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geometric objects. On the other hand, computational analy-
sis has focused on the problem-solving part of engineering. 
Thus, the main attention has been drawn to the develop-
ment of mathematical models governing physical phenom-
ena as well as the reliability and efficiency of their numeri-
cal treatment. Still, design models are usually the starting 
point of the analysis process in order to define the domain 
of interest. In current engineering design, however, they are 
subsequently approximated by finite element meshes for 
computation. Since this is a fundamental step in conven-
tional simulations, there is a substantial body of literature 
on meshing, see e.g., [28, 94, 98, 281, 322] and the refer-
ences cited therein. Finite element analysis (FEA) was a 
widely used commercially available procedure in engineer-
ing prior to the advent of commercial CAD. Nevertheless, 
FEA finds itself separated from design by its own represen-
tation of geometrical objects, which is different from CAD. 
The given situation has contributed to a loss of communi-
cation between these fields, both of which are essential in 
the process of addressing practical engineering problems.

Isogeometric analysis [66, 140] provides an alternative 
to the conventional analysis methodology that converts 
CAD models for use in FEA. The key idea is to perform 
numerical simulations based on CAGD technologies. 
Besides the fact that this synthesis offers several computa-
tional benefits, such as high continuity [67, 68, 187], the 
long term goal of isogeometric analysis is to enhance the 
overall engineering product development process by clos-
ing the gap between design and analysis. An invaluable 
byproduct of this effort is the initiation of a dialog between 
these two communities which had drifted apart.

Gaining insight into each others’ fields is an essen-
tial component to tackle the problem of interoperability 
between analysis and design representations. It is easily 
overlooked that each discipline has its open challenges 

Abstract  We review the treatment of trimmed geometries 
in the context of design, data exchange, and computational 
simulation. Such models are omnipresent in current engi-
neering modeling and play a key role for the integration of 
design and analysis. The problems induced by trimming are 
often underestimated due to the conceptional simplicity of 
the procedure. In this work, several challenges and pitfalls 
are described.

1  Introduction

Trimming is much more complicated than most peo-
ple think. It is one of the most fundamental procedures in 
Computer Aided Geometric Design (CAGD) that allows 
the construction of complex geometries. Unfortunately, it 
is also the source of one of the most serious impediments 
to interoperability between Computer Aided Design (CAD) 
systems and downstream applications like numerical simu-
lation [268]. This work aims to increase awareness of this 
issue by providing a broad overview of trimmed geometries, 
addressing design, data exchange, and analysis aspects.

Once upon a time, the original vision of CAD was the 
holistic treatment of the engineering design process [247]. 
However, it has emerged as an autonomous discipline 
which seeks to optimize the modeling and visualization of 
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and limitations. Due to the capability of current CAD sys-
tems it may seem that design models are ideal creations, 
but this notion is simply not true. There are several open 
issues that need to be solved. Compact overviews are given 
in the independent compilations of Kasik et  al.  [151] and 
Piegl [228]. In these papers, robustness and interoperabil-
ity issues are identified as crucial CAD problems. Although 
trimmed geometries are not explicitly mentioned in these 
papers, they play a central role in both cases.

The most common description of CAGD models is the 
boundary representation (B-Rep) where an object is repre-
sented by its boundary surfaces rather than a volume dis-
cretization. These surfaces are usually constructed indepen-
dently from each other and often only certain regions of a 
surface are supposed to be part of the actual object. Trim-
ming allows a modeler to cut away the superfluous sur-
face areas. To be precise, the visualization of the surfaces 
is adapted while their parameterization and mathematical 
description remain unchanged. This procedure is very con-
venient and inevitable in many operations such as surface-
to-surface intersection. However, the main problem is that 
trimming cannot practically be performed exactly within 
CAGD applications. Thus, the final object possesses small 
gaps and overlaps between its surfaces. Figure 1 illustrates 

some inaccuracies of a model defined by a torus inter-
sected by a plane. Note that the discrepancy between the 
computed intersection CTrimmed and the related exact solu-
tion CTorus is scarcely visible. The imperfections of trimmed 
geometries are usually very well hidden from the user, but 
they surface as soon as a design model is applied to down-
stream applications. To use the words of Piegl [228]:

While one can cheat the eye in computer graphics and 
animation, the milling machine is not as forgiving.

Numerical simulation of practical trimmed models is 
more than the analysis of a specific type of a CAGD repre-
sentation. It rather addresses the core issue of the interoper-
ability between design and analysis, namely the appropriate 
treatment of the deficiencies of design models. To be clear, 
this problem is not restricted to isogeometric analysis, but 
manifests itself as complications during the meshing pro-
cess in the case of conventional analysis methodology. In 
fact, geometry repair and corrections of design models are 
mandatory tasks, before actual mesh generation can be 
applied [86, 114]. Isogeometric analysis of trimmed geom-
etries tackles these issues directly at the source, i.e.,  the 
design model. Thus, many pitfalls that may occur in a 
meshing process can be circumvented [61].

(a) (b)

(c) (d)

Figure 1(c)

x

y

Figure 1(d) CTorus

CTrimmed

x

y

Original objects Trimmed geometry

Approximate visualization Approximate intersection

Fig. 1   Model of a half of a torus: a initial non-trimmed torus and 
surface defined in the xy-plane, b resulting trimmed object, c closeup 
showing the deviation from the visualization mesh (blue background) 
and the computed intersection curve CTrimmed (yellow) of the objects, 

and d closeup illustrating the difference of the original inner circle of 
the torus CTorus (red) to the intersection curve computed. The images 
c and d are captured in top view. (Color figure online)
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It is important to note that the CAD community is also 
influenced by the ongoing dialog. An increasing number 
of researchers propose new modeling concepts that take 
the needs of downstream applications into account, see 
e.g.  [61, 203, 247]. We believe that the aligned efforts of 
both communities are the keys to unite design and analysis, 
resulting in a holistic treatment of the engineering design 
process.

This paper intends to encourage the interaction of 
these fields by providing an overview of various aspects 
related to trimmed geometries. Section 2 begins by review-
ing some basic concepts frequently used in CAGD. It is 
focused on non-uniform rational B-spline (NURBS) based 
B-Rep models since they are the most popular representa-
tion in engineering design. Based on this, Sect. 3 addresses 
the role of trimming in the context of design. A critical 
assessment of exchanging data between different software 
packages is provided in Sect.  4. Finally, various strate-
gies to deal with trimmed geometries in an isogeometric 
analysis process are outlined in Sect. 5. Each of these three 
review sections closes with a brief summary of the main 
points and their discussion. Section 6 moves on to focus on 
a particular aspect, namely the stabilization of a trimmed 
basis. In the concluding section, the main findings are sum-
marized and some open research questions are listed.

2 � CAGD Fundamentals

B-splines and their rational counterpart NURBS provide 
the basis for the geometric modeling of most engineering 
models. This section gives a brief overview of this CAGD 
technology focusing on aspects which are crucial for the 
subsequent discussion. For further information related to 
spline theory the interested reader is referred to [34, 62, 
83]. Detailed descriptions of efficient algorithms can be 
found in [230]. In the present paper, the terms B-spline and 
NURBS are used to refer to basis functions. The geomet-
ric objects described using these functions, i.e., curves and 
surfaces, may be generally denoted as patches.

2.1 � Basis Functions

B-splines Bi,p consist of piecewise polynomial segments 
which are connected by a certain smoothness. They are 
defined recursively for a fixed polynomial degree  p by a 
strictly convex combination of B-splines of the previous 
degree, p − 1, given by

(1)

Bi,p(u) =
u − ui

ui+p − ui
Bi,p−1(u)

+
ui+p+1 − u

ui+p+1 − ui+1
Bi+1,p−1(u),

with

The essential element for this construction is the knot vec-
tor � characterized as a non-decreasing sequence of coor-
dinates ui ⩽ ui+1. The parameters ui are termed knots and 
the half-open interval [ui, ui+1) is called ith knot span. Each 
knot span has p + 1 non-vanishing B-splines as illustrated 
in Fig. 2. Each basis function is entirely defined by p + 2 
knots and its support, supp{Bi,p} = {ui,… , ui+p+1}, is local. 
Within each non-zero knot span s, us < us+1, of its support, 
Bi,p is described by a polynomial segment s

i
. Each knot 

value indicates a location within the parameter space which 
is not C∞-continuous, i.e., where two adjacent s

i
 join. Suc-

cessive knots may share the same value, which is indicated 
by the knot multiplicity m, i.e., ui = ui+1 = ⋯ = ui+m−1. In 
general, the continuity between adjacent segments is Cp−m. 
This control of continuity is demonstrated for a quadratic 
B-spline in Fig.  3. If the multiplicity of the first and last 
knot is equal to p + 1, the knot vector is denoted an open 
knot vector. The knot sequence

is a special from of such a knot vector since it yields the 
classical pth-degree Bernstein polynomials. To be precise, 
Bernstein polynomials are usually defined over the interval 

(2)Bi,0(u) =

{
1 if ui ≤ u < ui+1,

0 otherwise.

(3)� =
{
u0 = ⋯ = up, up+1 = ⋯ = u2p+1

}
,

us us+1

Bs,0

us us+1

Bs−1,1
Bs,1

us us+1

Bs−2,2
Bs−1,2
Bs,2

Fig. 2   Non-vanishing B-splines Bi,p of knot span s for different 
degrees p = {0, 1, 2} which are based on a knot vector with equally 
spaced knots

B0

B1

B2

C1 C1

1 2 3 4
(a)

B0 B2

C0

1 2.5 4
(b)Ξ = {1, 2, 3, 4} Ξ = {1, 2.5, 2.5, 4}

Fig. 3   Polynomial segments s of a quadratic B-spline due to differ-
ent knot vectors � . Note the different continuity C between the seg-
ments based on the knot multiplicity
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[0, 1]. If necessary, the restriction to this interval can be 
easily accomplished by a coordinate transformation.

As a whole, B-splines based on a common knot vector � 
form a partition of unity, i.e.,

and they are linearly independent, i.e.,

is satisfied if and only if ci = 0, i = 0,… , I − 1. Due to the 
latter property, every piecewise polynomial  fp,� of degree 
p over a knot sequence � can be uniquely described by a 
linear combination of the corresponding Bi,p. Hence, they 
form a basis of the space �p,� collecting all such functions

An example of a cubic B-spline basis defined by an open 
knot vector is shown in Fig. 4.

The first derivative of B-splines are computed by a lin-
ear combination of B-splines of the previous degree

For the computation of the kth derivative, this is general-
ized to

with

(4)
I−1∑
i=0

Bi,p(u) = 1, u ∈
[
u0, uI+p

]
,

(5)
I−1∑
i=0

Bi,p(u)ci = 0,

(6)𝕊p,� =

I−1∑
i=0

Bi,pci, ci ∈ ℝ.

(7)

B�
i,p
(u) =

p

ui+p − ui
Bi,p−1(u)

−
p

ui+p+1 − ui+1
Bi+1,p−1(u).

(8)B
(k)

i,p
(u) =

p!

(p − k)!

k∑
�=0

ak,�Bi+�,p−k(u),

Remark 1  The knot differences of the denominators 
involved in the recursive formulae (1), (7) and (8) can 
become zero. In such a case the quotient is defined to be 
zero.

2.2 � Curves

B-spline curves of degree p are defined by basis functions 
Bi,p due to a knot vector � with corresponding coefficients 
in model space1 ci which denote control points. The geo-
metrical mapping  from parameter space to model space 
is given by

with I representing the total number of basis functions. The 
derivative is

In general, control points ci are not interpolatory, 
i.e.,  they do not lie on the curve. The connection of ci by 
straight lines is called the control polygon and it provides an 
approximation of the actual curve. An important property 
of a B-spline curve is that it is contained within the convex 
hull of its control polygon. In particular, a polynomial seg-
ment related to a non-zero knot span s, i.e., u ∈ [us, us+1), 
is in the convex hull of the control points cs−p,… , cs. The 
continuity of the whole piecewise polynomial curve C(u) 
is inherited from its underlying basis functions, i.e.,  the 
continuity at knots is determined by the knot multiplicity, 
and the position of its control points. These relationships 
are illustrated in Fig. 5. Note that the interpolatory B-spline 
B4,2 of Fig. 5a corresponds to the kink at c4 in Fig. 5b and 
that the second polynomial segment lies within the con-
vex hull of c1 to c3. If the curve consist of a single poly-
nomial segment, i.e., the associated � is of form (3), the 
curve is referred to as Bézier curve. A polynomial segment 
of a B-spline curve is termed a Bézier segment, if it can be 

a0,0 = 1,

ak,0 =
ak−1,0

ui+p−k+1 − ui
,

ak,� =
ak−1,� − ak−1,�−1

ui+p+�−k+1 − ui+�
� = 1,… , k − 1,

ak,k =
−ak−1,k−1

ui+p+1 − ui+k
.

(9)(u) ∶= C(u) =

I−1∑
i=0

Bi,p(u)ci,

(10)� (u) ∶=
I−1∑
i=0

B�
i,p(u)ci.

0 1 2 3 4

B0,3

B1,3 B2,3 B3,3 B4,3 B5,3

B6,3

Fig. 4   B-spline basis specified by an open knot vector, 
i.e., � = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}

1  The model space is also referred to as physical space.
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represented by a Bézier curve. In Fig. 5b, this is the case 
for the segment u ∈ [3, 4] defined by the control points c4 
to c6.

B-spline curves can be generalized to represent rational 
functions such as conic sections. For this purpose, weights 
wi are associated with the control points such that

where d denotes the spatial dimension of the model space. 
The homogeneous coordinates ch

i
 specify a B-spline curve 

Ch(u) in a projective space ℝd+1. In order to obtain a curve 
in ℝd, the geometrical mapping  (9) is extended by a per-
spective mapping  with the center at the origin of ℝd+1. 
This projection is given by

where Cw = (Ch
1
,… ,Ch

d
)⊺ are the homogeneous vector 

components of the curve and the weighting function is 
determined by

The application of Eq. (12) is illustrated in Fig. 6. The pro-
jection C(u) is denoted as a non-uniform rational B-spline 
(NURBS) curve. The term rational indicates that the result-
ing curves are piecewise rational polynomials, whereas the 
term non-uniform emphasizes that the knot values can be 
distributed arbitrarily.

(11)ch
i
=
(
wici, wi

)⊺
=
(
cw
i
, wi

)⊺
∈ ℝd+1,

(12)C(u) = (Ch(u)) =
Cw(u)

w(u)
,

(13)w(u) =

I−1∑
i=0

Bi,p(u)wi.

The derivative of the NURBS geometrical mapping is 
defined by

with

Another way to represent NURBS curves is

with

The weighting function w(u) is the same as in Eq. (13) and 
Ri,p denotes a NURBS basis function. Since the weights wi 
are now associated with B-splines Bi,p the mapping  (17) 
employs control points ci of the model space. In gen-
eral, NURBS curves degenerate to B-spline curves, if all 
weights are equal. Hence, they are a generalization of them. 

(14)� (u) ∶=
w(u)

�Cw(u)

�u
−

�w(u)

�u
Cw(u)

(w(u))2
,

(15)
�w(u)

�u
=

I−1∑
i=0

B�
i,p
(u)wi,

(16)
�Cw(u)

�u
=

I−1∑
i=0

B�
i,p
(u)cw

i
.

(17)C(u) =

I−1∑
i=0

Ri,p(u)ci,

(18)Ri,p(u) =
wiBi,p(u)

w(u)
.

0 1 2 3 4

B0,2

B1,2 B2,2 B3,2

B4,2

B5,2

B6,2

(a)

c0

c1

c2

c3

c4

c5

c6

(b)

Basis functions

Quadratic B-spline curve

Fig. 5   Example of a B-spline curve: a B-splines based on 
� = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} and b a corresponding piecewise 
polynomial curve. In b, circles denote control points and the dotted 
lines indicate the convex hull of the dashed curve segment u ∈ [1, 2)

xh
1

xh
2

w = 1

w

Ch(u)
ch0

ch1

ch2

C(u)

c0

c1 c2

Fig. 6   Perspective mapping  of a quadratic B-spline curve Ch(u) in 
homogeneous form ℝ3 to a circular arc C(u) in model space ℝ2. The 
mapping is indicated by dashed lines 
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The properties of B-spline curves apply to their rational 
counterpart as well, if the weights are non-negative, which 
is usually the case.

2.3 � Spline Interpolation

In case of a spline interpolation problem, a given function f  
shall be approximated by a B-spline patch Ihf ∶=

∑I−1

i=0
Bi,pci.  

They agree at I data sites ū if and only if

The corresponding system of equations consists of 
the unknown coefficients  ci and the spline collocation 
matrix �u which is defined by

The Schoenberg–Whitney theorem [34, 83] states that the 
matrix �u is invertible if and only if

Since condition (21) guarantees that �u does not become 
singular, it is expected that the corresponding condition 
number gets large if ū approaches the limits of its allowed 
range. Non-uniformity of ū is another reason for an increas-
ing condition number. In fact, it gets arbitrary large if two 
interpolation sites approach each other, while the others are 
fixed. Several authors [11, 34, 184] recommend to interpo-
late at the Greville abscissae ug which are obtained by the 
following knot average

These abscissae are well known in CAGD and used for dif-
ferent purposes, e.g., to generate a linear geometrical map-
ping [83]. The most important feature of this approach is 
that it induces a stable interpolation scheme for moderate 
degrees p.

2.4 � Tensor Product Surfaces

Tensor product surfaces allow an extremely efficient evalu-
ation of patches. They play an important role in CAGD. In 
particular, B-spline and NURBS patches are very common. 
Bivariate basis functions for B-spline patches are obtained 
by the tensor product of univariate B-splines which are 
defined by separate knot vectors �I and �J . These knot vec-
tors determine the parameterization in the directions u and 
v, respectively. Moreover, they span the bivariate basis of a 

(19)f
(
ūj
)
=

I−1∑
i=0

Bi,p

(
ūj
)
ci, j = 0,… , I − 1.

(20)�u[j, i] = Bi,p

(
ūj
)
, i, j = 0,… , I − 1.

(21)Bi,p

(
ūi
) ≠ 0, i = 0,… , I − 1.

(22)u
g

i
=

ui+1 + ui+2 +⋯ + ui+p

p
.

patch. Combined with a bidirectional grid of control points 
ci,j the geometrical mapping  is determined by

The polynomial degrees are denoted by p and q, respec-
tively for each parametric direction. The Jacobian of the 
mapping  (23) is computed by substituting the occurring 
univariate B-splines by their first derivatives, alternately for 
each direction. In general, derivatives of B-spline patches 
are specified by

The efficiency of tensor product surfaces stems from the 
fact that their evaluation can be performed by a successive 
evaluation of curves [62]. Suppose the parametric value viso 
is fixed, the surface equation yields

(23)(u, v) ∶= S(u, v) =

I−1∑
i=0

J−1∑
j=0

Bi,p(u)Bj,q(v)ci,j.

(24)
�k+l

�ku�lv
S(u, v) =

I−1∑
i=0

J−1∑
j=0

B
(k)

i,p
(u)B

(l)

j,q
(v)ci,j.

u

v

(a)

(b)

1

2.5

4 1

2

3

4
0

1

B2,2(v)B2,2(u)

Parameter space

Basis function

Fig. 7   A bivariate basis determined by �I = {1, 1, 1, 2, 3, 4, 4, 4} 
and �J = {1, 1, 1, 2.5, 2.5, 4, 4, 4} for u and v, respectively: a shows 
the bivariate basis spanned by �I and �J , whereas b illustrates the 
construction of a corresponding bivariate B-spline
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with Ciso(u) denoting an isocurve of the surface defined by 
new control points c̃i. Hence, a surface can be evaluated by 
I + 1 or J + 1 curve evaluations, depending which paramet-
ric direction is evaluated first.

The tensor product nature of the patches is illustrated 
in Fig. 7 by means of a bivariate basis. Note that the uni-
variate knot values propagate through the whole param-
eter space. If both knot vectors of the resulting patch are 
of form (3), it is referred to as Bézier surface. NURBS sur-
faces are derived analogous to curves by the introduction of 
weights.

2.5 � Constructing Patches by Boundary Curves

The most basic surface construction scheme is to connect 
two curves Ci with i = 1, 2 by a linear interpolation. The 
resulting surfaces are termed ruled surfaces and they are 
defined as

where u, v ∈ [0, 1]. If Ci have the same degree and knot 
vector, it is straightforward to represent Sr as a single ten-
sor product surface. In this case the connection lines on Sr 
associate points of equal parameter value. Alternatively, the 
rulling (26) could also be performed according to relative 
arc length. This yields a different geometry which cannot 
be converted to a NURBS patch [230].

The construction of Coons patches is another very com-
mon procedure. Thereby, a surface Sc is sought to fit four 
boundary curves Ci(u) and Cj(v) with i = 1, 2 and j = 3, 4. 
The parameter range is again u, v ∈ [0, 1]. The curves have 
to satisfy the following compatibility conditions at the cor-
ners of the surface

(25)

S(u, viso) =

I−1∑
i=0

J−1∑
j=0

Bi,p(u)Bj,q(v
iso)ci,j

=

I−1∑
i=0

Bi,p(u)

(
J−1∑
j=0

Bj,q(v
iso)ci,j

)

=

I−1∑
i=0

Bi,p(u)c̃i = Ciso(u),

(26)
Sr(u, v) = (1 − v)C1(u) + vC2(u)

= (1 − v)Sr(u, 0) + vSr(u, 1),

(27)Sc(0, 0) = C1(u = 0) = C3(v = 0),

(28)Sc(1, 0) = C1(u = 1) = C4(v = 0),

(29)Sc(0, 1) = C2(u = 0) = C3(v = 1),

(30)Sc(1, 1) = C2(u = 1) = C4(v = 1).

C1(u)

C2(u)

C4(v)

C3(v)

Sc(0, 0)

Sc(1, 0)

Sc(1, 1)

Sc(0, 1)

(a)

(b)

(c)

(d)

Ruled surfaceSr
u(u, v)

Ruled surfaceSr
v(u, v)

Bilinear interpolationSc (u, v)

Coons patchS (u, v)

Fig. 8   Components of a bilinear Coons patch due to the boundary 
curves Ci(u) and Cj(v) highlighted by thick lines 
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Using a bilinear interpolation a Coons patch is given by

where Sr
u
 and Sr

v
 are ruled surfaces based on Ci(u) and Cj(v), 

respectively, and Sr
c
 is the bilinear interpolant to the four 

corner points

These various parts of a Coons patch are visualized in 
Fig.  8. Equation  (31) can be generalized by using two 
arbitrary smooth interpolation functions f0(s) and f1(s) 
fulfilling

and

The corresponding Coons patch can be expressed in matrix 
form as

with 0 ∈ ℝd denoting the zero vector. Various functions 
may be used to specify fk such as Hermite polynomials or 
trigonometric functions. In case of Bernstein polynomials, 
the surfaces Sr

u
, Sr

v
, and Sr

c
 are in Bézier or B-spline form 

and the resulting Coons patch can be represented as a sin-
gle NURBS surface.

Finally, Gordon surfaces are a further generalization of 
Coons patches, where the surface Sr

u
 and Sr

v
 interpolate sets 

of isocurves rather than boundary curves. Gordon surfaces 
are also referred to as transfinite interpolation [103]. The 
term indicates that these surfaces interpolate an infinite 
number of points, i.e.,  the boundary curves and isocurves. 

(31)Sc(u, v) = Sr
u
(u, v) + Sr

v
(u, v) − Sr

c
(u, v),

(32)Sr
c
(u, v) =

[
1

u

]⊺[
Sc(0, 0) Sc(0, 1)

Sc(1, 0) Sc(1, 1)

][
1

v

]
.

(33)fk(�) = �k� , k, � = 0, 1,

(34)f0(s) + f1(s) = 1, s ∈ [0, 1], s = u, v.

(35)

Sc(u, v) =

−

⎡⎢⎢⎣

−1

f0(u)

f1(u)

⎤⎥⎥⎦

⊺⎡⎢⎢⎣

0 Sc(u, 0) Sc(u, 1)

Sc(0, v) Sc(0, 0) Sc(0, 1)

Sc(1, v) Sc(1, 0) Sc(1, 1)

⎤⎥⎥⎦

⎡⎢⎢⎣

−1

f0(v)

f1(v)

⎤⎥⎥⎦
,

Based on this definition, ruled surfaces, Coons patches, and 
Gordon surfaces may be generally referred to as transfinite 
interpolations.

2.6 � Representation of Triangles

Triangular patches may be represented by tensor product 
surfaces despite their four-sided nature. Therefore, either 
a side or a point is degenerated as shown in Fig.  9. Such 
degenerated patches are often used since it is convenient to 
use only one surface representation. However, it is apparent 
that this can lead to a distorted parameterization. In addi-
tion, the enforcement of continuity between adjacent sur-
faces is difficult in this case.

An alternative is to use triangular patches. A point 
on such surfaces is defined by barycentric coordinates, 
i.e., (r, s, t) with r + s + t = 1. We will focus on triangular 
Bézier patches S△ which are specified as

with

representing linearly independent bivariate Bernstein 
polynomials of degree p. The related control points ci,j,k 
form a triangular array as shown in Fig.  10 for the cubic 
case. The resulting patch fulfills the convex hull property 
and its boundaries are Bézier curves. Rational triangular 
Bézier patches may be defined again by the introduction of 
weights. Despite the potential of triangular patches, there 
are currently no commercial CAD applications that admit 
the use of splines on triangulations.

(36)
S△(r, s, t) =

∑

i + j + k = p

i, j, k ⩾ 0

Bi,j,k,p(r, s, t)ci,j,k,

(37)Bi,j,k,p(r, s, t) =
p!

i!j!k!
risjtk,

(a) (b)Degenerated side Degenerated point

Fig. 9   Tensor product representation of triangular patches: a an 
angle between adjacent edges has 180◦ and b a side shrinks to a 
point. Circles mark the corner points of the resulting patch

c3,0,0 c0,0,3

c0,3,0

c2,0,1 c1,0,2

c2,1,0

c1,2,0

c0,1,2

c0,2,1

c1,1,1

(a) (b)Control grid structure Triangular patch

Fig. 10   Triangular Bézier patch of degree p = 3: a the general struc-
ture of the control grid and b a corresponding surface
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2.7 � Trimmed Surfaces

In order to represent arbitrary surface boundaries when 
using tensor product surfaces, patches can be modified by 
trimming procedures. For this purpose, curves are defined 
within the parameter space of a surface S(u, v). These trim-
ming curves Ct(ũ) are usually B-spline or NURBS curves. 
They are given by

where ct
i
∈ ℝ2 are the control points of the trimming curve 

given in the parameter space of the trimmed surface. Con-
nected trimming curves are ordered such that they form a 
closed directed loop. Loops also include the boundary of 
the original patch if it is intersected by trimming curves. 
These loops divide the resulting trimmed patch into distinct 
parts where the curves’ directions determine which parts 
are visible. In other words, trimming procedures are used 
to define visible areas v over surfaces independent of the 
underlying parameter space.

As a result, surfaces with non-rectangular topologies 
can be represented in a very simple way. An example of a 
trimmed patch is shown in Fig.  11. It is emphasized that 
the mathematical description, i.e., the tensor product basis 
and the related control grid, of the original patch does not 
change and is never updated to reflect the trimmed bound-
ary represented by the independent trimming curves. 
Trimmed surfaces should be considered as an “engineer-
ing” extension of tensor product patches [83]. On the one 
hand, they permit a convenient way to define arbitrary sur-
face topologies and provide a means for visually display-
ing them in graphics systems. On the other hand, they do 
not offer a canonical solution to related problems such as 
a smooth connection of two adjacent patches along a trim-
ming curve, although the graphics system leads the user 
to incorrectly believe so. In fact, enormous effort has been 
and is still devoted to resolve the shortcomings of trimming 
procedures as discussed later on in Sect. 3.

