this mode, respectively 𝜔̂r,i and 𝜔̂r,i+1 . 
Let us consider an undamped MDOF primary system with 
attached an SDOF TMD at the a-th DOF. The modified sys-
tem receptance matrix is:

where g(j�) is the transfer function describing the dynamic 
of the TMD:

(17)�̂(j𝜔) =
(
−𝜔2� +� − �

�
𝜔2g(j𝜔)�T

�

)−1

The point receptance at the TMD attachment point is:

The new eigenfrequencies are obtained by solving the 
roots of the denominator of Eq. (19), i.e. the characteristic 
polynomial.

The largest spectral gap, ||𝜔̂r,i+1 − 𝜔̂r,i
|| , ensures a vibration 

mitigation of the entire structure within the frequency range 

(18)g(j�) =
ma

(
ka + j�ca

)
−ma�

2 + j�ca + ka

(19)�T
�
�̂(j𝜔)�

�
=

�T
�
�(j𝜔)�

�

1 − 𝜔2g(j𝜔)�T
�
�(j𝜔)�

�

Fig. 13   The sample four-mass system with highlighted its auxiliary 
system

Table 6   DSM parameters in 
different tests

Parameter modifications Test 1 Test 2

Constraints Results with 
[60] and [64]

Constraints Results with [64]

Δm5 [kg] [− 0.900; 2.000] 0.430 [0.000; 0.200] 0.113
Δm6 [kg] [− 0.900; 2.000] 1.486 [0.000; 1.000] 0.772
Δk8 [Nm−1] – – [− 0.500; 0.500] − 0.252
Δk9 [Nm−1] – – [− 0.500; 0.500] − 0.365

Table 7   Auxiliary system resonance frequencies before and after the 
modifications in different tests

Resonances of 
(M5:6, K5:6)
[rads−1]

Desired 
resonances
[rads−1]

Resonances of 
(M5:6 + ΔM5:6, 
K5:6)
in test 1 
[rads−1]

Resonances of 
(M5:6 + ΔM5:6,  
K5:6 + ΔK5:6)
in test 2 [rads−1]

0.765 0.500 0.500 0.500
1.848 1.500 1.500 1.500

Fig. 14   Neighborhood natural frequencies in a system: (a) without 
and (b) with the TMD
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that spans from 𝜔̂r,i to 𝜔̂r,i+1 , regardless of the location of the 
excitation force. Furthermore, when the new antiresonance 
ωz is created through the absorber, the distance between ωz 
and the resonance of the modified system that is closest to 
ωz should be as large as possible This placement allows for 
higher robustness of performances by ensuring that small 
changes in the excitation frequency do not excite vibrational 
modes close to the antiresonance. Eq. (19) highlights that for 
ma → ∞ the new natural frequencies are equal to the antires-
onances of the point-receptance �T

�
�(j�)�

�
 (as shown by 

the direction of the arrows in Fig. 14), hence the maximum 
spectral gap is limited by the neighboring antiresonances 
since the flipping of natural frequencies with antiresonances 
is impossible due to the pole-zero interlacing property of 
point-receptances (see Sect. 2.2).

The development of the denominator in Eq. (19) through 
different approximations of �(j�) explains the “single-mode 
approach” in term of spectral gap [67]. Under the approxi-
mation of �(j�) through one mode, the characteristic poly-
nomial is written as:

Hence, fixed ma, the largest spectral gap from �r,i is 
achieved for the maximum value of 

(
��,�(a)

)2 . If �(j�) is 
represented through the contributions of all the modes, as 
in the “multi-mode approach” [67], the characteristic poly-
nomial becomes:

Hence, as demonstrated in [67], the performances of 
the absorber are improved by choosing an attachment loca-
tion characterized by a “low activity” on the neighborhood 
modes ��,�−�(a) and ��,�+�(a) , besides obtaining “high activ-
ity” on the targeted mode. The method still holds for lightly 
damped systems.

5 � Passive Modifications Preserving 
the Number of DOFs

5.1 � Advantages and Disadvantages

There are often some limitations of TMDs due to their 
practical implementation [68]. Attaching an external struc-
ture at a prescribed DOF could be technically infeasible, 
e.g. because of the size or due to the inaccessibility of the 
coordinates of interest. Furthermore, introducing a TMD 
introduces new resonances that may interfere with other 

(20)1 − ma

�2
z
�2

�2
z
− �2

(
��,�(a)

)2
�2
r,i
− �2

= 0

(21)1 − ma

�2
z
�2

�2
z
− �2

m∑
k=1

(
��,�(a)

)2
�2
r,k

− �2
= 0

excitation frequencies if not properly accounted for. Finally, 
the masses of the TMD might have large oscillations.

