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Abstract
The simulation of turbulent flows by means of computational fluid dynamics is highly challenging. The costs of an accurate 
direct numerical simulation (DNS) are usually too high, and engineers typically resort to cheaper coarse-grained models of the 
flow, such as large-eddy simulation (LES). To be suitable for the computation of turbulence, methods should not numerically 
dissipate the turbulent flow structures. Therefore, energy-conserving discretizations are investigated, which do not dissipate 
energy and are inherently stable because the discrete convective terms cannot spuriously generate kinetic energy. They have 
been known for incompressible flow, but the development of such methods for compressible flow is more recent. This paper 
will focus on the latter: LES and DNS for turbulent subsonic flow. A new theoretical framework for the analysis of energy 
conservation in compressible flow is proposed, in a mathematical notation of square-root variables, inner products, and 
differential operator symmetries. As a result, the discrete equations exactly conserve not only the primary variables (mass, 
momentum and energy), but also the convective terms preserve (secondary) discrete kinetic and internal energy. Numerical 
experiments confirm that simulations are stable without the addition of artificial dissipation. Next, minimum-dissipation eddy-
viscosity models are reviewed, which try to minimize the dissipation needed for preventing sub-grid scales from polluting 
the numerical solution. A new model suitable for anisotropic grids is proposed: the anisotropic minimum-dissipation model. 
This model appropriately switches off for laminar and transitional flow, and is consistent with the exact sub-filter tensor on 
anisotropic grids. The methods and models are first assessed on several academic test cases: channel flow, homogeneous 
decaying turbulence and the temporal mixing layer. As a practical application, accurate simulations of the transitional flow 
over a delta wing have been performed.

Mathematics Subject Classification  65M08 · 65M12 · 76F65 · 76F06 · 76G25

1  Introduction

Reduction of the aerodynamic drag of aircraft is a formida-
ble task, because viscous friction forces are subject to the 
chaotic process of turbulence, which engineers would like 
to better understand. Although the Navier–Stokes equations 
for turbulent flow have been known since 1822, and can 
be written in a few lines of mathematics, it seems that the 
origin and evolution of turbulence can only be understood 
either through detailed physical experiments or through 
computer simulation of the Navier–Stokes equations. This 
paper focuses on the latter.

 *	 Arthur E. P. Veldman 
	 a.e.p.veldman@rug.nl

	 Wybe Rozema 
	 wyberozema@gmail.com

	 Roel W. C. P. Verstappen 
	 r.w.c.p.verstappen@rug.nl

	 Johan C. Kok 
	 johan.kok@nlr.nl

1	 Bernoulli Institute, University of Groningen, P.O. Box 407, 
9700AK Groningen, The Netherlands

2	 Netherlands Aerospace Centre NLR, Amsterdam, 
The Netherlands

http://orcid.org/0000-0002-3126-1559
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-018-09307-7&domain=pdf


300	 W. Rozema et al.

1 3

1.1 � Convection Versus Diffusion

Flows of air, whether they are laminar or turbulent, are gov-
erned by the compressible Navier–Stokes equations. The 
momentum equation for compressible flow is [6]

where � is the mass density, � ∈ ℝ
3 is the velocity field, p 

is the pressure, and � ∈ ℝ
3×3 is a tensor which models the 

viscous friction in a fluid. Note that throughout the paper, 
the symbol ⋅ will denote an inner product in ℝ3 with cor-
responding norm | ⋅ |3.

The common physical explanation of turbulence is that it 
is a cascade of progressively smaller and more complex flow 
structures. The driving force of the turbulent cascade is the 
non-linear convective term ∇ ⋅ (𝜌�⊗ �) . This term models 
the transfer of momentum to smaller scales (energy cascade) 
and conserves both momentum and kinetic energy, i.e. it 
only redistributes kinetic energy over the scales of motion.

The diffusion term of the Navier–Stokes equations, ∇ ⋅ � , 
models the viscous friction in a fluid. This term conserves 
momentum, but dissipates kinetic energy. The diffusion of 
the viscous terms is stronger for smaller scales of motion. 
For flows at turbulent Reynolds numbers, the viscous dif-
fusion hardly affects the energy of the larger scales. The 
cascade of kinetic energy to smaller flow structures con-
tinues until they become so small that the viscous diffusion 
becomes noticeable: the so-called Kolmogorov scales.

1.2 � Turbulence Modeling

The challenging part of flow simulation is the modeling of 
turbulence. Depending on the amount of flow details that are 
being resolved, several modeling levels can be distinguished, 
ranging from RaNS to DNS.

1.2.1 � Direct Numerical Simulation

A direct numerical simulation (DNS) of a turbulent flow 
intends to capture the cascade of kinetic energy from the 
largest to the smallest Kolmogorov scales. To give a rough 
indication, the computational complexity of a DNS of homo-
geneous isotropic turbulence scales with the Reynolds num-
ber as Re11∕4 [11, 16, 65]. Thus, increasing the Reynolds 
number by a factor 10 increases the computational complex-
ity of a DNS by a factor of approximately 1000.

In spite of its high computational costs, DNS is already 
feasible for flows at moderate Reynolds numbers. As an 
example, below an accurate simulation of the transitional 
flow over a delta wing at a chord Reynolds number of 

(1)
𝜕

𝜕t
(𝜌�) + ∇ ⋅ (𝜌�⊗ �) + ∇p = ∇ ⋅ 𝜎,

Rec = 150,000 will be described. For practical engineering 
purposes at higher Reynolds numbers, however, a DNS is 
currently often too expensive. Therefore, engineers usually 
resort to cheaper coarse-grained models of turbulent flow: 
for example the Reynolds-averaged Navier–Stokes model, 
the large-eddy simulation model, or hybrid models.

1.2.2 � Reynolds–Averaged Navier–Stokes Models

A cheap way of modeling turbulence is by means of Reyn-
olds averaging the Navier–Stokes equations (RaNS). In a 
RaNS all turbulent flow scales are being modeled. Suc-
cessful models for aerodynamic applications are Menter’s 
SST k–� model [48], and the Spalart–Allmaras model 
[82]. In spite of their simplicity, such models can give sat-
isfactory results for attached flow in aircraft cruise condi-
tions. However, RaNS models have insufficient accuracy in 
simulations in off-design conditions. Especially flows with 
large separation regions are challenging to capture [83]. 
Also, RaNS models are not appropriate if time-dependent 
quantities, such as vibrations or acoustic waves, are of 
primary interest [37].

1.2.3 � Large‑Eddy Simulation

A more   sophisticated coarse-grained flow model is used 
in large-eddy simulation (LES). In a LES, the larger scales 
in a flow are computed explicitly, but the effect of the 
smaller unresolved scales is modeled [47]. The basic 
ingredient of LES modeling is a model for the sub-grid 
dynamics in terms of the resolved velocity field � : a so-
called eddy-viscosity model. An important example of an 
eddy-viscosity model for LES is the classical Smagorinsky 
model [80]. The Smagorinsky model gives good results for 
homogeneous isotropic turbulence, but removes too much 
kinetic energy from laminar and transitional flows. This 
can delay the transition to turbulence of a shear layer. LES 
models give more accurate results than RaNS models for 
flows with massive separation. However, this increased 
accuracy comes at the cost of a higher computational 
complexity. Therefore, hybrids between LES and RaNS 
have been developed, of which the most popular one is 
detached-eddy simulation (DES) in various variants [15, 
56, 81, 83].

Attempts to improve the Smagorinsky model have led to 
the development of a class of low-dissipation models, such 
as the dynamic Smagorinsky model [22], the wall-adapting 
local eddy-viscosity WALE model [58], the Vreman model 
[106], several regularization models [24, 29, 89, 95] and 
the QR model [96]. The theoretical background and per-
formance of such models is one of the topics of this paper.
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1.3 � Energy‑Conserving Discretization

In CFD the coarse-grained flow models and the full 
Navier–Stokes equations are solved by a computational 
method. It is difficult to identify a best all-round CFD 
method, as it may differ significantly from one application 
to the other. A criterion specific to LES is that energy errors 
of the numerical method should not overwhelm the energy 
dissipation of the LES model [7, 39, 51]. Too much artifi-
cial dissipation can delay transition to turbulence of shear 
layers, and can also cause bad predictions of the near-wall 
shear stress. In computational aeroacoustic simulations, too 
much dissipation can inadequately damp the radiated acous-
tic waves, which causes predictions of lower sound levels 
[13, 37].

These numerical errors cannot be addressed by only 
increasing the order of accuracy of a method: even in fifth-
order accurate upwind methods the numerical dissipation 
can still overwhelm the dissipation of the LES model [51]. 
The need for good accuracy and low energy errors resulted 
in a quest for higher-order accurate central discretization 
methods without numerical energy dissipation.

The favorable influence of energy-conserving discretiza-
tions was already recognized half-way the 20th century. In 
1956, the meteorologist Phillips [63] observed that simula-
tions of the vorticity equation became unstable due to spuri-
ous generation of energy and enstrophy. He concluded that 
the numerical instability is related to the spatial discretiza-
tion of the non-linear convective term, and called it a non-
linear numerical instability. To stabilize the simulations, 
Phillips proposed to damp the instability by application of a 
numerical smoothing process [63]. This initiated the study 
of the influence of discrete convection on stability.

An early example of an energy-conserving, and hence 
stable, finite-volume discretization of the two-dimensional 
incompressible Navier–Stokes equations is the staggered 
discretization for uniform rectangular grids by Harlow and 
Welch, developed in the 1960s [28]; see also [64]. Closely 
related is Arakawa’s method from 1966 [4], in which he 
adapted Phillips’ spatial discretization of the vorticity equa-
tion such that boundedness of the discrete solution could be 
proved, without the need for numerical smoothing. He also 
emphasized the conservation of enstrophy next to energy [5]. 
Generalization of these ideas to non-uniform and curvilinear 
grids took several decades.

As a starting point for this paper, we mention the higher-
order accurate energy-conserving discretization methods 
developed in the 1990s. Notable examples of fourth-order 
accurate methods with small energy errors for three-dimen-
sional incompressible flow are the fourth-order accurate 
method of Morinishi et al. [55], which conserves momen-
tum and kinetic energy to fourth-order accuracy on stag-
gered uniform rectangular grids, and the fourth-order 

symmetry-preserving method of Verstappen and Veldman 
[98–100] which exactly conserves momentum and kinetic 
energy on non-uniform staggered rectangular grids. The dis-
crete kinetic energy can only decrease in the latter method, 
as the numerical solution � satisfies a discrete energy bound 
�t||�||2h ≤ 0 (where || ⋅ ||h denotes the discrete L2-norm over 
the flow domain). I.e. the method is stable in a discrete 
energy norm, and it preserves the mathematical skew–sym-
metry of the convective terms at the discrete level, as we 
will see below.

1.4 � Outline of the Paper

After formulating the equations for compressible flow in 
Sect. 2, the symmetry principles behind energy-conserv-
ing discretization are explained in Sect. 3. Therafter, the 
energy-conserving discretization methods for incompress-
ible flow are generalized to compressible flow in Sect. 4. 
A new framework is developed for the analysis of energy-
conserving methods for compressible flow. This will lead to 
discretization methods that conserve the primary variables 
mass, momentum and total energy; but also they convec-
tively conserve the secondary variables kinetic and internal 
energy. Also, the time integration method can be designed to 
conserve total energy. As these methods do not numerically 
dissipate kinetic energy by convection, energy dissipation 
is exclusively given by molecular diffusion or the sub-grid 
dissipation of an LES model.

As argued above, also the dissipation of LES models 
should be confined. In Sect. 6.2 a number of low-dissipa-
tion LES models is being reviewed. Also, a new anisotropic 
minimum-dissipation (AMD) model is proposed. This model 
generalizes the earlier proposed minimum dissipation QR-
model (Sect. 7.2) to anisotropic grids which are often used 
in engineering applications.

The proposed methods and models are extensively vali-
dated in simulations of academic test cases: DNS results 
are presented in Sects. 5.1 and 5.2, whereas LES results 
are presented in Sects. 6.3 and 7.3. To also obtain practical 
experience with the developed low-dissipation methods, as 
‘proof-of-the-pudding’, DNS simulations of the transitional 
flow over a triangular delta wing at Re ≈ 150,000 are pre-
sented in Sect. 5.3.

2 � The Compressible Navier–Stokes 
Equations

2.1 � Primary Conservation

Our objective is the development of simulation methods for 
aerodynamic flow, governed by the Navier–Stokes equations 
for compressible flow [21]:
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Here � is the mass density, � the f low velocity, 
�E =

1

2
�� ⋅ � + �e the total energy density, �e the internal 

energy density, p the pressure, � the tensor with viscous 
stresses, and � the heat diffusion flux. The above equations 
are called the continuity equation, momentum equation, and 
total energy equation, respectively.

The second term at the left-hand sides is the convective 
term, which models the transport of a quantity with the local 
flow velocity. The third term at the left-hand sides describes 
the effects of pressure differences. The first term at the right-
hand sides models how viscous friction resists local flow 
velocity differences. Finally the last term in the total energy 
equation models how heat is diffused.

The Navier–Stokes equations are closed by the standard 
thermodynamical relations for a calorically perfect gas: the 
pressure is related to the temperature T by the equation of 
state p = �RT  , where R is the gas constant; the internal 
energy is given by e = cvT  , where cv is the specific heat at 
constant volume; the latter is related to the specific heat at 
constant pressure cp by the specific heat ratio � ≡ cp∕cv ≈ 1.4 
for air at room temperature.