2.8 � Solid Models

Most CAGD objects are geometrically represented by their 
boundary only. In other words, these models consist of sev-
eral boundary patches �

where Γ denotes the entire boundary of the object. If 
Γ is a curve, several patches may be needed to represent 

(38)Ct(ũ) =

[
u(ũ)

v(ũ)

]
=

I−1∑
i=0

Ri,p(ũ)c
t
i
,

(39)Γ =

I⋃
i=1

�i,

distinct sections with different polynomial degrees. This is 
not a critical issue since curves can be joined rather eas-
ily, even with a certain continuity. However, a problem 
arises as soon as surfaces are considered, because tensor 

(a)

(b)

(c)

Ct

Av

Regular B-spline patch

Trimmed parameter space

Trimmed patch

Fig. 11   Trimmed tensor product surface: a regular surface defined 
by a tensor product basis, b trimmed parameter space where a loop 
of trimming curves (thick line) specifies the visible part v of c the 
resulting trimmed surface as displayed by a CAD system’s graphics 
display. The arrow in b denotes the direction of the trimming curves
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product surfaces are four-sided by definition. A single reg-
ular NURBS surface may be closed equivalently to a cyl-
inder or a torus. Spherical objects may be represented as 
well, if degenerated edges are introduced. Yet, more com-
plicated objects such as a double torus require a partition 
into multiple NURBS patches. The connection of two adja-
cent surfaces is complicated, especially if a certain conti-
nuity is desired. In general, non-conforming parameteriza-
tions along surface boundaries need to be expected.

In addition to the geometric representation of the bound-
ary patches, the topology of the object has to be described. 
It addresses the connectivity of the various components, 
and the corresponding entities are termed

–	 vertices relating to points,
–	 edges relating to curves,

–	 faces relating to surface.

It should be noted that the descriptions of an object’s shape, 
i.e., geometry, and its structure, i.e., topology, are separated 
[290]. By definition, a B-Rep model always consists of a 
data structure of both topological and geometric objects. 
Regarding isogeometric analysis, the parameterization of 
the geometry is a further important issue that should be 
taken into account. Figure  12 summarizes these various 
perspectives of a CAGD model representing a simple solid. 
The corresponding object consists of three trimmed sur-
faces and an untrimmed, or regular one. It is apparent that 
even simple CAGD models rely on multiple non-conform-
ing surfaces.

Finally, it should be mentioned that B-Reps are also 
used to describe dimensionally reduced objects, i.e.,  shell 
structures. In this case, the patches � specify the object 
itself rather than its boundary. It is important to note that 
the terms surface model and solid model do not refer to the 
dimension of an object. In CAGD, they rather indicate if a 
model contains topology information (solid model) or not 
(surface model). Based on the brief outline given here, the 
discussion on the representation of CAGD models will be 
continued in Sect. 3.2.

3 � Trimming in Computer Aided Geometric 
Design

There is a large body of literature on trimmed B-spline 
and NURBS geometries in CAGD. Trimming is addressed 
in the context of surface intersection, the development for 
appropriate data structures for solid modeling, the visu-
alization of objects which is referred to as rendering, and 
remodeling approaches. The following outline of these 
topics is meant to be comprehensive, but it is by no means 
complete. Further, some auxiliary techniques are presented.

The motivation for this section is twofold: first of all, it 
provides an overview of the historical development of trim-
ming approaches in the field of CAGD. Apart from being 
interesting in its own right, this insight exposes a num-
ber of general challenges, techniques, and ideas regarding 
trimmed geometries. Hence, it is hoped that the subsequent 
sections also give insight to further strategies dealing with 
trimming in the context of isogeometric analysis.

3.1 � Surface Intersection

Trimming is closely related to the problem of surface-to-
surface intersection. In general, the intersection of two par-
ametric surfaces

face 4

edge 1

edge 2
ed

ge
3

edge
4

ed
ge

5

edge 6

vertex 1

vertex 2

vertex 3

vertex 4

face 1

face 2

face 3

(a)

(b) (c)

Visualization and topological entities

Components Parameterization

Fig. 12   Different perspectives of a CAGD solid model: a visible part 
of the object and its topological entities (to be precise, the related 
geometric objects, i.e., points, curves, and surfaces, are displayed), 
b the geometric segments of the B-Rep and c the underlying math-
ematical parameterization of each surface. In c, dashed lines mark the 
boundary of the visible area and gray lines indicate the underlying 
tensor product basis. Note that the parameterization along common 
edges does not match
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leads to a system of three nonlinear equations, i.e., the three 
coordinate differences of S1 and S2, with four unknowns 
u, v, s, t [62]. If surfaces intersect, the solution usually 
yields curves, but also subsurfaces or points may occur. 
The computation of intersections is one of many “geomet-
ric interrogation” techniques, or processes, employed in 
all types of modeling. The development of a good surface 
intersection scheme is far from trivial since the method has 
to balance three contradictory goals: accuracy, efficiency, 
and robustness. The surveys  [219, 220] and the text-
books [4, 130, 221] provide detailed information on various 
approaches. Surface intersection algorithms can be broadly 
classified into four main categories: (i) analytic methods, 
(ii) lattice evaluation, (iii) subdivision methods, and (iv) 
marching methods.

3.1.1 � Analytic Methods

The intersection of two surfaces may be solved analytically, 
i.e.,  an explicit representation of the intersection curve is 
obtained. Early solid modeling systems used analytic meth-
ods to obtain exact parametric representations of the inter-
section of quadratic surfaces [40]. The intersection problem 
always has a simple solution when both surfaces are given 
as functions in implicit form [130]. The good news is that 
parametric surfaces can always be represented implicitly 
[265], but the main problem is that the algebraic complex-
ity of the intersection increases rapidly with the degree of 
the surfaces. This is often illustrated by a popular exam-
ple of the intersection of two bicubic patches which has an 
algebraic degree of 324 as shown by Sederberg [265, 266]. 
In addition, the intersection of two bicubic patches has a 

(40)S1(u, v) =
(
x1(u, v), y1(u, v), z1(u, v)

)
,

(41)S2(s, t) =
(
x2(s, t), y2(s, t), z2(s, t)

)
,

genus2 of 433 and only curves of genus 0, i.e.,  all degree 
two curves, cubic curves with one double point, quartic 
curves with three double points or one triple point, etc., 
can be expressed parametrically using rational polynomi-
als  [152]. Figure  13 illustrates two examples of implicit 
cubic curves with different genus. The complexity of sur-
face intersection curves has also been discussed in the 
study of Farouki and Hinds [88]. It is argued that the deri-
vation of an implicit representation is not practical and an 
approximation scheme may be preferred. In general, ana-
lytic methods have been restricted to low degree intersec-
tions, which yield exact results very fast.

3.1.2 � Lattice Evaluation

The basic idea of this technique is to reduce the dimension-
ality of surface intersections by computing intersections of 
a number of isoparametric curves [186, 250] (see Fig. 14). 
Once the discrete intersection points are obtained, they are 
sorted and connected by an interpolation scheme. In order 
to define an intersection curve, lattice evaluation involves 
an initial choice of a proper grid resolution. This is cru-
cial for both the robustness and efficiency of the method. 
Unfortunately, determination of an appropriate discrete step 
size is not straightforward and, if too coarse, may lead to a 
failure in identifying critical features [170].

Curve intersection schemes are also useful in the con-
text of ray tracing for visualization and point classifica-
tion in solid modeling [220]. In these applications a patch 
is intersected by a straight line, as discussed later on in 
Sects. 3.3.2 and 3.5.2.

10−1

1

0

−1

x

y

Genus 1

y − x3 = 0

10−1

−1

0

1

x

Genus 0

y2 + x3 − 2xy = 0

Fig. 13   Cubic curves with different genus. Note the double point in 
case of the genus 0 curve

Fig. 14   Intersection points based on line-to-surface computations

2  The genus g of a plane algebraic curve is specified by the degree p 
of the curve and the number I and multiplicity m of its singular 
points: g =

1

2

�
p2 − 3p + 2 −

∑I

i=1
mi(mi − 1)

�
.
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3.1.3 � Subdivision Methods

The key idea of subdivision approaches is to compute an 
intersection using approximations of the patches involved, 
rather than the actual objects themselves. These approxi-
mations are often defined by piecewise linear elements. 
Consequently, the intersection problem is subdivided into 
many, but significantly simpler, problems. The final inter-
section curve is obtained by merging the individual inter-
section results.

A good approximation of the original objects is of 
course essential for the accuracy of such techniques. How-
ever, subdivision algorithms become inefficient for high-
precision evaluation, especially if the decomposition is 
performed uniformly. A considerable improvement can be 
achieved if the region of the intersection, i.e.,  the affected 
elements, is estimated in a preprocessing step. This can 
be carried out by bounding boxes that completely enclose 
the corresponding element. Various construction schemes 
of such bounding boxes are outlined in Sect.  3.5.1. Their 
common aim is to allow an efficient determination if two 
objects are clearly separated or not. In particular, ele-
ments are recursively refined if their bounding boxes over-
lap, which leads to a non-uniform, adaptive subdivision 
algorithm as shown in Fig. 15. This process of successive 
refinement and removing of separable boxes is referred to 
as a divide-and-conquer principle [130].

An important advantage of subdivision methods is that 
they do not require starting points. On the other hand, the 
drawbacks can be summarized according to Patrikalakis 
and Maekawa [221] as follows: (i) they are only able to 
isolate zero-dimensional solutions, (ii) there is no certainty 
that each root has been extracted, (iii) the number of roots 
in the remaining subdomains is typically not provided, and 
(iv) there is no explicit information about root multiplicities 
without additional computations. Last but not least, (v) the 
method is not efficient in case of high-precision or higher 
order evaluations [181, 219].

3.1.4 � Marching Methods

Marching methods3 derive an intersection curve by step-
ping piecewise along the curve, e.g.,  [14, 20, 84]. Such 
methods usually consist of a search, a marching, and a 
sorting phase. The first phase detects an appropriate start-
ing point on the intersecting curve. Often, this is performed 
by a subdivision or lattice approach. In the marching phase, 
a point sequence along the intersection curve is developed 
starting from the points determined in the previous phase. 
The direction and the length of the next step are defined 
by the local differential geometry. Finally, the individual 
points and segments of the intersection curve are sorted 
and merged to disjoint pieces and curve loops.

According to Hoschek and Lasser  [130], all marching 
methods share some common problems: (i) determination 
of good starting points, (ii) detection of all branches of the 
intersecting curve, (iii)  avoiding of multiple detections of 
a intersection segment, (iv)  correct behavior at self-inter-
sections and singularities, (v) proper choice of the direction 
and length of the subsequent step, and (vi) a robust auto-
matic stopping criterion.

Despite all these issues, marching methods are by far 
the most widely used approaches due to their generality 
and ease of implementation  [170]. In addition, accuracy 
improvement can be easily achieved by decreasing the step 
size, and they are also very efficient, especially in combina-
tion with subdivision methods.

At this point, it should be emphasized that the problems 
related to topology detection of the intersection curve, 
i.e., finding all its branches and singular points, apply to all 
intersection methods and several authors have addressed 
them, e.g., [6, 105, 168, 222, 267, 283].

3.1.5 � Hybrid Methods

Every intersection method type has its benefits and draw-
backs, hence a number of authors have established hybrid 
methods that combine features of the different categories.

One of the elementary surface intersection schemes has 
been proposed by Houghton et  al.  [133]. The algorithm 
combines a divide-and-conquer approach with a New-
ton–Raphson procedure: firstly, the surface is subdivided 
into flat sub-pieces. Then, each sub-piece is approximated 
by two triangles and the intersection of these triangles is 
computed. In the next step, the resulting linear segments 
are sorted and connected using the information provided 
by the subdivision tree. Finally, the intersection points are 
refined by the Newton-Raphson scheme. The main advan-
tage of this method is that it is very general and can be 

Fig. 15   Determination of an intersection region of two curves by 
means of a divide-and-conquer scheme that uses axis-aligned bound-
ing boxes

3  Marching methods are also referred to as tracing methods.
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applied to any surface representation, in contrast to earlier 
techniques that utilize properties of certain surface types, 
e.g., [46, 111, 165, 180, 224, 256].

Barnhill et al. [19] presented another general procedure 
to compute the intersection of two rectangular C1 patches. 
It relies on a combination of subdivision and a marching 
scheme. It does not assume a special structure of the inter-
secting surfaces and special cases are considered, e.g., infi-
nite plane intersections, creases, and self-intersection. The 
algorithm has been enhanced in [20], including the uti-
lization of the divide-and-conquer concept presented by 
Houghton et al. [133].

Another combination of a divide-and-conquer subdivi-
sion with an iterative marching approach has been devel-
oped by Kriezis et  al.  [169]. The method enables inter-
secting algebraic surfaces of any degree with rational 
biquadratic and bicubic patches.

Krishnan and Manocha [170] developed an approach for 
NURBS surfaces that combines marching methods with the 
algebraic formulation. The starting points on the intersec-
tion curve are computed by Bézier curve–surface intersec-
tions that are obtained by eigenvalue computations. More-
over, they introduced a technique that allows detection of 
singularities during the tracing process.

3.1.6 � Representation of the Intersection Curve

Various techniques for the computation of approximate 
solutions to the surface-to-surface intersection problem 
have been outlined so far. It remains to discuss the actual 
representation of the result.

In general, three distinct representations of an intersec-
tion are obtained. On the one hand, the intersection curve 
in model space is computed. This may seem to be the main 
objective of the whole procedure at first glance, yet it is 
just a part of the overall solution process. The intersection 
curve has to be represented in each parameter space of the 
trimmed patches. These curves are referred to as trimming 
curves in the following and are needed to determine which 
surface points are visible.

Intersection and trimming curves can be defined by any 
kind of representation, but usually low-degree B-splines 
are used. They are constructed based on a set of sampling 
points that result from the surface-to-surface intersec-
tion algorithm applied [207]. Subsequently, an interpola-
tion scheme or another curve-fitting technique is used to 
generate a continuous approximation of the intersection 
in model space Ĉ. In general, this curve does not lie on 
either of the intersecting surfaces. A trimming curve Ct is 
obtained based on the sampling points given in the corre-
sponding parameter space [240]. The related curve C̃t in the 
model space is obtained by evaluating the equation of the 
surface S along its Ct. Alternatively, C̃t may be represented 

explicitly. DeRose et  al.  [71] presented an efficient and 
stable algorithm based on blossoming4 that can be use to 
exactly compute the control points of C̃t

. Such an expan-
sion of S◦Ct into an explicit representation C̃t may be used 
to join another patch to a trimmed surface, but there is no 
computational benefit [189]. Curves on surfaces have a 
degree of p(m + n) with p denoting the degree of the trim-
ming curve and m and n correspond to the degrees of the 
trimmed surface [83]. Renner and Weiß [240] compared 
exact and approximate representations of C̃t and con-
cluded that high degree is the main reason for preferring an 
approximation scheme. Furthermore, they formulated the 
following requirements for such a scheme: (i) low degree, 
(ii) fast and stable generation, (iii) full control over devia-
tion between exact curve and approximation, and (iv) con-
sideration of the specific surface geometry. According to 
them, these requirements are often not satisfied in current 
CAD systems. Besides the schemes presented in [240], sev-
eral other approaches have been proposed to compute good 
approximate curves on surfaces, see e.g., [90, 119, 317].

It is emphasized that C̃t does not coincide with the inter-
section curve in model space Ĉ, regardless of its representa-
tion. In addition, all procedures related to trimming curves 
are performed for each patch separately. Hence, the images 
of these curves C̃t

i
 do not coincide, neither with each other, 

nor with Ĉ. As a consequence, gaps and overlaps may 
occur between intersecting patches. There is no connec-
tion between these three representations of the intersection; 
although the sample points provide some information dur-
ing the construction, this data is only stored temporarily 
during the approximation procedure and never retained in 
memory for further use. These various approximations of a 
surface-to-surface intersection are summarized in Fig. 16.

Currently, the most common geometric modeling ker-
nels are ACIS, C3D, and Parasolid. They provide 
software components for the representation and manipula-
tion of objects, and form the geometric core of many CAD 
applications. All of them use splines for the description of 
trimming curves [43, 65, 282]. Yet, the representation of 
the intersection curve in model space varies: ACIS defines 
it by a three-dimensional B-spline curve, Parasolid uses 
a set of sorted intersection points that can be interpreted as 
a linear approximation, and in C3D the intersection curve 
is not stored at all. In C3D, trimming curves are computed 
such that they have the same radius and derivatives at the 
same parametric values. However, this is only satisfied at 
the intersection point used for the construction, for more 
details see [102].

4  A multi-affine and totally symmetric mapping is called a blossom 
(or polar form). Blossoms can be used to define spline algorithms in 
an elegant way. For details see [236].
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3.2 � Solid Modeling

Solid modeling is concerned with the use of unambiguous 
representations of three-dimensional objects. It is based on 

a consistent set of principles for mathematical and com-
puter modeling, and focuses on informational complete-
ness, physical fidelity, and universality [276]. An essential 
aspect is the topology of complex models. The consid-
eration of topology is indeed the fundamental difference 
between solid models and surface models, because the lat-
ter describes only the geometry of an object [5]. Topologi-
cal properties are not metrical, but address connectivity and 
dimensional continuity of a model [207]. There are several 
textbooks on solid modeling [120, 194, 207, 290] and for 
an elaboration of the historical development of this field of 
research the interested reader is referred to the landmark 
paper of Requicha [242] and the subsequent surveys by him 
and his co-authors [241, 243, 244, 251]. In the following, 
the progress towards a trimmed solid model as well as the 
related challenges are outlined.

3.2.1 � Formulation of Trimmed Solid Models

Pierre Bézier outlined the idea of trimming already in the 
1970s. In his paper [29], it is proposed to perform the seg-
menting of a model by curves defined on a square patch 
as illustrated in Fig.  17. These curves are termed “trans-
posant”, the present participle of the French word for trans-
pose. The concept reduces the amount of data and enables 
an easier blend with other patches. However, this idea was 
presented with little theoretical support and solid modeling 
requires an adequate mathematical theory as emphasized in 
a survey by Requicha and Voelcker [243].

It took some time to develop a rigorous way to represent 
trimmed free-form models. There are three broad catego-
ries for representing geometric objects: (i) decomposition, 
(ii) boundary, and (iii) constructive representations. Popu-
lar examples of decomposition representations are voxel 
models where a solid is approximated by identical cubic 
cells. Advantages and limitations of this approach are dis-
cussed in [153]. A B-Rep5 (B-Rep) defines an object by 
its bounded geometry, along with an associated topologi-
cal structure of corresponding entities, such as faces, edges, 
and vertices. The benefits of storing an object’s shape by 
means of its boundary were already elaborated in the 
seminal work of Braid  [36]. Most B-Reps consist of sev-
eral surface patches and additional information is stored to 
efficiently identify the various components and their rela-
tion to each other [241]. Various data structures for B-Reps 
have been used, e.g.,  [21, 73, 106], to find a compromise 
between storage requirements and response to topological 
questions. The best known constructive representation is 
so-called constructive solid geometry (CSG) [241]. Simple 
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S2(s, t)

Ĉ
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v
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s

t
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Parameter space ofS1(u, v)
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Fig. 16   Independent curve interpolation of an ordered point set to 
obtain approximations of the intersection of two patches S1(u, v) and 
S2(s, t). The set of sampling points depends on the surface-to-surface 
intersection algorithm applied. The subsequent interpolation of these 
points is performed in a the model space and the parameter space of b 
S1(u, v) and c S2(s, t) leading to the curves Ĉ, Ct

1
, and Ct

2
, respectively. 

The point data is usually discarded once the curves are constructed

5  B-Rep models with free-form surfaces are also referred to as sculp-
tured models.
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primitives are combined by means of rigid motions and 
regularized Boolean operations—union, intersection, and 
difference. The resulting object is represented by a binary 
tree where the internal nodes correspond to the Boolean 
operations and the primitive solids (or half spaces) are 
given in the leaves. An example of such a tree is given in 
Fig. 18.

Remark 2  The developments of isogeometric analysis and 
additive manufacturing using heterogeneous materials yield 
to a growing interest in another representation of three-
dimensional geometric models, namely volumetric repre-
sentations (V-Reps). As a matter of fact, several researchers 
in the CAGD community have started addressing this issue, 
see e.g., [31, 197, 321], including the definition of trimmed 
V-Reps [203].

Trimmed solid models combine concepts of B-Rep and 
constructive representation, i.e.,  they consist of free-form 

B-Reps merged by Boolean operations [245]. A unification 
of CSG and free-form surfaces was presented in the early 
1980s [56], perhaps for the first time. It was proposed to 
use models with straight edges but free-form surface inter-
polation in between. In the context of Boolean operations, 
however, the merging of B-Reps and CSG is more involved. 
Gossard et al. [104] developed a polyhedral modeler which 
combines the two representations by means of a graph 
structure. In particular, two relative position operators have 
been implemented. For manifold polyhedral objects, the 
implementation of Boolean operations is well understood 
[194]. However, the definition of a convenient representa-
tion for trimmed NURBS is a major challenge since the 
topology of patches becomes quite complicated if Boolean 
operations are performed [120]. B-Rep solid modeling uti-
lizes surface-to-surface intersection schemes to create arbi-
trarily defined free-form geometric entities, but the corre-
sponding algorithms require more than just computing the 
intersection curve. Weiler’s thesis  [310] provides a study 
on topological data structures. He summarized the essential 
attributes of geometric modeling operators as follows:

	 (i)	 Determination of the topological descriptions,
	(ii)	 Determination of the geometric surface descriptions,
	(iii)	 Guarantee that the geometry corresponds unambigu-

ously to the topology.

Setting up a topology requires the classification of the 
neighborhood of various entities (faces, edges, and verti-
ces) involved in the intersections [120]. The correlation of 
topology and geometry becomes particularly complicated if 
intersection curves have singularities or self-intersections. 
In addition, various forms of set membership classification, 
i.e., the determination if parts are inside, outside, or on the 
boundary of a domain, are used to compute B-Reps through 
Boolean operations. In order to determine if a surface point 
is inside or outside of the surface, the trimming curve must 
be defined in the parameter space as noted before. If the 
trimming curve would only be defined in the model space, 
the problem would be in fact ill-defined [205].

Fig. 17   An early sketch of a 
trimmed surface (reprinted from 
[29], with permission from 
Elsevier)

U

−

Fig. 18   Representation of the object shown in Fig. 12a by means of 
a CSG tree: the object is specified by a composition of simple solids 
using Boolean operations, i.e., union (U) and difference (−)
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The first formulation of a trimmed patch representation 
that supports Boolean operations and free-form geometry 
was presented in the late 1980s by Casale and Bobrow [47, 
49]. The domain of trimmed patches is specified by the 
two-dimensional equivalent of a CSG tree. Hence, a 
B-Rep is obtained that contains topology information of its 
trimmed components. Patches are intersected similar to the 
divide-and-conquer procedure of [133], but the trimming 
curve is then also transformed into the parameter space in 
order to perform Boolean operations and set membership 
classifications. At the same time, a rigorous trimmed sur-
face definition has been formulated by Farouki  [85]. The 
formulation is based on Boolean operation definitions. In 
particular, a trimmed patch is given by its parametric and 
implicit surface equations together with a trimming bound-
ary that is defined as a tree structure of non-intersecting 
and nested piecewise-algebraic loops. These loops consist 
of monotonic branches. The integral over the trimmed sur-
face is determined by a proper tessellation of the patch. It 
should, however, be pointed out that all these approaches 
fail to guaranty exact topological consistency since the 
images of the trimming curves do not match in general, as 
noted by Farouki et al. [87]. This leads to gaps and overlaps 
of the solid model, which can introduce failure of down-
stream applications such as numerical simulations.

3.2.2 � Robustness Issues

Several robustness issues arise in case of imprecise geo-
metric operations. As a matter of fact, the numerical out-
put from simple geometric operations can already be quite 
inaccurate. Complications may occur even for linear ele-
ments as discussed by Hoffmann [120–123] or the compu-
tation of the convex hull of a set of points [16], for instance. 
These problems are induced by propagation of numerical 
conversion, roundoff, and digit-cancellation errors of float-
ing point representation. The issue of rounding errors of 
numerical computations is known for a long time, at least 
since an early study by Forsythe [92]. Investigating the 
effects of floating point arithmetic on intersection algo-
rithms is an important area of research [220]. Since inter-
section problems can be expressed as a nonlinear poly-
nomial system of equations, the robustness issue maybe 
addressed from a computational point of view. Troubles 
arise if the problem is ill-conditioned which is for example 
the case for tangential intersections and surface overlaps 
[135, 195].

The key issue is that numerical errors may cause mis-
judgment as pointed out in [291]. Since the geometrical 
decisions are based on approximate data and arithme-
tic operations of limited precision, there is an interval of 
uncertainty in which the numerical data cannot yield fur-
ther information [122]. Of course, the situation gets even 

more delicate if trimmed free-form surfaces are involved 
where approximation errors are quite apparent due to the 
gaps and overlaps between intersecting patches. In case of 
topological decisions, the accumulation of approximation 
errors is especially crucial since inaccuracy leads to incon-
sistency of the output as indicated in Fig. 19.

There is a large amount of research that addresses the 
issue of accurate and robust solid modeling. The various 
concepts are outlined in the following subsections. The 
approaches are based on tolerances, interval arithmetic, and 
exact arithmetic.

3.2.2.1  Tolerances  Often, tolerances are used to assess 
the quality of operations like the computation of an inter-
section  [19, 130]. Several authors have suggested to use 
adaptive tolerances where each element of the model is 
associated with its own tolerance, e.g., [143, 271]. In addi-
tion, tolerances may be dynamically updated [82]. Robust-
ness of topology decisions may be improved by choosing 
the related precision higher than the one for the input data 
[291]. Another strategy is to adjust the data in order to obtain 
topologically consistent functions [204]. There are various 
other approaches that improve the application of tolerance 
and the interested reader is referred to the review of Hong 
and Chang [128] for a comprehensive discussion. In fact, all 
common CAD software tools are based on a user-defined 
tolerance that determines the accuracy of the geometrical 
operations performed. For example, the default tolerance 
values of ACIS are 10−6 for the comparison of points and 
10−3 for the difference of an approximate curve or surface to 
its exact counterpart [65]. Unfortunately, tolerances cannot 
guarantee robust algorithms since they do not deal with the 
inherent problem of limited-precision arithmetic.

x1

x2

x2

x1

(a)

(b)

Close intersections

Topological error

Fig. 19   Example of an incorrect topology: a two intersection points 
xi are close together which may lead to b an incorrect topological 
placement along the vertical line due to numerical approximation 
errors (re-execution of the original example [204])
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3.2.2.2  Interval Arithmetic  In case of interval arithme-
tic, e.g., [76, 208], numerical errors are taken into account 
by associating an interval of possible values to a variable. 
This approach is correct in the sense that result intervals 
are guaranteed to contain the real number that is the value 
of the expression. The interval size indicates the reliability 
of floating point computations. In particular, a narrow inter-
val is obtained in case of a successful operation whereas 
a wide interval reveals a risk [117]. This concept may be 
modified to rounded intervals to assure that the computed 
endpoints always contain the exact interval, see e.g., [3, 57, 
193]. Interval arithmetic may also be combined with back-
ward error analysis [255].