In the light of these issues, a different approach is per-
forming AA by just modifying the existing DOF properties, 
without changing their number. This idea has been widely 
adopted for assigning mode shapes and eigenfrequencies 
(see e.g. [69–71]) and lies within the field of dynamic struc-
tural modifications. In contrast, it has been less adopted for 
antiresonances. The main advantage of this approach is that 
it is simpler under a technical point of view, since it usu-
ally relies on just adding (or removing, if possible) masses 
and springs. This approach can be also seen in the frame of 
the optimal design of new systems. For example, wise mass 
distribution can be chosen at the early stage of the design to 
obtain the desired antiresonances.

The use of this approach is therefore attractive in the case 
of machines, where layout constraints often do not allow 
using TMDs. In contrast, it could be difficult to implement in 
the field of civil engineering, where TMDs have gained more 
attention. On the other hand, assigning antiresonances with-
out adding new DOFs has some limitations. First, TMDs set 
to zero one column and one row of the receptance matrix 
of a multi-DOF system at the tuned frequency, thus achiev-
ing vibration absorption for all its coordinates. In contrast, 
antiresonance is create just for one or a few receptances if 
no DOFs are added. Additionally, it is sometimes difficult to 
create new antiresonances, due to constraints on the feasible 
modifications, and therefore this approach is more effecting 
in shifting the existing ones. Finally, the assignment of more 
antiresonance frequencies is a challenging mathematical 
problem, as discussed in Sects. 4.3 and 4.4. For this reason, 
less solutions have been proposed in the literature and no 
review papers have been proposed in the literature.

A first distinction of the possible approaches, that is 
typical of techniques for DSM ([70]) is between direct and 
inverse approaches. Direct approaches to AA estimate the 
effect of some assumed parameter modifications on the 
antiresonances. Inverse approaches, in contrast, compute the 
suitable modifications to obtain the desired antiresonances. 
Clearly, inverse approaches have attracted attentions of 
researchers in this field: on the one hand they have a greatest 
practical interest. On the other one, they are more challeng-
ing and hence impose wise problem formulations and solu-
tions to handle their ill-posed nature and the difficulties in 
solving them. In practice, sometimes multiple solutions are 
possible while sometimes no solution exists. Inverse DSM 
is a model-based mechanical design ([72]) where dynamic 
models are inverted to compute the optimal parameters lead-
ing to the prescribed antiresonances.

Based on the number of modifications allowed, the meth-
ods can be basically classified in the two groups:
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•	 Rank-one modification:
•	 Higher-rank modifications.

Based on the formulation adopted, the methods can be 
classified in the following groups:

•	 Receptance-based methods.
•	 Methods based on the system matrices.
•	 Methods based on the sensitivity analysis.

Under a computational point of view, the methods can be 
classified in the two following groups:

•	 Analytical methods, that have been developed to solve 
simpler problems, such as rank-one modifications, with-
out accounting for the presence of constraints on the fea-
sible modifications.

•	 Numerical methods, that exploit iterative algorithms 
(such as numerical optimization) to solve more com-
plicate problems (such as higher-rank modifications or 
multiple assignment) and to handle constraints on the 
feasible modifications.

A method summary is provided in Table 8.

5.2 � Rank‑One Modifications

The term “rank-one modification” (or “unit-rank modifi-
cation”) is used to represent the addition and removal of 
grounded springs (or dampers), springs (or dampers) con-
necting two DOFs or lumped masses [74, 76, 77].

In the case of a grounding spring modification, [73] intro-
duced a closed-form formula:

which enables to determine the value of the stiffness kg 
attached at the (N-1)-th DOF that enables to absorb the 
vibration of the N-th DOF of an undamped system excited 
by an harmonic force at the same coordinate, i.e. for a point-
receptance. 

(
�,�

)
 and 

(
�̃, �̃

)
 are respectively the (N-1)

x(N-1) and (N-2)x(N-2) leading sub-matrices of (�,�) . 
Clearly, the obtained stiffness is suitable for structural modi-
fication if and only if kg > 0 otherwise active approaches 
need to be exploited to achieve the AA. Further, the method 
is effective only for undamped or lightly damped systems.

The general equation of a rank-one modification have 
been introduced in [74, 77]. Let us consider the modifica-
tion at the r-th DOF, which is Δgr(�) = �2mr + �cr + kr , 
where mr, cr, kr are respectively a lumped mass, a ground-
ing damper and a grounding spring while � = j� . The 

(22)kg = −

det
(
−𝜔2

z
� +�

)

det
(
−𝜔2

z
�̃ + �̃

)
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receptance ĥpq(𝜎) of the modified system, for any p and q, 
is therefore:

The i-th zero of the system after modifications, zi , are 
inferred from the numerator of Eq. (23). Therefore, the suit-
able value of Δgr can be easily computed. A zero of a cross-
receptance (p ≠ q, with r ≠ p,q) can be assigned through the 
following equation:

A zero of a point-receptance (p = q, with r ≠ p,q) can be 
assigned through the following equation:

The use of Eqs. (24) and (25) in the case of damped sys-
tem might leads to complex Δgr

(
zi
)
 , meaning that damping 

should be modified too. Indeed, imaginary parts represent 
the damping modification. Although neglecting such a term 
causes small shifts of the zero frequency, due to the difficul-
ties in precisely changing damper properties, it is usually 
neglected in most practical applications, as stated by the 
Mottershead and Ram themselves in [77].