The viscous stress is closed by assuming that air is a 
Newtonian fluid

where �(T) is the dynamic viscosity which depends on the 
temperature (according to Sutherland’s law), S is the sym-
metric rate-of-strain tensor, and I is the identity tensor. The 
heat diffusion is modeled using Fourier’s law q = −k∇T  , 
where k is the thermal conductivity. The thermal con-
ductivity is usually set by imposing the Prandtl number 
Pr ≡ cp�∕k ≈ 0.72.

In Eq. (2), the Navier–Stokes equations for compressible 
flow have been expressed in conservative form. This form 
directly expresses conservation of mass, momentum, and 
total energy in a flow, because all the terms in the equations 
of motion are either in divergence or gradient form. There-
fore they are called primary conservation laws.

2.2 � Secondary Conservation

Some terms of the compressible Navier–Stokes equations 
also conserve quantities which are not given by primary 
conservation laws. Such conservation laws are called sec-
ondary conservation properties. In this paper, the secondary 

(2)

𝜕t𝜌 + ∇ ⋅ (𝜌�) = 0,

𝜕t𝜌� + ∇ ⋅ (𝜌�⊗ �) + ∇p = ∇ ⋅ 𝜎,

𝜕t𝜌E + ∇ ⋅ (𝜌�E) + ∇ ⋅ (p�) = ∇(𝜎 ⋅ �) − ∇ ⋅ �.

(3)� = 2�(T)
(
S −

1

3
tr(S)I

)
, Sij =

1

2
(�iuj + �jui),

conservation properties of the convective terms are of spe-
cial interest.

The convective terms do not just conserve mass, 
momentum, and total energy, but also kinetic energy and 
internal energy separately. This is not a property of just 
one of the equations, but of a combination of both the con-
tinuity and the momentum equation. For example, ignoring 
the viscous terms, the evolution equation for the kinetic 
energy density follows as

where the product rule has been applied multiple times to 
obtain the third equality (*). The first term on the right-
hand side of this equation is due to the convective terms, 
and is a divergence form. Thus, kinetic energy is conserved 
by convective transport. Because the total energy is also 
conserved by convective transport, this implies that inter-
nal energy is also conserved by convective transport. The 
second and third terms in the above equations model the 
effects of pressure differences. The pressure terms conserve 
kinetic energy in the incompressible limit ∇ ⋅ � = 0 , but not 
in general. Through compression, they are responsible for 
exchange between kinetic and internal energy.

Conservation of kinetic and internal energy are impor-
tant secondary conservation properties of convective 
transport, and they will be preserved by the discretization 
without artificial dissipation that is developed in the next 
section.

3 � Energy Stability and Mathematical 
Symmetries

Studies of the energy errors and numerical stability of 
simulation methods for compressible flow, including 
attempts to control the energy error have been published, 
often inspired by an early reformulation of the flow equa-
tions by Feiereisen et al. [19]. Some authors have pro-
posed to discretize the entropy or internal energy equation 
instead of the total energy equation [30]. However, this 
does not yet allow for simultaneous conservation of other 
physical quantities. From 2008 on, methods have been 
proposed that preserve both primary as well as secondary 

𝜕t

(
1

2
𝜌� ⋅ �

)

= � ⋅ 𝜕t(𝜌�) −
1

2
(� ⋅ �)𝜕t𝜌

= −� ⋅ ∇ ⋅ (𝜌�⊗ �) − � ⋅ ∇p +
1

2
(� ⋅ �)∇ ⋅ (𝜌�)

(∗)
= − ∇ ⋅

((
1

2
𝜌� ⋅ �

)
�
)
− ∇ ⋅ (p�) + p(∇ ⋅ �),
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conservation properties of the convective term [31, 34, 37, 
54, 67, 86]. Below, such methods are summarized.

3.1 � Incompressible Flow and Symmetries

We will start the quest for energy-conserving discretiza-
tions for compressible flow, by first describing similar 
methods for incompressible flow. A difference is that the 
latter are usually defined on staggered rectangular com-
putational grids, needed to avoid numerical odd-even-
decoupling of the Poisson equation. A disadvantage of 
rectangular grids is that they do not allow boundary-fitted 
simulations of flow around practical complex geometries. 
However, recently also practical energy-conserving meth-
ods for collocated curvilinear computational grids have 
been proposed [37, 67], so that this aspect does not pose 
fundamental problems (Sect. 4.1). Also, energy-conserv-
ing variants for unstructured grids, staggered as well as 
collocated, have been developed [32, 91].

The symmetry-preserving finite-volume method 
for incompressible flow by Verstappen and Veldman 
[98–100], developed in the 1990s, provides energy stabil-
ity on non-uniform grids. A symmetry-preserving spatial 
discretization of the incompressible Navier–Stokes equa-
tions can be expressed in matrix-vector notation as

where � is a diagonal matrix with the grid cell volumes, 
� is a grid function of the velocity field, (�) is the dis-
cretization matrix of the non-linear convective term,  of 
the divergence, −T of the gradient, and  of the viscous 
terms [100].

If a discretization preserves the skew–symmetry of the 
convective operator in Eq. (4) at the discrete level, then 
�T(�)� = −�T(�)� , so that

A symmetry-preserving discretization matrix  of the vis-
cous friction is positive-definite, so that the discrete norm of 
the numerical solution � decreases. Thus a symmetry-pre-
serving discretization is stable in the discrete energy norm.

The property of skew–symmetry is closely related to 
the summation-by-parts (SBP) property introduced by 
Strand [84], which includes the influence of boundaries. 
Some (mixed and spectral) finite-element methods also 
take discrete kinetic energy conservation into account; 
see for example [61].

(4)��t� + (�)� −Tp +u = 0, � = 0,

(5)

1

2
�t||�||2h = �T��t�

= − �T(�)� + �TTp − �T�

= − �T(�)� + pT� − �T�

= − �T� ≤ 0.

3.2 � Generalization to Compressible Flow

As mentioned above, several attempts to achieve primary and 
secondary conservation started from a reformulation of the 
momentum equation. Either from a skew–symmetric form in 
primitive variables (e.g. [18, 54, 93]), or by transformation 
into other variables (such as the entropy variables in [30]). 
In all cases, the conservation of mass plays an essential role 
in showing the analytical equivalence of these formulations. 
Consistency between discrete conservation of mass and dis-
crete conservation of momentum is then a key ingredient for 
success.

The present approach follows a different route, in which a 
skew–symmetric basic formulation leads to all desired (pri-
mary and secondary) conservation properties. As we will see 
below, this generates not only the desired properties of the spa-
tial discretization, but it will also allow an energy-conserving 
time integration (Sect. 4.2) as well as an energy-neutral regu-
larization turbulence model (Sect. 6.2).

3.2.1 � Square‑Root Variables

Similar to the above reasoning for incompressible flow, the 
energy conservation properties of compressible flow can be 
encoded in a skew–symmetry of the convective terms if the 
solution is expressed in square-root variables instead of con-
servative variables. Thus, instead of using the state vector with 
the conserved quantities � , �� , and �e , the state vector of a 
compressible flow is a real-valued vector of the square-root 
variables

where it is assumed that all quantities have been non-dimen-
sionalized. The L2(V)-norm of the square-root state vector h 
is equal to the sum of the mass and total energy in a periodic 
domain V:

Because mass and total energy are conserved in a compress-
ible flow, the norm of the vector h is bounded from above on 
a periodic domain V:

Thus, from physical arguments, square-root variables of 
the compressible Navier–Stokes equations are bounded in 
an energy norm, just as a solution � of the incompressible 

(6)� =

⎛⎜⎜⎝

√
�√
��∕

√
2√

�e

⎞⎟⎟⎠
,

(7)

||�||2
V
= ∫V

(
� +

1

2
�� ⋅ � + �e

)
d� = ∫V

� d� + ∫V

�E d�.

(8)�t||�||2V = �t �V

� d� + �t �V

�E d� ≤ 0.
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Navier–Stokes equations. The aim is to preserve this energy 
stability after discretization.

3.2.2 � Skew Symmetry and Conservation of Products

Indeed, the conservation identified above is reflected in 
skew–symmetry of the convective term in the Navier–Stokes 
equations when written in square-root variables. Let � denote 
one of the square-root variables, then some elementary analy-
sis shows that the convective part of its evolution equation 
reads

It is easily seen that the adjoint of the convective operator 
(�) is equal to −(�) . In other words, the convective opera-
tor (�) in (9) is skew–symmetric.

This mathematical property is very important, because it 
expresses many conservation properties in a single mathemati-
cal statement. To see this, consider the evolution of products of 
two square-root variables � and � . If the convective transport 
of � and � is given by Eq. (9) and non-convective terms are 
ignored, then the evolution of the product �� is given by

Because the right-hand side in (10) is a divergence and we 
consider a periodic domain, it immediately follows that the 
integrated product vanishes:

All quantities of interest (mass, momentum, ...) can be writ-
ten as a product of two of the square-root variables

This demonstrates that all interesting quantities are con-
served by convective transport because mathematically (�) 
is skew–symmetric.

Now that all interesting conservation properties have been 
expressed as a mathematical property, it is possible to develop 
discretization methods with similar properties. It will be no 
surprise that the methods to be developed correspond with 
finite-volume methods with more conservation properties than 
usual (i.e. supra-conservative). We will describe this relation 
in Sect. 4.1.

(9)�t� + (�)�, with (�)� ≡ 1

2
∇ ⋅ (��) +

1

2
� ⋅ ∇�.

(10)�t(��) = −�(�)� − �(�)� = −∇ ⋅ (���).

(11)�t ∫V

�� d� = −∫V

∇ ⋅ (���) d� = 0.

� = (
√
�)(

√
�); �� = (

√
�)(

√
��);

��2 = (
√
��)(

√
��); �e = (

√
�e)(

√
�e).

4 � Energy‑Conserving Discretization

In this section, energy-conserving spatial discretizations 
of the compressible Navier–Stokes equations are derived. 
These energy-conserving discretizations preserve the con-
servation properties of

1.	 mass,
2.	 (linear) momentum,
3.	 kinetic energy,
4.	 internal energy, and (therefore)
5.	 total energy

of (the terms of) the Navier–Stokes equations at the dis-
crete level. The choice of preserving these conservation 
properties is motivated by practical experience with simu-
lations of incompressible flow, and is not guided by deep 
mathematical ideas. E.g. conservation of vorticity, helicity 
or enstrophy [60] can also be interesting, but is out of the 
scope of the present research. Further research will have 
to reveal which quantity is more essential in this respect.

The proposed analysis of energy-conserving methods 
is theoretical, but one of the objectives is to implement 
the discretizations in the finite-volume method Enflow of 
the Netherlands Aerospace Centre NLR [8, 37]. Firstly, 
the discretization of the convective terms is discussed. 
The use of the square-root variables is analyzed, and new 
second-order accurate discretizations on collocated grids 
are proposed. Also, the road from second-order accurate 
to higher-order accurate energy-conserving discretizations 
is discussed.

4.1 � Skew–Symmetric Discretization on a Collocated 
Curvilinear Grid

In this section a symmetry-preserving discretization of the 
convective term on collocated grids is proposed. First, a 
discrete inner product on the space of grid functions is 
defined as

where �k is the discrete volume of grid cell k , �k and �k 
denote the numerical solution in the grid cell k , � is a matrix 
with grid cell volumes on the diagonal, and � and � denote 
grid functions of the numerical solution. This inner product 
defines a natural discretization of global physical quantities. 
For example,

(12)⟨�,�⟩ = �
k

�k�k�k = �T�� ,

⟨√�,
√
�⟩ = √

�
T
�
√
� =

�
k

�k

√
�
k

√
�
k
=
�
k

�k�k
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is a natural discretization of the amount of mass inside the 
flow domain V.

The discrete counterpart of a continuous skew–symmetric 
differential operator  is a discrete skew–symmetric matrix: 
C = −CT . Just as at the continuous level, a skew–symmet-
ric discrete operator can be related to conservation of inner 
products of square-root variables. Suppose that the convec-
tive part of the equations in square-root variables in Eq. (9) 
is discretized as [compare (4)]

where C is the discretization matrix for the convective oper-
ator (�) in Eq. (9), and non-convective terms have been 
ignored. Compare this notation of the convective opera-
tor for compressible flow with the convective operator for 
incompressible flow in (4). Then the evolution of the discrete 
integral of the product of � and � is

Thus, if the matrix C is skew–symmetric, then products of 
square-root variables do not change by convection.

4.1.1 � Discretization of the Convective Terms

A spatial discretization on a curvilinear grid can be derived 
most easily using a transformation from physical space coor-
dinates � = (x1, x2, x3) to computational space coordinates 
� = (�1, �2, �3) . The curvilinear grid in physical space � is 
considered to be a continuously differentiable and invert-
ible image �(�) of a uniform grid in computational space � , 
and the order of accuracy is expressed in terms of the mesh 
spacing �� in computational space.

Conservation laws are revealed upon spatial integration 
of the conserved quantities in physical space. Integration of 
physical quantities in computational space requires multipli-
cation of (9) with the determinant   of the Jacobian matrix 
J ≡ ��

��
 [101, 102]. By setting ��j ≡  ��j

�xi
 , which can be 

viewed as the area vector in the j-direction in computational 
space, and using �

��j

(
��j

)
= � (see "Appendix 1"), with Ein-

stein convention the convective part of the flow equations 
can be written as

This form expresses the analytic skew–symmetry in compu-
tational space, cf. (9), and we want this property to hold in a 
discrete setting too. In first instance, its discrete form is only 
skew–symmetric if the area vectors ��j are discretized at cell 
centers. Because the discretization should be implemented in 
a finite-volume method, the area vectors should be located 
at cell faces of a grid cell. Thus some consistent form of 
interpolation between cell centers and cell faces is required.