In the context of solid modeling, Hu et  al.  [134–136] 
suggested to use interval NURBS, i.e., NURBS patches 
with interval arithmetic. The control points are described 
by interval numbers rather than real numbers. Conse-
quently, they are replaced by control boxes and thus, curves 
and surfaces are represented by slender tubes and thin 
shells, respectively. A conceptional sketch is illustrated in 
Fig. 20. The object is defined by a graph with nodes rep-
resenting the topological entities. Each node has two lists: 
one for higher dimensional nodes and another for lower 
dimensional nodes that are arranged in counterclockwise 
order. This data structure has been applied to Boolean oper-
ations [136] and various intersection problems including 
ill-conditioned cases [134]. Gaps between actual intersect-
ing objects are avoided and no intersection point is missed. 
However, objects that do not intersect each other originally, 
may do after several geometric processing steps using 
rounded interval arithmetic. Furthermore, interval arithme-
tic approaches cannot achieve very high precision in rea-
sonable computation time [220].

3.2.2.3  Exact Arithmetic  In order to achieve robustness, 
algorithms have been developed that are based on exact 
arithmetic, which is the standard in symbolic computation 
[318]. Most of these approaches focus on polyhedral objects, 
see e.g.,  [26, 93, 291]. For linear geometries like planes 
and their intersections, exact rational arithmetic is enough 

to handle all necessary numbers. However, more involved 
objects rely on real algebraic numbers and therefore, they 
require more complicated data structures and algorithms. 
Keyser et al. [157–159] presented such a scheme for curve-
to-curve intersection in a plane and the theoretical frame-
work for exact computation based on algebraic numbers 
has been discussed by Yap [318]. A combination of exact 
approach and floating point calculation may also be used as 
suggested by Hoffmann et al. [123]. In their paper, symbolic 
reasoning is used when floating point calculation yields 
ambiguous results. Krishnan et al. [171] demonstrated that 
exact arithmetic can be applied to large industrial models. 
They presented a B-Rep modeling system dealing with 
models using over 50,000 trimmed Bézier patches.

Still, the main drawback of such approaches is their effi-
ciency. Exact computation can be several orders of mag-
nitude slower than a corresponding floating point imple-
mentation [156]. According to Patrikalakis and Maekawa 
[220], much research remains to be done in bringing such 
methods to practice. In particular, more efficient algorithms 
should be explored that are generally applicable in low and 
high degree problems.

3.2.2.4  Concluding Remarks  Overall, the formulation of 
robust solid models with trimmed patches is still an open 
issue. Tolerance based approaches are usually preferred 
since they are faster than the more precise ones. Hence, there 
is again a tradeoff between efficiency, accuracy, and robust-
ness as discussed in the context of intersection schemes. Of 
course, the importance of these properties to the object rep-
resentation strategy depends on the application context [45].

In fact, the problem of topologically correct merging 
of trimmed surfaces is such a challenge that more recent 
research in CAGD tries to circumvent this issue by employ-
ing other surface descriptions like T-splines and subdivi-
sion surfaces. These representations inherently possess a 
consistent topology and corresponding models are water-
tight, i.e.,  they do not have unwanted gaps or holes. How-
ever, they also have some drawbacks and the transforma-
tion of the original object usually leads to approximations, 
at least in the vicinity of the intersection curve as discussed 
later on in Sect. 3.4.

3.3 � Rendering

In computer graphics rendering refers to the process of 
generating images of a CAGD model. There are two dif-
ferent ways to approach this goal. On the one hand, indirect 
schemes first tessellate the surfaces of the object and the 
actual visualization is based on this render-mesh. On the 
other hand, rendering may be performed directly on free-
form surfaces by ray tracing. For a general introduction 

(a) (b) (c)Ideal Actual Interval

Fig. 20   Four splines representing a quadrilateral: a ideal mathemati-
cal object, b floating point model with approximation errors, and c 
interval arithmetic based representation
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to the creation of realistic images, the interested reader is 
referred to the textbook of Glassner [99].

3.3.1 � Tessellation

All commercial rendering systems tessellate free-form sur-
faces before rendering, because it is more efficient to opti-
mize the code for a single type of primitive [27].

Early on, trimmed surfaces had been rendered using the 
de  Boor  [33], Oslo  [60], or Boehm’s knot insertion  [32] 
algorithm. In addition to the subdivision, the regions must 
be sorted to find out which ones are hidden and have to be 
removed for rendering, see e.g., [52, 179, 292]. In general, 
subdivision approaches are expensive if they are performed 
to pixel level.

The rendering of trimmed NURBS surfaces can also be 
carried out using a combination of subdivision and adap-
tive forward differencing  [185, 275]. This method allows 
fast sampling of a large number of points, but suffers from 
error propagation. The main drawback in rendering trans-
parent objects is the redundant pixel painting in adaptive 
forward differencing. Furthermore, the overall performance 
of the algorithm obtained is rather slow [191].

Rockwood et al. [249] presented a scheme enabling ren-
dering of trimmed surfaces in real-time. Firstly, the surface 
is tessellated, i.e., approximated by linear triangles or other 
polygons. Therefore, all surfaces are subdivided into indi-
vidual Bézier patches. A trimmed Bézier patch may be sub-
divided further to obtain monotone regions that have con-
vex boundaries in the parameter space [165]. Each patch 
is tessellated into a grid of rectangles which are connected 
to the region boundaries by triangles. The actual rendering 
is performed on the approximate mesh. This idea has been 
adapted and enhanced by several other authors, e.g.,  [2, 
176, 191].

The triangulation of trimmed surfaces by a restricted 
Delaunay triangulation has been proposed by Sheng and 
Hirsch [279]. The basic idea of this technique is to compute 
the approximation mesh in the parameter space. Although it 
has been developed for stereolithography6 applications, the 
suitability for rendering is emphasized. Stereolithography 
was also the motivation in [74] where trimmed surfaces are 
triangulated by an adaptive subdivision scheme. In contrast 
to the approach by Rockwood et al. [249], both algorithms 
contain strategies to avoid cracks between patches. A gen-
eral discussion on how to avoid edge gaps in case of an 
adaptive subdivision is given by Dehaemer and Zyda [69].

According to Vigo and Brunet [300], the main drawback 
of the approaches previously mentioned [249, 279] is that 

the resulting elements may be odd-shaped, especially near 
the boundary. They suggested to overcome this issues by a 
piecewise linear approximation of trimmed surfaces using 
a triangular mesh that is based on a max-min angle crite-
rion. The algorithm is designed so that the resulting mesh 
can be used for stereolithography, FEA, and rendering. The 
mesh obtained consists of shape-regular elements and has 
no cracks between patches.

The determination of a proper step size of a tessellation 
is of course an important issue. The elements should not be 
too small in order to avoid oversampling of the surface, nor 
too big, since this would decrease the quality of the ren-
dering [1]. Lane and Carpenter [178] presented a formula 
for calculating the upper bound of the distance between a 
right triangle interpolating a surface. Later, the bound was 
improved by Filip et  al.  [89]. Based on this work, Sheng 
and Hirsch [279] derived the following formula for arbi-
trary triangles: the approximation error can be estimated 
by the difference of a parametric surface S(u, v) to a linear 
triangle T(u, v)

where T is the correspond region in the parameter space, 
� denotes the maximal edge length of T(u, v), and Mi are 
specified by

Hence, the upper bounds of second derivatives of the sur-
face are required. Once these bounds are determined, � can 
be computed for a given tolerance � by

The bounds on the second derivatives for a B-spline sur-
face (43)–(45) can be computed by constrained optimiza-
tion [89] or conversion to a Chebyshev basis [279]. Piegl 
and Richard [229] use the fact that the derivative of a 
B-spline is again a B-spline to define the upper approxima-
tion bounds by computing the maxima of the control points 
of the differentiated surfaces. They address the treatment 

(42)sup
(u, v)∈T

‖S(u, v) − T(u, v)‖ ≤ 2

9
�2
�
M1 + 2M2 +M3

�
,

(43)M1 = sup
(u, v)∈T

‖‖‖‖‖
�2S(u, v)

�2u

‖‖‖‖‖
,

(44)M2 = sup
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‖‖‖‖‖
�2S(u, v)

�u�v

‖‖‖‖‖
,
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�2S(u, v)

�2v
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.
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.

6  Stereolithography is an early and widely used 3D printing tech-
nique.



1077A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects﻿	

1 3

of rational surfaces by means of homogeneous coordinates 
and adjustment of the tolerance due to the perspective map-
ping (12).

A few years later, Piegl and Tiller [231] proposed a tri-
angulation scheme which is geometry-based, i.e.,  the pro-
cedure is based on the geometry rather than the param-
eterization. The trimming curves are polygonized in the 
model space by cubic Bézier curves and the surface itself 
is subdivided by its control net. The main advantage of 
this approach is that the trimmed NURBS surface is not 
required to have more than C0-continuity, in contrast to 
the previous methods that assumed that the surfaces are 
C2-continuous in order to estimate a step length in the 
parameter space [89]. Elber [79] proposed two alternative 
approaches that are also independent of the parameteriza-
tion: one based on an intermediate linear surface fit and 
another based on global normal curvature. In general, tes-
sellations do not require an element connectivity or shape 
regular elements. However, several authors have presented 
the construction of conforming meshes for trimmed patches 
that yield triangles with good aspect ratios [55, 57, 58].

Irregular meshes are also an issue regarding hardware 
implementation on the graphical processing unit (GPU). 
Moreton  [206] presented tessellation of polynomial sur-
faces for hardware rendering using forward differences and 
dividing the work of tessellation between CPU and GPU. 
To avoid gaps along shared boundaries of patches due to 
the different floating point engines, all boundary curves of 
the patches are calculated on the GPU. In order to enable 
GPU based tessellation, Guthe et al. [108] presented a trim 
texture scheme which can be parallelized. In this approach, 
the visible domain is specified based on a texture-map of 
black and white pixels, hence the trimming task is per-
formed on pixel-level.

3.3.2 � Ray Tracing

In contrast to tessellation, ray tracing tries to compute an 
image one pixel at a time [76]. Every object in a scene is 
tested if it intersects with rays spawned from an eye-point 
as indicated in Fig. 21. The result must return at least the 
closest intersection point and the corresponding normal of 
the surface for each ray. Hence, the heart of any ray tracing 
package is the set of ray intersection routines [99].

Ray tracing is a powerful, yet simple approach to image 
generation [144]. Already early attempts of this technique 
have been successfully applied for automatic shading of 
objects [8], modeling of global lightning effects [311], and 
the visualization of fuzzy reflections and blurred phenom-
ena [64]. In the context of parametric surfaces, the pio-
neering works focus on different ray-surface intersection 
methods [144, 146, 297]. Various intersection algorithms 
have been developed. One of the first algorithms used a lat-
tice approach where the problem is reduced to finding the 
root of univariate polynomials [146]. Several numerical 
methods based on Newton schemes have been employed, 
e.g.,  [198, 293, 297]. Nishita et al.  [214] introduced a ray 
tracing technique for trimmed patches based on Bézier clip-
ping. This concept has been adapted and enhance by a large 
number of researchers, e.g., [44, 78, 97, 217, 303]. Bézier 
clipping is discussed in more detail in Sect. 3.5.2.

Ray tracing of trimmed patches has also been addressed. 
Usually, the untrimmed surface is intersected first and the 
determination if the intersection point lies inside or out-
side of the trimmed domain is performed in a subsequent 
step. This point classification task can be employed by ray-
tests, e.g.,  [198, 214, 261]. The regions that require trim-
ming may be identified in a preprocessing step in order to 
improve the performance [97]. Section 3.5.2 provides more 
information on the ray-test concept. An alternative way of 
point classification is to generate a trim texture that returns 
whether a point is inside or not [108]. This approach is very 
efficient since it requires only a single texture look-up to 
classify a domain point. However, the trim texture has to be 
updated every time the view changes [313].

One of the greatest challenges of ray tracing is efficient 
execution [99]. Hence, many researchers have focused 
on this issue. Early attempts improved the performance 
by means of bounding box trees, e.g.,  [198, 316]. Havran 
[116] compared a number of such schemes and concluded 
that the kd-tree is the best general-purpose acceleration 
structures for CPU. Kd-trees define a binary space partition 
that always employs axis-aligned splitting planes. Pharr 
et al. [226] have shown that coherence can be exploited to 
improve ray tracing. Their rendering algorithms improve 
locality of data storage and data reference. Further improve-
ment can be obtained by simplifying and streamlining the 
basic algorithms in order to exploit performance features of 

Eye

x1

x2

x̃1

x̃2

Image plane,
or screen

Fig. 21   Rays spawned from an eye-point in order to get a pixel-wise 
image of an object
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processors like single instruction, multiple data extensions 
[27, 97, 302]. Purcell et  al.  [235] demonstrated that the 
entire ray tracing process can be performed on the GPU. 
Since then, several other GPU based approaches emerged, 
e.g., [91, 172, 217, 261].

Despite the efficiency deficit compared to tessellation 
schemes, direct rendering of surfaces has several advan-
tages. The memory requirements and preprocessing costs 
are reduced since fewer primitives are used and geometric 
precision and image quality are improved by eliminating 
artifacts [27].

3.4 � Remodeling of Trimmed Models

Solid models with trimmed surfaces suffer from robust-
ness issues that may lead to inconsistencies as previously 
discussed in Sect. 3.2.2. In order to obtain an unambiguous 
and watertight description of a solid model, several authors 
considered replacing trimmed objects by other surface rep-
resentations. In particular, it has been suggested to remodel 
trimmed surfaces by means of a set of regular patches, sub-
division surfaces, or T-splines.

3.4.1 � Regular Patches

The treatment of trimmed surfaces in the early automo-
tive industry was discussed by Sarraga and Waters [257], 
in which a repatching method is proposed. To be precise, 
the intersection curves are used as edges of new regular 
patches approximating the original surface. As pointed 
out by Sarraga and Waters, repatching has several distinct 
disadvantages for modeling, but it is applied as a compro-
mise between the complexity of free-form surfaces and 
the requirements of solid modeling. The common aim of 
the subsequent approaches is to improve this compromise. 
Besides the desire for an unambiguous and robust solid 
model, exchange of geometric data between dissimilar 
CAD software has been a motivation for this remodeling 
concept. Various constructions for the repatching procedure 
have been proposed. Hoschek and Schneider [131] con-
vert trimmed rational Bézier patches into a set of bicubic 
and biquintic Bézier patches. The segmentation is based 
on arguments related to the curvature of the surface and 
conditions on the geometrical continuity. The procedure 
combines some of Hoschek’s previous works, i.e., [129, 
132], and consists of four steps: (i) determination of new 
geometrically oriented boundary curves, (ii) approxima-
tion of these curves, (iii) fitting of the interior of each patch 
using geometric continuity conditions for the boundary 
and corner points, and (iv) approximation of the intersec-
tion curves of trimmed surfaces. The use of ruled sur-
faces [110], Coons patches [41, 301], and Clough–Tocher 

splines7 [167] have also been suggested to remodel trimmed 
surfaces. Another concept is based on clipping isoparamet-
ric curves of a B-spline surface [9]. Later, this approach has 
been adapted for the design of aircraft fuselages and wings 
[304, 320].

Generalized Voronoi diagrams may be used to obtain a 
proper decomposition of the trimmed domain with multiple 
trimming curves [110, 142]. Thereby, the parameter space 
is partitioned into convex polygons such that each poly-
gon contains exactly one trimming curve as illustrated in 
Fig. 22. Details on Voronoi diagrams can be found in the 
survey of Aurenhammer [10].

Another strategy to remodel trimmed models is local 
perturbation. In contrast to repatching, the control points 
of the original surfaces are modified in order to obtain 
an unambiguous configurations along the intersection 
curves. Hu and Sun [137] proposed to close gaps between 
trimmed B-spline surface by an algorithm that moves one 
of the patches towards the trimming curve defined by the 
other one. This approach modifies the control point of the 
patch near the trimming curve using singular value decom-
position. It can be used to improve the accuracy of small 
gaps, but yields bad-shaped surfaces if the gaps are too 
large. Moreover, this approach does not produce an exact 
topological consistency. Song et  al.  [285] defines the dif-
ferences of corresponding trimming curves by means of a 
so-called error curve in model space. It is specified so that 
its coefficients depend linearly upon the control points of 
the intersecting surfaces. The perturbation is carried out by 
setting all coefficients of this curve to zero. This is found 
by solving a linear system of equations and results in an 
adaptation of the control points. A complement to this 
work was presented by Farouki et  al.  [87]. They propose 

Fig. 22   Generalized Voronoi diagram for five trimming curves (re-
execution of the original figure of [110])

7  Clough–Tocher is a splitting scheme to construct C1-continuous 
splines over triangulations.
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to remodel trimmed surface by a hybrid collection of ten-
sor product patches and triangular patches. In particular, 
they demonstrated the approximation of trimmed bicubic 
patches by quintic triangular patches such that the intersec-
tion curves are explicitly defined by one side of a triangular 
Bézier patch. The approach considers pairs of rectangular 
patches that intersect along a single diagonal arc. This can 
be achieved by a preprocessing step as described in the fol-
low-up paper [115].

3.4.2 � Subdivision Surfaces

The basic concept of subdivision approaches goes back to 
the 1970s. Chaikin developed an elegant algorithm to draw 
a curve by cutting the corners of a linear polygon [54]. The 
basic steps of the procedure are shown in Fig.  23. Later, 
it was shown that this cutting algorithm converges to a 
quadratic B-spline curve and the initial polygon is equiv-
alent to its control polygon [246]. This idea of sequential 
subdivision of a control polygon was generalized by Doo 
and Sabin [75] as well as Catmull and Clark [53] to com-
pute bi-quadratic and bi-cubic B-spline surfaces, respec-
tively. Since then, a vast number of different subdivision 
schemes emerged for various surface types, such as trian-
gular splines [190] and NURBS patches [51], for instance. 
The final objects of subdivision schemes are referred to as 
limit curves or surfaces. The distinguishing feature of these 
approaches is that they can be applied to arbitrary control 
polygons which are not restricted to a regular grid struc-
ture. The smoothness between the resulting surfaces is con-
trolled by the subdivision scheme.

In 2001, the issue of Boolean operation for subdivi-
sion surfaces was addressed. Litke et al. [188] presented a 
trim operator, but do not address surface-to-surface inter-
sections. An algorithm for approximate intersections was 
developed by Biermann et  al.  [30]. High accurate results 
can be achieved at additional computational expense. Both 
approaches employ subdivision based on triangular splines. 
Shen et  al.  [278] convert trimmed NURBS surfaces to 
untrimmed subdivision surfaces using Bézier edge condi-
tions. The limit surface fits the original object to a speci-
fied tolerance. The resulting Catmull–Clark models are 
watertight and smooth along the intersection. Recently, 
Shen et al. [277] presented a generalization of the approach 
that converts B-Rep models of regular and trimmed bicu-
bic NURBS patches to a single NURBS-compatible sub-
division surface. During this process, a quadrilateral 
mesh topology is constructed in the parameter space of 
each patch and the corresponding control points are com-
puted by solving a fitting problem. Finally, the individual 
parts are merged into a single subdivision mesh. In order 
to obtain gap-free joints, the preserved boundary curves in 
model space are used as target curves of the subdivision 
surface.

Subdivision models possess a greater flexibility due to 
their inherent topological consistence while conventional 
NURBS models have greater control of an objects shape. 
This attribute of subdivision attracted considerable atten-
tion, especially in the field of computer animation [70]. For 
a detailed discussion on subdivision schemes the interested 
reader is referred to the textbook [308].

3.4.3 � T‑splines

T-splines were introduced by Sederberg et  al.  [270] in 
2003. They are generalizations of B-splines that allow 
T-junctions in the parameter space and the control net of 

(a) (b)

(c) (d)

Level 1 Level 2

Level 3 Limit curve

Fig. 23   Chaikin’s corner-cutting algorithm: construction of a quad-
ratic B-spline curve by a subdivision of the control polygon

Fig. 24   An example of a parameter space with T-junctions which are 
highlighted by circles 
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a surface as illustrated in Fig.  24. In a subsequent paper 
[268], the related ability of local refinement is used to close 
gaps between trimmed surfaces by converting them to a 
single watertight T-spline model. The resulting T-spline 
representation can be converted to a collection of NURBS 
surfaces again, without introducing an approximation 
error. On the other hand, conversion to the T-spline repre-
sentation includes some perturbation in the vicinity of the 
intersection. It is argued that the approximation error can 
be made arbitrarily small, and the perturbation can be con-
fined to an arbitrarily narrow neighborhood of the trimming 
curve. The conversion is performed such that C2-continuity 
is obtained between the intersecting surfaces. These papers 
are focused on cubic splines since they are the most impor-
tant ones in CAGD. However, the T-spline concept is not 
restricted to the cubic case.

3.5 � Auxiliary Techniques

Techniques and strategies frequently used in the context of 
trimming are outlined in this section. They may be useful 
for researchers dealing with trimmed models in isogeomet-
ric analysis.

3.5.1 � Bounding Boxes

Bounding boxes are often applied to significantly accelerate 
geometrical computations. The basic idea is to use rough 
approximations of objects in order to get a fast indicator 
if two regions are well separated or not. Hence, involved 
operations have to be carried out only if necessary. These 
approximations may be refined adaptively as in divide-and-
conquer based surface intersection approaches introduced 
in Sect. 3.1.3.

The simplest and perhaps most common approach is 
to embed objects into min-max boxes where the corner 
points of the object define an axis-parallel box. The axis 
aligned setting is not mandatory but allows the most effi-
cient evaluation of the distance between two boxes [116]. 
Some authors suggest to use oriented bounding boxes to 

improve the geometry approximation, e.g., [15, 20, 133]. In 
this case, the bounding box is rotated such that it is aligned 
with the connection of the corner points of the surface it 
encloses. An object can also be bounded by a combination 
of slaps, also known as fat lines, with different orientations 
[154]. Slaps denote regions between two parallel planes 
which are specified by their normal vector. This concept 
includes conventional bounding boxes, simply by using 
two orthogonal slaps. Figure 25 summarizes these various 
bounding box types.

Bounding boxes constructed by corner points do not 
guarantee the enclosing of the whole spline, especially 
if a spline is highly curved. The convex hull property 
of the control points can be used in order to get a proper 
approximation. Consequently, the area of the bounding box 
increases since it is computed based on the control polygon 
rather than the actual geometry, as illustrated in Fig.  26. 
Sederberg and Nishita [269] proposed an optimized bound 
for planar quadratic and cubic Bézier curves. They sug-
gested defining the bounding region by lines parallel to 
the connection � of the first and last control point. They 
are determined by the minimal and maximal distance di of 
the other control points ci perpendicular to �. The tighter 
bound is determined in the quadratic case by

while for the cubic splines it is

with the scaling factor � given by

Figure  27 illustrates the improvement of the bounding 
boxes due to these bounds. Note that the bounding boxes 

(47)dmin = min

{
0,

d1

2

}
and dmax = max

{
0,

d1

2

}
,

(48)dmin = � ⋅min
{
0, d1, d2

}
,

(49)dmax = � ⋅max
{
0, d1, d2

}
,

(50)𝛼 =

{
3

4
if d1d2 > 0,

4

9
otherwise.

x

y

(a) (b) (c)
x
′

y
′

Axis-parallel Oriented Slaps

Fig. 25   Various types of bounding boxes for the same curve. The 
orientation of the enclosing region is indicated by arrows 

(a) (b)

Fig. 26   Construction of axis-parallel bounding boxes by a the end-
points and b the control points of a spline
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are oriented according to the locations of the first and last 
control point. 

Another way to assure that a curve lies within its 
bounding box is to subdivide it into monotonic regions. 
The essential idea is that if a domain of any continuously 
differentiable function f is subdivided at its characteris-
tic values, the range of f on each of the subintervals can 
be simply found by evaluating f at the endpoints of that 
subinterval [165, 208]. The set of characteristic points may 
include zeros of the first or second derivatives of f,   start 
and end points of open curves, and singular points such as 
cusps or self-intersections. Figure  28 shows an example 
of a B-spline curve that has been divided into monotonic 
regions and the corresponding bounding boxes. In order 
to detect these points, a preprocessing step is required. 
Despite this additional effort, monotonic regions have 

been used in several application like intersecting planer 
curves [156, 157] and surfaces [84], tessellation of trimmed 
NURBS [249], and ray tracing [261].

3.5.2 � Point Classification

One of the most fundamental operations in the context of 
trimmed surfaces is the determination if a point x of a patch 
is inside or outside the visible domain. This can be done 
by counting the number of intersections of a ray emanat-
ing from x with the trimming curves and the boundary of 
the patch. If the number is odd x is inside and otherwise it 
is outside of the visible area. The direction of the ray can 
be chosen arbitrary. This rule is based on the Jordan curve 
theorem, that is, every simple closed planar curve sepa-
rates the plane into a bounded interior and an unbounded 
exterior region [109]. Hence, the intersection is determined 
in the parameter space of the patch, in contrast to the ray 
tracing approach for rendering outlined in Sect. 3.3.2. Fur-
thermore, if a trimming curve is not closed, it is associate 
to the visible part of the patch boundary to obtain a closed 
loop as illustrated in Fig. 29. Another possibility is to con-
nect open trimming curves with the non-visible boundary 
of the patch and intersect only with the trimming curves. 
It should be noted that in the latter case, the even-odd rule 
turns upside down, i.e., x is inside the visible domain if the 
number of intersections is even.

Despite its conceptional simplicity, the implementa-
tion of the corresponding algorithm is not trivial [77]. 
For example, ambiguous cases may occur like tangency 
between the ray and the curve. Nishita et  al.  [214] pro-
posed the following procedure: the ray is chosen such that 
it intersects perpendicularly with the closest boundary of 
the patch. As a consequence, the parameter space is divided 
into four quadrants which meet at the origin of the ray as 

d1 d1
2

c0

c1

c2

d1

d2
4
9d2

4
9d1

c0

c1

c2

c3

d1

3
4d1

c0

c1

c2

c3

(a)

(b) (c)

Fig. 27   Tighter bounds for bounding boxes for quadratic and cubic 
B-spline curves. The original bounding boxes are shown by dotted 
lines whereas dashed lines mark the improved ones

Fig. 28   Definition of axis-parallel bounding boxes based on mono-
tonic regions. The white points mark the characteristic points consid-
ered

u

v

Fig. 29   Classification of interior and exterior points by counting 
intersections of the trimming curve with a ray
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shown in Fig. 30. They are labeled counter-clockwise such 
that the quadrants I and IV are adjacent to the ray. If the 
trimming curve is specified as a set of Bézier curves the 
following cases may be considered:

	 (i)	 There are no intersections with the ray if all control 
points of the trimming curve are within the quadrants 
I and II, or II and III, or III and IV.

	(ii)	 All control points of a trimming curve are within the 
quadrants I and IV. The number of intersections is 
even if the endpoints of curve are in the same quad-
rant; otherwise it is odd.