The strength of this method is that it just requires a few 
data. In the case of a cross-receptance, it just needs the 
measure of four receptances of the original system at the fre-
quency of the desired zero. In the case of a point-receptance, 
just three measures are needed. Additionally, it proves that 
the minimum number of modifications required to assign 
one antiresonance is one. On the other hand, it cannot be 
always adopted if constraints on the feasible modifications 
are included. In this case, a proper “mix” of the modifica-
tions of more parameters overcomes the fact that the solu-
tion of Eqs. (24) and (25) is outside the feasible constraints. 
Multiple assignment cannot be handled too.

Mottershead et al. in [76] extended the idea of receptance 
based assignment by considering the case of a modification 
connecting two coordinates r and s. In this case, the unit 
rank modification is Δgrs(�) = �crs + krs and modified sys-
tem receptance ĥpq(𝜎) is:

Then, by exploiting the theory of the “Vincent’s cir-
cle” [82], vibration absorption for a prescribed ĥpq

(
𝜔f

)
 is 

(23)

ĥpq(𝜎) =
hpq(𝜎) + Δgr(𝜎)

(
hpq(𝜎)hrr(𝜎) − hpr(𝜎)hrq(𝜎)

)
1 + Δgr(𝜎)hrr(𝜎)

.

(24)
1

−Δgr
(
zi
) = hrr

(
zi
)
−

hpr
(
zi
)
hrq

(
zi
)

hpq
(
zi
) .

(25)1

−Δgr
(
zi
) = hrr

(
zi
)
−

h2
rq

(
zi
)

hqq
(
zi
)

(26)

ĥpq(𝜎) = hpq(𝜎) −
Δgrs(𝜎)

(
hpr(𝜎) − hps(𝜎)

)(
hrq(𝜎) − hsq(𝜎)

)

1 + Δgrs(𝜎)
(
hrr(𝜎) − hrs(𝜎) − hsr(𝜎) + hss(𝜎)

)

translated into shifting the Vincent’s circle in such a way 
that it passes through the origin of the complex plane (or as 
close as possible) by modifying krs and crs . Analytical solu-
tions are provided for unit-rank modifications [77]. In con-
trast, a graphical solution procedure is adopted in the case of 
higher-rank modifications (i.e. with more design parameters 
involving more coordinates). The experimental application 
is proposed too in [76]. The unit-rank modification exploit-
ing passive stiffness (and also active control techniques) has 
been extended in [83] to perform pole-zero cancellation.

5.2.1 � Numerical Example: Rank‑One Modification

Let us consider the six-mass system with the original param-
eters. The goal is to assign an antiresonance at 1.000 rads−1 
on h3,3(jω) (i.e.zi, z∗i = ±j1.000 ) through one of the following 
modifications: a lumped mass modification Δm4 , a lumped 
mass modification Δm1 , or by adding a grounding spring kg4 
at coordinate 4. Exploiting Eq. (25) leads to: Δm4 = 2 kg , 
Δm1 = 2 kg , kg4 = −2Nm−1 . Since the spring with negative 
stiffness cannot be realized through passive springs, unless 
non-mechanical springs with particular arrangements are 
adopted (see e.g. [84]), such a solution is infeasible. The 
zeros of the original system and the ones modified through 
additive masses are reported in Table 9, while the recept-
ances h3,3(jω) are shown in Fig. 15. In the light of this issue, 
approaches using constraints on the feasible values (see 
Sect. 4.4) can be advantageous.

The results in Table 9 can be interpreted through the 
sensitivity analysis proposed in Sect. 2.3.1. Indeed, Δm4 
do not shift the antiresonance frequencies at 1.176 rads−1 
and 1.902 rads−1 since ∂(ωz,2)2/∂m1 = ∂(ωz,4)2/∂m1 = 0. As 
for Δm1, since ∂(ωz,1)2/∂m1 = ∂(ωz,3)2/∂m1 = ∂(ωz,5)2/∂m1 
= 0 (as reported in Table 3), the first, the third and the fifth 
antiresonances frequencies are kept unchanged. Therefore, 
the antiresonance at 1.000 rads−1 is placed by shifting the 
second one.