��t� + C� = 0 ,

�t
(
�T��

)
= −�T(C + CT)� .

(13) �t� +
1

2

�

��j

(
��j

⋅ ��
)
+

1

2
(��j

⋅ �)
��

��j
= … .

After multiplication by ��3 , the second term in Eq. (13) 
can be discretized at the cell center k by a central second-order 
finite-difference/volume discretization in computational space. 
In terms of face variables:

where Fk is the set of faces of the grid cell with index k , 
whereas nb(f ) is the neighbor of cell k which shares the face 
f. Further, �f  is some second-order accurate interpolation 
of the velocity vector to the faces (see below) and �f  is the 
face area vector.

The third term of the skew–symmetric form in Eq. (13) can 
be discretized by second-order discretization at the cell face f 
of the cell k normal to the direction �j in computational space

after which interpolation of these cell-face discretizations to 
the cell center gives

Summation of the two proposed spatial discretizations (14) 
and (15) gives

Observe how the terms with the central �k cancel, and how 
the coefficient of neighbor �nb(f ) only depends on face val-
ues. Hence, starting from a skew–symmetric analytic oper-
ator, we created a skew–symmetric discrete operator. As 
shown in Sect. 3.2.2, it conserves discrete products of the 
basic square-root variables (6). This then, ultimately, leads 
to the desired discrete primary and secondary conservation 
properties (Sect. 4.1.2).

The proposed discretization is skew–symmetric for any 
interpolation of the velocity vector �f  at face f, and any discre-
tization of the grid cell volumes �k and area vectors �f  . It is 
second-order accurate if the interpolation of the velocity vector 
�f  to the cell faces, the discretization of the cell volumes �k 
at cell centers, and the area vector �f  at cell faces, are second-
order accurate in computational space. Discretization of the 
cell volumes �k and area vectors �f  is addressed in "Appendix 
1". Some possible second-order accurate interpolations of the 
velocity vector � to the cell faces are

(14)
1

2

∑
f∈Fk

(�f ⋅ �f )
1

2

(
�k + �nb(f )

)
,

(
��2��j

)
⋅ ���

��

��j
≈ (�f ⋅ �f )

(
�nb(f ) − �k

)
,

(15)
1

2

∑
f∈Fk

1

2
(�f ⋅ �f )

(
�nb(f ) − �k

)
.

(16)�k�t�k +
∑
f∈Fk

1

2
(�f ⋅ �f )�nb(f ) = … .

(17)�f =
1

2

�k + �nb(f )√
�
k

√
�
nb(f )

1

2

�
�k + �nb(f )

�
,
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and

In Sect. 4.1.2 it is shown that the first two interpolation laws 
correspond to existing finite-volume methods. The third 
interpolation law is used in simulations with the symmetry-
preserving regularization models [72–74, 76].

For further technical details we refer to Rozema’s PhD 
thesis [71]. Also, details about the implementation of the 
pressure terms, the viscous terms and the heat diffusion can 
be found there.

4.1.2 � Relation to Existing Finite‑Volume Discretizations

By its construction, a skew–symmetric discretization of the 
convective terms in square-root variables conserves mass, 
momentum, kinetic energy, internal energy, and total energy. 
A finite-volume discretization of the convective terms in 
standard variables conserves only mass, momentum, and 
total energy. Thus, it will be no surprise that a skew–sym-
metric discretization of the convective terms leads to a finite-
volume discretization of the convective terms.

This can be shown by constructing the discrete coun-
terpart of Eq. (10). If the evolution of discrete square-root 
variables is governed by the proposed spatial discretization 
in Eq. (16) and exact time-integration is assumed, then prod-
ucts of discrete square-root variables satisfy

where the dots denote non-convective terms. Because of 
its symmetric nature, 

(
�k�nb(f ) + �nb(f )�k

)
∕2 is a local flux 

function. Therefore, this is a finite-volume discretization of 
the convective terms for all the possible products of square-
root variables. The corresponding finite-volume discretiza-
tions of the mass, momentum, and total energy equations 
can be expressed as

(18)�f =
1√

�
k

√
�
nb(f )

1

2

�
�k�k + �nb(f )�nb(f )

�
,

(19)�f =
1

2

(
�k + �nb(f )

)
.

�k�t(�k�k) +
∑
f∈Fk

(�f ⋅ �f )
1

2

(
�k�nb(f ) + �nb(f )�k

)
= … ,

(20)

�k�t�k +
�
f∈Fk

(�f ⋅ �f )
√
�
k

√
�
nb(f )

= … ,

�k�t(��)k +
�
f∈Fk

(�f ⋅ �f )
√
�
k

√
�
nb(f )

1

2

�
�nb(f ) + �k

�
= … ,

�k�t(�E)k +
�
f∈Fk

(�f ⋅ �f )
√
�
k

√
�
nb(f )

∗
�
1

2
�k ⋅ �nb(f ) +

√
e
k

√
e
nb(f )

�
= … ,

 where point-wise equalities are assumed in cell centers, so 
that �k =

√
�
k

√
�
k
 . The interpolation of the velocity vector 

to the cell faces �f  is a freedom. Indeed, for the interpolation 
in (18), the finite-volume discretization proposed by Kok 
[37] is obtained. The interpolation in (17) gives the finite-
volume discretization of the mass and momentum equations 
proposed by Jameson [31], Subbareddy and Candler [86], 
and Morinishi [54].

4.1.3 � Higher‑Order Accurate Discretizations

The energy-conserving discretizations proposed in the previ-
ous sections are second-order accurate. As for many compu-
tational problems, higher-order accurate methods can be more 
efficient [37, 87, 103], below we will create fourth-order accu-
rate discretizations of the inviscid terms of the Navier–Stokes 
equations.

Richardson extrapolation can be used to create such higher-
order accurate discretizations, while at the same time it pre-
serves both the primary and secondary conservation properties 
of the original discretization. It is typically applied in compu-
tational space. To streamline the presentation, the proposed 
second-order accurate discretizations are expressed as

where the � denotes that the proposed discretizations are 
related to a single grid cell.

To achieve higher-order accuracy, Richardson extrapolation 
combines discretizations with different stencils:

where R2�
k

 and R3�
k

 are obtained by applying the discretiza-
tion R�

k
 on stencils two and three times as big as the original 

stencil (see Fig. 1).
By nulling the leading terms in the Taylor expansion of 

(22), a one-parameter family of discretizations is obtained 
[37]:

Here � is a free parameter, which can be used to optimize 
accuracy in wave number space. For the discretization of a 

(21)��
k
�t�k = R�

k
,

(22)�1R
�
k
+ �2R

2�
k

+ �3R
3�
k
,

(23)�1 =
9 − 5�

8
, �2 = � , �3 = −

1 + 3�

8
.

ξ1

ξ2

Fig. 1   The control volumes and stencils of the � , 2� , and 3� control 
volumes used for Richardson extrapolation of the convective and dif-
fusive terms in computational space
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first derivative, the error in wave number space is small if 
the free parameter is set to � = − 0.6668 [37]. For this value, 
in computational space the derivative is equivalent to the 
dispersion–relation–preserving discretization proposed by 
Tam and Webb [88].

4.2 � Conservative Time‑Integration Methods

A symmetry-preserving spatial discretization eliminates 
conservation errors from the discretization of spatial deriva-
tives, assuming exact time integration. However, in practice 
a discrete time-integration method is used, thereby possibly 
introducing discrete conservation errors. We will show that 
the square-root variables allow time-integration methods that 
discretely preserve conservation laws upon time stepping.

Time-integration methods that preserve energy are called 
symplectic methods. Recently, Runge–Kutta variants have 
been applied as conservative time-integration methods for the 
incompressible Navier–Stokes equations by Sanderse [77]. An 
important example is the second-order accurate mid-point rule. 
For variable-density incompressible flow, an early observation 
of conservation of discrete energy using mid-point integration 
combined with the square root 

√
� was made by Guermond 

and Quartapelle [26]. They, however, sacrificed momentum 
conservation, while the present approach conserves both pri-
mary and secondary quantities.

If symplectic mid-point integration is applied in square-
root variables, then the continuity equation in the grid cell k 
is discretized as

where the bar �
n+

1

2 = (�n+1 + �n)∕2 denotes averaging with 
equal weights to the time tn+

1

2 . This can be expressed in con-
servative variables through multiplication by 2

√
�
n+

1

2

k
:

where the skew–symmetric spatial discretization in Eq. (16) 
was used. This is a mid-point time integration of a general 
finite-volume discretization of the continuity equation if the 
velocity interpolation [compare (18)]

�k

√
�
n+1

k
−
√
�
n

k

�t
= f√�

�
�
n+

1

2

�

k

= −

�
C(�)

√
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1

2

�

k

,

�k

�n+1
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k
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=2

√
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1

2

k
f√�

�
�
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1

2

�

k

=
�
f∈Fk

�f ⋅ �f
√
�
n+

1

2

k

√
�
n+

1

2

nb(f )
,

(24)�f =
(��)

n+
1

2

f

√
�
n+

1

2

k

√
�
n+

1

2

nb(f )

is used, where (��)
n+

1

2

f
 denotes some spatio-temporal inter-

polation of the mass flux at the face f at time tn+
1

2 . The dis-
cretization of the square-root momentum equation is

The related discretization of the momentum equation in con-
servative variables can be derived by combining it with the 
governing equation for 

√
� . This gives

Substitution of the interpolation rule in Eq. (24) and using 
the short-hand notation (��)n

k
=
√
�
n

k

�√
��

�n
k
 gives

where the tilde denotes square-root-weighted temporal aver-
aging of the velocity field

A similar averaging was used in the conservative second-
order time-integration methods proposed by Morinishi [54] 
and Subbareddy and Candler [86]. Thus, it seems that con-
servation of mass, momentum and kinetic energy upon tem-
poral time integration requires computations with square-
root variables.

The above mid-point integration generates a second-
order accurate conservative time-integration method. Also 
higher-order accurate symplectic time-integration methods 
exist [77], and so the proposed square-root variables allow 
for straightforward derivation of time-integration methods of 
arbitrary order. This has also been observed, independently, 
by Reiss et al. [9, 68].

It must be stressed, however, that symplectic Runge-Kutta 
methods are implicit, and therefore conservative time integra-
tion can be considerably more expensive than using an explicit 
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time-integration method; their efficiency depends on the appli-
cation. In this paper, implicit time integration is not used. 
Instead, a small time step is used to keep the conservation 
errors due to explicit time integration sufficiently small [38].

5 � DNS Results

The symmetry-preserving discretization for incompressible 
flow is known to be a stable and accurate method for simula-
tions of channel flow [100]. To test if these properties general-
ize to compressible flow, simulations of (subsonic) compress-
ible channel flow are performed. Also, simulations of decaying 
grid turbulence at a high Reynolds number are performed. 
These test cases also assess the sensitivity of the results to the 
grid resolution, in particular with respect to under-resolved 
grids. Here, we present an overview of some results; a more 
detailed description can be found in [73].

5.1 � Turbulent Channel Flow at Re
�
≈ 180

To examine the applicability of the symmetry-preserving dis-
cretization to wall-bounded flow, simulations of a turbulent 
channel flows at relatively low Reynolds numbers have been 
performed. The channel flow is nearly incompressible with 
a bulk Mach number of M b = 0.2 and a friction Reynolds 
number Re� ≈ 180 . As in the DNS by Moser et al. [57], the 
bulk Reynolds number is fixed at Reb = 2800 . For complete-
ness, the bulk Reynolds number and the bulk Mach number 
are defined by

where the angled brackets denote spatial averaging over the 
channel.

5.1.1 � Set Up of Simulations

The channel is rectangular with a half-height H. The 
dimensions of the channel are denoted Lx = 4� , 
Ly = 2H  and Lz = 2� . The computational domain is 
[0, Lx] × [−Ly∕2, Ly∕2] × [0, Lz] . The channel is periodic in 
the stream-wise and span-wise directions, and the boundaries 
in the wall-normal directions are isothermal walls at tempera-
ture Tw . The initial condition is a Poiseuille flow with uniform 
density �0 and temperature Tw:

where �w is the fixed molecular viscosity at the wall, and Reb 
is the prescribed bulk Reynolds number.

Reb =
⟨�u⟩xyzH

�w

, Mb =
⟨�u⟩xyz

⟨�⟩xyz
√
�RTw

,

u =
3

2

�wReb

�0H
3
(H − y)(H + y), � = �0, p = R�0Tw,

The channel flow is driven by a uniform body force 
in the stream-wise direction with a magnitude that fixes 
the bulk Reynolds number at the prescribed value. After 
transition to turbulence, the channel flow is expected to 
become statistically stationary. Important outputs of a 
channel flow simulation are the friction velocity and the 
friction Reynolds number in the turbulent regime, defined 
by

where now the angled brackets denote spatio-temporal aver-
aging over the walls of the channel. These quantities reflect 
the friction at the walls of the channel as a result of imposing 
a bulk mean flow.