Tangency between the ray and the trimming curve do 
not pose any problem for these exclusion criteria. How-
ever, it should be pointed out that an intersection may be 
counted twice if the ray goes through an endpoint which is 
shared by two trimming curves. For the other cases where 
the intersection has to be computed, Nishita et  al.  [214] 
suggested to employ Bézier clipping. This concept has been 
introduced by Sederberg and Nishita [269] in the context 
of curve-to-curve intersection and locating points of tan-
gency between two planar Bézier curves. The basic idea is 
to use the convex hull property of Bézier curves to iden-
tify regions of the curves which do not include the solu-
tion. The bounding regions are defined by fat lines parallel 
and perpendicular to the line through the endpoints of the 
Bézier curve. By iteratively clipping away such regions, the 
algorithm converges to the solution at a quadratic rate and 
with a guarantee of robustness.

In particular, the ray is defined implicitly by

The coordinates are denoted by x and y in order to 
emphasize that this approach is applicable for any plane 

(51)ax + by + c = 0 with a2 + b2 = 1.

coordinate system. The distance d(u) of a point on the 
Bézier curve C(u) to the ray � is given by

The coefficients di are the distances of the control points ci 
of the Bézier curve to the ray and Bi,p are Bernstein polyno-
mials of degree p. Equation  (52) can be represented as a 
non-parametric Bézier curve C̃(u, d(u)) where the values di 
are related to their corresponding Greville abscissae, 
i.e., ui =

i

p
. The relationship of the original and non-para-

metric Bézier curve are depicted in Fig. 31.
The roots of C̃(u, d(u)) are equivalent to the paramet-

ric values u at which � intersects C(u). Hence, the convex 
hull of C̃(u, d(u)) can be used to identify regions where 
the objects do not intersect. To be precise, the minimal 
and maximal parametric values, i.e., umin and umax, of the 
intersections of the convex hull with the u-axis splits the 
parameter space into three regions of which only one, 

(52)d(u) =

p∑
i=0

diBi,p with di = axi + byi + c.

III

III IV

u

v

Fig. 30   Specification of quadrants for the point classification proce-
dure of Nishita et al. [214]
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Non-parametric curve

Fig. 31   Bézier clipping: a intersection of a ray � with a Bézier curve 
C(u) and b the corresponding non-parametric Bézier curve which is 
used to determine the parameter range [umax, umin] that contains the 
intersection of C(u) and �
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i.e., umin ⩽ u ⩽ umax, has to be considered for the intersec-
tion with the ray. This region is extracted as a Bézier curve 
by means of knot insertion and the procedure is repeated 
until a certain tolerance is reached.

This technique can also be utilized to determine the 
intersection of two Bézier curves by iteratively clipping 
both objects [269]. Sherbrooke and Patrikalakis [280] 
developed a generalization of Bézier clipping that allows 
computing the roots of an n-dimensional system. The so-
called Projected-Polyhedron method subdivides an object 
into Bézier segments and generates each side of its bound-
ing boxes by projecting the control points onto different 
planes. Thus, only the convex hull of two-dimensional 
point sets has to be computed.

3.6 � Summary and Discussion

The previous parts of this section shed light on various 
aspects of trimmed NURBS in the context of CAD. On the 
basis of the discussion of surface intersection in Sect. 3.1, 
it can be concluded that there is no canonical way to derive 
trimming curves, but a wide range of different techniques 
to address this problem. Further, an exact representation of 
an intersection of two patches is not feasible in most cases. 
In fact, several distinct curves are usually used to specify a 
single intersection: a curve in model space and trimming 
curves in the parameter spaces of all patches involved. 
These curves are independent approximations of the actual 
intersection and there is no connection between them. This 
missing link makes it very difficult to transfer information 
from a trimmed patch to an adjacent one.

The necessity of approximation yields gaps and over-
laps between intersecting patches. As a result, robustness 
problems arise for solid modeling as outlined in Sect. 3.2. 
Considerable effort has been devoted to derive consistent 
trimmed models. Still, the problem is unresolved and the 
absence of truly robust representations poses a demanding 
challenge, especially for downstream applications. Even 
within the field of CAGD, the replacement of trimmed sur-
faces by other representations may be needed. Tessellations 
are used in the context of rendering, for instance. In this 
particular case, the main reason is efficiency as discussed 
in Sect. 3.3. However, all other remodeling approaches pre-
sented in Sect. 3.4 are motivated by the flaws of trimmed 
models and the limitation of tensor product patches due to 
their four-sided nature. It should be emphasized that these 
schemes may yield watertight models, but there are cer-
tain tradeoffs. First of all, approximations are introduced 
at least in the vicinity of trimming curves. The number of 
control variables increases particularly if regular tensor 
product patches are used for the remodeling. Subdivision 
surfaces and T-splines are promising techniques, but may 

induce new problems like extraordinary vertices8 and lin-
ear dependence of the basis functions. In addition, they 
are designed for a specific surface type which may be an 
issue if a model consist of parts with different polynomial 
degree. Overall, it is apparent that there is no simple solu-
tion to the trimming problem.

Despite their difficulties, trimmed NURBS are the stand-
ard in engineering design and for the exchange of geo-
metrical information in general. On the one hand, trimmed 
tensor product surfaces persist for historical reasons since 
they are a well-established technology, integrated in cur-
rent CAD software. On the other hand, this representation 
distinguishes itself by its efficiency, precision, and simplic-
ity. Trimming problems are hidden from the user who usu-
ally designs a model with the help of black box algorithms. 
Isogeometric analysis and adaptive manufacturing may 
lead to new developments in CAGD, but trimmed models 
are the state of the art and changes will certainly take time. 
It is not clear to the authors whether trimmed NURBS or 
other techniques like T-splines and subdivision surfaces 
will triumph in the future, but it is good to see the competi-
tion. At this juncture, however, trimmed NURBS seem to 
be the dominant technology of engineering design.

4 � Exchange Standards

At the beginning of this section, general considerations for 
exchanging data between different computer software sys-
tems is discussed. Next, the most popular neutral exchange 
standards, i.e.,  the Initial Graphics Exchange Specifica-
tion (IGES) and the Standard for the Exchange of Product 
Model Data (STEP), are briefly introduced and compared. 
Finally, this section closes with some concluding remarks.

4.1 � General Considerations

In modern CAD systems, parameters and constraints gov-
ern the design of a model, rather than the definition of 
specific control points. Further essential components are 
local features and the construction history. All these vari-
ous factors are referred to as design intent [162]. Each soft-
ware has its own native data structure to keep track of the 
geometry, the topology, and the design intent of its models. 
Thus, a translation process is required when information 
is exchanged between systems with different native struc-
tures. The conversion of formats may seem like an easy 
task, but it is in fact very complicated. Usually, there is no 

8  Regular internal vertices have four incident edges, also referred to 
as valency k = 4. All other settings, i.e., k ≠ 4, are denoted as extraor-
dinary vertices.
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direct mapping from one format to another. This holds true 
in particular for information related to the design intent 
since there are no canonical guidelines for its representa-
tion. Consequently, the exchange of the complete data of a 
CAD model between different systems is scarcely possible, 
especially when the systems are designed for different pur-
poses. In most cases, only the geometric information of the 
final object is transferred.

This interoperability issue has been investigated in a 
study focusing on the US  automotive supply chain [294]. 
The following possible solutions have been discussed: (i) 
standardization on a single system, (ii) point-to-point trans-
lation, and (iii) neutral format translation.

In case of a single system standardization the same 
native format is used for all processes, e.g.,  design and 
analysis. The main advantage is that the compatibility of 
the model data is assured since no translation is required. 
However, this approach implies the restriction to a single 
system. Consequently, every part has to be adjusted to the 
developments of the dominant application of the software. 
Most importantly, translation problems can arise even 
within one system due to different software versions—just 
imagine you would like to open a PowerPoint presentation 
created 10 years ago.

The basic idea of point-to-point translation is to convert 
a native format of a system directly to a native format of 
another one. This concept works reasonably well for unam-
biguous data exchange tasks. Unfortunately, it is not always 
clear how a given information should be translated so that 
it is properly interpreted in another native format. In addi-
tion, a high degree of vendor cooperation is necessary in 
order to develop a direct translator. Similar to the previ-
ous strategy, direct translators have to be rewritten for each 
new system or perhaps even for new versions of the same 
software.

Neutral format translation is based on a common neutral 
format for the exchange of (geometric) data. This approach 
enables an independent development of various tools work-
ing on the same model. The minimization of dependencies 
simplifies the maintenance of each software and eventu-
ally leads to robust implementations since a clean code 
is designed to do one thing well, as noted by Stroustrup9 
[196]. Further, vendors are more willing to develop transla-
tors for neutral formats since it does not require the disclo-
sure of proprietary code. This is beneficial since interpreta-
tion errors of the native format are most likely minimized 
when the conversion is provided by vendors themselves. 
An additional advantage of neutral formats is that they are 
ideally suited for long term storage of data. However, there 

are also a number of weaknesses. First of all, it is not pos-
sible to capture the design intent and thus, translation to a 
neutral format provides only a snapshot of the current geo-
metric model. In general, every translation leads to loss of 
information and the quality of an exchanged model depends 
on the capability of the neutral format used.

In the context of isogeometric analysis, the minimal 
requirement is the accurate exchange of geometrical infor-
mation of the final model. Topology is also essential to 
assess the connectivity between patches. The reconstruc-
tion of topological data based on edge comparison or 
related strategies is very cumbersome and extremely error-
prone, especially in cases of trimmed geometries where 
edges only coincide within a certain tolerance as elaborated 
on in Sect. 3. The following two approaches are suggested: 
(i) direct extraction of topological data from CAD software 
by a point-to-point translation or (ii) using a neutral format 
that is able to cope with topological data. The former may 
be preferred if there is a cooperation with a CAD vendor 
and the developments focus on the specific product. How-
ever, neutral exchange formats will be discussed in the fol-
lowing because they are the most general and independent 
approaches. Despite their deficiencies, native formats seem 
to be the most sustainable solution.

4.2 � Neutral Format Translators

Concepts for a common data exchange format emerged 
in the 1970s. These attempts were borne by a variety of 
partners from industry, academia, and government [101]. 
Based on the initiative of the CAD user community, in par-
ticular General Electric and Boeing, vendors agreed to cre-
ate an American national standard for CAD data exchange. 
The final result was the first version of IGES [209]. IGES 
provided the technical groundwork to a more involved 
exchange format, namely STEP.

4.2.1 � IGES

The name of this neutral exchange format already reveals 
its original purpose [101]:

–	 Initial10 to suggest that it would not replace the work of 
the American National Standards Institute.

–	 Graphics not geometry, to acknowledge that academics 
may come up with superior mathematical descriptions.

–	 Exchange to suggest that it would not dictate how ven-
dors must implement their native database.

–	 Specification to indicate that it is not imposed to be a 
standard.

10  The word “interim” was used in the first draft.
9  Bjarne Stroustrup is the inventor of the programming language 
C++.
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IGES provided an important and very practical first solu-
tion to the exchange problem, resulting in a file format that 
is implemented in almost every CAD system. Regarding 
current literature on isogeometric analysis, it seems that 
IGES is still the preferred choice when it comes to the 
extraction of geometric information. Here, we will try to 
disprove this notion.

According to Goldstein et al. [101] and the studies cited 
within, the shortcomings of IGES can by summarized as 
follows: (i) it contains several ways to capture the same 
information leading to ambiguous interpretation, (ii) loss 
of information during exchange, (iii) development without 
rigorous technical discipline, (iv) restriction of exchange 
capabilities due to the compliance with earlier IGES ver-
sions, (v) it was developed as a method to exchange engi-
neering drawings, but not designed for more sophisticated 
product data, (vi) vendors implemented only portions of 
IGES, and (vii) there is no mechanism for testing the trans-
lators. In addition, IGES is a national standard which may 
lead to translation problems if other than US  software is 
used. Most importantly, IGES is a stagnant exchange for-
mat. The last official version of IGES, i.e., version 5.3 
[155], was published more than 20 years ago in 1996.

Although IGES continues to be deployed in industry, its 
main legacy is the disclosure of several weaknesses of the 
neutral exchange concept, thereby enhancing new emerging 
standards. The most notable one is STEP, which provides 
a broader, more robust standard for the exchange of data 
[101].

4.2.2 � STEP

Since 1984 the International Organization for Standardiza-
tion (ISO) has been working on a standard for the exchange 
of product data and its first parts were published in 1994 
[232]. The objective of this development effort—one of the 
largest ever undertaken by ISO—is the complete and unam-
biguous definition of a product throughout its entire life 
cycle, which is independent of any computer system [264]. 
Hence, the corresponding standard includes the exchange 
of CAD data, yet its scope is much broader.

STEP is the informal term for the standard officially 
denoted as ISO 10303. It is organized by an accumulation 
of various parts unified by a set of fundamental principals. 
These parts are referred to as ISO 10303-xxx, where xxx is 
determined by the part number. Each of them is separately 
published and has to pass several development phases sum-
marized in Table 1. Each part is associated with one of the 
following series: (i) description methods, (ii) implementa-
tion specifications, (iii) conformance testing, (iv) generic 
integrated resources, (v) application integrated resources, 
(vi) application protocols. Figure  32 gives an overview 
of these various components of STEP. The description 
is given by the common formal specification language 
EXPRESS (Series 10) defining data types, entities, rules, 
functions, and so on [274]. It is not a programming lan-
guage, but has an object-oriented flavor. The transfer of 
data is defined by the implementation specifications (Series 
20). The exchange by a neutral ACSII file is addressed in 
Part 21, “clear text encoding the exchange structure.” This 
STEP-file transfer is the most widely used data exchange 
form of STEP [264]. However, other approaches, like 
shared memory access, are covered by the series as well, 
see e.g.,  Part 22, “standard data access interface.” Con-
formance tests provide the verification requirements (Series 
30).

The most fundamental components of STEP are the inte-
grated resources. They contain generic information such 

(Parts 40–199)

Integrated resources

– Fundamentals of
product description

– Representation of
geometry and topology

– Representation
specification

(Series 10)

EXPRESS

(Series 30)

Conformance
testing

– General
concepts

– Test lab re-
quirements

(Series 200)

Application protocols

– Configuration controlled design
– Explicit draughting
– Associative draughting

Implementation specification
– Physical file
– STEP data access interface

(Series 20)

Fig. 32   Structure of STEP (re-execution of the original diagram 
[177])

Table 1   STEP stages

Stages Names

PWI Preliminary work item
NWI New work item
AWI Approved work item
WD Working draft
CD Committee draft
FCD Final committee draft
DIS Draft international standard
FDIS Final draft international standard
PRF Proof of new international standard
IS International standard
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as geometric data and display attributes (Series 40) as well 
as further elementary units that are specialized for certain 
application areas (Series 100). For example, Part 42, “geo-
metric and topological representations,” focuses on the 
definition of geometric models in general, while Part 104, 
“finite element analysis,” is devoted to applications in the 
context of FEA. These parts provide the entities needed to 
build application protocols denoted as APs (Series 200). 
They are the link to the needs of industry and other users. 
Their purpose is to interpret the STEP data in the con-
text of a specific application which may be part of one or 
more stages of a life cycle of a particular product. Part 209, 
“multidisciplinary analysis and design,” addresses engi-
neering analysis. Each STEP application protocol is further 
subdivided into a set of conformation classes (CCs). These 
subsets must be completely implemented if a translator 
claims to be conform with the standard [233]. Hence, it is 
important to know what conformance classes are supported 
by a software system. This modular structure, with several 
APs and their CCs, may seem complex and daunting, but 
it gives users the necessary transparency of what can be 
expected of the data exchanged. Moreover, the complexity 
of the overall concept of STEP does not imply that it is dif-
ficult to use.

The downside of the broad scope of STEP is the large 
amount of detailed information which may seem over-
whelming at first glance. In addition, ISO documents are 

not available for free, but can be purchased through the ISO 
homepage.11 There are, however, helpful resources to start 
with: the US  Consortium called Product Data Exchange 
using STEP (PDES, Inc.) provides several resources12 like 
a handbook for a general introduction to STEP [264]. Fur-
ther background articles are also released by the developers 
of STEP tools, Inc.13 ISO permits EXPRESS listings to be 
distributed without copyright restrictions and several exam-
ples are given in the software’s archive.14

One of the advantages of STEP is that it is more than 
just a specification for exchanging geometric informa-
tion. It provides a complete product data format allowing 
the integration of business and technical data of an object, 
from design to analysis, manufacturing, sales, and service 
[294]. STEP is perfectly aligned with the spirit of isogeo-
metric analysis, i.e., unifying fields. The most important 
feature of STEP is its extensibility. Efforts have been made 
to include the design intent into STEP [162, 233, 234]. Par-
ticularly interesting for isogeometric analysis is the speci-
fication of volumetric NURBS and local refinement in the 
next versions of Part 42 and other parts [284].

4.2.3 � Comparative Example

In order to demonstrate the representation of trimmed 
geometries in IGES and STEP, an example of two inter-
secting planes is considered. A square [0, 5]2 within the xy-
plane is perpendicularly intersected along its diagonal by 
another plane surface as illustrated in Fig. 33. Thereby, the 
perpendicular patch is also trimmed into two halves by the 
square.

The model investigated has been constructed using the 
software Rhinoceros and the intersection has been 
computed in two different ways: using (i) the trim-com-
mand and (ii) the Boolean-command, respectively. Both 
schemes lead to the same geometry, yet the topology varies 
as indicated by the different highlighting of Fig.  33a and 
b. To be precise, the trim-command produces a surface 
model that consists of two independent trimmed surfaces, 
while the Boolean-command results in a solid model 
where the patches are connected. Both models have been 
exported to neutral exchange formats. The correspond-
ing IGES and STEP files are provided in the Appendix. 
In the following, certain aspects of the exported files are 
discussed.

Fig. 33   Design model with the same geometry but different topol-
ogy: a two independent trimmed surfaces and b connected surfaces 
by a Boolean operation. In a, the isocurves of the separated surfaces 
are displayed in black and red, respectively. (Color figure online)

Table 2   Entity types of the IGES example

Numbers Names Information

126 Rational B-spline curve Geometry
128 Rational B-spline surface Geometry
141 Boundary entity Topology
143 Bounded surface entity Topology

12  https://www.pdesinc.org/ResourceIndex.html, September 2016.
13  http://www.steptools.com/library/standard/, September 2016
14  http://www.steptools.com/sc4/archive/, September 2016.

11  http://www.iso.org, September 2016.

https://www.pdesinc.org/ResourceIndex.html
http://www.steptools.com/library/standard/
http://www.steptools.com/sc4/archive/
http://www.iso.org
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Remark 3  The default setting of the Rhinoceros export 
has been chosen, i.e.,  AP213AutomotiveDesign, for the 
STEP examples. However, the elements discussed in this 
section are not affected by this choice.

4.2.3.1  File Structure  The fixed ASCII file format15 of 
IGES is structured by the subsequent sections: Start (S), 
Global (G), Directory Entry (D), Parameter Data (P), and 
Termination (T). The letters in the brackets label these dis-
tinct parts and they are shown in column 73 of every file. 
The Directory Entry and the Parameter Data is specified by 
entities which are associated with a unique type number. 
Table 2 lists the entities used in this example. The Direc-
tory Entries provide attribute information for each entity in 
an IGES file. Each entry is fixed in size and is specified by 
20 fields. The first field contains the entity type and the sec-
ond one points to the first line of the related Parameter Data 
record. This connection is shown for a rational B-spline sur-
face in Fig. 34a. The Parameter Data, on the other hand, is 

free-formatted and it consists of a sequence of integer and 
real numbers starting with the entity type number.

STEP files are easy to read since the language used is 
based on an English-like syntax [274]. In general, an accu-
mulation of entities pointing to each other shapes the struc-
ture of the exchange data. Lines specifying entities begin 
with the symbol #, followed by the unique identifier of 
the corresponding object. This identifier is used to con-
nect various entities with each other as shown in Fig. 34b. 
Besides pointers, an entity may consists of integers, real 
numbers, Booleans (.F./.T.), and enumeration flags (e.g.,  .
UNSPECIFIED.).

4.2.3.2  Surfaces Representation  Both exchange formats 
provide the fundamental informations of B-spline patches, 
i.e., degree, knot vectors, and control points, together with 
auxiliary information. In case of IGES, a sequence of num-
bers separated by commas is used, while STEP additionally 
groups associated components using brackets. In Fig. 35, the 
representations of the regular square patch are compared. 
Note that knot vectors are specified by knot values with their 
multiplicity and that coordinates of control points are stored 

128,1,1,1,1,0,0,1,0,0,0.0D0,0.0D0,7.071067811865475D0, 0000005P 3
7.071067811865475D0,0.0D0,0.0D0,9.999999999999998D0, 0000005P 4
9.999999999999998D0,1.0D0,1.0D0,1.0D0,1.0D0,5.0D0,0.0D0,-5.0D0, 0000005P 5
8.881784197001252D-16,4.999999999999999D0,-5.0D0,5.0D0,0.0D0, 0000005P 6
4.999999999999998D0,8.881784197001252D-16,4.999999999999999D0, 0000005P 7
4.999999999999998D0,0.0D0,7.071067811865475D0,0.0D0, 0000005P 8

P5000000;0D899999999999999.9 9

128 3 0 0 1 0 0 000010000D 5
128 0 -1 7 8 0 0 TrimSrf 0D 6

Type Number Sequence Number

#80=B_SPLINE_SURFACE_WITH_KNOTS(’’,1,1,((#108 ,#109),(#110 ,#111)),
.UNSPECIFIED.,.F.,.F.,.F. ,(2 ,2) ,(2 ,2) ,(0. ,7.07106781186547) ,(0. ,10.) ,
.UNSPECIFIED .);

#108=CARTESIAN_POINT(’’ ,(5.,0.,-5.));
#109=CARTESIAN_POINT(’’ ,(5.,0.,5.));
#110=CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5.,-5.));
#111=CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5.,5.));

Identifier Type

(a) (b)IGES STEP

Fig. 34   Entity connection of the exchange formats. Pointers are indicated by arrows. The examples have been extracted from Files 1 and 3 of 
the Appendix, respectively

128,1,1,1,1,0,0,1,0,0,0.0D0,0.0D0,5.0D0,5.0D0,0.0D0,0.0D0,5.0D0, 0000027P 47
5.0D0,1.0D0,1.0D0,1.0D0,1.0D0,0.0D0,0.0D0,0.0D0,0.0D0,5.0D0, 0000027P 48
0.0D0,5.0D0,0.0D0,0.0D0,5.0D0,5.0D0,0.0D0,0.0D0,5.0D0,0.0D0, 0000027P 49
5.0D0; 0000027P 50

Upper index I − 1 and J − 1
Degree p and q

Not closed
Polynomial

Non periodic

Knot vector ΞI

Knot vector ΞJ

Weights w0, . . .

Control point coordinates
x0, y0, z0, x1, . . .

Start and end
of u-direction

Start and end
of v-direction

#81= B_SPLINE_SURFACE_WITH_KNOTS(’’,1,1,((#132 ,#133) ,(#134 ,#135)),
.UNSPECIFIED.,.F.,.F.,.F.,(2,2),(2,2),(0.,5.),(0.,5.),.UNSPECIFIED.);

Degree p and q

Control points

Knot vector
type

Knot values
of ΞI and ΞJ

Knot
multiplicity

Not self-
intersecting

Not
closed

B-spline
surface form

(a) (b)IGES STEP

Fig. 35   Descriptions of the surface model’s regular square patch. The B-spline surface data has been extracted from Files 1 and 3 of the Appen-
dix, respectively

15  There exist also a compressed format for details see [155].
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within its own entity in case of STEP. Hence, error-prone 
comparisons of floating point numbers are avoided.

Regarding trimmed surfaces, the following informa-
tion is provided in both exchange formats: (i) the regular 
surface, (ii) the related loops of trimming curves, and (iii) 
their counterparts in model space. All this information can 
be found in a single IGES entity, i.e., 141. In particular, the 
fourth and fifth number within the sequence of this entity 
define the reference to the regular surface and the number 
of related curves, respectively. These numbers are followed 
by arrays of the size 4. The first value of an array refers 
to model space curves while the last value points to trim-
ming curves. The total number of arrays is determined by 
the number of related curves.

In case of STEP, the trimmed surface data is not coa-
lesced in a single object, but it is embedded in a graph 
structure. Hence, the information is represented by vari-
ous different entities which are linked together. The 
ADVANCED_FACE entity may be viewed as the start-
ing point of the graph structure that specifies the trimmed 
patch. Figure 36 illustrates such a collection of entities. For 
the sake of clarity, some intermediate entities have been 
neglected as indicated by the dashed lines.

4.2.3.3  Topology  So far, the specification of certain 
parts of a model has been addressed. Here, the differences 
between the exchange formats regarding an object’s topo-
logical information is examined by comparing the output 
for the surface model and solid model shown in Fig. 33. The 
former is defined by two independent surfaces, while the 
latter is a single coherent manifold.

In the following the square patch in the xy-plane is 
denoted by S□ and the perpendicular patch is referred to as 
S⟂. The corresponding edges of the model are labeled e□

i
 

with i = {1,… , 3} and e⟂
j
 with j = {1,… , 4}, respectively. 

The topology due to the STEP and IGES formats is com-
pared in Fig. 37. To be precise, the provided edge loop data 

is shown. Further details are neglected for the sake of brev-
ity, but the entire files can be found in the Appendix.

Comparing Fig.  37a and b shows that IGES yields the 
same output for both models. In other words, the different 
topologies of them are not recognized. Note that the only 
values that differ are the sequence numbers of the entities 
which are completely independent from the actual object. 
In fact, the topological connection of S□ and S⟂ is lost in 
case of the solid model, despite the simplicity of the exam-
ple. That the solid model has been properly constructed is 
proven by the STEP output shown in Fig.  37d where the 
edges e⟂

1
 and e□

3
 are joined in a single reference, i.e., #48. 

ADVANCED FACE

EDGE LOOP B SPLINE SURFACE WITH KNOTS

SURFACE CURVE

PCURVE

B SPLINE CURVE WITH KNOTS
(Model space curve)

B SPLINE CURVE WITH KNOTS
(Trimming curve)

Fig. 36   Graph related to a trimmed surface in STEP. Entities that 
provide geometrical information are highlighted in gray. Intermediate 
nodes may be skipped which is indicated by dashed lines 

(a)

(b)

(c)    

(d)

IGES: surface model

IGES: solid model

STEP: surface model

STEP: solid model

141,1,3,5,4,7,1,1,9,11,1,1,13,15,1,1,17,19,1,1,21; 0000023P 45

141,1,3,27,3,29,1,1,31,33,1,1,35,37,1,1,39 P1400000; 68

S⊥ e⊥
1 e⊥

2 e⊥
3 e⊥

4

S� e�
1 e�

2 e�
3

141,1,3,5,4,7,1,1,9,11,1,1,13,15,1,1,17,19,1,1,21; 0000023P 42

141,1,3,27,3,29,1,1,31,33,1,1,35,37,1,1,39 P1400000; 65

S⊥ e⊥
1 e⊥

2 e⊥
3 e⊥

4

S� e�
1 e�

2 e�
3

#22= EDGE_LOOP(’’,(#24 ,#25 ,#26 ,#27));
#23= EDGE_LOOP(’’,(#28 ,#29 ,#30));
#24=ORIENTED_EDGE(’’,*,*,#52 ,.T.);
#25=ORIENTED_EDGE(’’,*,*,#53 ,.T.);
#26=ORIENTED_EDGE(’’,*,*,#54 ,.T.);
#27=ORIENTED_EDGE(’’,*,*,#55 ,.T.);
#28=ORIENTED_EDGE(’’,*,*,#56 ,.T.);
#29=ORIENTED_EDGE(’’,*,*,#57 ,.T.);
#30=ORIENTED_EDGE(’’,*,*,#58 ,.T.);

e⊥
1 , . . . , e⊥

4

e�
1 , e�

2 , e�
3

#19= EDGE_LOOP(’’,(#21 ,#22 ,#23 ,#24));
#20= EDGE_LOOP(’’,(#25 ,#26 ,#27));
#21=ORIENTED_EDGE(’’,*,*,#48 ,.T.);
#22=ORIENTED_EDGE(’’,*,*,#49 ,.T.);
#23=ORIENTED_EDGE(’’,*,*,#50 ,.T.);
#24=ORIENTED_EDGE(’’,*,*,#51 ,.T.);
#25=ORIENTED_EDGE(’’,*,*,#52 ,.T.);
#26=ORIENTED_EDGE(’’,*,*,#53 ,.T.);
#27=ORIENTED_EDGE(’’,*,*,#48 ,.F.);

e⊥
2 , e⊥

3 , e⊥
4

e�
1 , e�

2

e⊥
1 , e�

3

e⊥
1 , e�

3

Fig. 37   The STEP and IGES loop data of the model illustrated in 
Fig. 33. Entries referring to edges are labeled by e□

i
 and e⟂

j
. The index 

numbers are not consistent and thus, may differ from sub-figure to 
sub-figure. In d, the highlighted pointer, i.e., #48, refers to the edge 
where the two surfaces S□ and S⟂ intersect
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The STEP data related to the surface model is illustrated in 
Fig. 37c.