5.3 � Receptance‑Based Formulations 
with Higher‑Rank Modifications

Given an higher rank modification ��(�) = �2��

+��� + �� , the receptance matrix of the modified system 
becomes [77]:

Equation (27) reveals that the receptance of the modi-
fied system can be expressed through the receptances of the 
original one, �(�) =

(
�2� + �� +�

)−1 . By developing 
such an equation, in [78] it is demonstrated that the zeros zi 
of hpq after modification are the solutions of:

(27)�̂(𝜎) =
adj(� +�(𝜎)��(𝜎))�(𝜎)

det (� +�(𝜎)��(𝜎))
.
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where subscript pq denotes the pq-th entry of the adjunct 
matrix, while ���(�) and ����(�) are obtained from matri-
ces �(�) and ��(�) , respectively, by removing the q-th row 
and the p-th column. ���(�) is the receptance matrix of the 
adjunct system; although it has an “obscure physical mean-
ing”, as the Authors themselves state [78], each entry of such 
a matrix can be obtained from the receptances of the original 
system and is useful for design the system modifications.

Equation (28) is a set of non-linear, non-separable, non-
convex, multivariate polynomials, that involves products of 
many design parameters. Hence, its solution is cumbersome 
and should be performed numerically. For example, in [78] 
the design problem is solved, to assign a number nz ≥ 1 of 
antiresonances zi by replacing it with the following minimi-
zation problem:

(28)hpq(�) det
(
� +���(�)����(�)

)
= 0,

where αi are the weighting coefficients. x are the design 
variables, i.e. the admitted modifications. The assignment 
of natural frequencies can be included through a similar 
receptance-based formulation, as proposed in the experi-
mental application on a geared rotor-bearing system. The 
solver provided by function ‘‘fmincon” of Matlab has been 
adopted in such work. Paper [78] outlines the idea of for-
mulating the AA through multivariate minimization-based 
problems. The basic idea of minimization-based approaches 
is that an approximate solution of the exact assignment prob-
lem might be sufficient in some cases in which the exact one 
does not exist or is difficult to compute. On the other hand, 
numerical solutions enlarge the solvable problems.

A different approach to the solution of a receptance-
based formulation has been recently proposed in [9]. The 
technique assigns more antiresonances at multiple locations 

(29)min
�

{
nz∑
i=1

�i
(
det

(
� +���

(
zi
)
����

(
zi, �

)))2
}

Fig. 15   Original and modified 
point-receptance h3,3(jω): com-
parison for different DSMs

Table 9   Original and unit-rank 
modified system antiresonances 
for h3,3(jω) 

Original system antiresonances 
[rads−1]

Antiresonances of the system modified 
with Δm4 [rads−1]

Antiresonances of the system 
modified with Δm1 [rads−1]

0.720 0.687 0.720
1.176 1.000 1.000
1.520 1.176 1.520
1.902 1.878 1.826
2.042 1.902 2.042
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for a given force or to assign the zero displacements at a 
prescribed frequency. The modifications allowed consist 
of lumped masses or springs; in contrast, the simultaneous 
modification of masses and springs is not investigated. Con-
straints on the design variables are not accounted for. The 
authors, inspired by the formulation of Mottershead et al. 
in [8], derived a matrix equation for the general case of the 
attainment of zero displacement at n coordinates (arbitrary 
denoted through I1,…,In), i.e. q̂I1 = ⋯ = q̂In = 0 , when sev-
eral forces fj1 ,… , fjn  with the same frequency ω are applied 
to coordinates j1,… , jn , exploiting n grounding springs at 
coordinates i1,… , in:

where:

By defining l = dim (�) = (2n + 1) − rank(�) , where 
� = ker (�) , when l = 1, the stiffness and mass modifica-
tions are computed by:

(30)�� = �,

(31)� =

[
��(�) �

��(�) �

]
∈ ℝ

2n×(2n+1),

(32)��(�) =

⎡
⎢⎢⎢⎢⎣

hI1i1 hI1i2 ⋯ hI1in −
�
hI1j1 fj1 + hI1j2 fj2 +⋯ + hI1jn fjn

�
hI2i1 hI2i2 ⋯ hI2in −

�
hI2j1 fj1 + hI2j2 fj2 +⋯ + hI2jn fjn

�
⋱

hIni1 hIni2 ⋯ hInin −
�
hInj1 fj1 + hInj2 fj2 +⋯ + hInjn fjn

�

⎤⎥⎥⎥⎥⎦
∈ ℝ

n×(n+1),

(33)��(�) =

⎡
⎢⎢⎢⎢⎣

hi1i1 hi1i2 ⋯ hi1in −
�
hi1j1 fj1 + hi1j2 fj2 +⋯ + hi1jn fjn

�
hi2i1 hi2i2 ⋯ hi2in −

�
hi2j1 fj1 + hi2j2 fj2 +⋯ + hi2jn fjn

�
⋱

hini1 hini2 ⋯ hinin −
�
hinj1 fj1 + hinj2 fj2 +⋯ + hinjn fjn

�

⎤⎥⎥⎥⎥⎦
∈ ℝ

n×(n+1),

(34)
� =

[
ki1 q̂i1 ki2 q̂i2 ⋯ kin q̂in 1 q̂i1 q̂i2 ⋯ q̂in

]T
∈ ℝ

(2n+1)×1.