5.1.2 � Numerical Parameters

The simulations in this section have been performed with 
the fourth-order accurate dispersion-relation-preserving 
discretization proposed in Sect. 4.1.3 [36, 37]. Time inte-
gration is performed with a low-storage Runge–Kutta 
method, and the time step size is set so that the Courant 
number is below unity. All the simulations have been per-
formed without artificial dissipation.

The grid spacing in the stream-wise and span-wise 
directions is uniform. The locations of the vertices in the 
lower half of the channel are given by a hyperbolic sine 
distribution and reflected with respect to the center plane 
[100]. Simulations have been performed on two fine grids 
A and B, a medium grid C, and a coarse grid D (Table 1).

At this low bulk Mach number, the channel flow is 
practically incompressible, and therefore the incompress-
ible DNS by Moser et al. [57] can be used for valida-
tion. The flow has transitioned to turbulence within 
⟨u⟩xyz,0 t∕H = 800 dimensionless time units, and flow sta-
tistics are recorded from 800 to 1600 dimensionless time 
units.

u� =

�
⟨�⟩w
⟨�⟩w , Re� =

⟨�⟩wu�H
�w

,

Table 1   The computational grids for the turbulent channel flow simu-
lations

aSmaller domain 2�H × 2H × �H (see Sect. 6.3)

Grid Nx × Ny × Nz �x+ �y+
min

�y+
max

�z+

A 256 × 128 × 128 8.7 0.6 9.5 8.7
B 128 × 128 × 128 17.5 0.6 9.5 8.7
C 128 × 64 × 64 17.5 1.2 18.5 17.5
D 32 × 32 × 32 69.9 3.4 30.6 35.0
E 64 × 64 × 64a 38.5 2.6 40.7 19.3
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5.1.3 � Simulation Results

The simulations are stable without artificial dissipation on 
all the grids. The obtained friction Reynolds numbers are 
listed in Table 2. The predicted friction Reynolds numbers 
become more accurate as the grid is refined, and practi-
cally agree with the DNS on the fine grids A and B. Fig-
ure 2 shows the normalized stream-wise mean flow and 

velocity fluctuations. The results are presented as plots of 
the normalized quantities

where primes denote residuals with respect to the tempo-
ral averaging. The �� = ⟨�⟩w∕u� is the viscous length scale, 
where the angled brackets denote averaging over the walls 
of the channel. The results obtained on the fine grids A and 
B accurately agree with the DNS.

The coarser grids C and D do not completely resolve the 
turbulent energy cascade in this channel flow. In general 
such simulations can give unstable or erroneous results. 
However, the simulations with the symmetry-preserving dis-
cretization are stable without artificial dissipation, and even 
though the results obtained on the coarser grids C and D are 
not perfectly accurate, they are definitely acceptable. The 
error in the friction Reynolds number is below 3% , and the 
slope of the mean velocity profile computed on the grids C 
and D in the log layer deviates only slightly from the results 
of the DNS: in particular, the log layer is somewhat shorter.

For channel flow, no-model simulations with the symme-
try-preserving discretization can give more accurate results 
than simulations with an LES model on coarse grids [49]. In 
the current simulations, the relatively accurate predictions 
of mean flow velocities on a coarse grid D seem to go hand 
in hand with an over-prediction of the stream-wise velocity 
fluctuations near the wall of the channel. A similar trade-off 
of accuracy in mean flow and overshoot of the near-wall 
flow fluctuations has also been observed in under-resolved 
simulations with the incompressible symmetry-preserving 
discretization [100].

5.2 � Decaying Grid Turbulence

To assess the applicability of the symmetry-preserving sim-
ulation method to under-resolved flow, simulations of the 
decaying grid turbulence experiment by Comte-Bellot and 
Corrsin [14] have been performed. They generate turbulence 
by placing a grid with a mesh spacing of M = 5.08 cm in a 
flow of mean velocity U0 = 1000 cm s−1 [14]. As the grid 
turbulence is convected with the mean flow, its intensity 
gradually decreases. Energy spectra are measured at three 
stations 42M, 98M, and 171M down-stream of the grid.

5.2.1 � Set Up of Simulations

The simulations can be simplified by considering the 
flow inside a small box that moves along with the mean 
flow. This box of turbulence is assumed to pass the grid 
at t = 0 s . Thus, the turbulence in the box is expected 
to match the measured energy spectra at t = 42M∕U0 , 

u+ =
⟨u⟩xz
u�

, ⟨u�
i
u�
j
⟩+ =

⟨u�
i
u�
j
⟩xz

u2
�

, y+ = y∕�� ,

Table 2   The computed friction Reynolds numbers in simulations 
with the symmetry-preserving discretization on a grid ranging from 
a fine grid (A) to a relatively coarse grid (D). Also the relative dif-
ference with the friction Reynolds number from a DNS [57] is given

Grid A B C D DNS

Re� 178.7 177.8 179.3 182.3 178.1
Rel. err. 0.3% 0.1% 0.6% 2.4%
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Fig. 2   The normalized mean flow velocity and turbulent fluctuations 
in turbulent channel flow obtained without model on a series of grids
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t = 98M∕U0 , and t = 171M∕U0 , respectively. The size 
of the box is set to 11M × 11M × 11M , and the computa-
tional grid is uniform with 64 cells in each direction. All 
the quantities are non-dimensionalized by the length of 
the box Lref = 11M = 55.08 cm , and a reference velocity 

uref =
√
3∕2

�
u2
1
�t=42M∕U0

= 27.19 cm s−1 . Thus, the dimen-
sionless computational domain is the unit cube [0, 1]3 and the 
dimensionless measurement times are t� = 0.104 , t� = 0.242 , 
and t� = 0.423 . The Reynolds number based on the reference 
length Lref  is 10, 129. The dimensionless time step size of 
the simulations is set to �t� = 1.59 × 10−3.

The initial condition of the simulations is set equal to 
the flow at the first measurement station. The initial condi-
tion is generated by fitting a real-valued and divergence-free 
velocity field with randomized phases to the energy spec-
trum measured at the first station [40]. The random phases 
are adjusted by performing a preliminary simulation from 
t = 0 to t = 42M∕U0 with the generated initial condition. 
Then the amplitudes of the Fourier modes of the solution at 
t = 42M∕U0 are rescaled to the desired spectrum as in [33]. 
The resulting rescaled field is used as the initial condition 
at time t = 42M∕U0.

5.2.2 � Simulation Results

The simulations have been performed with the fourth-order 
symmetry-preserving discretization on a uniform 643 com-
putational grid. This grid is too coarse to capture the full 
energy cascade. Nonetheless, the simulations are stable 
without artificial dissipation. Figure 3 shows the results as 
plots of the energy decay and the energy spectra at the times 
corresponding to the experimental measurements. The ref-
erence energy levels in the energy decay plot are obtained 
by fitting the unfiltered experimental spectra to the present 
computational grid and computing the resolved energy.

In contrast with the accurate results obtained in under-
resolved simulations of channel flow, the under-resolved 
simulation of decaying grid turbulence with the symmetry-
preserving discretization disagrees with the experimental 
measurements. The initial energy decay is considerably 
smaller than in the experiment, which leads to over-pre-
diction of the total kinetic energy at the second and third 
measurements station. The computed energy spectra show 
a considerable accumulation of kinetic energy near the grid 
cut-off.

The kinetic energy of the turbulent structures near the 
scale of a grid cell is on average transferred to smaller sub-
grid scales. However, the symmetry-preserving discretiza-
tion conserves this energy, so that it is trapped in the simula-
tion, and has to be distributed over the resolved scales. This 
gives a smaller energy decay rate compared to the experi-
mental data, and the results are unsatisfactory due to pile-up 

of kinetic energy at the scale of a grid cell. In the sequel 
(Sect. 6), it is shown that the accuracy of a simulation of 
decaying grid turbulence on a coarse grid can be improved 
considerably by using an LES model.

5.3 � DNS of Flow Over a Delta Wing

The above examples are often-studied academic model prob-
lems to validate turbulent flow simulation. In the sections to 
follow, we will extend the above discussion of low-dissipa-
tion discretization methods with low-dissipation turbulence 
models. The same test cases will there be studied in conjunc-
tion with various modern models (Sects. 6 and 7).

But first, to illustrate the current state-of-the-art of DNS, 
we demonstrate the applicability of the developed discretiza-
tion methods to large-scale (direct numerical) simulation 
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Fig. 3   The computed kinetic energy decay (a) and energy spectra 
at times 42M∕U0 , 98M∕U0 , and 171M∕U0 (b) in a highly under-
resolved simulation of decaying grid turbulence with the symmetry-
preserving discretization. The vertical dots correspond to the one-
dimensional point-to-point oscillation (the grid cut-off)
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of practical turbulent flows. Therefore simulations of the 
subsonic transitional flow over a simple delta wing at 
Re = 150, 000 have been performed. In particular, the slen-
der sharp-edged delta wing used in the experiments by Riley 
and Lowson [69] is studied. The simulations have a high 
computational complexity, and have been performed on the 
Dutch national supercomputer at SARA in Amsterdam.

5.3.1 � The Delta Wing and Its Aerodynamics

The focus of this simulation is on the transition to turbulence 
of the flow above a delta wing. Therefore, the chord Reyn-
olds number, Mach number, and angle of attack have been 
selected to exclude other aerodynamic phenomena.

The wing has a root chord length of c = 471 mm and a 
thickness of t = 11.5mm. The sweep angle is � = 85◦ , 
which makes the delta wing very slender. The bevel angle 
is 30◦ . The simulations have been performed at a rela-
tively small angle of attack � = 12.5◦ . The Reynolds num-
ber Rec = �∞u∞c∕�∞ based on the chord length c of the 
delta wing is set to 150,000; in [71] also simulations at 
Rec = 211, 200 are presented. The free-stream Mach num-
ber is M = 0.3 . At these parameter values, the vortical flow 
structures do not break down above the wing, as the angle 
of attack is relatively small [44, 50]. Also, shock waves are 
absent [3].

The flow over the delta wing is dominated by a system 
of conical vortices above the delta wing [3, 69]. This vortex 
system is formed by the shear layer that separates at the 
leading edge of the delta wing. Under the influence of pres-
sure differences, this shear layer rolls up into two large coni-
cal counter-rotating flow structures (see Fig. 4), known as 

primary vortices. An important aerodynamic property of the 
primary vortex is that the flow velocity in the core of the pri-
mary vortex can be significantly higher than the free-stream 
velocity. This reduces the pressure in the primary vortex and 
along the upper surface of the wing, thereby increasing lift.

An interesting effect of the primary vortex is its break-up 
into discrete sub-vortices and transition to full turbulence. 
Figure 4 shows axial slices of the instantaneous vorticity 
magnitude obtained in simulations on a fine grid (see 
below). Figure 5 shows iso-surfaces of the Q-criterion (the 
second invariant of the velocity gradient). The figures depict 
the time-averaged vortical tubes as pairs of sub-structures: a 
thin sub-structure with a high vorticity and a sub-structure 
with low vorticity. These vortical tubes co-rotate with the 
flow, just as the steady sub-vortices observed in the LDV 
measurements by Riley and Lowson [69]. In the simulations 
by Visbal and Gordnier [104], time-averaged sub-vortices 
that co-rotate with the flow have also been observed.

The separated shear layer becomes unsteady at approxi-
mately x ≈ 0.6c (≈ 280mm) and has broken into discrete 
sub-vortices at x ≈ 0.8c (≈ 370mm). For comparison, in 
the experiments of Riley and Lowson [69], full turbulence 
is observed downstream of approximately x ≈ 0.86c (≈ 400

mm). The sub-vortices deform as they further travel along 
the shear layer, and at x = c the deformations have caused 
so many irregularities in the flow that identification of the 
discrete sub-vortices becomes challenging.

5.3.2 � Numerical Method

A cubic computational domain with a length of 21 chord 
lengths has been used. At the boundaries of the computa-
tional domain, far-field boundary conditions based on Rie-
mann invariants are applied. The initial condition of the 
simulations is obtained by performing a RaNS simulation 
with a k–� model. No perturbations are added to the initial 
condition.

The origin of the coordinate system is at the apex of 
the delta wing: the x-axis is aligned with the chord line, 
the z-axis is normal to the upper surface, and the y-axis is 

Fig. 4   Axial slices of the magnitude of the time-averaged axial vor-
ticity scaled by the axial location �⟨�x⟩�x∕u∞ at Rec = 150, 000 
computed on the fine computational grid. The iso-surface 
�⟨�x⟩�x∕u∞ = 0.29 shows that the time-averaged sub-vortices rotate 
around the vortex core in the same direction as the flow velocity. 
(Color figure online)

Fig. 5   Top view of the vanishing iso-surface of the Q-criterion 
Qc2∕u2

∞
 colored by the instantaneous vorticity magnitude (obtained 

on a fine grid) at the simulation time tu∞∕c = 17.025 s . (Color figure 
online)
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aligned with the span. The simulations at chord Reynolds 
number Rec = 150, 000 have been performed on a coarse 
(20 million cells), medium (44 million cells), and fine (133 
million cells) computational grid.

The grids used are approximately isotropic throughout 
the primary vortex downstream from the leading edge region 
(after x ≈ 65mm), as this is the most interesting region of 
the flow. Also the boundary layers are captured with suf-
ficient resolution. To give an impression, the dimensions of 
the grid cells of the fine grid in the primary vortex increase 
approximately linearly from �x = 0.08mm, �y = 0.05mm, 
and �z = 0.10 mm at the end of the leading edge wedge 
block to �x = 0.57mm, �y = 0.40mm, and �z = 0.44 mm at 
the trailing edge.