4.3 � Summary and Discussion

In Sect. 4.1, the problem of exchanging data between dif-
ferent systems is outlined from a general point of view. It 
is argued that the use of neutral exchange standards is the 
most comprehensive way for this task. Nevertheless, every 
mapping from one system to another may cause problems, 
especially with respect to the design intent of a model 
where no canonical representation exists. There is often no 
one-to-one translation from one format to another, which 
leaves room for (mis)interpretation. As a result, exchange is 
usually restricted to snapshots of an object’s geometry. The 
transfer of topology data is also possible if (i) the design 
model is properly constructed as a coherent solid model 
and (ii) the neutral format is able to capture this informa-
tion. It is apparent that the capability of the neutral stand-
ard applied is essential for the quality and success of the 
exchange. This has been demonstrated by a simple example 
given in Sect. 4.2.3 where IGES does not export the topol-
ogy correctly.

STEP should generally be preferred as a neutral 
exchange format. According to Tassey et al. [294], STEP is 
superior to other translators because it

–	 addresses many types of data,
–	 incorporates a superset of elements common to all sys-

tems,
–	 supports special application needs, and
–	 provides for international exchanges.

In their paper, several studies are discussed in which STEP 
excels with respect to the quality of exchanging data of 
industrial examples. In addition, this standard is constantly 
developed and improved, e.g., by its enhancements for 
isogeometric analysis [284].

Theoretically, the broad scope and modular structure of 
STEP provides coverage of various application domains 
which are indicated by the application protocols and their 
conformance classes. However, this functionality has to be 
supported by the CAD vendors. Most vendors have chosen 
to implement only certain parts of STEP, i.e.,  some con-
formance classes of AP 203 and AP 214 [264]. It is not sur-
prising that vendors seem to show little interest in neutral 
exchange formats, since their implementation slows down 
the development of the actual software and users become 
more independent from their products. Hence, it is likely 
that neutral file formats will always provide less informa-
tion than the original model. Translation errors may be 
avoided if the needed data is extracted directly from the 
native format, but this requires vendor interaction and the 

restriction to a single software. This alternative is not very 
sustainable since a native format may become obsolete 
after a new software version is released.

5 � Isogeometric Analysis of Trimmed Geometries

Isogeometric analysis of trimmed NURBS is an impor-
tant research area, simply due to the omnipresence of such 
geometry representations. Integration of design and analy-
sis can only be achieved if the simulation is able to cope 
with CAGD models that are actually used in the design 
process. Moreover, sound treatment of trimmed solid mod-
els is also an essential step for the derivation of volumetric 
representations.

Current attempts to integrate trimmed geometries into 
isogeometric analysis may be classified as global and 
local approaches. The latter uses the parameter space of 
the trimmed patch as background parameterization and 
the trimming curves determine the domain of interest, i.e., 
v, for the analysis. Knot spans that are cut by trimming 
curves require special attention during the simulation. In 
that sense, local approaches are closely related to fictitious 
domain methods,16 see e.g.,  [124, 239, 252, 259]. Conse-
quently, similar tasks have to be undertaken: (i) detection 
of trimmed elements, (ii) application of special integra-
tion schemes in these elements, and (iii) stabilization of 
the trimmed basis. CAGD models are not modified but the 
analysis has to deal with all the related robustness issues 
pointed out in Sect.  3.2.2. Global reconstruction, on the 
other hand, substitutes a trimmed surface by one or sev-
eral regular patches which can be analyzed with regular 
integration rules. In other words, it is endeavored to fix the 
design model, before it is used in the downstream applica-
tion, e.g.,  the simulation. These approaches are similar to 
remodeling schemes in CAGD presented in Sect.  3.4.1. 
Isogeometric analysis of subdivision surfaces, e.g.,  [59, 
248, 309], and T-splines, e.g., [22, 262, 263, 321], may be 
included into the class of global reconstruction techniques. 
However, the discussion of the analysis of these representa-
tions is beyond the scope of this review.

Coupling of multiple patches is another issue that 
has to be addressed. Adjacent patches usually have non-
matching parameterizations and a robust treatment of tol-
erances is required to link the degrees of freedom along 
an intersection due to the gaps between trimmed surfaces 
and the missing link between their trimming curves. Local 

16  There are various names for fictitious domain methods such as 
embedded domain methods, finite cell methods, WEB-spline meth-
ods, and immersed boundary methods. The principle idea, however, 
is the same.
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approach have to deal with the issue directly during the 
analysis, while global approach apply this crucial step 
beforehand during the remodeling phase. The coupling 
itself is usually performed by a weak coupling technique. 
Alternatively, some global schemes try to establish match-
ing parameterizations during the reconstruction procedure. 
This allows an explicit coupling of patches and a better 
control of the continuity between adjacent patches [149]. 
It is also noteworthy that the coupling procedure may be 
neglected in certain simulation methods. For example, the 
boundary element method and the Nyström method do not 
require certain continuity between elements or patches, see 
e.g., [218, 223, 225, 319].

The following approaches for analyzing trimmed geom-
etries have been applied to finite element and boundary ele-
ment methods. The former focuses on shell analysis while 
the latter is used for volumetric B-Rep models. However, 
the basic concepts are not restricted to a specific simulation 
type since in both cases the treatment of trimmed surfaces 
is in the focus. It will be highlighted if a certain part explic-
itly applies for a specific simulation method.

The overview begins with a short historical note, which, 
to the best of the authors’ knowledge is the first direct sim-
ulation with trimmed patches. Afterwards, the current state 
of research is reviewed in the Sects. 5.2 and 5.3 addressing 
global and local approaches, respectively.

5.1 � The First Analysis of Trimmed Models

It is fascinating that the analysis of trimmed patches goes 
back to the genesis of trimmed patch formulations. In fact, 
Casale et al. [48, 50] presented an analysis of such geom-
etries a few years after they had suggested one of the first 
trimmed solid model formulations [47, 49]. In particular, 
trimmed patch boundary elements had been proposed.

The basic idea of their approach is to employ the 
trimmed patch for the geometrical representation and to 
define an independent Lagrange interpolation over the 
tensor product surface for the description of the physical 
variables. This additional basis does not take the trimming 
curves into account. Thus, the nodes of the Lagrange inter-
polation may lie inside or outside the trimmed domain. This 
is emphasized by using the term virtual nodes. The analy-
sis is performed by means of a collocated boundary ele-
ment formulation, see e.g., [96], where all Lagrange nodes 
contribute to the system matrix. If a node is outside of the 
trimmed domain, the jump term coefficient17 of the bound-
ary integral equation is set to 1 since the node is not part of 
the object’s boundary. Numerical integration is performed 

over a triangulation of the trimmed domain. These triangles 
are used to define integration regions only and do not con-
tribute any degrees of freedom.

This concept has various deficiencies, but it consists of 
features that can be found in current approaches as well. 
For example, defining the geometrical mapping by the 
trimmed parameter space, but the physical fields by a dif-
ferent (spline) basis is employed in some global techniques 
presented later. There are also similarities to local schemes 
since the trimmed domain is treated like a background 
parameterization leading to special considerations regard-
ing numerical integration and points that are not within the 
domain. Furthermore, the motivation for the application 
of the boundary element method was the same as today in 
isogeometric analysis, i.e., the potential of a direct analysis 
of B-Rep models without the need of generating a volumet-
ric discretization.

5.2 � Global Approaches

Global reconstruction schemes decompose trimmed sur-
faces into regular patches. The general concept is the same 
as presented in Sect.  3.4.1 in the context of CAGD. The 
distinguishing aspect is that the following strategies are 
aimed to provide analysis-suitable models.

5.2.1 � Reconstruction by Ruled Surfaces

Trimming curves Ct may be used to define a mapping t 
such that a regular tensor product basis specifies the valid 
area v of the corresponding trimmed patch, as proposed 
by Beer et  al.  [25]. To be precise, t is given by a linear 
interpolation between two opposing Ct

i
, i = {1, 2}. The 

geometrical mapping to the model space is performed by 
the original trimmed patch, hence the approach is also 
referred to as double mapping method.

The following assumptions are made for the sake of 
notational simplicity. Firstly, the regular basis functions are 
defined over a unit square, i.e., s, t ∈ [0, 1]. In addition, it 
is assumed that both trimming curves are specified within 
the same parameter range ũ ∈ [a, b]. Based on that, the 
intrinsic coordinate ũ can be linked to the boundaries of the 
regular basis at t = 0 and t = 1 by the coordinate transfor-
mations f (s) and g(s). They are given by

and 

These equations traverse the interval of ũ in opposite direc-
tions, e.g.,  f (0) = g(1) = a, since one of the trimming 
curves has to be evaluated in reverse order. Finally, t is 
determined by

(53)ũ = f (s) = a + s(b − a),

(54)ũ = g(s) = b + s(a − b).

17  Usually, the jump term coefficient depends on the geometric angle 
of the boundary at the point considered, see e.g., [96].
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From a CAGD point of view, the mapping (55) is equiva-
lent to the one of a ruled surface (26). The main difference 
is that the ruled surface is defined in the parameter space in 
this case. The geometric mapping  , however, is still per-
formed by the trimmed patch. Figure  38 summarizes the 
concept of the double mapping approach.

The main advantage of this approach is its simplicity and 
ease of implementation. However, there are various restric-
tions: first of all, the assumption that v is governed by two 
opposing trimming curves limits the application to very 
specific trimming situations. Furthermore, the four-sided 
nature of v is implied. Consequently, trimmed patches 
with more complex topology have to be decomposed by an 
additional preprocessing step. There is no control over the 
quality of the parameterization due to the mapping t. Ele-
ments may become very distorted depending on the posi-
tion of the trimming curves Ct

i
. Such a situation occurs for 

a triangular-shaped v, see Fig.  9. Since the parameteri-
zation is completely independent of the basis functions of 
the trimmed parameter space, the double mapping method 
works well for Bézier patches. An integration issue arises 
as soon as B-spline patches are considered. The problem is 
depict in Fig. 39. Note that the parameter lines of the geom-
etry representation propagate through the elements defined 
by the mapped regular parameterization. Thus, integration 

(55)Sv

(s, t) = (1 − t)Ct
1
(f (s)) + tCt

2
(g(s)).

of the regular elements is not performed over a C∞-continu-
ous region. In order to get a proper distribution of quad-
rature points, the elements must be subdivided along the 
non-smooth edges. The specification of such regions is not 
straightforward. To conclude, the double mapping method 
is a simple solution for (Bézier) patches which had been 
trimmed during the design process, at least for ones that 
can be represented by a regular patch.

5.2.2 � Reconstruction by Coons Patches

A natural extension of the previous method is to define 
the mapping t to a trimmed parameter space by means of 
Coons patches. In contrast to the ruled surface interpola-
tion (55), t takes four boundary curves into account. Ran-
drianarivony [237, 238] developed such an approach, which 
has been applied to wavelet Galerkin BEM in collabora-
tion with Harbrecht [113]. Although they do not focus on 
isogeometric analysis per se, most of their techniques can 
be directly utilized: (i) decomposition of v into several 
four-sided patches, (ii) identification if t is a diffeomor-
phism,18 and (iii) construction of matching parameteriza-
tions of adjacent patches.

The first step of the decomposition procedure is to sub-
stitute the trimming curves Ct of each patch by a linear 
approximation Cl. The vertices x of Cl are located along 
Ct as illustrated in Fig. 40a. Cl should be as coarse as pos-
sible since the number of vertices determines the number 
of patches that decompose v. As initial approximation, 
the endpoints of the trimming curves may be used. How-
ever, Cl has to be fine enough to resolve the topology of the 
trimmed patch, e.g.,  lines of exterior loops may not inter-
sect ones of interior loops. In order to get a single polygon 
representing v, interior loops are connected to exterior 

s

t

u

v

Ct
1

Ct
2

Av ≡ SAv
(s, t)

Xt

X

Fig. 38   Double mapping scheme to fit a regular tensor product sur-
face to a trimmed patch. The first mapping t specifies the transfor-
mation to the valid area v of the trimmed parameter space, while 
the geometric mapping is denoted by  . The trimming curves 
C
t
i
(ũ), i = {1, 2}, are illustrated by thick lines 

u

v

Cp−m

Fig. 39   Double mapping method for a B-spline patch. The dotted 
lines indicate parameter curves that are not C∞-continuity within v

18  A diffeomorphism is a C∞ mapping with a C∞ inverse.
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loops by so-called double edges. The vertices of the result-
ing polygon are basis for the decomposition of v into a set 
of quadrilaterals . Therefore, it is important that the total 
number of vertices x is even. In the next step, the straight 
boundary curves of Cl are replaced by the complementary 
portions of Ct. An example of a decomposition is shown 
in Fig. 40b. Due to this procedure, the following problems 
may arise. The most obvious one is that the curved bound-
ary may intersect an internal edge. In addition, sharp cor-
ners become degenerated points if the corresponding x is 
smoother than C0. As a result, no diffeomorphism for this 
region can be found [237]. Finally, it is not assured that a 
Coons patch interpolation is regular. Such problems arise 
particularly in case of non-convex domains. An example of 
a non-regular Coons patch where the parametric lines of the 
surface overspill is shown in Fig. 41. A remedy to the men-
tioned issues is local refinement of Cl or the affected i. 
The detection of the first two problems is straightforward, 
but determination of a Coons patch’s regularity requires a 
more detailed discussion.

The following identification procedure assumes that the 
Coons patch interpolation (35) is planar and described by 
boundary curves given in Bézier form, i.e.,

(56)Ci(u) =

p∑
k=0

Bk,p(u)c
i
k
, i = 1, 2, u ∈ [0, 1],

The interpolation function f1 is also described as a Bézier 
polynomial

For the determination of the regularity, the factors �, �, and 
� are specified by

The indices i and j are defined as above and the factors in 
Eqs. (60) and (61) are determined by

with ĉ = (c2
0
− c2

p
+ c1

p
− c1

0
). Finally, the constant � is 

defined such that

(57)Cj(v) =

p∑
k=0

Bk,p(v)c
j

k
, j = 3, 4, v ∈ [0, 1].

(58)f1(s) =

p∑
k=0

Bk,p(s)�k = 1 − f0(s), s ∈ [0, 1].

(59)� ∶= max
{|f �

1
(s)|: s ∈ [0, 1]

}
,

(60)� ∶= min
{
�
ij

k�

}
, k, � = 0,… , p,

(61)� ∶= max
{
�1, �2

}
.

(62)�
ij

k�
∶= p2det

[
ci
k+1

− ci
k
, c

j

�+1
− c

j

�

]
,

(63)𝛼1 ∶= max
k=0,…,p

{
𝜇||(c4

k
− c3

k

)
+ 𝜓kĉ +

(
c1
0
− c1

p

)
||
}
,

(64)𝛼2 ∶= max
k=0,…,p

{
𝜇||(c2

k
− c1

k

)
+ 𝜓kĉ +

(
c1
0
− c2

0

)||},

(65)p
‖‖‖�k

(
c2�+1 − c2� + c1� − c1�+1

)
+
(
c1�+1 − c1�

)‖‖‖ ≤ �,

x0

x1

x2

x3

x4

x5

x6x7

Av

R0

R1 R2

R3

(a)

(b)

Approximation of the trimmed domain

Decomposition

Fig. 40   Decomposing of a trimmed domain v into b regular four-
sided patches i. In a, the trimming curves are continuous whereas 
the linear approximation is illustrated by dashed lines. Further, vertex 
x0 and x4 are connected by a double edge

C1(u)

C4(v)

C2(u)

C3(v)

Fig. 41   Example of a planar non-regular Coons patch where iso-
curves overlap
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for all � = 0,… , p − 1 and k = 0,… , p. Based on these def-
initions, the Coons patch mapping is regular if

These are only sufficient conditions. If they are not ful-
filled a subdivision procedure is employed. Therefore, 
another sufficient condition is derived. Assuming that a 
Coons patch is represented as Bézier surface with control 
points cC

i,j
, the Jacobian can also be described as a Bézier 

function of degree 2p with the control points

with m, n = 0,… , 2p and the coefficients

where

If the coefficients cJ
m,n

 have the same sign the Coons patch 
mapping is a diffeomorphism. In case of unequal signs, the 
patch is adaptively subdivided and for each sub-patch the 
coefficients cJsubm,n are computed. The procedure stops as soon 
as the signs of cJsubm,n do not change within every sub-patch. 

(66)p
‖‖‖�k

(
c4�+1 − c4� + c3

�
− c3

�+1

)
+
(
c3
�+1

− c3
�

)‖‖‖ ≤ �,

(67)2𝛼𝛽 + 𝛼2 < 𝜏 and 𝜏 > 0.

(68)

cJ
m,n

=
∑

i + k = m

j + � = n

C(i, j, k, �)

(
p

i

)(
p

k

)

(
2p

i + k

)

(
p

j

)(
p

�

)

(
2p

j + �

) ,

(69)

C(i, j, k, �) ∶=
�

p

[
i

p
D(i − 1, j, k, � − 1)

+

(
1 −

i

p

)
D(i, j, k, � − 1)

]

+

(
1 −

�

p

)[
i

p
D(i − 1, j, k, �)

+

(
1 −

i

p

)
D(i, j, k, �)

]
,

(70)D(i, j, k, �) ∶= p2det
[
cC
i+1,j

− cC
i,j
, cC

k,�+1
− cC

k,�

]
.

Fig. 42   Converting a pair of odd faces to even ones. Circles indicate 
the initial vertices of the faces and crosses mark those vertices that 
had been added to obtain faces with an even number of vertices

The overall Coons patch is not regular, if it consists of sub-
patches with different signs. It is emphasized that the sub-
division is only performed to determine the regularity of 
the mapping. The corresponding proofs and more informa-
tion can be found in [113, 237].

In case of multiple patches, a matching parameterization 
between adjacent surfaces is sought. The connectivity is 
described by a graph. During the decomposition procedure, 
the polygon vertices of the adjacent patches Si and Sj are 
computed so that

where xi
k
 and xj

�
 are the vertices along the common edge 

and  denotes the geometrical mapping (23). If a vertex xi
k
 

is added to obtain an even-numbered approximation Cl, a 
corresponding xj

�
 needs to be added in the adjacent patch. 

Thus, odd faces can be converted to even ones only in pairs 
as illustrated in Fig. 42. It should be noted that the inserted 
vertices propagate through faces which are even already. 
In order to minimize the affected faces, the shortest path 
connecting two faces is computed by the application of 
Dijkstra’s algorithm [72] to the connectivity graph. In addi-
tion to matching vertices, trimming curves Ct ∈ [a, b] are 
parameterized by means of the chord length of the corre-
sponding intersection curve in model space. The trimming 
curve segment of quadrilaterals i is initially defined by 
C̄
t

i
(t ⋅ ai + (1 − t)bi) ∈ [ai, bi] ⊂ [a, b]. The new represen-

tation Ĉ
t

i
 is given by

with �i denoting the inverse of the length function

Hence, the images of the trimming curve Ĉ
t
 of adjacent 

patches match at the same parametric values, i.e., the same 
chord length. This procedure is applied before the Coons 
patch construction. For details on the computation of the 
reparameterization the interested reader is referred to [238].

In contrast to the approach described in the previous sub-
section, this reconstruction scheme addresses the partition-
ing of trimmed domains into several four-sided regions, the 
regularity of these regions, and the connection of adjacent 
patches. Yet, some aspects are unresolved. For instance, 
the compatibility condition (71) implies that trimming 
curves coincide which is usually not the case as discussed 
in Sect. 3. Since the trimming curves do not describe the 
same curve in model space, the chord length parameteri-
zation may lead to diverse results. Thus, a robust imple-
mentation is required that treats the tolerances involved. As 

(71)i(x
i
k
) = j(x

j

�
),

(72)Ĉ
t

i
∶= C̄

t

i
◦𝜙i, 𝜙i =

(
𝜆i
)−1

,

(73)𝜆i(t) ∶= �
t

a

‖‖‖‖‖‖
d(◦C̄

t

i
)

dt
(𝜃)

‖‖‖‖‖‖
d𝜃.
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pointed out in Randrianarivony’s thesis [237], the recon-
struction algorithm might fail if the inaccuracies of CAGD 
models are too large. User interaction is required to find an 
adequate tolerance threshold. IGES data has been used as 
exchange format in the related publications, which makes 
the tolerance treatment even more delicate since the topol-
ogy of the objects has to be reconstructed as elaborated in 
Sect. 4. Finally, the problem of integrating over C∞-contin-
uous regions in case of B-spline patches is not addressed.

5.2.3 � Reconstruction by Isocurves

Recently, Urick [298] presented a reconstruction approach 
based on isocurves (25). In contrast to the previous 
schemes, the trimmed patch is replaced by a new param-
eterization and a new set of control points. The overall 
procedure consists of several steps including (i) topology 
detection, (ii) parameter space analysis and determination 
of knot vector superset, (iii) reparameterization of trimmed 
parameter spaces, (iv) computation of corresponding con-
trol points, and (v) the treatment of multiple trimming 
curves.

In order to identify the topology of the trimmed domain 
v, characteristic points x of the trimming curves Ct are 
determined. The points considered are summarized in 
Table  3. They represent characteristic points commonly 
used in surface-to-surface intersection schemes (i.e.,  types 
0, 2, and 3) [221], along with an additional point previously 
not utilized (type 1). The main purpose of this classification 
is to detect portions � of a trimming curve that are asso-
ciated to either the u-direction, i.e., �u, or the v-direction, 
i.e., �v, of the parameter space. With this in mind, the most 
significant points are those of types 0 and 1, because they 
indicate a possible transition from �u to �v. Each � together 
with its opposing edge of the parameter space specifies a 
four-sided regions . An example of a segmentation of v 
is illustrated in Fig.  43. Note that not every characteristic 
point of type 1, i.e.,  x1, yields a new portion. Hence, the 
sequence of characteristic points has to be examined rather 
than the classification of individual points.

Once all reconstruction regions  are detected, the 
parameterization of adjacent patches is aligned. The fol-
lowing knot cross-seeding procedure establishes a one-
to-one relation of points along the intersection curve Ĉ(s) 
in model space and the related trimming curves of the 

surfaces Si(u, v). Firstly, Ĉ(s) is refined so that it is defined 
by Bézier segments, i.e.,  the multiplicity of all knots is 
equal to the curve’s degree. Furthermore, each Si(u, v) is 
subjected to knot insertion in the u-direction and v-direction 
at their characteristic points x of �u and �v portions, respec-
tively. Thus, the knot vectors of the surfaces incorporate 
the locations of all x. In the next step, the knot information 
is exchanged across the different objects involved in order 
to define a knot vector superset. During this process, new 
Bézier segments are introduced to Ĉ(s). In particular, knots 
are added at the parametric values ŝ that correspond to the 
knots of Si(u, v). The values ŝ are determined by minimiz-
ing the distance of Ĉ(s) to isocurves Ciso(u) and Ciso(v) of 
each Si(u, v) and the fixed parameters of these isocurves are 
determined by the knot values of the surfaces. As a result, 
the refined intersection curve and its superset knot vector 
reflect the knots and topological characteristics of itself, 
the related surfaces, and their trimming curves. Finally, this 
information is passed on to the surfaces, i.e., all Si(u, v) 
are refined at the interior knots of Ĉ(s) including the knots 
of the adjacent Sj(u, v), j ≠ i. This is done by minimizing 
the distance between the points of Ĉ(s) and Si(u, v). The 
exchange of knot data is necessary in order to guarantee 
that patches are connected along their intersection after the 
reconstruction.

Reparameterization is required to obtain a conforming 
basis for each four-sided region . Suppose  is related to 
a �v-portion19 of a trimming curve, then it is described by a 
set of isocurves {Ciso

k
(u)}K

k=1
 along fixed parameter values 

Table 3   Characteristic points x of a trimming curve

Types Description

0 End points, kinks, and cusps
1 Slope relative to u is 1 or −1
2 Slope relative to u is 0
3 Slope relative to u is ∞

x2

x2

x2

x3

x0

x0 x1x1 x1

γu

γv

u

v
R0

R1

Fig. 43   Determination of the trimming curve portions �u and �v 
which are associated to the parametric direction u and v, respectively. 
The boundary of the related regions i within the trimmed domain 
are indicated by dashed lines. Characteristic points x are marked by 
crosses which correspond to the sloped of the curve. The point type is 
denoted by the related superscript

19  Regions related to a �u-portion are treated in an analogous manner.
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siso
k
. Note that the values siso

k
 correspond to the parameteri-

zation of the intersection curve Ĉ(s) rather than the v-direc-
tion of the trimmed surface. Thus, the reparameterized 
region ̃ will be conformal with Ĉ(s) and the reparameter-
ized counterpart of an adjacent surface will be conformal 
as well. Due to the cross-seeding process, �v is linked to 
at least one Bézier segment of Ĉ(s). The positions siso

k
 of 

the isocurves Ciso
k
(u) are determined by the endpoints and 

Greville abscissae of these Bézier segments. The corre-
sponding parametric values in the u-direction are labeled ûk 
and represent the locations where the distance of Ciso

k
(u) is 

minimal to Ĉ(s). Knot insertion at ûk is applied to extract 
the part of Ciso

k
(u) that is within the domain of interest, 

i.e., the current four-sided region . The values ûk vary for 
each Ciso

k
(u) since they are distributed close to the trimming 

curves. In other words, parameter intervals of the isocurves 
within  do not match in general. To overcome this issue, 
all Ciso

k
(u) are reparameterized to be specified by the same 

basis.
The simplest way to establish the reparameterization 

is to use a linear coordinate transformation so that all iso-
curves are defined over a common range, combined with 
a subsequent accumulation of the shifted interior knots of 
each knot vector. However, this technique yields a large 
number of basis function since interior knots of isocurves 
with different initial intervals do not coincide after the 
transformation. Furthermore, the size of the resulting knot 
spans may vary excessively because the alteration of shifted 
interior knots can be arbitrarily small.