(35)kI1 =
�(1, 1)

�(n + 2, 1)
,… , kIn =

�(n, 1)

�(2n + 2, 1)

Alternatively, in the case of lumped mass modifications 
the method provides the following modifications:

In the case of l > 1, more combinations of springs (or 
masses) enable to cope with the prescribed task.

5.4 � Higher‑rank Modifications with the System 
Matrices

5.4.1 � Assignment of the Antiresonance Frequencies

To overcome the issues in the numerical solution of multi-
assignment problem, a different approach has been proposed 
in [63, 79]: AA is formulated through the eigenvalue prob-
lem of the adjunct system, as in Eq. (7). Despite the larger 
number of equations, such a formulation is easier to solve 

since just bilinear terms of the unknowns appear. To ensure 
solvability for higher-rank modifications, also handling the 
simultaneous assignment of nz > 1 of antiresonances) and to 
consider the presence of constraints on the feasible modifica-
tions, Eq. (7) has been recast into a constrained least-square 
minimization of the eigenproblem of the adjunct system:

(36)mI1
=

�(1, 1)

−�2�(n + 2, 1)
,… ,mIn

=
�(n, 1)

−�2�(2n + 2, 1)

(37)min
𝐱,𝐲

{
nz∑
i=1

‖‖‖‖
((

𝐌𝐪̄𝐩̄ + 𝚫𝐌𝐪̄𝐩̄(𝐱)
)
�d
z,i

2
−
(
𝐊𝐪̄𝐩̄+𝚫𝐊𝐪̄𝐩̄(𝐱)

))
𝐮d
𝐳,𝐢
(𝐲)

‖‖‖‖
2

2

, 𝐱 ∈ 𝚪𝐱, 𝐲 ∈ 𝚪𝐲

}
.
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����(�) and ����(�) are the mass and stiffness modifi-
cation of the adjunct system matrices, obtained by removing 
the q-th row and the p-th column from ��(�) and ��(�) ; 
x denotes the design variables vector, whose values are 
constrained through the set �� . The adjunct system desired 
eigenvectors �d

�,�
 could be, in principle, fully assigned (lead-

ing to a convex problem), or not. In practice, such a require-
ment is never done since it is too severe and hence it is 
difficult to satisfy. Therefore, �d

�,�
 is usually not assigned 

or at least, just partially assigned. The formulation in Eq. 

(37) handles all these possibilities and exploits constraint 
on the unassigned entries of �d

�,�
 , that are treated as problem 

unknowns collected in � to belong to the admissible domain 
�� . Since the resulting problem is not convex in the case of 
partial assignment of �� (or no assignment), the achieve-
ment of the global optimal solution is performed in [63, 79] 
by exploiting the idea of homotopy transformation, variable 
lifting and McCormick’s relaxation. The resulting method is 
a general tool that can solve the assignment problem in cross 
and point-receptances of systems with arbitrary topologies 
(for example with lumped parameters or finite elements) and 
number of DOFs, as well as with arbitrary topology of the 
feasible modifications.

Due to its simple formulation and solution the idea 
outlined in [63, 79] has been extended to solve other AA 

problems. In [80], the theory is extended to the simultaneous 
assignment of resonances and antiresonances and to pole-
zero flipping on an experimental beam. Such a work exploits 
a formulation similar to Eq. (37) together with the assign-
ment condition of natural frequencies [64], by imposing of 
the signs of some entries of �d

�,�
 through �� , ad dictated in 

Eq. (9).
Besides computing the optimal parameters of the pri-

mary system, such a mathematical frame has been extended 
in [63] to simultaneously handle the design of undamped 
D-MTMD with arbitrary topology. The equation of motion 
of the system with the D-MTMD attached and with the pri-
mary system modified through �� and �� can be parti-
tioned as follow:

where (Ma, Ka) are the matrices of auxiliary system (the 
D-MTMD) while (M + ΔM, K + ΔK) denote the primary 
(or main) system. The inertial and elastic coupling matrices 
are Moa, Koa. The assignment problem is cast as a minimiza-
tion problem:

The modified system matrices are ��

(�) = � + Δ�(�) 
and ��

(�) = � + Δ�(�) + Δ���(�) , with Δ��� collecting 
the stiffness modifications at the connections between the 
original and the auxiliary system. The solution of this prob-
lem can be performed through the same method of Eq. (37).