The simulations have been performed with the fourth-
order accurate dispersion–relation–preserving finite-volume 
discretization from Sect. 4.1.3 [37]. As the grid is still a bit 
coarse for a genuine DNS, the use of some background arti-
ficial or modeled dissipation is appropriate [38], although 
from the stability point-of-view this is not necessary. Sixth-
order artificial dissipation with k6 = 1∕8 preserves the 
fourth-order accuracy of the scheme, and localizes the dis-
sipation at the small turbulent structures [38].

Explicit time stepping is used for the simulations. The 
time step size normalized by the free-stream flow velocity 
and the chord length of the wing is �t u∞∕c = 8.0 × 10−6 on 
the coarse grid, �t u∞∕c = 4.5 × 10−6 on the medium grid, 
and �t u∞∕c = 2.2 × 10−6 on the fine grid. The simulations 
on the coarse and medium grid are performed from time 
tu∞∕c = 0 to tu∞∕c = 20 , which corresponds to 20 convec-
tive time units. The simulation on the fine grid is performed 
for 17 convective time units. After 2 convective time units 
the flow has transitioned to turbulence, and the collection of 
flow statistics starts. More details on these simulations can 
be found in Rozema’s PhD thesis [71].

5.3.3 � Grid Convergence

The quality of the numerical solution is assessed by studying 
the convergence upon grid refinement of velocity profiles 
and flow statistics. The results of the simulations are used 
to study the development of the separated shear layer. Com-
parison with the experimental measurements by Riley and 
Lowson [69] can be found in [71].

Velocity Profiles For an accurate simulation, grid con-
vergence of the time-averaged velocity field is expected. 
Figure 6 shows the time-averaged axial velocity on a verti-
cal line through the core of the primary vortex for the three 
grids. Although the agreement is not perfect, overall the 
time-averaged velocity obtained on the coarse grid agrees 
with the time average obtained on the medium and fine grids.

Turbulent Flow Statistics A more challenging test is to 
monitor the behavior of the turbulent flow statistics upon 

grid refinement. They have been recorded for 18 convective 
time units on the coarse and medium grid, and for 15 con-
vective time units on the fine grid. These time intervals were 
found long enough for the statistics to settle [71].

Figure 7 shows the turbulent kinetic energy on lines 
through the separated shear layer, just above the lead-
ing edge of the wing at z = 7.6mm , obtained on different 
grids. Although the turbulent kinetic energy is more sensi-
tive to the grid resolution than time averages of the veloc-
ity and pressure, the turbulent kinetic energy converges as 
the grid is refined: the turbulent kinetic energy obtained on 
the medium and fine grid agree accurately. The shear layer 
becomes unsteady at approximately the same axial location 
for the medium and the fine grid, around x ≈ 250mm, but 
the transition to unsteady flow seems to be delayed on the 
coarse grid. This indicates that, not surprisingly, the coarse 

Fig. 6   The time-averaged axial velocity on a vertical line through the 
suction peak on the delta wing surface at x = 0.9c and y = 21.74mm 
at various grid resolutions. The plot of the velocity in the boundary 
layer (b) is separated from the plot of the velocity through the core of 
the primary vortex (a)
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grid is not fine enough to capture the transition to unsteady 
flow of the shear layer.

6 � Large‑Eddy Simulation

6.1 � Eddy‑Viscosity Models

When a direct numerical simulation (DNS) is not feasible, a 
(much) cheaper alternative is a large-eddy simulation (LES), 
e.g. [23, 47]. In LES, the computational grid resolves only 
the large eddies in a flow, and the effect of the smaller scales 
is modeled. In the common mathematical explanation of 
LES, this is formalized by application of a spatial filter to a 
solution � of the incompressible Navier–Stokes equations. In 
practice the filter is often related to the computational grid 
by setting the filter width equal to the local mesh spacing, so 
that the filtered solution �̄ can be captured on the computa-
tional grid with sufficient accuracy. The residual �� = � − �̄ 
represents sub-grid scales which cannot be accurately cap-
tured on the computational grid.

The evolution equation for the filtered velocity field can 
be derived by filtering of the Navier–Stokes equations. For 

the incompressible Navier–Stokes equations and a filter that 
commutes with spatial derivation, this gives (after normal-
izing the density) the following equation that is used as the 
basis for LES:

where the molecular diffusion is expressed in terms of 
the resolved rate-of-strain tensor S = (∇� + (∇�)T)∕2 . To 
emphasize that the LES solution is different from the fil-
tered solution of the Navier–Stokes equations, it is denoted 
by � ≈ �̄.

The sub-grid tensor �(�) approximates �⊗ � − �̄⊗ �̄ and 
is present because the non-linearity in the convective term 
does not commute with the spatial filter. The challenge of 
LES is to find a suitable model for the sub-grid tensor in 
terms of the resolved LES solution �.

Currently, there is no consensus on a best LES model, or 
even on what a proper model should do [66]. Moreover, the 
results of a practical LES are not completely determined by 
the sub-grid model, but also by for example the used numeri-
cal method, the implementation of the sub-grid model, the 
computational grid, and the applied boundary conditions. 
This makes a meaningful comparison of LES models based 
on results from the literature difficult. Nonetheless, in this 
section results from some sub-grid models are given, with 
emphasis on models with low eddy dissipation.

The textbook explanation of the turbulent energy cascade 
suggests that the larger scales in turbulence (on average) 
transfer kinetic energy to the sub-grid scales, and therefore 
the effect of the sub-grid scales on the large eddies is essen-
tially dissipative. Eddy-viscosity models mimic the dissipa-
tive nature of the sub-grid scales by adding an eddy viscosity 
�e to the molecular viscosity � . This is equivalent to selecting 
an LES model of the form �(�) = −2�eS , where S is the 
resolved rate-of-strain tensor.

The Smagorinsky Model The classical example of an 
eddy-viscosity model is the Smagorinsky model [80], which 
sets the eddy viscosity equal to

where � is the filter length and Cs is the Smagorinsky con-
stant. The Smagorinsky constant is approximately scale 
invariant in the inertial range of decaying homogeneous 
isotropic turbulence [46]. In the early days of LES, the 
Smagorinsky model was used successfully with a constant 
Cs = 0.20–0.22 to perform simulations of decaying homoge-
neous isotropic turbulence [42]. However, this Smagorinsky 
constant is too large to obtain decent results in other flows, 
such as a channel flow [17, 52]. Also, for the temporal mix-
ing layer the Smagorinsky constant Cs = 0.20 is too high, 

(25)
𝜕t� + ∇ ⋅ (�⊗ �) + ∇p − ∇ ⋅ (2𝜈S) = −∇ ⋅ 𝜏(�), ∇ ⋅ � = 0,

(26)�e = (Cs�)
2�S� = (Cs�)

2
√
S ∶ S

Fig. 7   The turbulent kinetic energy along a line above the leading 
edge at z = 7.6mm (a) and along a line through the separated shear 
layer above the vortex core (b) for various grid resolutions
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and delays the transition to turbulence [105]. Therefore, the 
constant was later lowered to Cs ≈ 0.17 [43].

These experiences motivate the developments of LES 
models that give eddy dissipation more appropriately. 
Because such models generally aim at delivering smaller 
eddy dissipation, we call these models low-dissipation mod-
els. We will shortly describe several of them in the following 
subsection. Thereafter, we will introduce a new model that 
minimizes the amount of eddy viscosity on anisotropic grids.

6.2 � Low‑Dissipation Turbulence Models

Below, we will review a number of low-dissipation LES 
models, i.e. models that are economical in adding eddy dissi-
pation. We start with some early models: the dynamic Sma-
gorinsky model [22, 43], Nicoud’s WALE [58] and �-models 
[59] and the Vreman model [106]. Thereafter, regulariza-
tion models are presented [20, 24, 90], which do not add 
any eddy-viscosity at all, and as a consequence are found to 
not always produce sufficient dissipation. In Sect. 6.3 some 
results with these models are presented, thereby motivating 
the quest for models that try to restrict eddy viscosity to a 
bare minimum: QR [96] and AMD [75].

The Dynamic Smagorinsky Model The issues with the 
Smagorinsky model have been addressed in different ways. 
An important improvement is the dynamic procedure [22, 
43]. It assumes scale invariance of the Smagorinsky constant 
Cs in the inertial range and introduces a coarser filter level by 
coarse-graining the LES solution with a test filter. By scale 
invariance the Smagorinsky constant should be equal at the 
two filter levels, and this can be used to estimate the value 
of Cs (the resulting expression is rather complicated and will 
be omitted here).

There are some perceived disadvantages of the dynamic 
Smagorinsky model. The Smagorinsky model requires 
explicit application of the test filter and evaluation of the 
model on the filtered field, which increases its computational 
complexity compared to the static Smagorinsky model. 
Also, often spatial averaging and clipping is required for 
stability [45]. Nonetheless, the dynamic Smagorinsky model 
can give accurate results in simulations of homogeneous iso-
tropic turbulence [53], turbulent channel flow [22], and a 
turbulent mixing layer [105].

The WALE Model An alternative way to improve upon the 
static Smagorinsky model is to replace the eddy viscosity 
in Eq. (26) with a function which appropriately adapts to 
the LES solution, for instance by switching off (i.e. giving 
no eddy dissipation) in transitional and laminar flow. An 
example of this is the wall-adapted WALE model, which by 
construction vanishes at a desired rate near solid walls, so 
that the use of an additional wall damping function is not 
required [58].

The Vreman Model The idea of an eddy-viscosity model 
which switches off in laminar flow has been formalized 
mathematically by Vreman [106]. Vreman derives the flows 
for which the exact eddy dissipation vanishes, and constructs 
a model that switches off for the same flows.

The Vreman model gives positive eddy dissipation in 
flows where the exact eddy dissipation is negative (back 
scatter) and in solid body rotation [59]. This results in a 
model which is competitive with the dynamic Smagorin-
sky model in simulation of the turbulent mixing layer and 
turbulent channel flow, as we will see below.

Singular Value Models Another development is to base 
the eddy viscosity on the singular values �i of the velocity 
gradient tensor, resulting in Nicoud’s �-model [59]. Here

where �1 ≥ �2 ≥ �3 ≥ 0 ; C� ≈ 1.5.
Another model based on singular values, but now on 

those of the rate-of-strain tensor S, i.e. the symmetric part 
of the velocity gradient tensor, is Verstappen’s QR-model 
[96]. It will be discussed in Sect. 7, including its generali-
zation to anisotropic grids AMD [75].

Regularization Models Regularization does not dissi-
pate turbulent kinetic energy, but restricts the creation of 
turbulence by explicitly filtering of the convective terms. 
Several options exist:

Historically [27], the first regularization (27a) was proposed 
by Leray in 1934 [41] as a mathematical tool to analytically 
study the regularity of a Navier–Stokes solution. Leray regu-
larization has been used as an LES model for simulations of 
a temporal mixing layer [24]. where it is found to compare 
favorably with the dynamic Smagorinsky model. Another 
example of a regularization model used for practical LES is 
the Lagrange-averaged Navier–Stokes-� model (27b) [20, 
25]. It preserves the Kelvin circulation theorem in the regu-
larized equations.

For incompressible flow, Verstappen [29, 95] intro-
duced the regularization (27c) which preserves the sym-
metries of the convective discretization when the filter 
is self-adjoint. Therefore, this regularization conserves 
energy and hence is unconditionally stable. Additionally, 
this regularization convectively conserves helicity and in 
two-dimensional flow also enstrophy. Because the square-
root form of the compressible Navier–Stokes equations 
(9) has a convective term as in (27), the incompressible 

�e = (C��)
2
�3(�1 − �2)(�2 − �3)

�2
1

,

(27)(�)𝜙 →

⎧⎪⎨⎪⎩

(�)𝜙̄ Leray [42] (a)

(�̄)𝜙 N–S- 𝛼[20, 25] (b)

(�̄)𝜙̄ Verstappen [96] (c)
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regularization straightforwardly generalizes to compress-
ible flow [73, 74, 76]

6.3 � Example: LES of Turbulent Channel Flow

Some results generated with the methods described above 
have been collected in this section, to give a rough indication 
their performance. More comparisons can be found in mono-
graphs like [66] and the vast literature on the subject. To 
allow comparison with the DNS methods discussed above, 
the earlier test case on turbulent channel flow from Sect. 5.1 
is being discussed again.

Simulations of two weakly compressible channel flows at 
Mb = 0.2 have been performed using various of the above 
turbulence models. They correspond to the DNSs at fric-
tion Reynolds numbers Re� ≈ 180 and Re� ≈ 395 by Moser 
et al. [57]. The set up is similar to the one in Sect. 5.1. The 
simulations have been performed without model, with the 
symmetry-preserving regularizations, with the �-model [59] 
and with Vreman’s [106] eddy-viscosity model. For simplic-
ity, the filter width of the regularizations is chosen equal to 
the mesh spacing.

The bulk Reynolds number based on the half-height of 
the channel H is fixed at either Reb = 2800 or Reb = 6875 
by prescribing a uniform body force. The simulations at 
the friction Reynolds number Re� ≈ 180 are performed 
on the coarse grid D from Sect. 5.1, and the simulations at 
Re� ≈ 395 are performed on the 643 grid E which stretches 
towards the wall. Characteristics of these grids are listed in 
Table 1.