Hence, a nonlinear reparameterization is preferred. A set 
of functions {fk(ũ)}Kk=1 is sought that maps the correspond-
ing Ciso

k
(u) ∈ [ak, bk] to a common range Ciso

k
(ũ) ∈ [c, d] 

without modifying interior knots. These functions can be 
represented by univariate splines with scalar coefficients ck

i
, 

i.e.,

Note that the linear coordinate transformation is a special 
case of this formulation where the degree of the function 
is set to q = 1. The composite of an isocurve Ciso

k
(u) and its 

fk(ũ) determines the reparameterization

The degree of the resulting curve is given by p̃ = pq where 
p refers to the original degree of the isocurve. If the long-
est isocurve is taken as target parameterization, it can be 
adjusted by using conventional degree elevation to p̃. The 
other curves are subjected to a nonlinear reparameteriza-
tion based on their fk(ũ). For technical details on nonlin-
ear reparameterization of curves the interested reader is 
referred to the textbook [230].

(74)fk(ũ) =

I−1∑
i=0

Bi,q(ũ)c
k
i
, q > 1, k = 1,… ,K.

(75)Ciso
k
(ũ) = Ciso

k
(fk(ũ)), ũ ∈ [c, d].

It remains to find a way to coordinate the individual 
fk(ũ) to obtain a global reparameterization for the whole 
reconstruction domain  that yields a new valid tensor 
product parameter space ̃. The key idea is to represent the 
global transformation as a spline surface f (ũ, s). This sur-
face includes all fk(ũ) as isocurves, i.e.,  f (ũ, siso

k
) = fk(ũ). 

The bivariate reparameterization is given by

with the degree ps of the intersection curve segment and a 
grid of scalar control coefficients ci,j. If the degree in the v
-direction of the trimmed surface varies from ps, the degree 
of the segment may be adjusted by means of degree eleva-
tion. Equation (76) can be represented as a non-parametric 

(76)f (ũ, s) =

I−1∑
i=0

J−1∑
j=0

Bi,p̃(ũ)Bj,ps
(s)ci,j,

(a)

(b)

Reparameterization surface

Isocurves

siso0
siso1

siso2
siso3

0
1
3

2
3

1
0

1
3

2
3

s ũ

u

f(ũ, s)

R

R̃

0 1
3

2
3

1
0

1
3

2
3

1

ũ

u

Fig. 44   Reparameterization of a trimmed parameter space of a bicu-
bic Bézier patch: a surface f (ũ, s) that reparameterizes the trimmed 
parameter space u to a regular one ũ indicated by the vertical and 
plane grid, respectively. Lines on the surface mark the associated iso-
curve along siso

k
. b Profile of the isocurves fk(ũ)
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surface by linking the coefficients ci,j to their Greville 
abscissae (22).

The corresponding control points are defined as

The coefficients ci,j can be defined by the user as long as the 
following restrictions are met:

	 (i)	 The function f (ũ, s) must be strictly monotonic in 
the ũ-direction so that intervals do not overlap.

	(ii)	 The spline surface must employ the same target knot 
vector 𝛯̃ in the ũ-direction.

	(iii)	 Each knot value ui of the initial knot vectors must 
be mapped to a distinct ũi ∈ 𝛯̃ for all isocurves, 
i.e., ui = f (ũi, s

iso
k
), k = 1,… ,K.

An illustration of such a bivariate reparameterization func-
tion f (ũ, s) is provided in Fig. 44a and the corresponding 
isocurves are shown in Fig. 44b. It should be noted that the 
parameter space spanned by the ũ-axis and s-axis is defined 
by straight parameter lines only, in contrast to the original 
basis spanned by the u-axis and s-axis. It is emphasized that 

(77)ci,j =

⎡⎢⎢⎣

(ũi+1 + ũi+2 +⋯ + ũi+p̃)∕p̃

(sj+1 + sj+2 +⋯ + sj+ps )∕ps
ci,j

⎤⎥⎥⎦
.

the graphs in Fig.  44b intersect at the common interior 
knots ũi = ui =

{
1

3
,

2

3

}
.

The final step of the reconstruction scheme is to deter-
mine the control points of the reparameterized regions ̃. 
Therefore, we recall the specification of the control points 
c̃k
i
 of isocurves Ciso

k
(u) as a weighted combination of surface 

control points ci,j

Isocurves have been introduced at the Greville abscissae 
of the Bézier segments along the reconstruction boundary 
�v. Hence, the number of isocurves is equal to the number 
of unknowns, i.e., J = K, and the control points ci,j can be 
computed based on the known isocurve control points c̃k

i
 by 

inverting the system of equations (78). The control points 
along the boundary �v are already known beforehand, 
i.e., the control points of Ĉ(s), and do not need to be com-
puted explicitly.

It is quite astonishing that the procedure described 
remains the same when multiple trimming curves are 
involved. Instead of assessing the topology of all trimming 
curves at once, the trimming curve or more precisely each � 
is processed successively and independently of each other. 
In fact, it does not matter if the portions � originate from 
one or several trimming curves. After each reparameteri-
zation the parameter space is updated and the next region 
is addressed. The iterative evolution of the reconstructed 
regions ̃ is displayed in Fig. 45. To be clear, the regions 
0 and 1 shown in Fig. 45b and the regions 2 and 3 
displayed in Fig. 45c are not constructed at the same time.

The final outcome of the reconstruction is a new set of 
patches with aligned parameter spaces that share the control 
point of their intersection curves. Thus, the reconstructed 
object is watertight. It is emphasized that this holds true 
even for non-manifolds. These benefits come at the price 
of an alteration of the initial geometry and an increase of 
the degrees of freedom. Since the concept has been pre-
sented just recently, there are several open research topics 
to explore. For instance, an estimation of the geometrical 
error introduced with respect to the degree of the reparam-
eterization function and the number of isocurves would be 
of great interest. This could be the basis for an optimization 
procedure for the definition of the reparameterization func-
tion. Another topic might be the quality of the resulting ele-
ments in model space, especially at the transitions from �u 
to �v regions.

We close the discussion of the isocurve reconstruction 
approach with some application remarks. Firstly, the con-
cept can also be applied locally. In this paper it is focused 
on the tensor product case where refinement propagates 

(78)c̃k
i
=

J−1∑
j=0

Bj,q(s
iso
k
)ci,j, k = 1,… ,K.

u

v
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Topology detection and
characteristic points

First two reconstruction
regions

Further reconstruction
regions after basis update

Reparameterized pa-
rameter spaces

Fig. 45   Successive evolution of the isocurve reconstruction of a 
quadratic trimmed patch using a quadratic reconstruction function
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through the whole domain for the sake of simplicity. A 
locally reconstructed parameter space may be represented 
by any local basis like T-splines, hierarchical B-splines, or 
LR-splines. Secondly, the degree of the resulting patches 
may become large, depending on the degree of the repa-
rameterization function. It might be beneficial to apply 
a degree reduction technique after the reconstruction, but 
this introduces additional approximation errors. Finally, the 
intersection curves should have a good parameterization 
since they play an essential role during the reconstruction. 
Therefore, it might be advisable to reparameterize the inter-
section curve, e.g., by its chord length, at the beginning of 
the overall procedure.

5.2.4 � Reconstruction by Triangular Bézier Splines

Another recent attempt has been proposed by Xia and 
Qian [314]. They employ triangular Bézier patches (36) to 
convert trimmed models to watertight representations. The 
convergence behavior of these splines has been assessed 
by these authors and co-workers in [315]. The conversion 
involves the following steps: (i) subdivision of all surfaces 
into tensor product Bézier patches, (ii) exact representation 
of non-trimmed patches by two Bézier triangles, (iii) knot 
cross-seeding between adjacent patches, (iv) approximation 
of the region along the trimming curve using Bézier trian-
gles, and (v) substitution of the resulting control points of 
the approximate trimming curve by corresponding control 
points of the intersection curve in model space.

The first step can be easily accomplished by means of 
knot insertion. The second one is performed following 
Goldman and Filip [100]. In particular, a non-trimmed ten-
sor product patch with control points c□

m,n
 can be converted 

to two triangular Bézier patches by

where i + j + k = p + q and 
(
�

�

)
 are binomial coefficients 

defined as

Equation (79) yields the control points c△
i,j,k

 of one triangu-

lar patch using c□
m,n

: 0 ⩽ m ⩽ p; 0 ⩽ n ⩽ q. The control 
points of the other triangular patch are obtained by revers-
ing the order of the original control points, 

(79)

c
△
i,j,k

=
1(

p + q

q

)
i∑

m=0

min {j,q−i+m}∑
n=max {0,j−p+m}

c□
m,n

(
i

m

)(
j

n

)

×

(
p + q − i − j

p + n − m − j

)
,

(80)
(
�

�

)
∶=

�!

(� − �)!�!
.

i.e.,  c□
p−m,q−n

: 0 ⩽ m ⩽ p; 0 ⩽ n ⩽ q. The degree of the 
resulting patches is determined by p + q. It is emphasized 
that this transformation does not introduce an approxima-
tion error.

Next, the relationship of adjacent patches along the 
intersection is established. This is done similar to the knot 
cross-seeding procedure described in the previous subsec-
tion. Hence, we adopt this term here as well. Figure  46 
summarizes the basic procedure. Firstly, the intersection 
curve Ĉ(x̃) in model space and the trimming curves Ct

1
(ũ) 

u

v

Ct
1(ũ)

X

s

t

Ct
2(s̃)

X

x

y
Ĉ(x̃)
X ◦Ct

1(ũ)

X ◦Ct
2(s̃)

x

y
Ĉ(x̃)
X ◦Ct

1(ũ)

X ◦Ct
2(s̃)

u

v

s

t

(a)

(b)

(c)

Initial setting

Knot cross-seeding

Final triangulation

Fig. 46   Generation of conforming triangulations along the intersec-
tion of two patches: a definition of Bézier segments of the intersec-
tion curve Ĉ(x̃) and the trimming curves Ct

1
(ũ) and Ct

2
(s̃). b Closest 

point projection to find corresponding points on the other curves. c 
Addition of Bézier segments due to the exchanged points and speci-
fication of associated triangular regions. Segments are marked by 
crosses, black points, and white points based on their origin. The off-
set between Ĉ(x̃) and the images ◦Ct

1
(ũ) and ◦Ct

2
(s̃) shall empha-

size that they do not coincide in model space. In b, arrows indicate 
the projections performed
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and Ct
2
(s̃) are subdivided into Bézier segments at their knot 

values and intersections with the trimmed parameter space. 
Then, the endpoints of these segments are projected to the 
other curves and the corresponding parametric values are 
computed. In other words, the trimming curve are refined 
based on the knot information of the other trimming curve 
and the intersection curve in model space. Consequently, 
the resulting Bézier segments of a curve have correspond-
ing counterparts in the other curves. However, the distinct 
segments do not coincide in model space. At this point, the 
purpose of the knot cross-seeding is to obtain an aligned 
triangulation along the intersection. Triangular patches are 
specified within each trimmed surface so that one of their 
boundaries represents a Bézier segment.

The construction of these triangular Bézier patches 
which are arbitrarily located within the trimmed surface is 
performed accordingly to Lasser [182]. In general, a Bézier 
triangle T of degree p̃ in a tensor product basis of a sur-
face R(u, v) of degrees p and q yields a triangular patch 
S△(r, s, t) of degree p̃(p + q). Xia and Qian [314] focus on 
the linear case, i.e., p̃ = 1, meaning that the trimming curve 
is approximated by linear segments. Thus, the composition 
S△(r, s, t) = R(T(r, s, t)) is given by

where B�,p+q refer to the Bernstein basis (37) of the triangu-
lar patch, � is an index triplet (i, j, k), and |�| = i + j + k. It 
remains to determine the corresponding control points c△

�
. 

Therefore, the construction points Rp,q

0,0
(u

p

�u
, v

q

�v
) of the blos-

som of R(u, v) are needed. Regarding the u-direction, for 
instance, these points are recursively defined by

where the control points of the surface R(u, v) are used as 
initial values R0,0

i,j
. The construction in the v-direction is 

performed in an analogous manner. The superscripts a and 
b denote distinct steps of the recurrence relation in the u
-direction and v-direction, respectively. Note that Eq.  (82) 
is an adaptation of the de Casteljau algorithm that allows 
employing new parameter values u�u

a
 in every iteration. 

Likewise, the index tuples are given by �v = �v
1
+⋯ + �v

b
 

and �u = �u
1
+⋯ + �u

�
 with � referring to the related super-

script, i.e.,  a or a − 1. Using this recursion, the control 
points of the triangular patch S△(r, s, t) are obtained by

(81)S△(r, s, t) =
∑

|�|=p+q
B�,p+q(r, s, t)c

△
�
,

(82)
R
a,b

i,j
(ua

�u
, vb

�v
) =

(
1 − u�u

a

)
R
a−1,b

i,j
(ua−1

�u
, vb

�v
)

+ u�uaR
a−1,b

i+1,j
(ua−1

�u
, vb

�v
),

(83)
c
△
�

=
∑

�u+�v=�

1(
p + q

�

)R
p,q

0,0
(u

p

�u
, v

q

�v
),

with

where each of these index triples consists of

and further

This procedure is applied to cover the valid area of 
every trimmed Bézier surface by a set of triangular Bézier 
patches. Each Bézier segment of a trimming curve is repre-
sented by an edge of such a triangular patch. Finally, those 
edges are replaced by the corresponding Bézier segment of 
the intersection curve in model space. Since this substitu-
tion is carried out for all patches, a seamless join between 
adjacent surfaces is obtained. The approximation error 
introduced may be controlled by refining the patches along 
the trimming curves.

It is worth noting that Xia and Qian  [314] use their 
reconstruction procedure as an intermediate step in order to 
set up a volumetric parameterization of B-Rep models. The 
watertight triangular Bézier surface representation provides 
the starting point for a construction of volumetric Bézier 
tetrahedra.

(84)�
u = �

u
1
+⋯ + �

u
q

and �
v = �

v
1
+⋯ + �

v
p
,

(85)�
�
�
=
(
i�
�
, j�

�
, k�

�

)
with i�

�
, j�

�
, k�

�
∈ {0, 1},

(86)|�u| = ||�u1|| +⋯ +
|||�

u
p

||| = p,

(87)|�v| = ||�v1|| +⋯ +
|||�

v
q

||| = q,

(88)|�| = |�u| + |�v| = p + q.

(a) (b)

(c) (d)

Fig. 47   Illustration of the most common valid cutting patterns of a 
single knot span. The actual element type is determined by the direc-
tion of the trimming curve. The crosses highlight the intersection 
points of the trimming curve with the element
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5.3 � Local Approaches

Local techniques employ a completely different philosophy 
than their global counterparts, that is, the geometry model 
is not modified but the analysis has to deal with all defi-
ciencies of trimmed solid models. Thereby, the trimmed 
parameter space is used as background parameterization 
for the simulation while the trimming curves determine the 
domain of interest. Hence, the analyzed area is embedded 
in a regular grid of knot spans which consists of interior, 
exterior, and cut elements. The following subsections dis-
cuss (i) the detection of theses distinct element sets, (ii) the 
integration of cut elements, (iii) the treatment of multipatch 
geometries, and (iv) the stability of a trimmed basis.

5.3.1 � Element Detection

Before the actual analysis can be performed, the various 
element types and their position within the trimmed basis 
need to be identified. Interior elements are defined by non-
zero knot spans that are completely within the valid domain 
and can be treated as in regular isogeometric analysis. 
Exterior ones, on the other hand, can be ignored since their 
entire support is outside of the domain of interest. Cut ele-
ments require special attention. One of the advantages of 
local approaches is that the cutting patterns of these ele-
ments are relatively simple compared to the complexity of 
the overall trimming curve. Figure  47 depicts topological 
cases of cut elements that are usually considered, e.g., [160, 
161, 199, 202, 260]. It should be pointed out that other 
cases may exits as well, e.g.,  an element containing more 
than one trimming curve. These situations occur especially 

when the basis is very coarse. In general, the complexity of 
a trimming curve’s topology within an element decreases 
as the fineness of the parameter space increases. Hence, 
(local) refinement is a common way to resolve invalid cut-
ting patterns. This refinement may be performed for inte-
gration purpose only. Thus, no new knots are introduced, 
but the invalid element is subdivided in several valid inte-
gration regions. An alternative is to extend the valid cutting 
patterns as suggested by Wang et al. [307] or the construc-
tion of tailored integration rules for each cut element as 
proposed by Nagy and Benson [211]. However, the benefit 
of a restricted number of trimming cases facilitates the sub-
sequent integration process.

Considering the situations shown in Fig.  47, cut ele-
ments have either 3, 4, or 5 edges, where one of them is 
a portion of the trimming curve. In this paper, we adapt 
the notation of Schmidt et  al.  [260] and label the type of 
cut elements by their number of edges. Interior and exte-
rior elements are referred to as elements of type 1 and −1, 
respectively. Figure  48 illustrates a trimmed parameter 
space and the related element types. Note that the knot 
span in the upper right corner is an example of an invalid 
case since smooth element edges are usually assumed for 
the numerical integration. Possible strategies to deal with 
this element include subdivision into several integration 
regions, treatment as a type 4 element with two curved 
edges, or knot refinement through the kink of the curve. In 
general, kinks and straight trimming curves that are aligned 
with parameter lines are usual suspects for introducing spe-
cial cases.

The portions of the trimming curve which are within 
each element have to be determined in order to get a proper 
description of cut knot spans. In particular, the intersec-
tions of the parameter grid with the trimming curve Ct(ũ) 
are required, together with the corresponding parametric 
values ũ+. The overall element detection task consists of 
the classification of knot span with respect to the trimming 

-1 -1 -1 3 3 -1

3 4 4 5 1 3

4 1 5 4 5 4

3 4 3 -1 3 ?

u

v

Fig. 48   Trimmed parameter space and corresponding element types: 
1 labels untrimmed knot spans whereas −1 denotes knot spans which 
are outside of the computational domain. In case of trimmed knot 
spans the element type indicates the number of interior edges, i.e., 3, 
4, or 5. The question mark indicates a special case. The intersections 
of the trimming curve with the parameter lines are highlighted by 
crosses 

r
in r out

|d|

(a)

+

−

+

+

(b)

Fig. 49   Detection of cut elements according to Kim et al. [160, 161]: 
a first assessment based on the inscribed and circumscribed circles 
of the element and if necessary, b further comparison of the signed 
distance of the element corners
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curves and the determination of trimming curve portions 
related to cut elements.

Kim et al. [160, 161] and Schmidt et al. [260] presented 
two different algorithmic solutions for the element detec-
tion problem. The procedure suggested by the former can 
be summarized by:

	 (i)	 Compute the minimal signed distance di,j of the 
center of each non-zero knot span to all trimming 
curves to separate interior and exterior elements.

	(ii)	 Identify cut elements by comparing |||di,j
||| with the 

radii rin
i,j

 and rout
i,j

 of the inscribed and circumscribed 

circles of the element. If rin
i,j
⩽
|||di,j

||| < rout
i,j
, the signed 

distance of the element corner nodes to the trimming 
curve are computed and compared as well.

	(iii)	 Compute intersection points for each element cut by 
the trimming curve.

Both cases of the second step which specify cut elements 
are illustrated in Fig.  49. In Fig.  49a, the distance of the 
element’s center to the trimming curve is smaller than the 
radius of the inscribed circle, whereas in Fig. 49b, the cut 
element is identified since the signed distances of its corner 
nodes are positive and negative.

On the other hand, Schmidt et  al.  [260] recommend to 
label all non-zero knot spans as interior elements as start-
ing point for the following procedure:

	 (i)	 Determine all intersection points of the trimming 
curve and the grid produced by the tensor product 
of the knot vectors and sort them in a nondecreasing 
order with respect to the related values ũ+.

	(ii)	 Assign the element type of cut elements based on the 
position of successive intersection points.

	(iii)	 Detect exterior elements based on their position rela-
tive to the cut elements.

It should be noted that successive intersection points mark 
start and end of trimming curve portions within an element. 
For the last task, the exterior nodes of cut elements can be 
used to initialize an incremental algorithm setting adjacent 
elements which are not labeled as cut elements to −1 [286]. 
Figure 50 illustrates the situation described. The nodes of 
these exterior elements are then used to determine further 
exterior elements. The procedure stops as soon as there are 
any adjacent elements of type 1 left.

On this basis, it may be concluded that the present 
approaches tackle the problem from two different direc-
tions. The former puts the element type in the focus with 
a subsequent calculation of the intersections of cut ele-
ments with the trimming curve, whereas the latter com-
putes all intersections and derives the type of the elements 
afterwards. In general, the most important property of 
an element detection algorithm is its robustness since it 
hardly effects the overall efficiency of the simulation. Both 
approaches require a robust implementation of the curve-
to-grid intersection computation. The Bézier clipping tech-
nique described in Sect. 3.5.2 could be used. The treatment 
of invalid cutting patterns applies also to both algorithms 
and depends on the subsequent integration procedure. The 
main difference between the approaches is that the for-
mer relies on a robust implementation of a point projec-
tion algorithm in order to determine the signed distance of 
a point to the trimming curve, while the latter requires a 
robust technique for detecting exterior elements based on 
the intersection information. There is perhaps no objective 
way to prefer one scheme to the other, but we would like 
to share our experiences with both schemes by mentioning 
some possible pitfalls in the following paragraphs.

The first point addresses the detection of exterior ele-
ments based on their relative position to cut elements. The 
starting point is illustrated in Fig. 50. Elements of type 1 
are changed to type −1 if they are adjacent to the exterior 
nodes of cut and exterior elements. The search for adjacent 
elements can be performed in an incremental manner as 
it is done in “flood fill” algorithms, which are commonly 
used in graphics software [286]. It should, however, be 
emphasized that intersected grid nodes need special atten-
tion since the search for adjacent elements might propagate 
at these points to the valid domain. Furthermore, a proper 
treatment of zero knot spans is required.

The other note is concerned with the calculation of the 
signed distance to trimming curves. The shortest distance 
dt of a test point xt to a trimming curve Ct(ũ) is defined as

5 3

5

4 4 3

4

u

v

Intersection Intersected grid node Exterior node

Fig. 50   Starting point for the separation of interior and exterior ele-
ments following the procedure of Schmidt et  al.  [260]. White knot 
spans are not classified yet. The arrow indicates the direction of the 
trimming curve
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A Newton–Raphson iteration scheme is employed to deter-
mine the parametric values ũ∗ [192, 230]. The correspond-
ing sign s indicates on which side of Ct(ũ) the point xt is 
located. It can be computed by the cross product of the tan-
gent vector t = (tu, tv)

⊺ at the projected point xp = Ct(ũ∗) 
and the direction vector d = (du, dv)

⊺ from xp to xt. In two 
dimensions, the analog to the cross product is given by the 
determinant, hence the sign is calculated by

In case of non-smooth trimming curves, more than one 
minimum might exist as pointed out in [287]. From a prac-
tical point of view this is only relevant if these minima 
have different signs. Such cases appear in the vicinity of 
sharp corners as shown in Fig. 51. The correct sign can be 
determined by the projected distance calculated by the dot 
product

If the angle � = 0, i.e., e1 = e2, the curvatures of the curves 
may be compared

where �1 denotes the curvature of the curve that ends at the 
corner.

5.3.2 � Integration

Various strategies to integrate cut elements 𝜏 ∈ v are out-
lined in this subsection. In general, numerical integration is 
performed using conventional Gauss–Legendre quadrature. 
The integral over each 𝜏

(89)dt = min
{‖‖Ct(ũ) − xt

‖‖
}
= ‖‖Ct(ũ∗) − xt

‖‖.

(90)s = tudv − tvdu.

(91)ei = v ⋅ ti, i = 1, 2,

(92)s = sign
{
min

{
e1, e2

}}
.

(93)s =

{
1 if𝜅1 > 𝜅2,

−1 otherwise,

is substituted by a weighted sum of point evaluations

The related quadrature points y and the correspond-
ing weights w are specified in the reference element 
𝜏̀ = [−1, 1]2. The coordinates for the pointwise evalu-
ation of the integrand f are determined by the inte-
gral transformation r(�, �):ℝ

2
↦ ℝ2 from 𝜏̀ to 𝜏 

and the geometrical mapping (u, v):ℝ2
↦ ℝ3, 

i.e.,  yg = (ug, vg) = (r(�g, �g)) as illustrated in 
Fig.  52. In order to take these mappings into account, 
the quadrature weights wg are multiplied by the Gram’s 
determinant

given by the Jacobian matrix � of the geometrical map-
ping. The Jacobian determinant of r

is evaluated with respect to the reference coordinates �g and 
�g of the integration point yg. The definition of the inte-
gral transformation r and the related J𝜏̀ is straightforward 
in case of regular elements. However, the domain of cut 

(94)I𝜏 = ∫Ω𝜏

f (x) dΩ𝜏

(95)I𝜏 ≈

n∑
g=1

f
(
yg
)
G(ug, vg)J𝜏̀(𝜉g, 𝜂g)wg.

(96)G(u, v) ∶=

√
det

(
�
⊺
 (u, v)� (u, v)

)
,

(97)J𝜏̀(𝜉g, 𝜂g) = det
(
�(𝜉g, 𝜂g)

)
,

α

e
2

e1

Ct
1(ũ)

C
t2 (ũ)

Av

xt

C
t
1
(ũ) C t

2 (ũ)

xt
e1 = e2

(a) (b)

Fig. 51   Determination of the correct sign in case of multiple trim-
ming curves Ct

i
(ũ) which describe an acute angle. The area which 

returns ambiguous signs is indicated in gray. (Courtesy of Jakob W. 
Steidl)
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Fig. 52   Distribution of quadrature points indicated by black points 
over a regular patch
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elements is more complex and thus, the definition of r is 
more involved.

Numerical integration of cut elements is required in var-
ious simulation schemes. Besides the analysis of trimmed 
geometries, it is also needed in the context of fictitious 
domain methods and the extended finite element method. 
There are numerous approaches and a vast body of litera-
ture proposing strategies to specify a proper integration 
of 𝜏. It may be performed so that the trimming curve is 
taken into account in an exact or approximate manner. In 
this paper, the main focus is on techniques presented in the 
context of trimmed NURBS objects. They can be broadly 
classified into the following categories: (i) local reconstruc-
tion, (ii) approximate treatment, and (iii) exact treatment. 
The former is performed in model space, while the others 
operate in the parameter space in general.

5.3.2.1  Local Reconstruction  Schmidt et  al.  [260] sug-
gested to perform the adjustment of the integration region 
by a local reconstruction of the trimmed patch. Therefore, 
each cut element in the model space � is remodeled as a 
single reconstruction patch 𝜏. In particular, 𝜏 is specified as 
a Bézier patch with degrees p̂ ⩾ p and q̂ ⩾ q, where p and 
q refer to the degrees of the origin surface. The key idea is 
to represent 𝜏 in terms of the original control points of �. A 
transformation matrix � provides the relationship between 
the control points of the original and reconstructed patch. It 
can be computed by means of a least squares approximation 
where the system of equations is given by

This equation consists of

representing the (unknown) control points of 𝜏, the (known) 
control points of �, and a set of sampling points xs interpo-
lated by both patches. The total number of control points 
involved is determined by the number of non-zero basis 
functions, i.e.,  n̂ = (p̂ + 1)(q̂ + 1) and n = (p + 1)(q + 1). 
The number of sampling points, i.e., l + 1, is arbitrary but 
larger than n̂. The basis function values of 𝜏 at xs are pro-
vided by

and the corresponding values of � are given by

(98)�̂�̂ = � = ��.