5.4.2 � Numerical Example: Higher‑rank Modification 
with System Matrices

Let us consider the six-mass system with the original param-
eters. The goal is to assign two antiresonances at 1.000 rads−1 
and 2.000 rads−1 on h3,3(jω). Five lumped mass modifica-
tions, Δm1, Δm2, Δm4, Δm5, Δm6, are assumed. The modifi-
cations are constrained such that: 0 kg ≤ Δmi ≤ 0.5 kg. With 
these tight constraints, the rank-one modifications computed 
in Sect. 4.2.1 are infeasible. By solving Eq. (37), the desired 
antiresonances are exactly assigned with Δm1 = 0.4019 kg, 

(38)

[
� + Δ� ���

�T
��

��

]{
�̈(t)

�̈�(t)

}
+

[
� + Δ� ���

�T
��

��

]{
�(t)

��(t)

}
= �� (t),

(39)
min
�,�

⎧⎪⎨⎪⎩

nz�
i=1

������

�
𝜔d
z,i

2

�
��(�) ���(�)

�T
��
(�) ��(�)

�

�̄�

−

�
��(�) ���(�)

�T
��
(�) ��(�)

�

�̄�

�
��,�(�)

������

2

2

, � ∈ Γ�, � ∈ Γ�

⎫⎪⎬⎪⎭
,

Table 10   Original and modified system antiresonances for h3,3(jω) in 
the case of higher-rank modification

Original system antiresonances [rads−1] Antiresonances of the 
system modified [rads−1]

0.720 0.674
1.176 1.000
1.520 1.478
1.902 1.639
2.042 2.000
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Δm2 = 0.3276  kg, Δm4 = 0.0432  kg, Δm5 = 0.0311  kg, 
Δm6 = 0.1710 kg, as corroborated in Table 10.

5.4.3 � Assignment of the Antiresonant Response

Exploiting Eq. (7) and the mathematical frame of Eq. (37), 
it is possible to assign the adjunct system eigenvectors, �d

�,�
 , 

which define the steady-state displacements of the system 
coordinates at the i-th antiresonance frequency as introduced 
in Sect. 2.1. In the case of complete assignment of ��,� Eq. 
(7) is recast into a constrained linear least-square optimiza-
tion as follows:

In the (more reasonable) case of partial assignment of 
the antiresonant response, or when requiring the eigenvec-
tor to belong to a prescribed interval, assignment of �d

�,�
(�) 

can be performed through Eq. (37), by exactly imposing 
some entries of �d

�,�
 while the remaining ones are required 

to belong to the feasible domain �� . The unique example of 
partial antiresonant response mode assignment in the litera-
ture is proposed in [80].

5.5 � Sensitivity‑Based DSMs

Sensitivity analysis has been used in [81] for the assignment 
of resonances and antiresonances, by linearizing the relation 
between the set of the actual resonances and antiresonances 
( �

p
 and �

z
 respectively), the desired ones ( �d

p
 and �d

z
 ) and 

the design variables:

where S is the matrix of the sensitivities with respect to 
the nx design parameters, whose finite variation about the 
original value is collected in vector � ∈ ℝ

nx:

The optimal modifications are computed through the 
pseudoinverse ( † ) matrix, by iterating more times the calcu-
lations (including the updating of �

p
 , �

z
 , S):

(40)min
𝐱

{
nz∑
i=1

‖‖‖‖
((

𝐌𝐪̄𝐩̄+𝚫𝐌𝐪̄𝐩̄(𝐱)
)
�d
z,i

2
−
(
𝐊𝐪̄𝐩̄+𝚫𝐊𝐪̄𝐩̄(𝐱)

))
𝐮d
𝐳,𝐢

‖‖‖‖
2

2

, 𝐱 ∈ 𝚪

}

(41)
{

�d
p

�d
z

}
=

{
�

p

�
z

}
+ ��,

(42)� =

⎡⎢⎢⎣

��
p

�x1
⋯

��
p

�xnx
��

z

�x1
⋯

��
z

�xnx

⎤⎥⎥⎦

Sensitivity-based approaches often provide sub-optimal 
solutions since linearization holds only for small changes of 
the design parameters. Hence, large shifts of the antireso-
nances are hard to handle and iterations of the method updat-
ing the sensitivities are needed. On the other hand, iterating 
does not ensure convergence and defining stopping crite-
ria is not straightforward in the presence of several design 
variables with constraints on the values, and whenever the 
achievement of the exact antiresonances is not allowed.

5.5.1 � Numerical Example: Sensitivity‑Based DSM

Let us assume that it is wanted to assign an antiresonance 
at �d

z,3
= 1.000 rads−1 for h3,3(jω) through Δm4, as done in 

Sect. 4.2.1. Exploiting the sensitivity analysis proposed in 
Sect. 2.3.1 the sensitivity ∂(ωz,3)2/∂m4 is used to shift ωz,4 to 
the prescribed value:

Since a large frequency shift is required, the sensitivity 
based approach leads to the correct mass modification after 
5 iterations of Eq. (44) by updating at each iteration the 
sensitivity ∂(ωz,3)2/∂m4. A mass modification Δm4 = 2 kg 
is obtained, as provided by the unit-rank receptance 
based method. The value of Δm4 for each iteration are: 
Δm4 = [0.993; 1.670; 1.961; 1.999; 2.000] kg. The antires-
onances obtained after the last iteration are those already 
proposed in Table 9.