The basis for all simulations is the fourth-order accurate 
dispersion–relation–preserving discretization of the com-
pressible Navier–Stokes equations proposed in Sect. 4.1.3; 
no artificial dissipation is applied. The turbulence models 
( � and Vreman) are added as extra molecular viscosity; for 
the regularization models the appropriate filtering has been 
added.

For each of the simulations, time averages are recorded 
from 800 to 1600 time units. The computed friction Reyn-
olds numbers are listed in Table 3. The averaged mean veloc-
ity and turbulent fluctuations normalized by the computed 
friction velocity are shown in Fig. 8 for Re� ≈ 180 and Fig. 9 
for Re� ≈ 395 . The results obtained without model predict a 

friction Reynolds number which is slightly higher than the 
actual value. The normalized (using the friction velocity) 
mean velocity profiles obtained without model differ from 
results for the DNS by Moser et al. [57], especially for the 
simulation at Re� ≈ 395 . Note that for the latter case the 
flow details are smaller, hence the grid is relatively coarser.

The simulations with Leray regularization lower the wall 
friction compared to the c2 regularization and the simulation 
without model. Simulations with eddy-viscosity models are 
in general more dissipative and lower the friction Reynolds 
number compared to the regularization models. This effect 
seems stronger when the relative resolution of the grid is bet-
ter (at lower bulk Reynolds number). At poorer resolution, 
the c2 regularization and the simulation without model over-
predict the wall friction. As a preliminary (and not really 
surprising) conclusion, it seems advantageous to reduce the 
influence of a turbulence model when a grid becomes finer 

Table 3   The friction Reynolds 
numbers Re� computed in 
simulations of channel flow 
with the symmetry-preserving 
regularizations and various 
turbulence models

Reb 2800 6875
DNS [57] 178.1 392.2
No model 182.3 412.6
c2 Reg. [96] 175.2 413.3
Leray [41] 168.8 386.0
�-Model [59] 161.3 382.9
Vreman [106] 150.1 373.4
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Fig. 8   The normalized mean flow velocity (a) and turbulent fluctua-
tions (b) of channel flow obtained without model, with the symme-
try-preserving regularizations, and with eddy-viscosity models at 
Reb = 2800 (from [73])
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(i.e. better resolving). This observation is in line with the 
studies of the “error landscape” by Klein et al. [35]; see 
also [46, 59].

7 � Minimum Dissipation Eddy‑Viscosity 
Models

Following the previous conclusions, which basically boil 
down to being careful with additional viscosity, we next 
consider eddy-viscosity models that give the minimum 
eddy dissipation required to prevent accumulation of 
kinetic energy in the LES solution. The first minimum-
dissipation model is the QR model [96]. This model 
depends on invariants of the resolved rate-of-strain tensor 
and switches off in laminar and transitional flow. It will 
be shown that it gives good results on isotropic grids, but 
insufficient dissipation on anisotropic grids. To address 

this flaw, a new minimum-dissipation model for aniso-
tropic grids AMD [75] is proposed; the text below gives 
a summary of the modeling. Further considerations on 
minimizing eddy viscosity by means of invariants can be 
found in [97] and [92].

7.1 � The QR Model

The QR model, introduced by Verstappen [96], is an eddy-
viscosity model which gives the minimum eddy dissipation 
required to remove sub-grid scales from the LES solution, 
and is based on the invariants Q and R of the rate-of-strain 
tensor. In the derivation of the QR model, the LES filter 
width is related to the computational grid from the outset. 
Also, the sub-grid scales are assumed to be periodic over 
a grid scale, and the eddy viscosity is assumed to be con-
stant over a grid cell. The basic line of reasoning behind this 
model is a balance between the production of sub-grid scale 
energy by the convective term (related to R) and its dissipa-
tion through flow gradients (related to Q).

7.1.1 � Derivation from the Minimum‑Dissipation Condition

Minimum-dissipation models are derived from the assump-
tion that the sub-grid scales of a LES solution � should 
not become dynamically significant. This condition can be 
formalized by bounding the kinetic energy of the sub-grid 
scales �′ from above

on each grid cell �� . Unfortunately, this condition can-
not be used directly to derive an LES model in terms of 
the resolved scales, because the evolution equation for the 
kinetic energy of the sub-grid scales 1

2
|�′|2 depends on the 

sub-grid scales. Therefore we convert the above condition 
by bounding the energy of the sub-grid scales from above in 
terms of known quantities.

Assuming periodicity of the sub-grid scales, a Poincaré 
inequality bounds the energy of variations of a solution � 
of the Laplace equation (i.e. deviations �′ from its mean) by 
the norm of its gradient

where C� is the Poincaré constant for the domain �� . Using 
(29) with � = � , the non-growth requirement for �′ in (28) 
can be transferred to a related non-growth requirement for 
the gradient ∇�:

(28)�t ���

1

2
|�′|2 d� ≤ 0

(29)���

1

2
(��)2 d� ≤ C� ���

1

2
|∇�|2 d�,

(30)�t ���

1

2
|∇�|2

3×3
d� ≤ 0,
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Fig. 9   The normalized mean flow velocity and turbulent fluctuations 
in channel flow obtained without model, with the symmetry-preserv-
ing regularizations, and with eddy-viscosity models at Reb = 6875 
(from [73])
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where | ⋅ |3×3 is the norm in ℝ3×3.
The evolution of the velocity gradient energy 1

2
|∇�|2

3×3
 

can be expressed (using Einstein convention) by rewriting 
the Navier–Stokes equations as [96]

The term −
(
(∇�)T∇�

)
∶ S represents the creation of velocity 

gradient energy by the convective terms in the Navier–Stokes 
equations. For incompressible flow, it can be shown [10, 96] 
that this term can be expressed in terms of the third invariant 
of the rate-of-strain tensor R(�) ≡ −S2 ∶ S∕3 = − det (S) as

Substitution of the eddy-viscosity assumption, and assum-
ing that the molecular and eddy viscosity are constant over 
a grid cell, gives after integration

 Here |∇S|2
3×3×3

≡ (
�kSij

)(
�kSij

)
 is the norm in ℝ3×3×3 , and � 

is the outward-pointing unit normal vector along the bound-
ary of the grid cell. In the derivation of a minimum-dissipa-
tion model, terms that can be rewritten to boundary integrals 
are ignored, because they model an exchange of velocity 
gradient energy with the environment of the grid cell, and 
not the creation or dissipation of energy inside the grid cell.

A minimum-dissipation model, obeying (30), delivers the 
minimum eddy dissipation required to cancel the generation 
of velocity gradient energy by the convective terms, i.e. it 
(just) satisfies “dissipation ≥ production”. Thus, neglecting 
the molecular viscosity, the eddy viscosity �e should satisfy

The minimum amount of eddy viscosity that satisfies this 
condition is given by

Finding a (sharp) lower bound for the denominator in (34) 
gives an amount of eddy viscosity that is larger than the 
strict minimum. Such an estimate can be obtained from 

(31)

�t

(
1

2
|∇�|2

3×3

)
= −

(
(∇�)T∇�

)
∶ S −

(
∇Sij

)
⋅ ∇

(
2�Sij

)

+
(
∇Sij

)
⋅

(
∇�ij

)
+ ∇ ⋅ (…) .

(32)
−
(
(∇�)T∇�

)
∶ S = −

4

3
S2 ∶ S + ∇ ⋅ (…)

=4R(�) + ∇ ⋅ (…) .

(33)

�t ∫��

1

2
|∇�|2

3×3
d� =4∫��

R(�) d� − 2� ∫��

|∇S|2
3×3×3

d�

− 2�e ∫��

|∇S|2
3×3×3

d� + ∫���

(…) ⋅ � dS .

�e ���

|∇S|2
3×3×3

d� ≥ 2���

R(�) d� .

(34)�min
e

= 2
∫
��

R(�) d�

∫
��

|∇S|2
3×3×3

d�
.

(once more) the Poincaré inequality (29) by choosing � = S . 
Introducing the second invariant of the velocity gradient 
Q(�) =

1

2
S ∶ S (for incompressible flow), such a Poincaré 

inequality reads

The Poincaré constant C� depends on the size of the grid 
cell. Assuming the flow field satisfies Laplace’s equation, it 
is equal to the inverse of the smallest non-zero eigenvalue 
of the negative Laplace operator −� ≡ −∇ ⋅ ∇ = ∇T∇ on 
the grid cell �� . Payne and Weinberger [62] have derived 
an analytic value of this Poincaré constant: C� = �2∕�2 for 
convex domains of diameter � . We will see later (Sect. 7.1.2) 
that on elongated domains this constant can be decreased 
(i.e. sharpened). We will also see that it is relevant to choose 
this constant as small as possible, but not too small.

With the above estimate, which is used from right to left, 
from (34) an upper bound for the required minimum eddy 
viscosity is found:

The approximate equality at the right-hand side is obtained 
by averaging the integrals over the grid cell �� and evaluat-
ing them using mid-point integration [2, 96]. Finally, the 
QR model is obtained by clipping the numerator to positive 
values:

The computational complexity of the QR model is low. 
Compared to the classical Smagorinsky model, the QR 
model only needs additional computation of the third invari-
ant R(�) of the already-available tensor S. The theoretical 
properties of the QR model are promising. The second-
invariant Q(�) is positive, and therefore the model delivers 
eddy dissipation if the third invariant R(�) is positive. The 
above derivation demonstrates that R(�) is only positive in 
regions where sub-grid scales are produced.

It can be shown that R(�) vanishes in flows with zero 
exact eddy dissipation according to the analysis by Vreman 
for all possible LES filters [106]. In practice, this means 
that the QR model switches off for laminar and transitional 
flows. Also, the QR model switches off in two-dimensional 
flows such as solid body rotation. This is considered to be 
an appropriate property of an LES model [59].

Remark The QR model can be related to the Smagorin-
sky model by choosing the Smagorinsky constant Cs in (26) 
according to

2���

Q(�) d� ≡ ���

|S|2
3×3

d� ≤ C� ���

|∇S|2
3×3×3

d� ,

(35)�min
e

≤ C�

∫
��

R(�) d�

∫
��

Q(�) d�
≈ C�

R(�)

Q(�)
.

(36)�QR
e

= C�

max {R(�), 0}

Q(�)
.
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7.1.2 � Choice of Filter Width on Anisotropic Grids

On anisotropic grids a choice has to be made for the filter 
width � that appears in the Poincaré constant C� . In [96] the 
filter width of the QR model is set according to

This filter width is dominated by the mesh spacing in the fine 
grid direction. The results in Sect. 7.3.5 will demonstrate 
that this choice gives insufficient eddy dissipation to remove 
sub-grid scales in the coarse directions.

A more conventional approximation for the filter width 
on an anisotropic grid is the geometric mean approximation

The most robust choice (with the largest �e ) is presumably 
to set the filter width equal to the mesh spacing in the coarse 
direction

Below, in Figs. 17 and 18, we will present some results 
obtained with the proposed filter widths. This will demon-
strate that it is desirable to develop a better model for com-
putational grids that are not isotropic.

7.2 � The Anisotropic Minimum‑Dissipation (AMD) 
Model

The QR model has good theoretical properties on isotropic 
computational grids as we will show below. However, as 
mentioned above, the velocity gradient energy used in the 
derivation of the QR model is dominated by variations in 
the direction with the smallest mesh spacing, which leads 
to insufficient damping in the coarse direction.

This flaw can be addressed by realizing that when there is 
sufficient resolution at a given (small) grid spacing, then in 
that direction there is no sub-grid scale activity to account 
for. This observation suggests to relate production and dis-
sipation of sub-grid energy to the velocity gradient with 
respect to the grid, i.e. in computational space rather than in 
physical space. The anisotropic minimum-dissipation AMD 
model is based on this observation. Below we will present 
its derivation, which follows the derivation of the QR model 
discussed above. We will also demonstrate that this model 
is consistent with the gradient model on anisotropic grids.

C2
s
=

C�

2

R(�)

Q(�)3∕2
.

(37)
1

�2
=

1

3

(
1

�x2
+

1

�y2
+

1

�z2

)
.

(38)� = (�x�y�z)
1

3 .

(39)� = max {�x,�y,�z} .

7.2.1 � The Derivation of the AMD Model for Rectangular 
Grids

In the above spirit, an alternative for the decay of sub-grid 
energy in (30) is obtained if the velocity gradient is scaled in 
each direction by the mesh spacing in that direction:

where the scaled velocity gradient is denoted (
∇��

)
ij
= (�x)i�ivj (no summation). In this way we look at 

the variations of the solution in computational space rather 
than in physical space.

Also this scaled velocity gradient energy is connected to the 
sub-grid scale energy (28) via a Poincaré inequality:

where this time the Poincaré constant C equals the inverse of 
the smallest non-zero eigenvalue of the differential operator 
−∇� ⋅ ∇� = ∇�

T∇� on the grid cell �� . It is independent of 
the grid size; the latter has been mixed into the definition 
of the scaled velocity gradient energy. For a scaled Laplace 
operator it equals 1∕�2 [62].

Similar to (31), the evolution equation for the scaled veloc-
ity gradient energy inside a grid cell can be expressed as

where the skew–symmetry of the differential operator (� ⋅ ∇) 
for incompressible flow was used to rewrite the production 
of scaled velocity gradient energy by the convective term 
[55, 100], just as in the derivation of the QR model. In con-
trast to Eq. (33), the above evolution equation expresses the 
production and dissipation of scaled velocity gradient energy 
in terms of the velocity gradients ∇� and ∇�� instead of only 
the rate-of-strain tensor S.