(99)�̂ =

⎡⎢⎢⎣

ĉ0
⋮

ĉn̂−1

⎤⎥⎥⎦
, � =

⎡⎢⎢⎣

c0
⋮

cn−1

⎤⎥⎥⎦
, and � =

⎡⎢⎢⎣

xs
0

⋮
xs
l

⎤⎥⎥⎦
,

(100)�̂ =

⎡⎢⎢⎣

B̂0,p̂(û
s
0
)B̂0,q̂(v̂

s
0
) ⋯ B̂p̂,p̂(û

s
0
)B̂q̂,q̂(v̂

s
0
)

⋮ ⋱ ⋮

B̂0,p̂(û
s
l
)B̂0,q̂(v̂

s
l
) ⋯ B̂p̂,p̂(û

s
l
)B̂q̂,q̂(v̂

s
l
)

⎤⎥⎥⎦
,

Note that a correlation between the parametric values has to 
be established so that xs

i
= 𝜏(us

i
, vs

i
) = 𝜏(ûs

i
, v̂s

i
), i = 0,… , l. 

The system of equations (98) is overdetermined consisting 
of l + 1 equations and n̂ unknowns. In general, it cannot be 
solved exactly, but a good approximation of the solution 
can be found by forming

which yields the definition of the transformation matrix

and the relation between the control points

As a result, numerical integration can be performed 
based on the regular reconstruction patch 𝜏 and the sim-
ple mapping of the regular integration can be applied. The 
values obtained are distributed to the control points of the 
original patch using the transformation matrix �. For more 
details, the interested reader is referred to [260].

This procedure can be directly applied to cut elements 
of types 3 and 4 as specified in Sect. 5.3.1. Type 5 elements 
may be subdivided into two four-sided regions. A drawback 
of the local reconstruction scheme is that it introduces an 
additional approximation error since the system of equa-
tions (102) cannot be solved exactly. Moreover, the stability 
of the computation of the transformation matrix might be 
affected if only a very small region of a cut element needs 
to be reconstructed.

5.3.2.2  Approximated Trimming Curve  The following 
two schemes approximate the trimming curve Ct in order to 
define proper integration points within the parameter space. 

(101)� =

⎡⎢⎢⎣

B0,p(u
s
0
)B0,q(v

s
0
) ⋯ Bp,p(u

s
0
)Bq,q(v

s
0
)

⋮ ⋱ ⋮
B0,p(u

s
l
)B0,q(v

s
l
) ⋯ Bp,p(u

s
l
)Bq,q(v

s
l
)

⎤⎥⎥⎦
,

(102)�̂
⊺
�̂�̂ = �̂

⊺
� = �̂

⊺
��,

(103)� =
(
�̂
⊺
�̂

)−1

�̂
⊺
�,

(104)�̂ = ��.

≈ ρ̃

Fig. 53   Approximation of the cut element by a polytope 𝜌̃. The con-
trol points of the trimming curve are marked by circles 
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One uses a linear approximation of Ct to set up a tailored 
integration rule, whereas the other applies an adaptive sub-
division to approximate the domain of the cut element.

A tailored integration rule can be established for each 
cut element 𝜏 as proposed in [211, 305, 306]. The control 
polygon20 of Ct is used to represent 𝜏 by a polytope 𝜌̃ as 
shown in Fig. 53. The integral over 𝜌̃ can be reduced to a 
sum of line integrals over the edges of 𝜌̃ using Lasserre’s 
theorems [183]. Therefore, the integration domain Ω𝜌̃ has 
to be convex. Thus, a preprocessing step is applied to rep-
resent non-convex regions by a combination of convex 
ones. The line integrals provide reference solutions for the 

right-hand side of a set of moment-fitting equations given 
by

They are used to computed a tailored quadrature rule, 
i.e., points yi = (ui, vi)

⊺ and weights wi, for all functions fj 
of the desired functions space, e.g., monomials up to a cer-
tain degree. The goal is to find the lowest number of yi so 
that the Eq. (105) are satisfied up to a certain tolerance, for 
each 𝜏 or rather 𝜌̃. The algorithm proposed in [211] starts 
with an initial set of yi and successively eliminates one 
superfluous point after another. In each step, the reduced 
set of points is used to solve the system of equations (105) 
in the least squares sense.

The construction of a tailored quadrature has two main 
benefits: (i) the number of integration points per 𝜏 is opti-
mized and (ii) all cutting patterns are covered by a sin-
gle technique, including cases which had been labeled as 
invalid in Sect. 5.3.1. Of course, this comes at the price of 
a more involved preprocessing phase since every cut ele-
ment has to be treated individually. Furthermore, an error 
is introduced due to the approximation of 𝜏 by 𝜌̃. This error 
can be reduced by refinement of the trimming curve since 
the control polygon converges to it. Still, the smooth higher 
degree representation is removed by a linear one. Finally, 
it should be pointed out that the reduction of integra-
tion points does not take the smoothness of the basis into 
account, as it is done in case of optimized quadrature rules 
for regular splines, see e.g., [118].

A completely different strategy for the integration of cut 
elements in based on adaptive subdivision. Researchers 
who developed the finite cell method applied this technique 
to trimmed geometries [107, 239, 253, 254]. The basic idea 
is to use a composed Gauss quadrature that aggregates inte-
gration points along the trimming curve. A cut element 𝜏 is 
decomposed into axis-aligned sub-cells 𝜏⊞ based on a tree-
structure, i.e., a quadtree in two dimensions. Starting from 
the initial cut element, each sub-cell is further subdivided 
into equally spaced sub-cells if it contains the trimming 
curve as displayed in Fig. 54a. This recursive procedure is 
performed up to a user-defined maximal depth. Following 
the spirit of fictitious domain methods the integral Ic over 
the complete element is defined as

The factors Iv
𝜏
⊞

i

 and I−
𝜏
⊞

j

 are the integrals over the valid 

domain v and the complementary exterior domain −, 
respectively. Integration points in the interior of v are 

(105)
m∑
i=1

fj(ui, vi)wi = ∫Ω𝜌̃

fj(u, v) dΩ𝜌̃, j = 1,… , n.

(106)Ic =

I∑
i=1

Iv
𝜏
⊞

i

(𝛼v) +

J∑
j=1

I−
𝜏
⊞

j

(𝛼−).

(a)

(b)

Conventional

Reduced

Fig. 54   Sub-cell structure of a single cut element: a conventional 
approach with quadrature points distributed within the valid (black 
points) and exterior (green points) domain and b reduced approach 
integrating over the whole element (orange points) and the valid 
domain (black points). The sub-cells are indicated by dashed lines. 
(Color figure online)

20  To be precise, it is suggested to use the control points of the inter-
section curves in the model space and to apply point inversion to 
determine their location in the parameter space. However, there is no 
particular reason why the control polygon of the trimming curve can-
not be used directly.
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multiplied by �v = 1, whereas exterior integration points 
are multiplied by a value that is almost zero, 
e.g., �− = 10−14 as suggested in [253]. The integration pro-
cedure can be improved with respect to the number of 
quadrature points by

where I−
𝜏
(𝛼−) represents the integral over the whole cut ele-

ment without taken the trimming curve into account. The 
integration over the valid domain is performed as before by 
the composite quadrature, yet with another weighting fac-
tor, i.e., (�v − �−). Such an improved sub-cell integration is 
illustrated in Fig. 54b.

The key features of this approach are its simplicity and 
generality. The definition of integral transformation r 
and its Jacobian is straightforward, due to the axis-aligned 
shape of the sub-cells. Again, all cutting patterns (includ-
ing invalid ones) can be addressed with a single algorithm. 
Moreover, the algorithm can be easily extended to higher 
dimensions. The downside is that the trimming curve is 
only approximated. Consequently, the integration region 
is not represented exactly and an additional approxima-
tion error is introduced. In fact, the accuracy of the integral 
ceases at a certain threshold [173, 175]. This threshold may 
be improved by the subdivision depth, but a fine resolution 
of sub-cells results in a vast number of quadrature points. 
Further, refined sub-cells do not converge to the trimming 
curve in contrast to the previous approach. One of the great 
successes of the finite cell method was the demonstrated 
ability to achieve higher rates of convergence for higher-
order elements and splines, and even exponential rates in 
the context of the p-method.

5.3.2.3  Exact Trimming Curve  The following techniques 
focus on defining a proper mapping r from the reference 
element 𝜏̀ to the cut element 𝜏 ∈ v so that the trimming 
curve is exactly represented. Depending on the cutting pat-
tern, 𝜏 may be represented by a disjointed set of integration 
regions 𝜏⊡ such that

In contrast to the sub-cells of the previous scheme, the 
regions 𝜏⊡ are not aligned with the axes of the parameter 
space and at least one 𝜏⊡ has an edge which is described by 
the portion of the trimming curve Ct within 𝜏.

There are various ways to specify r. Ruled surface (26) 
and Coons patch (35) interpolation may be applied, where 
the portion of the trimming curve within 𝜏 is considered 

(107)Ic = I−
𝜏
(𝛼−) +

I∑
i=1

Iv
𝜏
⊞

i

(𝛼v − 𝛼−),

(108)𝜏 =

I⋃
i=1

𝜏
⊡

i
.

for the construction [199, 307]. An example of local ruled 
surface mappings for various element types are shown in 
Fig. 55a. These methods may be interpreted as local coun-
terparts of the global reconstruction schemes presented in 
Sects. 5.2.1 and  5.2.2. It is worth noting that approaches 
based on the blending function method [95, 173, 174] can 
be included into this category, because this method also 
employs a transfinite mapping [103]. In the nested Jaco-
bian approach, integral transformation is also defined by a 
local NURBS surface combined with a nested subdivision 
[38, 227]. Thus, r consists of the local surface mapping 
and an additional transformation to the subregion. A cor-
responding distribution of quadrature points is shown in 
Fig. 55b. In contrast to both previous references, i.e., [199, 
307], type 5 elements are not decomposed into three trian-
gular ones, but a bisection of the knot span is performed. 
Recently, an adaptive Gaussian integration procedure has 
been proposed [37]. This variation of the nested Jacobian 
approach defines the local surface parameterization within 
the reference space instead of the trimmed parameter space 
as illustrated in Fig.  55c. Therefore, the trimming curve 
is transformed to the reference space by scaling and rota-
tion. The integration points and their weights are adapted 
by scaling the �-direction such that the points are located 
within the region described by the transformed trimming 
curve. The motivation for the adaptive Gaussian integration 
procedure is to treat the various cutting patterns by a single 
approach.

Another very common strategy is to adopt the inte-
gration scheme developed in the context of the NURBS-
enhanced finite element method [147, 148, 160, 161, 272, 
273]. Using this scheme, every cut element is subdivided 
into a set of triangles. Those triangles that only consist of 
straight edges are subjected to conventional integration 
rules for linear triangles. The other triangles are treated by 
a series of mappings that take the curved edge into account

Figure 55d displays the components of this series. Suppose 
the corner nodes of the triangle in the trimmed parameter 
space are labeled x▵

1
 to x▵

3
, where the beginning and the end 

of the trimming curve portion within the considered trian-
gle are denoted by x▵

2
 and x▵

3
, respectively. The transforma-

tion s,t: x(s, t) ↦ x(u, v) describes the mapping of a linear 
three node element

In order to address the curved edge, the trimming curve is 
transformed into the s, t-coordinate system by

(109)r ∶= s,t(ũ,𝜁 (𝜉,𝜂(𝜉, 𝜂))).

(110)s,t ∶= x(u, v) = tx▵
1
+ (1 − s − t)x▵

2
+ sx▵

3
.

(111)
𝜙(ũ) = −1

s,t
⋅ Ct(ũ)

=
[
xΔ
3
− xΔ

2
xΔ
1
− xΔ

2

]−1(
Ct(ũ) − xΔ

2

)
.
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The next mapping ũ,𝜁 : x(ũ, 𝜁) ↦ x(s, t) converts the tri-
angular domain into a rectangular one which possesses 
straight edges only. It is given by

Finally, the transformation 𝜉,𝜂: x(𝜉, 𝜂) ↦ x(ũ, 𝜁) of the 
reference space [−1, 1]2 to the rectangular region is per-
formed by

(112)ũ,𝜁 ∶=

{
s = 𝜙s(ũ) (1 − 𝜁),

t = 𝜙t(ũ) (1 − 𝜁) + 𝜁 .

(113)𝜉,𝜂 ∶=

{
ũ =

𝜉

2
(ũe − ũb) +

1

2
(ũe + ũb)

𝜁 =
𝜂

2
+

1

2
,

where ũb and ũe are the parametric values of the beginning 
and the end of the trimming curve portion within the trian-
gle, i.e., Ct(ũb) = x▵

2
 and Ct(ũe) = x▵

3
. The Jacobian deter-

minant of the overall mapping r is determined by

with
(114)J𝜏̀ = det

(
�s,t

)
det

(
�ũ,𝜁

)
det

(
�𝜉,𝜂

)
,

(115)�s,t =

[
uΔ
3
− uΔ

2
uΔ
3
− vΔ

2

uΔ
1
− uΔ

2
vΔ
1
− vΔ

2

]
,

(116)�ũ,𝜍 =

[
𝜕𝜙s(ũ)

𝜕ũ
(1 − 𝜍)

𝜕𝜙t(ũ)

𝜕ũ
(1 − 𝜍)

−𝜙s(ũ) 1 − 𝜙t(ũ)

]
,

η

ξ

u

v

Xr

η

ξ

u

v

Xr

u

v

Rotation
and

scaling
of Ct

Xr

η

ξ

η

ξ

η

ξ

η

ξ

η

ξ

ζ

ũ

1

ũb ũe

s

t
φ(ũ) = X−1

s,t ·Ct(ũ)

u

v

Xs,tXũ,ζXξ,η

(c)

(d)

(a) Local ruled surface mapping (b)Nested Jacobian approach

Adaptive Gaussian integration procedure

NURBS enhanced FEM integration

Fig. 55   Distribution of quadrature points due to various approaches which represent the trimming curve exactly. Dashed lines indicate a subdi-
vision of a cut element into integration regions
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The coefficients u▵
i
 and v▵

i
 refer to the coordinates of the 

corner nodes x▵
i
 and the derivative of the transformed trim-

ming curve is calculated by

The various integration schemes are summarized in 
Fig.55. Their common and most essential feature is that 
the integration region is exactly represented. The main dif-
ference between the strategies is the partitioning of a cut 
element 𝜏 into integration regions 𝜏⊡. In fact, the series of 
mappings (109) shown in Fig. 55d yields the same distri-
bution of quadrature points over a triangular element as a 
ruled surface interpolation (26) illustrated in Fig.  55a, if 
the trimming curve is a B-spline curve. In case of NURBS 
curves, on the other hand, different distributions are 
obtained. These two cases are compared in Fig. 56.

In general, it seems that good results can be obtained 
with either of these concepts, especially for moderate 
degrees. However, it has been demonstrated that the prop-
erties of coordinate mappings and the corresponding place-
ment of interior nodes is crucial for the convergence behav-
ior of conventional higher degree (p > 3) finite elements 
[216]. With this in mind, additional research might be use-
ful to assess the quality of the mapping schemes presented 
with respect to their performance for higher degree.

5.3.3 � Multipatch Geometries

A robust treatment of multiple patches is the most chal-
lenging part of analyzing trimmed geometries. While 
single patch analysis can exploit the benefits of trimmed 

(117)�𝜉,𝜂 =

[
1

2
(ũe − ũb) 0

0
1

2

]
.

(118)
𝜕𝜙(ũ)

𝜕ũ
=
[
xΔ
3
− xΔ

2
xΔ
1
− xΔ

2

]−1(𝜕Ct(ũ)

𝜕ũ

)
.

representations, all the deficiencies elaborated in Sect.  3 
surface as soon as solid models described by several 
trimmed patches are considered. In case of finite element 
methods, the main ingredients to cope with this situation 
are: (i) a weak coupling formulation and (ii) a robust pro-
cedure linking the degrees of freedom of adjacent patches 
to each other. This subsection closes with some general 
statements regarding the continuity of trimmed multipatch 
geometries.

5.3.3.1  Weak Coupling  Weak enforcement of constraints 
is a common problem in computational mechanics, see e.g., 
[138, 166, 312] and the references cited therein. Such tech-
niques are required in several contexts like mesh-independ-
ent imposing of essential boundary conditions and domain 
decomposition methods. The latter covers a versatile field 
of applications including contact problems, parallelization, 
and coupling of subdomains described by different physics 
or non-conforming discretizations. Numerous approaches 
have been developed and each one possesses different bene-
fits and disadvantages. The most popular schemes are based 
on Lagrange multipliers [12], the penalty method [13, 139], 
or Nitsche’s method [112, 215]. These methods are sepa-
rated by a fine line: the penalty method may be viewed as 
an approximation of the Lagrange multiplier method [139]. 
Furthermore, the Nitsche method may be referred to as a 
consistent penalty method [252]. In addition, the close rela-
tionship of the Nitsche method to the stabilized Lagrange 
multiplier method [17, 18] has been outlined in [288].

The use of Lagrange multipliers is a very general way 
to enforce constraints to a system of equations which is 
applicable to all kinds of problems. Following Huerta 
et  al.  [138] the main disadvantages are: (i) the system of 
equations increases due to the Lagrange multipliers which 
are incorporated as additional degrees of freedom, (ii) the 
resulting system is not positive definite, and (iii) the intro-
duction of a separate field for the Lagrange multipliers 
yields a saddle-point problem which must satisfy a stability 
condition known as the inf–sup or Babuška–Brezzi condi-
tion. In order to fulfill the last point, the interpolation fields 
of the unknowns and the Lagrange multipliers must be 
coordinated, which is not a trivial task, examples of choices 
for the interpolation functions can be found in [139].

The penalty method is easy to implement and avoids the 
problems mentioned above. However, uniform convergence 
to the solution can only be guaranteed if the applied penalty 
parameter increases as the mesh is refined [7]. This is cru-
cial since the system matrix becomes ill-conditioned when 
the penalty parameter gets large. Usually, a fixed parameter 
value is chosen and as a result, the quality of the approxi-
mation cannot be improved below a certain error.

Nitsche’s method introduces a penalty term too, but 
it is considerably smaller than in the penalty method [80, 

(a) (b)B-spline curve NURBS curve

Fig. 56   Comparison of the distribution of Gauss points within a cut 
element of type 3 based on the NURBS enhanced FEM mapping 
(circles) and ruled surface parameterization (crosses). The trimming 
curve is described by either a a B-spline curve or b a NURBS curve
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254]. According to Huerta et al. [138] the only problem of 
Nitsche’s method is that it is not as general as the other pro-
cedure. Thus, it is not straightforward to provide an imple-
mentation for some problem types.

These techniques have been successfully applied to vari-
ous isogeometric analysis applications, e.g. [23, 24, 39, 
80, 81, 163, 213]. A comparison of the three schemes can 
be found in [7]. Also in the context of coupling trimmed 
patches, the Lagrange multiplier method [307], the penalty 
method [37, 38], and the Nitsche method [107, 164, 254] 
have been successfully applied already. In none of these 
publications, the surface type motivated the choice of the 
weak coupling strategy. In other words, trimmed patches do 
not introduce additional arguments to prefer one approach 
to the other. Nevertheless, it is important to emphasize 
again that trimming curves of adjacent patches do not 
describe the same curve in model space. Thus, adjacent 
patches have non-conforming parameterizations as well as 
gaps and overlaps along their intersection.

5.3.3.2  Linking of  Degrees of  Freedom  Breitenberger 
et  al.  [38] presented a procedure that is able to deal with 
complex design models and it has been discussed in more 
detail in the related thesis [37]. In addition to a weak cou-
pling formulation, trimming curves of adjacent patches 
are connected by so-called edge elements that contain the 
required topological information. To be precise, the trim-
ming curves are treated by a master–slave concept where 
points of the slave curve are mapped to the master curve. 
These points are the intersections of the slave trimming 
curve with the grid lines of its own parameter space. The 
mapping to the master curve is performed in model space by 
means of a point inversion algorithm [192, 230]. The algo-

rithm is usually carried out by a Newton–Raphson scheme 
and provides the closest projection of a point to a curve as 
shown in Fig.  57. In addition, the related parametric val-
ues of the master curve are provided by the point inversion 
scheme. The accumulation of these values and the original 
grid intersections of the master curve define a set of inte-
gration regions. Within each region, quadrature points are 
specified and the corresponding points of the slave curve 
can again be computed by the point inversion algorithm. To 
sum up, the relation of two related trimming curves is estab-
lish by an iterative procedure in model space which com-
putes the shortest distance of a point defined by one curve to 
the other curve. This is indeed the same concept as for the 
knot cross-seeding procedures presented in Sect. 5.2 in the 
context of global approaches. In theory, this is a straightfor-
ward task, but its robust implementation is challenging and 
crucial for the overall performance of an analysis.

In the following we would like to highlight the impor-
tance of a robust association of adjacent patches by show-
ing an example presented in [37, 38]. The basic setting of 
the problem is shown in Fig. 58a. This benchmark for geo-
metric nonlinear shell analysis describes a cantilever that 
is subjected to an end moment. If the maximal moment 
Mmax is applied, the cantilever deforms to a closed circular 
ring. Figure  58b illustrates the numerical solution of this 
problem for various parameterizations. Note the different 
level of complexity along the edges of adjacent patches. It 
clearly demonstrates the vast diversity of situations that my 
occur in case of multipatch geometries even if they repre-
sent the same geometry. 

Another important aspect studied by this example is the 
influence of the gap and overlap size between patches. Con-
sider the geometrical discretization illustrated in Fig.  59. 
A gap–overlap function f is introduced to specify a user-
defined inaccuracy along the curved intersection. Posi-
tive and negative values of f represent gaps and overlaps, 
respectively. The trimming curves are linked by the point 
inversion algorithm as described before. The resulting ver-
tical displacements at the cantilever’s end uTip of represen-
tations with different f are related to a reference solution 
uref  obtained with f = 0. The difference is calculated by

and the related results are summarized in Fig.  60. Based 
on the corresponding graph, it can be concluded that small 
gaps which are within CAD tolerance, i.e., 0.001 units, 
barely influence the quality of the simulation. The different 
behavior of gaps and overlaps can be explained by the min-
imal distance computation: in contrast to gaps, the assign-
ment of points of the slave curve to the master curve is not 
unique in case of overlaps.

(119)d1 =
|||uTip(f ) − uref

|||,

master

slave

Fig. 57   Closest point projections of a slave patch to a master patch. 
The lines on the surfaces represent the grid of the underlying param-
eter space. The intersections of these lines with the trimming curves 
are illustrated by white and black dots for the slave and master patch, 
respectively. The projections themselves are indicated by arrows 
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5.3.3.3  Continuity Considerations  The continuity along 
the intersection of two trimmed patches is usually not higher 
than C0. The construction of corresponding C0 isogeometric 
spaces with optimal approximation properties is well under-
stood for conforming parameterizations [299]. Brivadis 
et al.  [39] showed this also for weakly imposed C0 condi-
tions. However, their isogeometric mortar method focuses 
on regular patches and a modification of the basis functions 
at the boundary is required to obtain stability, if the same 
degree is used for the primal and dual spaces. Although the 
influence of non-matching interfaces is discussed as well, 

the application in the context of trimmed surfaces has yet to 
be investigated in more detail.

The construction of smooth isogeometric spaces for 
trimmed models is an even more complicated open topic. 
In fact, smooth isogeometric spaces on unstructured geom-
etries are a challenging and open problem in general [141, 
296]. Locking effects may occur even for regular planar 
multipatch configurations [63, 150]. At this point, it should 
be noted that T-splines or subdivision surfaces provide 
geometric models which are globally smooth almost eve-
rywhere. Nevertheless, these representations seem to lack 
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jected to an end moment: a definition of the problem and b result-
ing solutions. In b, different gray scales indicate the distinct patches. 

Note the various complexities of the connection of adjacent patches. 
(Courtesy of Breitenberger [37, 38])
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optimal approximation properties due to the existence of 
extraordinary vertices [145, 212].

5.3.4 � Stabilization

A trimmed basis contains basis functions which are cut 
by the trimming curve and exist only partially within the 
valid area v. In order to clarify the problem statement, 
Fig. 61 illustrates a trimmed univariate basis. It should be 
noted that the Greville abscissae of cut basis functions may 
be located outside of v. In the example given, this is the 
case for B4,2. These points cannot be used for collocation 
or spline interpolation problems, despite the fact that they 
are the preferred choice for setting up a stable system of 
equations (see Sect.  2.3). Furthermore, the support of cut 
basis functions may be arbitrary small, e.g.,  this would be 
the case for B4,2 as the trimming location t approaches the 
knot value 2. Thus, the condition number of the resulting 
system matrices can become very large. In other words, a 
trimmed basis is not guaranteed to be stable.

In order to emphasize this stability issue an interpolation 
problem is examined: a given function

shall be approximated by a B-spline surface Sh. They agree 
at k interpolation points x̄i,j = (ūi, v̄j)

⊺, where k represents 
the total number of bivariate basis functions involved. The 
further components of the corresponding system of equa-
tions are the unknown coefficients  ci,j and the bivariate 
spline collocation matrix �. The matrix is defined by

(120)f (u, v) =
1√

(−1.2 − u)2 + (−1.2 − v)2
,

(121)�[i + j ⋅ J, m + n ⋅ J] = Bi,p

(
ūm

)
Bj,q

(
v̄n
)
,

1.37
L = 1.37 + 10.63 + f

10.63

Closest points
f

gapoverlap

f

Master
Slave

f

gap situation

overlap situation

Closest points

Fig. 59   Geometry representation and definition of the gap–overlap 
parameter f for the investigation of the effect of non-watertight geom-
etries on numerical results. (Courtesy of Michael Breitenberger [37, 
38])
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Fig. 61   Univariate basis trimmed at a parameter t. There are basis 
functions which are fully inside (green), partially inside (blue), and 
completely outside (dotted) of v. The Greville abscissae of the con-
sidered basis functions are marked by circles. (Color figure online)
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with i, m = 0,… , I and j, n = 0,… , J, where I and J are 
the number of basis functions in each parametric directions. 
The initial parameter space is given by an open knot vector 
with a uniform discretization from −1 to 1 in both direc-
tions, i.e., u, v ∈ [−1, 1], and the knot span size is specified 
by h = 0.125. A trimming parameter  t ∈ [0.5, 1) deter-
mines the square domain v ∈ [−1, t]2 considered for the 
interpolation problem. The interpolation points x̄ of cut 
basis functions may have to be shifted into v. Exterior 
basis functions that are completely outside of v are not 
involved in the interpolation process. The quality and sta-
bility of the approximation Sh are specified by the relative 
interpolation error measured in the L2-norm ‖‖�rel‖‖L2 as well 

as the condition number of the spline collocation 
matrix �(�). The results are summarized in Fig. 62 for vari-
ous degree with p = q.

It can be observed that the condition number of � is 
considerably influenced by the trimming parameter t. In 
particular, a peak is reached as soon as t approaches a knot 
value, i.e.,  a support of cut basis functions becomes very 
small. Furthermore, the approximation quality is affected. 
The peaks of the relative error ‖‖�rel‖‖L2 near knot values are 

in fact disastrous. Hence, it is evident that the straightfor-
ward application of a trimmed basis negatively affects the 
condition number and subsequently the quality of the 
approximation.

The stability aspect of local approaches for the analysis 
of trimmed geometries has scarcely been considered in pre-
vious works. It is worth noting that Nitsche formulations 
may incorporate parameters which take cut elements into 
account, see e.g.,  [42, 80, 289]. A method-independent 
alternative that exploit the properties of B-splines is out-
lined in Sect. 6.