5.6 � Choice of the Design Parameters

Sensitivity analysis of the antiresonance frequency with 
respect to the candidate parameters, as defined in Eq. (11), 
is a useful approach to identify the most suitable design 
parameters. Sensitivity analysis is for example adopted to 
this purpose in [79], to discard some design variables. It 
should be noted that sensitivity should be sometimes com-
puted with respect to normalized variables, to account for 

(43)� = �†
{

�d
p
−�

p

�d
z
−�

z

}

(44)Δm4 =

(
��2

z,3

�m4

)−1((
�d
z,3

)2

−

(
�
z,3

)2
)
.
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different magnitudes of non-homogeneous parameters (e.g. 
masses and stiffnesses), leading to the following normalized 
sensitivity:

where x0 is the value assumed for normalization, which can 
be either the original value of the unmodified system (when-
ever it is greater than 0) or a meaningful value (such as the 
upper bound of the feasible modifications, or the central val-
ues of the bounds) whenever it original value is 0.

Another meaningful tool is the analysis of the left eigen-
vector of the adjunct system [74]. Indeed, if the i-th left 
eigenvector of the adjunct system has a zero-entry related 
to the r-th DOF, then any modification of the parameters of 
such a coordinate does not modify the i-th antiresonance 
frequency. Hence, modifications should be done on the coor-
dinates associated to large magnitude in �

�,�
.

6 � Importance and Use of Antiresonances 
Through Passive Control

6.1 � Benefits of Antiresonances in Control

The mathematical features of antiresonances, discussed 
along this paper, suggest the exploitation of antiresonances 
for other goals besides vibration absorption. Indeed, the 
presence of antiresonances in closed loop control has ben-
efits due to the + 180° phase introduced by the pair of zeros 
related to an antiresonance. In practice, a proper placement 
of antiresonances can be exploited to perform loop shap-
ing, in lieu of standard lead-lag compensators employed in 
the loop-shaping process to enhance gain and phase mar-
gins [85]. For example, in [80], it is shown that interlacing 
between resonances and antiresonances can be imposed to 
cross receptances within a bandwidth of interest, to simplify 
the use of non-collocated control.

6.2 � Practical Applications of AA

Over the decades several practical applications of the AA 
have been developed. The goal of this Section is to report 
some meaningful works among the wide range of applica-
tions of AA.

6.2.1 � Antiresonance Assignment in Buildings and Civil 
Structures

The assignment of antiresonances by means of TMDs has 
been deeply studied in civil engineering applications, and 
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therefore it will be marginally addressed in this Section. The 
readers could refer to the literature reviews [3, 4] and [86] 
to find hundreds of applications. Just to quote an example, 
in [87] the authors proposed the application of a tuned mass 
damper to reduce the response to wind-induced motion of 
Milad Tower in Tehran.

6.2.2 � Antiresonance Assignment in Helicopters

AA is particularly popular in the design of helicopters too, 
to absorb the rotor induced vibrations at a fixed frequency. In 
[88] the application of the antiresonance theory for engineer-
ing applications in helicopters is discussed placing either 
passive, semi-active or active TMDs at collocated or non-
collocated locations. In [89] the AA in helicopters is studied 
in order to absorb the rotor induced vibrations. Two methods 
are provided: the first one performs AA by modifying only 
the existing stiffness of two fuselage elements by solving a 
polynomial. While the second method handles the design of 
appendant structures to create antiresonances. Braun in [90, 
91] proposed the development of two experimental “uniaxial 
antiresonance force isolators” for the reduction of the rotor 
induced cabin vibrations: AA is exploited to dynamically 
isolate the helicopter fuselage from the rotor-transmission 
unit.

6.2.3 � Antiresonance Assignment in Industrial Devices 
and Machines

Some examples can be found in industrial machines. In 
[92–94] the trough of a vibrating feeder is designed in such 
a way that it acts as a TMD for the feeder body, hence the 
vibrations on the foundation of the feeder vanish while the 
vibration frequency and the response amplitude still meet 
the prescribed requirement in order to feed the material on 
the vibrating tray. AA by means of Framh’s TMD has been 
recently exploited in a vibratory conveyor that allows for a 
sudden stopping of the transport [95].Vibration reduction in 
rotating mechanical systems have been widely studied and is 
growing of interest in the recent years, AA seems promising 
to tackle this problem since a constant harmonic excitation 
often affects such systems. For example in [84] a vibration 
absorber combining negative stiffness (due to ring type per-
manent magnets) with positive stiffness together is proposed 
in order to suppress the vibration of a rotor system. In [78], 
an antiresonance frequency to a geared rotor-bearing system 
is assigned to suppress vibrations at the rotational speed.