Demanding that the generation of scaled velocity gradient 
energy inside a grid cell �� should (at least) be canceled by 
the eddy dissipation gives the condition

As in the derivation of the QR model, using the scaled Poin-
caré inequality in (41), with � replaced by ∇� , the integral 
on the left-hand side can be bounded from below. This then 
leads to an amount of eddy viscosity that is sufficient to 
satisfy the above criterion:

(40)���
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2
|∇��|23×3 d� ≡ ���

1

2

∑
i,k

[
(�x)k�kvi

]2
d� ,

(41)���

1

2
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2
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1

2
|∇��|23×3

)
= −
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(∇��)

T∇��
)
∶ S

− (� + �e)∇�∇� ∶ ∇�∇�
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where the Poincaré constant is now independent of the grid 
size.

Introducing the symmetric tensor

the eddy viscosity of the AMD model is defined by

where the integrals over a grid cell �� are evaluated using 
the mid-point integration rule.

Below, in Sect.  7.2.2, it is shown that the tensor B is pro-
portional to the leading-order term of the Taylor expansion of 
the exact sub-grid-stress tensor for a separable LES filter when 
the Poincaré constant is chosen as C = 1∕12 . With this choice, 
the contraction −B ∶ S is proportional to the eddy dissipation 
of the gradient model [12] on an anisotropic rectangular grid. 
Also, this value of C does not differ much from the Poincaré 
constant for the solution of a Laplace equation C = 1∕�2.

Remarks

•	 With some notational modifications, the above model can 
also be applied on curvilinear grids [71].

•	 The AMD model has been derived based on the equations 
in computational space, and not on the equations in physi-
cal space which is the usual way for turbulence modeling. 
This strategy falls in a wider philosophy of first discretizing 
the basic flow equations and only thereafter take the actions 
you want to take [94].

•	 There exists an interesting quantitative difference between 
the QR model and the AMD model for two-dimensional 
flow. The leading-order term of the exact sub-grid tensor 
gives no eddy dissipation for two-dimensional flow on iso-
tropic grids, but may give eddy dissipation for two-dimen-
sional flow on anisotropic grids. The derivation of the QR 
model implicitly assumes an isotropic grid, and switches 
off for all two-dimensional flows [96]. However, the AMD 
model follows the behavior of the exact sub-grid tensor, 
and does give eddy dissipation for certain two-dimensional 
flows on anisotropic grids.

7.2.2 � Consistency with the Anisotropic Gradient Model

The dependence of the AMD model on the velocity gradient 
can be explained by deriving an eddy-viscosity model which 
gives the same eddy dissipation as the anisotropic gradi-
ent model [12]. For this model with a separable anisotropic 

�e = C
− ∫

��

(
(∇��)

T∇��
)
∶ S d�

∫
��

|∇�|2
3×3

d�
,

(43)B ≡ (∇��)
T∇�� ,

(44)�AMD
e

= C
max {−B ∶ S, 0}

|∇�|2
3×3

,

finite-volume filter, just averaging cell values, the Taylor 
expansion of the coarse-grained velocity field is

Substitution hereof in the sub-grid stress tensor gives a Tay-
lor expansion which can be expressed in terms of the scaled 
gradient ∇� as

The leading-order term of this expansion is the gradient 
model [12] for a rectangular separable filter, given by

where B is the symmetric tensor in Eq. (43). The eddy dis-
sipation of this anisotropic gradient model is equal to

To rigorously derive the AMD model from the gradient 
model, the sub-grid model should be proportional to the 
velocity gradient tensor instead of the rate-of-strain tensor

with an eddy dissipation given by

Equating this with (46) gives an eddy viscosity �e equal to

We recognize the eddy viscosity of the AMD model in 
Eq. (44) with C = 1∕12.

Thus, the AMD model gives eddy dissipation exactly 
if the gradient model gives eddy dissipation. This implies 
that the AMD model switches off for flows with zero exact 
eddy dissipation [106]. Hence, consistency with the leading-
order term of the exact sub-grid stress is a nice theoretical 
property. It is to be stressed that this consistency does not 
hold if −B ∶ S < 0 , i.e. the AMD model vanishes when the 
leading-order term of the gradient model would yield nega-
tive dissipation (and becomes unstable in practice) [105].

7.2.3 � Discrete Corrections for the Model Constant

In most numerical methods, the derivative in the convec-
tive term as used in the numerators of the QR and AMD 
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models is discretized using a central 2�x stencil. In contrast, 
the two first derivatives of the dissipative term, related to 
the denominator in (44) are effectively discretized on a �x 
stencil to prevent decoupling. Another way of saying this, is 
that the Laplacian induced by the convective discretization 
has a twice larger stencil than the Laplacian induced by the 
diffusive discretization.

This discrete difference has to be accounted for in the 
above analytic reasoning. As a consequence, a correction 
has to be made to the length scale in the Poincaré inequality. 
As the length scale appears quadratically, this means that 
for a second-order central discretization of convection the 
model constant should be multiplied by a factor 22 = 4 . For 
a fourth-order discretization, a similar correction is required. 
It has been argued in [71] that this correction equals 2.832.

Thus, for second- and fourth-order discretization, the 
Poincaré constants compatible with the gradient model are 
adapted to

If a comparison with box-filtered experimental results 
(instead of results filtered with the spectral filter) is to be 
made, then decent agreement is observed for decaying grid 
turbulence if the above unfiltered model constants are chosen √
2 times as large [71]. I.e. for the second-order discretiza-

tion one may choose for the box-filtered models

7.3 � QR and AMD Results

To validate the proposed minimum-dissipation models, sim-
ulations of turbulent channel flow (see Sects. 5.1 and 6.3), 
decaying grid turbulence (see Sect. 5.2) and a temporal 
mixing layer are performed. The results obtained with the 
minimum-dissipation models are compared with results 
obtained with other methods described in this paper, like 
the Smagorinsky models [43, 80] and the Vreman eddy-
viscosity model [106].

(50)2nd-order:C =
1

3
; 4th-order: C ≈ 0.236 .

(51)2nd-order: C =

√
2

3
; 4th-order: C ≈ 0.334 .

7.3.1 � Turbulent Channel Flow

The studied channel flows are the classical simulations, also 
studied in Sects. 5.1 and 6.3, at friction Reynolds numbers 
of approximately 395 and 590 [57].

The bulk Reynolds number based on half the height of 
the channel Reb = ubH∕� is fixed at either 6875 or 10, 975 
by imposing a constant bulk velocity ub through an isotropic 
pressure gradient. The computational grid has 64 cells in 
each direction, with an isotropic mesh spacing in the stream-
wise and span-wise directions. Table 4 lists the characteris-
tics of the grid in wall units for both bulk Reynolds numbers.

Simulations are performed with the proposed minimum-
dissipation models. The results are compared with results 
of a no-model simulation, a simulation with the Vreman 
model [106], and a direct numerical simulation (DNS) on a 
much finer grid [57]. The minimum-dissipation models are 
used with the model constants proposed in Eq. (50). The 
grid is anisotropic, and therefore the QR model requires an 
approximation of the filter width. We use the filter width 
approximation proposed in the literature in Eq. (37) and the 
conventional geometric mean approximation in Eq. (38).

The friction Reynolds numbers computed in the channel 
flow simulations are listed in Table 5. The mean flow veloc-
ity and the turbulent fluctuations normalized by the com-
puted friction velocity at both Reynolds numbers are shown 
in Figs. 10 and 11. For both channel flows, the simulations 
without an LES model predict a friction Reynolds number 
which considerably exceeds the actual Reynolds number. 
The Vreman model and the AMD model give good results 
for the studied channel flows. For these models, the error 
in the predicted friction Reynolds number is smaller than 
3%, and the normalized mean flow velocity profiles agree 
accurately with the DNS.

The results obtained with the QR model are very sensi-
tive to the approximation of the filter width. The QR model 
with the filter width approximation based on the geometric 
mean in Eq. (38), � ≈ �y1∕3 , is too dissipative and gives 
a friction Reynolds number which is considerably smaller 
than the actual friction Reynolds number. The QR model 
with the smaller filter width approximation from the litera-
ture in Eq. (37), � ≈

√
3�y , accurately predicts the friction 

Table 4   The mesh spacing of the computational grids in wall units 
based on friction Reynolds number obtained in direct numerical sim-
ulations of turbulent channel flow [57]

Reb Re� �x+ �y+
min

�y+
max

�z+

6875 392.2 38.5 2.6 40.7 19.3
10,975 587.2 57.6 3.9 61.0 28.8

Table 5   The friction Reynolds 
numbers obtained in the 
channel flow simulations at 
bulk Reynolds numbers of 
6875 and 10, 975 with the QR 
model with different filter width 
approximations, the AMD 
model, the Vreman model, and 
without an LES model. Also 
friction Reynolds numbers 
obtained from a DNS are listed

Reb 6875 10,975
DNS [57] 392.2 587.2
QR (37) 392.4 587.8
QR (38) 348.0 509.5
AMD 386.3 578.5
Vreman [106] 386.5 570.5
No model 422.2 618.6
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Reynolds number and the normalized mean flow velocity 
profiles in channel flow simulations.

7.3.2 � Decaying Grid Turbulence

To assess the applicability of the minimum-dissipation 
models to decaying turbulence, large-eddy simulations of 
an experiment by Comte-Bellot and Corrsin [14] are per-
formed on a coarse 643 grid. The setup of the simulations 
is essentially the same as in Sect. 5.2. Simulations with the 
AMD model are performed with the second-order accurate 
collocated method for compressible flow. The model con-
stant for unfiltered results proposed in Eq. (50) is compared 
with the model constant for box-filtered results proposed 
in Eq. (51). Results are compared with experimental meas-
urements, box-filtered experimental measurements, and 
results obtained with the dynamic Smagorinsky model in 

the staggered second-order accurate method for incompress-
ible flow.

The energy decay and the energy spectra computed in 
simulations with the two model constants are shown in 
Fig. 12. The box-filtered reference data in the energy decay 
plot is obtained by fitting a velocity field on a 643 grid to 
the desired energy spectrum, and application of the box-
filter. The energy decay obtained with the AMD model with 
the constant for unfiltered results given in Eq. (50) agrees 
with the energy decay measured in the experiments. The 
computed energy spectra agree with the measured energy 
spectra at all wave numbers up to the one-dimensional point-
to-point oscillation. These results indicate that the AMD 
model appropriately reflects the dissipative nature of sub-
grid scales in decaying grid turbulence.

In a similar way, the energy decay obtained with the 
AMD model with the model constant for box-filtered results 
in Eq. (51) closely agrees with the energy decay of the box-
filtered experimental measurements. The energy spectra 
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Fig. 10   Mean velocity profiles and turbulent fluctuations obtained in 
simulations of channel flow at Reb = 6875 with the QR model [with 
the filter width proposed in (37), and the geometric mean approxi-
mation in (38)], with the AMD model, with the Vreman model, and 
without model. Also, the results of a DNS are shown
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Fig. 11   Mean velocity profiles and turbulent fluctuations obtained in 
simulations of channel flow at Re� ≈ 590 (Reb = 10, 975)
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obtained with this model constant agree with the box-filtered 
energy spectra. Also, the results collapse on results obtained 
with the dynamic Smagorinsky model.

To check grid convergence of the AMD model, simula-
tions of the experiment by Comte-Bellot and Corrsin [14] 
have also been performed on 963 and 1283 grids. The model 
constant (50) for unfiltered results is used. The energy spec-
tra obtained on both grids are shown in Fig. 13 and differ 
visibly only in the cut-off region.

7.3.3 � Temporal Mixing Layer

To assess the minimum-dissipation models for transitional 
flow and for anisotropic grids, simulations of a weakly 

compressible temporal mixing layer at a high Reynolds num-
ber have been performed. A temporal mixing layer consists 
of two streams with opposite velocities. At the interface 
of the two streams, the velocity differences trigger a Kel-
vin–Helmholtz instability, which eventually causes transi-
tion to turbulence. The temporal mixing layer studied here 
is essentially the same as in [106]. All quantities are non-
dimensionalized by half the initial vorticity thickness of the 
mixing layer, the free stream velocity, the free stream pres-
sure, and the free stream temperature. The non-dimensional-
ized coordinate x is aligned with the stream-wise direction, y 
with the direction normal to the mixing layer, and z with the 
span-wise direction. The initial non-dimensionalized veloc-
ity profile is given by a hyperbolic tangent

To trigger transition to turbulence, random perturbations 
with an amplitude of 0.05 exp(−y2∕4) are superimposed to 
the initial velocity field. The initial pressure is set equal to 
the free stream pressure p = 1 , and the initial non-dimen-
sionalized temperature profile is set to

where M denotes the free stream Mach number. The mix-
ing layer is weakly compressible with a Mach number of 
M = 0.25 , and the Reynolds number based on half the initial 
vorticity thickness is 100,000.

The computational domain spans 90 times half of the 
initial vorticity thickness in each direction. The boundary 
conditions in the stream-wise and span-wise directions are 
periodic. At the boundaries in the direction normal to the 
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Fig. 12   The computed kinetic energy decay and energy spectra at 
times 42M∕U0 , 98M∕U0 and 171M∕U0 in simulations of decaying 
grid turbulence with the AMD model with the collocated second-
order accurate method. The model constant for unfiltered results 
is compared with the model constant for box-filtered results. Also, 
results obtained with the dynamic Smagorinsky model, the experi-
mental measurements, and box-filtered experimental measurements 
are shown
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Fig. 13   The computed energy spectra at times 42M∕U0 , 98M∕U0 and 
171M∕U0 in simulations of decaying grid turbulence with the AMD 
model with the collocated second-order accurate method on finer 
grids. The energy spectrum obtained on the 963grid is compared with 
the spectrum obtained on a 1283 grid
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mixing layer at y = − 45 and y = 45 , a free slip boundary 
condition is imposed.

The simulations of the temporal mixing layer have been 
performed with the collocated fourth-order accurate method 
for compressible flow employing the proposed minimum-
dissipation models, with the model constants as proposed 
in (50). Results obtained with the minimum-dissipation 
models are compared with results obtained with the Vreman 
model [106], which is considered to be a proper model for 
the mixing layer. Also, the results are compared with results 
obtained with the classical Smagorinsky model [80]. For a 
comparison with the dynamic Smagorinsky model, see [75].

7.3.4 � Mixing Layer on an Isotropic Grid

The first set of simulations is carried out on an isotropic 
grid with 90 cells in each direction. Figure 14 shows the 
evolution of the total kinetic energy in the computational 
domain and the momentum thickness of the mixing layer. 

The results of the minimum-dissipation models closely 
agree with results of the Vreman model. This is desirable, 
because the Vreman model is known to give good results 
for this mixing layer [106]. The minimum-dissipation 
models and the Vreman model predict an approximately 
constant growth rate of the mixing layer after t = 60 , 
which suggests that the mixing layer is self-similar in the 
turbulent regime.

The classical Smagorinsky model is overly dissipative 
in the transitional regime, and delays transition of the mix-
ing layer. Also, the Smagorinsky model does not predict 
a linear growth of the mixing layer. These disadvantages 
of the Smagorinsky model in simulations of the mixing 
layer are sometimes resolved by using the Smagorinsky 
constant Cs = 0.10 instead of Cs = 0.17 [17]. However, this 

0 50 100 150 200
2.8

3

3.2

3.4

3.6

x 10
5

t

E
k

 

 

QR
AMD
Vreman
Smag.

(a) Total kinetic energy

0 50 100 150 200
0

2

4

6

8

t

θ

(b) Momentum thickness

Fig. 14   The evolution of the non-dimensionalized total kinetic energy 
and the momentum thickness in simulations of the temporal mixing 
layer on an isotropic grid with the QR model, the AMD model, the 
Vreman model, and the Smagorinsky model

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

t

∂ 
θ 

/ ∂
 t

 

 

QR
AMD
Vreman
Smag.

(a) Momentum thickness

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

y / θ

〈 u
’ u

’ 〉

 

 

t = 80
t = 100
t = 120
t = 140
t = 160

(b) Streamwise velocity fluctuations

Fig. 15   The growth rate of the momentum thickness of the mixing 
layer in simulations of the temporal mixing layer on an isotropic grid 
with the QR model, the AMD model, the Vreman model, and the 
Smagorinsky model, and the spatially averaged stream-wise velocity 
fluctuations obtained with the AMD model at different times in the 
turbulent regime



324	 W. Rozema et al.

1 3

Smagorinsky constant gives too little eddy dissipation in the 
turbulent regime of the mixing layer [105].

To assess the behavior of the minimum-dissipation mod-
els in the self-similar regime, the growth rate of the mixing 
layer and plots of the velocity fluctuations in the stream-wise 
direction are shown in Fig. 15. The minimum-dissipation 
models predict an approximately constant growth rate of the 
mixing layer from t = 80 to t = 160 . Plots of the stream-wise 
velocity fluctuations against the normalized normal coordi-
nate computed with the AMD model indeed collapse. This 
demonstrates that the minimum-dissipation models appro-
priately capture the self-similar character of the temporal 
mixing layer.

The minimum-dissipation models deliver eddy dissipa-
tion for less flows (as characterized by the velocity gradient 
tensor) than the Vreman model. To check that the minimum-
dissipation models give sufficient eddy dissipation to prevent 

pile-up of kinetic energy, stream- and span-wise energy 
spectra have been recorded at the center plane y = 0 of the 
mixing layer.

Figure 16 shows the kinetic energy spectra at t = 140 . 
The energy spectra closely resemble the E(k) ∼ k−5∕3 decay 
law: no considerable pile-up of kinetic energy is observed. 
In fact, the energy spectra obtained with the minimum-dis-
sipation models closely agree with energy spectra obtained 
with the Vreman model.

7.3.5 � Mixing Layer on an Anisotropic Grid

The above results demonstrate that the QR model and the 
AMD model give good results for the temporal mixing 
layer on an isotropic grid. To assess the minimum-dissi-
pation models on anisotropic grids, the simulations from 
the previous section are repeated on a grid with dimensions 
90 × 360 × 90 . This grid has the same mesh spacing in the 
stream-wise and span-wise directions, but a four-times 
smaller mesh spacing in the normal direction.

Simulations of the temporal mixing layer on the aniso-
tropic grid are performed with the QR model, the AMD 
model, and the Vreman model. As in the previous section, 
the minimum-dissipation models are used with the model 
constants for unfiltered results in Eq. (50). On anisotropic 
grids, the model constant for the QR model requires an 
approximation of the filter width � ; see Sect. 7.1.2. Here, 
the choice (37) gives a filter width � = 1∕

√
6 = 0.408 , 

which is considerably smaller than the mesh spacing in the 
coarser grid directions �x = �z = 1 . This raises the ques-
tion whether the QR model gives sufficient eddy viscosity 
to dissipate sub-grid variations in the coarser directions for 
this filter width. The more conventional geometric mean 
approximation (38) gives a filter width of � = 0.630 . The 
most robust choice by setting the filter width equal to the 
mesh spacing in the coarse direction (39) gives a filter width 
of � = �x = �z = 1 for the present grid. In contrast, for the 
AMD model, the anisotropy of the LES filter is merged into 
the scaled velocity gradients that constitute the model: an 
ad-hoc approximation of the filter width is not required.

Figure 17 shows the evolution of the total kinetic energy 
in the computational domain and the growth rate of momen-
tum thickness of the temporal mixing layer. Just as on the 
isotropic grid, results obtained with the AMD model closely 
agree with results obtained with the Vreman model. On this 
anisotropic grid, transition of the temporal mixing layer 
occurs slightly earlier than on the coarser isotropic grid. This 
is not troublesome, because the transition to turbulence in 
simulations of a mixing layer is in general very sensitive to 
grid resolution, the accuracy of the used numerical method, 
and the perturbation of the initial condition [70].

The AMD model and the Vreman model predict an 
approximately constant growth rate of the mixing layer from 
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t = 60 until t = 160 . The results of this model are compara-
ble to results obtained with the dynamic Smagorinsky model 
[75]. The results of the QR model on the anisotropic grid 
are very sensitive to the used approximation of the filter 
width. The filter width (37) does not delay the transition 
compared with the Vreman model and the AMD model, but 
gives a lower growth rate of the mixing layer in the turbulent 
regime. For the geometric mean filter width (38), the QR 
model gives results comparable to the Vreman model and the 
anisotropic dissipation model. The robust maximum filter 
width (39) delays the transition of the mixing layer com-
pared to the Vreman model and the anisotropic dissipation 
model, and predicts a higher growth rate of the mixing layer 
in the turbulent regime.

The differences between the LES models and approxima-
tions of the filter width on anisotropic grids can further be 

studied by examination of the energy spectra in the turbu-
lent regime. Figure 18 shows the stream-wise and span-wise 
energy spectra at the center plane y = 0 of the mixing layer 
at t = 140 . The Vreman model and the AMD model properly 
dissipate the energy of sub-grid scales on the anisotropic 
grid, and the obtained energy spectra closely resemble the 
E(k) ∼ k−5∕3 decay law.

8 � Conclusions

In this paper, low-dissipation methods and models for the 
simulation of turbulent airflow have been studied. Both 
numerical discretization methods as well as turbulence 
models have been addressed. Their common theme is the 
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minimal use of additional diffusion, be it as part of the dis-
cretization or as part of the turbulence model.

8.1 � Discretization Without Artificial Dissipation

The first part of the paper focuses on discretization meth-
ods without artificial dissipation. A new analysis of 
energy-conserving methods for compressible flow has 
been proposed using square-root variables. It concisely 
expresses the conservation properties of convective trans-
port as a skew–symmetry of the convective terms. By 
transferring this skew–symmetry to the discrete simulation 
method, a class of energy-conserving symmetry-preserv-
ing simulation methods for collocated curvilinear grids 
can be derived. Main properties are:

1.	 The methods discretely conserve the primary variables 
mass, momentum and total energy, i.e. they are proper 
finite-volume methods for compressible flow.

2.	 The convective terms preserve the secondary variables 
kinetic and internal energy at the discrete level. This 
property ensures that artificial dissipation cannot over-
whelm the eddy dissipation of an LES model. Moreover, 
it prevents spurious generation of kinetic energy by dis-
crete convection and therefore improves the numerical 
stability of the method.

3.	 The energy-conserving methods can be applied for gen-
eral (structured) curvilinear grids. Higher-order versions 
can be obtained through Richardson extrapolation.

4.	 The formulation in square-root variables allows for 
straightforward derivation of energy-conserving time-
integration methods.

5.	 The square-root variables also allow to define symmetry-
preserving regularization turbulence models.

The developed simulation method has been assessed by 
performing simulations of channel flow and decaying grid 
turbulence. The method is stable without additional artifi-
cial dissipation for simulations of subsonic channel flow on 
under-resolved grids where it accurately captures the solu-
tion. Under-resolved simulations of decaying grid turbulence 
on coarse grids are also stable, but erroneously give pile-up 
of kinetic energy near the grid cut-off showing the need for 
a turbulence model.

The symmetry-preserving method has been implemented 
in the simulation method Enflow of NLR [37], with which 
large-scale simulations of the transitional airflow over a delta 
wing have been performed. The challenge of these simula-
tions is to accurately capture the development of the shear 
layer that separates at the leading edge of the wing. Compar-
ison with experiments shows that the onset of unsteady flow 
and the onset of full turbulence are predicted accurately [71].

8.2 � Low‑Dissipation Large‑Eddy Simulation Models

When the computational grid is not fine enough to accurately 
capture the smallest turbulent flow structures by means of 
DNS, coarse-grained turbulent flow models are required. 
Therefore, in the second part of the paper, an overview of 
low-dissipation LES models has been given. Regularization 
models [90, 95], which generate no dissipation at all but 
which merely redistribute the energy over the scales, are 
useful on nearly-resolved grids (e.g. in channel flow simula-
tions), but there is possibly pile-up of energy near the grid 
cut-off (e.g. in decaying turbulence). Some amount of energy 
dissipation appears to be necessary on under-resolved grids, 
but not too much.

The test cases show that the amount of eddy viscosity 
needed in an LES method is dependent on the resolution of 
the grid. This information forms the basis for a new class of 
minimum-dissipation models: the QR model [96] and the ani-
sotropic minimum dissipation model AMD [1, 75]. The former 
has been developed for isotropic grids, whereas the latter is a 
generalization to anisotropic grids. To deal with the anisotropy, 
the analytic derivation of the AMD method is carried out in 
transformed spatial coordinates similar to computational space 
(as opposed to physical space).

Both models are based on an estimate of the production of 
sub-grid energy, and give just enough dissipation to remove 
the sub-grid scales from the LES solution. They appropriately 
give eddy viscosity in regions of turbulent flow, but switch off 
in regions of laminar and transitional flow. The models are 
consistent with the exact sub-filter tensor: the QR method on 
isotropic grids, the AMD method also on anisotropic grids. 
This makes the AMD model a good starting point in the 
research of consistent and practical LES models.

The fundamental simplicity of minimum-dissipation mod-
els is elegant. However, their application could be limited to 
flows in which the energy dissipation of forward scatter down 
to unresolved scales is dominant. Combination with a (energy-
conserving) regularization model to model back scatter might 
then be useful. Also, the minimization ideas of AMD could 
be applied to other models, like the Bardina model, as done 
by Streher et al. [85]. A further extension could be to include 
non-dissipative terms in the AMD model, e.g. related to the 
skew–symmetric part of the velocity gradient, while staying 
consistent with the exact sub-filter tensor [78, 79].
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Appendix 1: Computation of the Metric 
Terms

A second-order accurate discretization of the area vector ��1 
can be computed straightforwardly as

The derivatives of the transformation are discretized as (see 
Fig. 19)

where short-hand notation

is used to simplify the expressions. Likewise, second-order 
accurate discretization of the area vectors in the other coor-
dinate directions can be derived.

A second-order accurate discretization of   at the cell 
center of the computational grid cell with index i, j, k is
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which can be computed directly using the discretizations of 
the area vector ��1 at the cell faces i − 1

2
, j, k and i + 1
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and a discretization

where the interpolation �
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2
,j,k is given by

The geometric interpretation of these discrete vectors 
is revealed if the dependence of the mesh spacing �� is 
removed from the discretizations through the substitutions

With reference to Fig. 20, the discrete area vector Af  is 
equal to the cross product (52) of the two bold vectors: the 
proposed discrete area vector is equal to the area vector of 
a polyhedron with the face vertices as edges. Elementary 
analysis [71, p. 32] reveals that the divergence of the discrete 
area vector vanishes:

In a similar way, the proposed discrete grid cell volume �i,j,k 
is equal to the volume of the hexahedron with the vertices of 
the grid cell as vertices.
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