AA has been attractive in the design of domestic devices 
such as washing machines, indeed at the spinning stage 
those experiences relevant unbalance forces due to the water 
extraction at high and known frequency. To reduce the vibra-
tion amplitude, and possibly completely absorb it, TMDs 
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are sometimes employed. In [96] a rotating ring dynamic 
absorber is developed enables to reduce the vibration energy 
in the basket leading to less dynamic loading in the mounts, 
resulting in less overall noise and vibration of the washing 
machine structure.

7 � A Comparison with AA Through Active 
Approaches

A relevant feature that is shared by all the quoted passive 
approaches to AA is that the modified system is guaranteed 
to remain stable, either when modifying or preserving the 
number of DOFs [72]. This is due to the symmetric nature of 
passive modifications that lead to negative real parts of the 
poles of the modified system, in accordance with the Ray-
leigh stability criterion [97]. For example, if the number of 
DOFs is preserved, such real parts are computed as follows:

where pi is an eigenvalue of the modified system (i.e. a roots 
of the quadratic pencil (� + ��)p2 + �p + (� + ��) ) and 
�
�,�

 is the related eigenvector. A second relevant feature is 
that passive approaches do not need adopting actuators and 
sensors, thus performing AA without the need of external 
energy supply.

On the other hand, all the passive approaches share some 
disadvantages. First of all, the form of the modifications that 
can be physically realized is restrictive on the achievable 
performances, due to their symmetry, positive-definiteness 
and of the presence of some patterns of non-zero terms in 
the modification matrices. Secondly, as demonstrated in 
[98–100] the number of antiresonances to be assigned must 
be matched by the rank of the modification whenever con-
straints on the feasible modifications are neglected. How-
ever, the actual number of assignable antiresonances is often 
smaller than the rank of the modifications due to presence 
of constraints on the feasible modifications of parameters. 
Finally, large shifts of the antiresonances often lead to bulky 
modifications.

These limitations are recently motivating the research on 
techniques to AA through active approaches, where springs, 
dampers and masses are replaced by forces exerted by servo-
controlled actuators and computed as functions of the meas-
urements provided by some sensors. Active approaches to 
AA include semi-active TMDs ([101, 102]), active-TMDs 
([103–105]), state-feedback techniques ([98]), output feed-
back techniques ([99, 106]). The advantage of active con-
trol is that the achievable performances can be enlarged by 
exploiting suitable control logics, as well as wise actuator 
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and sensor placements. For example, active control can emu-
late modifications of mass and stiffness matrices that are 
asymmetric or sparse. Additionally, the controller gains can 
be adapted to track changes in the frequency of the external 
excitation, for adapting the antiresonance frequency.

On the other hand, active control can destabilize the system 
if spillover on the poles is not properly tackled and if actuators 
and sensors have reduced bandwidth or are delayed. The lat-
ter issue limits the controller gains. Another constraint on the 
feasible gains should be considered in practice, although some 
authors erroneously assume that control gains are unbounded: 
the presence of limits of the actuator force and speed, that 
often make “active modifications” bulkier than passive ones.

8 � Conclusions and Possible Research 
Directions

This work proposes a comparison and tutorial on the state-
of-the-art milestones on vibration absorption through AA. 
The mathematical background on antiresonances, the 
adjunct system related eigenproblem and the sensitivities 
of antiresonances are analysed. The existing passive meth-
ods have been introduced, and the main ones have been 
also applied through a test-case. Some key differences 
have been discussed between approaches adding additional 
DOFs and those preserving the number of the existing ones. 
The numerical results proposed with reference to a 6-mass 
lumped system clearly highlight all these issues and show 
the applicability of some methods taken from the literature. 
Importance of antiresonance frequencies and its applica-
tions in different engineering fields has been also proposed 
to stress the usefulness of the efforts in this research area.

The proposed analysis, together with some numerical 
applications here provided, enables to summarize the state-
of-the art, compare and apply the existing methods by choos-
ing the most suitable for each application or by fusing the 
ideas and the techniques of more methods. For example, 
in this paper the general formulation of the MDOF TMD, 
developed by Ram and Elhay in [60], has been here for the 
first time solved with a method recently developed for the 
assignment of natural frequencies.

The critical analysis of literature allows bringing together 
some open issues in this field of research and outlines some 
possible research directions. While the theory of TMDs 
seems to be mature and many papers can be found, less 
efforts have been done to assign antiresonances without 
adding new DOFs. In this research area, some issues are 
therefore partially unsolved, such as robustness and pres-
ence of damping. The adaptation of the theories developed 
for the various developments and arrangements of the TMD 
might be helpful to extend it. The comparison between pas-
sive and active approaches shows that they are not always 
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surrogate approaches due to different features and fields of 
application. It is expected that semi-active approaches that 
merges the benefits of both the approaches to overcome their 
limitations can boost performances, in term of effectiveness, 
robustness and reduction of energy requirements to perform 
vibration control.

The ever-growing availability of computational meth-
ods, as well as optimization techniques, will further boost 
the advancements in the research, by leading to improve-
ment of the discussed methods for solving more challenging 
problems.
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