5.4 � Summary and Discussion

Various approaches to incorporate trimmed geometries 
into an analysis have been described in this review. While 
Sect.  5.1 addresses an early attempt which combines 
trimmed patches with Lagrange interpolation, recent 
research is the focus of the subsequent Sects. (5.2) and 
(5.3). To recapitulate the findings of the current approaches: 
there are two fundamentally different philosophies to deal 
with trimmed models. One seeks to resolve the deficiencies 
of trimmed models by a reconstruction of the geometric 
representation. This is performed as a preprocessing step 
before the actual analysis. Since these procedures affect 
entire patches and their connection, they are referred to as 
global approaches in this work. The other philosophy is to 
accept the flaws of trimmed models, implying that the anal-
ysis has to be adaptable enough to cope with them. This 
capability is accomplished by treating the occurring trim-
ming situations on the knot span level. Hence, we classify 
such techniques as local approaches.

Global approaches address the core of the problem and 
aim to solve it at its origin. In fact, they are similar to the 
remodeling schemes of CAGD outlined in Sect. 3.4. They 
share the same shortcomings such as an increased num-
ber of control points and the dependence on a four-sided 
domain if regular tensor product surfaces are used for the 
reconstruction. It can be argued that global approaches are 
more related to CAGD than analysis. Consequently, their 
success is also determined by the acceptance in the design 
community. However, a compelling global scheme could 
eventually lead to design models which can be directly 
applied not only to analysis but all downstream applica-
tions, which is the holy grail of the trimming problem.
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Local approaches focus on enhancing the analysis and 
thus, may seem more feasible for researchers in the field 
of computational mechanics. In fact, the majority of the 
publications on isogeometric analysis of trimmed geom-
etries employ such concepts. There is a close relation to 
fictitious domain, or immersed, methods since the trimmed 
parameter space is used as a background parameterization. 
Hence, similar challenges have to be addressed: (i) detec-
tion of elements cut be the trimming curve, (ii) special 
integration schemes for these elements, (iii) weak coupling 
of adjacent patches, and (iv) the stability issue induced by 
the trimmed basis. The main difference is that additional 
effort has to be made to associate the degrees of freedom 
of adjacent patches, keeping in mind that their intersections 
possess non-matching parameterizations, gaps, and over-
laps. These distinct tasks are clearly separated from each 
other. For example, weak coupling is mandatory for finite 
element methods but may be neglected if a boundary ele-
ment method is applied. Most researchers have drawn their 
attention to the integration of cut elements. The application 
of weak formulations has also been addressed by several 
authors. On the other hand, the stability of a trimmed basis 
and the robust association of adjacent patches are barely 
discussed in the literature, despite the fact that the latter 
task is crucial for the analysis of practical design models. 
Another issue of using a trimmed basis for the analysis is 
that the Greville abscissae of cut basis functions are not 
guaranteed to be located inside of the domain of interest. 
Consequently, an application to interpolation and colloca-
tion methods requires further considerations. However, the 
modular structure of local approaches is indeed a benefit 
compared to global approaches which require a self-con-
tained concept which becomes more and more sophisti-
cated with its capabilities.

6 � Stabilization of a Trimmed Basis

There are two reasons for presenting a distinct section on 
the stabilization of trimmed parameter spaces: first and 
foremost, we want to draw attention to this issue which has 

been scarcely discussed so far, and, in addition, some of 
our recent research is focused on this topic allowing a more 
detailed observation of it. The general problem statement 
has already been given in Sect.  5.3.4, where it has been 
demonstrated that basis functions cut by a trimming curve 
can yield ill-conditioned system matrices. Further, Greville 
abscissae of such basis functions may be outside of the 
valid domain and thus, they cannot be applied to methods 
which employ these points like isogeometric collocation 
[11, 258]. In order to identify the troublesome components, 
we classify the basis functions of a trimmed parameter 
space as stable, degenerate, or exterior. The support of the 
latter is completely outside of the valid domain v and 
hence, it can be neglected for the analysis. The distinguish-
ing feature of the other types is that the Greville abscis-
sae of stable B-splines are within v whereas the Greville 
abscissae of degenerate ones are outside of v.

The following stabilization scheme resolves the issues 
induced by degenerate basis functions in a simple and 
flexible manner. The concept is referred to as extended 
B-splines. Originally, these splines have been developed 
by Höllig and co-workers in the context of a B-spline 
based fictitious domain method [124–127]. Here, the main 
aspects of extended B-splines are outlined based on the 
findings provided in [199, 202].

6.1 � Definition of Extended B‑splines

We start the description of extended B-splines by recalling 
two fundamental properties of conventional B-spline: (i) 
B-splines Bi,p are represented by a set of polynomial seg-
ments s

i
 and (ii) B-splines form a basis of a space �p,� 

which contains every piecewise polynomial  fp,� of degree 
p over a knot sequence �. The former property is illustrated 
in Fig.  63. It should be noted that each polynomial seg-
ment s may be extended beyond its associated knot span 
s. With this in mind, it is straightforward to grasp the essen-
tial idea of extended B-splines, namely to re-established the 
stability of a trimmed basis by substituting degenerate, and 
therefore potentially unstable, B-splines by extensions of 
stable ones. These extensions can be exactly represented by 
the basis since they are within �p,� by definition.

The overall construction procedure of extended 
B-splines is summarized in Fig.  64. Firstly, it is deter-
mined if the Greville abscissae of non-exterior B-splines 
are located inside or outside of v. In the latter case the 
basis function is labeled as degenerate and the corre-
sponding index is stored in the index-set �. Secondly, the 
polynomial segments of trimmed knot spans are replaced 
by the extensions of the polynomial segments of the clos-
est non-trimmed knot span that contains stable B-splines 
only. These extensions together with the polynomial seg-
ments of the non-trimmed knot spans form the extended 

B0 = 1
2 (u− 1)2

B1 = 3
4 − u− 5

2

)2

B2 = 1
2 (4− u)2

1 2 3 4

Fig. 63   Polynomial segments s of a B-spline. The extensions of the 
segments are indicated by dashed lines 
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B-spline basis. The final step is to represent the extended 
B-splines by a linear combination of the original B-splines. 
An extended B-spline is defined by

(122)Be
i,p

= Bi,p +
∑
j∈�i

ei,jBj,p,

where Bi,p is the stable B-spline that provides the extension 
and �i is the index-set of all degenerate B-splines related to 
the current Be

i,p
. The extrapolation weights ei,j can be deter-

mined by solving an interpolation problem. To be precise, 
the given polynomial function f of the extension over the 
trimmed knot span shall be represented by means of the 
basis functions Bj,p. The coefficient ei,i is trivial since Be

i,p
 

must be equal to Bi,p within the non-trimmed knot spans, 
thus ei,i = 1.

Spline interpolation as described in Sect. 2.3 is not opti-
mal to compute ei,j because the Greville abscissae of Bj,p 
are not located within the trimmed knot span in general. 
Hence, a quasi interpolation scheme is preferred which 
allows an explicit computation of B-spline coefficients. In 
particular, the so-called de Boor–Fix or dual functional �j,p 
[34, 35] is used: for any piecewise polynomial f ∈ �p,� ,

with 

(123)f =

J−1∑
j=0

�j,p(f )Bj,p,

(124)�j,p(f ) =
1

p!

p∑
k=0

(−1)k�
(p−k)

j,p
(�j)f

(k)(�j),

B0
B1 B2 B3

B4
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(a)
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ū0 /∈ Av ⇒ = {0}
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Fig. 64   Basic procedure to get from a conventional to d extended 
B-splines: b  determination of degenerate B-splines and substitution 
of trimmed polynomial segments by c extensions of non-trimmed 
ones
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Fig. 65   The construction of bivariate extrapolation weights ei,j for 
a biquadratic basis. Stable B-splines are marked by black and green 
circles. The shown values of ei,j are related to the degenerate basis 
function marked by the blue circle in the upper right corner of the 
parameter space. B-splines of the closest non-trimmed knot span are 
indicated by green circles. (Color figure online)
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The evaluation point �j can be chosen arbitrarily within 
[uj, uj+p+1]. Substituting f of Eq.  (124) by s

i
 yields the 

extrapolation weights

(125)�j,p(u) =

p∏
m=1

(
u − uj+m

)
.

(126)ei,j =
1

p!

p∑
k=0

(−1)k�
(p−k)

j,p
(�j)s(k)

i
(�j).

When the polynomials �j,p and s
i
 are expressed in power 

basis form

expression (126) simplifies to

The interested reader is referred to [202] for details 
on the conversion to power basis form and further details 
regarding the evaluation of the dual functional. In case of 
a uniform knot vector, a simplified formula can be derived 
which solely relies on the indices of the B-splines involved, 
see e.g., [124].

Bivariate extrapolation weights are simply obtained 
by the tensor product of their univariate counterparts 
calculated for each parametric direction as illustrated 
in Fig. 65. Note that the degenerate B-spline is distributed 
to (p + 1)(q + 1) stable ones.

6.2 � Properties of Extended B‑splines

Extended B-splines inherit most essential properties of 
conventional B-splines [124, 125, 127]. They are linearly 
independent and polynomial precision is guaranteed. Thus, 
they form a basis for a spline space. Each knot span has 
exactly p + 1 non-vanishing basis functions which span the 
space of all polynomials of degree ⩽ p over v. Further-
more, approximation estimates have the same convergence 
order as conventional B-splines. Extended B-splines have 
local support in the sense that only B-splines near the trim-
ming curve are subjected to the extension procedure. The 
actual size of the affected region depends on the fineness 
of the parameter space, the degree of its basis functions, 
and the number of degenerate Bj,p related to the stable Bi,p. 
The latter is given by the cardinality of the corresponding 
index-set #�i. Figure  66 illustrates various examples of 
extended B-splines. The basis function shown in Fig. 66a is 
in fact a conventional B-spline since it is far away from the 
trimming curve.

However, there are also some differences. It is impor-
tant to note that the extrapolation weights may be nega-
tive, hence the evaluation of extended B-splines may lead 
to negative values. Conventional B-splines, on the other 
hand, are strictly non-negative. This property is exploited 
in some contact formulations  [295] and structural optimi-
zation  [210], for instance. In such cases, the application 

(127)
�j,p(u) =

p∑
k=0

�ku
k and s

i
(u) =

p∑
k=0

�ku
k,

(128)ei,j =
1

p!

p∑
k=0

(−1)k(p − k)!�p−kk!�k.

Fig. 66   Bivariate extended B-splines Be
i,p

 with various cardinali-
ties of the index-set �i which indicates the number of related degen-
erate B-splines. Note that a is in fact a conventional B-spline, 
i.e., Be

i,p
≡ Bi,p, since �i is empty
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of extended B-splines requires further considerations. The 
main difference in favor of extended B-splines is the stabil-
ity of the corresponding basis. The condition number of a 
system is independent of the location of the trimming curve 
due to the substitution of B-splines with small support. 
Another benefit is that all Greville abscissae are located 
within v by construction.

6.3 � Assembling

Extended B-splines can be applied to an analysis in a very 
convenient manner. Suppose we have a linear system of n 
equations, one for each stable B-spline, set up by all basis 
functions m which are at least partially inside v. This 
yields

with m > n. Upon this point, only conventional B-splines 
have been used to compute the system matrix �. In other 
words, � is set up as usual but equations related to degen-
erate B-splines are neglected. In order to obtain a square 
matrix an extension matrix � ∈ ℝm×n is introduced [124]. 
This sparse matrix � contains all extrapolation weights ei,j 
including the trivial ones, i.e., ei,i = 1. The transformation 
of the original to the stable extended B-spline basis is per-
formed by multiplying the extension matrix to the system 
matrix. The resulting stable system

is subsequently solved and the obtained solution � cor-
responds to the extended B-splines of the unknown field. 
In case of multi-patch geometries, the extrapolation 
weights ei,j of each patch have to be assembled to � with 
respect to the global degrees of freedom. The applica-
tion of the extension operator is particularly convenient, if 
extended B-splines are added to an existing code.

6.4 � Application to NURBS

The stabilization described is tailored to B-spline func-
tions where it is exploited that the extensions of any poly-
nomial segment s

i
 can be exactly represented by a linear 

combination of basis functions of the trimmed knot span. 
In case of NURBS this property is not guaranteed due 
to the local influence of the weights. In order to apply 
extended B-splines to a trimmed NURBS basis, two dif-
ferent approaches may be used: (i)  conversion of the 
CAGD model to a B-spline representation or (ii)  applica-
tion of an independent field approximation  [199–201]. 
The benefit of the latter is that it allows performing the 
analysis based on the original NURBS model without any 
geometrical approximations. The key idea of independ-
ent field approximation is to use different basis functions 

(129)�� = � where �, � ∈ ℝn and � ∈ ℝn×m,

(130)�e� = � with �e = ��, �e ∈ ℝn×n,

for the representation of the geometry and the approxima-
tions of the physical fields. Hence, conventional B-splines 
can be used for the discretization of the field variables over 
NURBS patches. This allows the straightforward applica-
tion of extended B-splines. In addition, the combination of 
NURBS for the geometry description and B-splines for the 
approximations has been shown to be more efficient [199] 
and does not lead to a loss of accuracy [184, 201, 299]. 
There is one caveat: independent fields are inconsistent 
with the isoparametric concept in mechanics and can upset 
the precise representation of constant strain states and rigid 
body motions [139].

6.5 � Assessment of Stability

In order to assess the approximation quality and stability of 
extended B-splines the same interpolation problem as in 
Sect.  5.3.4 is considered. Again, the relative interpolation 
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Fig. 67   Spline interpolation problem with extended B-splines for 
several degrees  p. The condition number �(�) and the relative inter-
polation error ‖‖�rel‖‖L2 are related to the trimming parameter  t. The 
labels of the horizontal axis indicate knots of the trimmed basis
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error measured in the L2-norm ‖‖�rel‖‖L2 and the condition 

number of the spline collocation matrix �(�) are examined. 
The results are summarized in Fig. 67.

Comparing Figs.  62 and   67 shows the significant 
improvement of extended B-splines. If extended B-splines 
are used, �(�) hardly changes and is independent of the 
trimming parameter t. In other words, the extended B-spline 
basis is stable. Consequently, the approximation qual-
ity is significantly improved. In Fig.  67, the reduction of 
the approximation accuracy occurs only due to the reduc-
tion of the degrees of freedom n, i.e., number of extended 
B-spline, as the trimming parameter t → 0.5.

6.6 � Summary and Discussion

The concept of extended B-splines substitutes unstable 
basis functions by extensions of stable ones. It is estab-
lished in a very flexible manner and requires only the pres-
ence of a sufficient number of stable basis functions. In 
general, this requirement is non-restrictive and can be ful-
filled by refinement of the basis. Still, it may be an issue if 
the design object contains very small fillets. Only B-splines 
close to the trimming curve are affected by the stabiliza-
tion procedure. The number of B-splines depends on the 
distance of the trimming curve to the knot span which pro-
vides the stable B-splines. This correlates with the degree 
p of the basis function since the size of its support extends 
over p + 1 knot spans.

7 � Final Remarks and Conclusions

The present work accumulates several topics related to the 
treatment of trimmed models and the interoperability prob-
lem between CAD and downstream applications in general.

It is apparent that trimming is a fundamental technique 
for geometric design. Most importantly, it enables the 
computation of intersections between free-form surfaces. 
However, intersection curves cannot be determined exactly, 
which leads to various problems. As a result, an intersec-
tion is usually approximated by several independent curves, 
one in model space and one in the parameter space of each 
surface involved. Their images in model space do not coin-
cide and there is no link between these curves. The result-
ing gaps and overlaps between the surfaces yield robustness 
issues due to a lack of exact topological consistency. These 
problems are still unresolved, despite the fact that they have 
been the focus of an enormous amount of research.

Since the robustness issues of trimmed models are par-
ticularly crucial for downstream applications, the exchange 
of CAD data is examined as well. Neutral exchange 

standards seem to be the most comprehensive strategy, 
but it is important to note that all translations lead to loss 
of information. Moreover, the capabilities of the various 
exchange formats are not equivalent. It is demonstrated 
that STEP is superior to IGES. STEP should be preferred 
in general and especially if the topology of a model needs 
to be extracted.

In the context of analysis, the current approaches can be 
divided into two different philosophies. On the one hand, 
global approaches aim to fix the problems of trimmed mod-
els before the simulation by a reconstruction of the geo-
metric representation. Using local approaches, on the other 
hand, trimmed models are directly employed, but the analy-
sis has to be enhanced in order to deal with all the flaws of 
the geometric representation. It may be argued that the for-
mer addresses the issue from a CAD point of view, whereas 
the latter utilizes an analysis perspective. The fact that the 
problem can be tackled by these diverse directions empha-
sizes the central role of trimmed models for the integration 
of design and analysis.

The main conclusions of the present review can be sum-
marized as follows:

–	 Trimming seems to be a simple and benign procedure at 
first glance, but its consequences are profound.

–	 Robustness issues are the price for the flexibility of 
trimmed models.

–	 Flaws of trimmed models are usually hidden from the 
user, but surface as soon as they are applied to a down-
stream application.

–	 To overcome these issues is a crucial aspect regarding 
the integration of design and analysis.

–	 The success of CAD data exchange depends on the 
quality of the design model and the capability of the 
exchange format.

–	 There is no canonical way to deal with trimmed models, 
neither in analysis nor in design, at least so far.

It is hoped that this review provides a helpful introduction 
to the topic and an impetus for further research activities. 
There are indeed several open issues worth exploring: opti-
mization of the reparameterization of the global approach 
based on isocurves, assessment of the affect of gaps on the 
analysis in case of local schemes, and application to isoge-
ometric collocation, just to name a few. In general, the step 
from academic examples to practical multipatch models 
is perhaps the most challenging task. Robust algorithms 
should be able to take the tolerances of a design model into 
account. On the other hand, it may be an unrealistic aim to 
find a solution that can deal with every possible trimmed 
geometry. Similar to the quality of conventional meshes, 
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an isogeometric simulation is effected by the quality of the 
design model. Hence, the specification of distinct prop-
erties that classify a design model to be analysis-suitable 
are needed so that a designer can get a direct feedback if a 
model requires an improvement—providing the right infor-
mation to the right person at the right time. We close this 
review by emphasizing that a holistic treatment of the engi-
neering design process requires the aligned efforts of both 
the design and the analysis communities.
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Appendix: Exchange Data File Examples

The source files of the neutral exchange format example 
presented in Sect. 4.2.3 are given in this section. The mod-
els have been constructed with the commercial CAD soft-
ware Rhinoceros 5.

It should be pointed out that the IGES examples, i.e., 
Files  1 and 2, provide the same information although the 
topological data of the two models was different before the 
extraction procedure. In particular, these files differ only in 
the representation of some floating point values, e.g., 0.0D0 
and 8.881D-16, and the sequence of the numbering of a few 
parametric data entities, e.g., 0000029P of File 1 is equal 
to 0000037P of File 2. The corresponding STEP examples 
with the correct topology data are given in Files 3 and 4.

The interested reader is referred to the homepage of 
STEP Tools, Inc.21 for further examples of STEP 
files covering various application protocols.

File 1: IGES trimming example – surface model
S 1

1H,,1H;,, G 1
65HC:\Users\Marussig\Desktop\LinuxSync\simpleTrimmingExampleTrim.igs, G 2
26HRhinoceros ( Sep 27 2012 ),31HTrout Lake IGES 012 Sep 27 2012, G 3
32,38,6,308,15, G 4
, G 5

6G,535412.628061H31,0D452.0,1,MMH2,2,0D0.1
0.001D0, G 7
5D0, G 8
, G 9
, G 10

11G;535412.628061H31,0,01
314 1 0 0 0 0 0 000000200D 1
314 0 1 1 0 0 0 COLOR 0D 2
406 2 0 0 1 0 0 000000300D 3
406 0 -1 1 3 0 0LEVELDEF 0D 4
128 3 0 0 1 0 0 000010000D 5
128 0 -1 7 8 0 0 TrimSrf 0D 6
126 10 0 0 1 0 0 000010000D 7
126 0 -1 5 1 0 0 TrimSrf 1D 8
126 15 0 0 1 0 0 000010500D 9
126 0 -1 4 1 0 0 TrimSrf 1D 10
126 19 0 0 1 0 0 000010000D 11
126 0 -1 5 1 0 0 TrimSrf 2D 12
126 24 0 0 1 0 0 000010500D 13
126 0 -1 5 1 0 0 TrimSrf 2D 14
126 29 0 0 1 0 0 000010000D 15
126 0 -1 5 1 0 0 TrimSrf 3D 16
126 34 0 0 1 0 0 000010500D 17
126 0 -1 4 1 0 0 TrimSrf 3D 18
126 38 0 0 1 0 0 000010000D 19
126 0 -1 4 1 0 0 TrimSrf 4D 20
126 42 0 0 1 0 0 000010500D 21
126 0 -1 3 1 0 0 TrimSrf 4D 22
141 45 0 0 1 0 0 000010000D 23
141 0 -1 1 0 0 0 TrimSrf 1D 24
143 46 0 0 1 0 0 000000000D 25
143 0 -1 1 0 0 0 TrimSrf 0D 26
128 47 0 0 1 0 0 000010000D 27
128 0 -1 4 8 0 0 TrimSrf 0D 28
126 51 0 0 1 0 0 000010000D 29
126 0 -1 3 1 0 0 TrimSrf 1D 30
126 54 0 0 1 0 0 000010500D 31
126 0 -1 6 1 0 0 TrimSrf 1D 32
126 60 0 0 1 0 0 000010000D 33
126 0 -1 2 1 0 0 TrimSrf 2D 34
126 62 0 0 1 0 0 000010500D 35
126 0 -1 2 1 0 0 TrimSrf 2D 36
126 64 0 0 1 0 0 000010000D 37
126 0 -1 2 1 0 0 TrimSrf 3D 38
126 66 0 0 1 0 0 000010500D 39
126 0 -1 2 1 0 0 TrimSrf 3D 40
141 68 0 0 1 0 0 000010000D 41
141 0 -1 1 0 0 0 TrimSrf 1D 42
143 69 0 0 1 0 0 000000000D 43
143 0 -1 1 0 0 0 TrimSrf 0D 44

1P1000000;)0,0,0(BGRH02,0.0,0.0,0.0,413
2P3000000;tluafeDH7,1,2,604

128,1,1,1,1,0,0,1,0,0,0.0D0,0.0D0,7.071067811865475D0, 0000005P 3
7.071067811865475D0,0.0D0,0.0D0,9.999999999999998D0, 0000005P 4
9.999999999999998D0,1.0D0,1.0D0,1.0D0,1.0D0,5.0D0,0.0D0,-5.0D0, 0000005P 5
8.881784197001252D-16,4.999999999999999D0,-5.0D0,5.0D0,0.0D0, 0000005P 6
4.999999999999998D0,8.881784197001252D-16,4.999999999999999D0, 0000005P 7
4.999999999999998D0,0.0D0,7.071067811865475D0,0.0D0, 0000005P 8

9P5000000;0D899999999999999.9
01P7000000,0D574568118760170.7,0D0.0,0D0.0,0,1,0,1,1,1,621
11P7000000,0D0.0,0D0.5,0D0.1,0D0.1,0D574568118760170.7

8.881784197001252D-16,8.881784197001252D-16,4.999999999999999D0, 0000007P 12
8.881784197001252D-16,0.0D0,7.071067811865475D0,0.0D0,0.0D0, 0000007P 13
1.0D0; 0000007P 14

51P9000000,0D574568118760170.7,0D0.0,0D0.0,0,1,0,1,1,1,621
7.071067811865475D0,1.0D0,1.0D0,0.0D0,5.0D0,0.0D0, 0000009P 16
7.071067811865475D0,5.000000000000001D0,0.0D0,0.0D0, 0000009P 17

81P9000000;0D0.1,0D0.0,0D0.0,0D574568118760170.7
126,1,1,1,0,1,0,5.000000000000001D0,5.000000000000001D0, 0000011P 19
9.999999999999998D0,9.999999999999998D0,1.0D0,1.0D0, 0000011P 20
8.881784197001252D-16,4.999999999999999D0,8.881784197001252D-16, 0000011P 21
8.881784197001252D-16,4.999999999999999D0,4.999999999999998D0, 0000011P 22
5.000000000000001D0,9.999999999999998D0,1.0D0,0.0D0,0.0D0; 0000011P 23
126,1,1,1,0,1,0,5.000000000000001D0,5.000000000000001D0, 0000013P 24
9.999999999999998D0,9.999999999999998D0,1.0D0,1.0D0, 0000013P 25

62P3100000,0D0.0,0D100000000000000.5,0D574568118760170.7
72P3100000,0D0.0,0D899999999999999.9,0D574568118760170.7

5.000000000000001D0,9.999999999999998D0,0.0D0,0.0D0,1.0D0; 0000013P 28
126,1,1,1,0,1,0,-7.071067811865475D0,-7.071067811865475D0, 0000015P 29

03P5100000,61-D252100791487188.8,0D0.1,0D0.1,0D0.0-,0D0.0-
4.999999999999999D0,4.999999999999998D0,5.0D0,0.0D0, 0000015P 31
4.999999999999998D0,-7.071067811865475D0,-0.0D0,0.0D0,0.0D0, 0000015P 32
1.0D0; 0000015P 33

43P7100000,0D574568118760170.7,0D0.0,0D0.0,0,1,0,1,1,1,621
7.071067811865475D0,1.0D0,1.0D0,7.071067811865475D0, 0000017P 35
9.999999999999998D0,0.0D0,0.0D0,9.999999999999998D0,0.0D0,0.0D0, 0000017P 36

73P7100000;0D0.1,0D0.0,0D0.0,0D574568118760170.7
126,1,1,1,0,1,0,-9.999999999999998D0,-9.999999999999998D0, 0000019P 38
-5.000000000000001D0,-5.000000000000001D0,1.0D0,1.0D0,5.0D0, 0000019P 39
0.0D0,4.999999999999998D0,5.0D0,0.0D0,8.881784197001252D-16, 0000019P 40
-9.999999999999998D0,-5.000000000000001D0,1.0D0,0.0D0,0.0D0; 0000019P 41

24P1200000,0D799999999999999.4,0D0.0,0D0.0,0,1,0,1,1,1,621
4.999999999999997D0,1.0D0,1.0D0,0.0D0,9.999999999999998D0,0.0D0, 0000021P 43
0.0D0,5.0D0,0.0D0,0.0D0,4.999999999999997D0,0.0D0,0.0D0,1.0D0; 0000021P 44
141,1,3,5,4,7,1,1,9,11,1,1,13,15,1,1,17,19,1,1,21; 0000023P 45

64P5200000;32,1,5,1,341
128,1,1,1,1,0,0,1,0,0,0.0D0,0.0D0,5.0D0,5.0D0,0.0D0,0.0D0,5.0D0, 0000027P 47
5.0D0,1.0D0,1.0D0,1.0D0,1.0D0,0.0D0,0.0D0,0.0D0,0.0D0,5.0D0, 0000027P 48
0.0D0,5.0D0,0.0D0,0.0D0,5.0D0,5.0D0,0.0D0,0.0D0,5.0D0,0.0D0, 0000027P 49
5.0D0; 0000027P 50

21  http://www.steptools.com, 8 2016.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.steptools.com
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126,1,1,1,0,1,0,-7.071067811865475D0,-7.071067811865475D0, 0000029P 51
-0.0D0,-0.0D0,1.0D0,1.0D0,0.0D0,5.0D0,0.0D0,5.0D0,0.0D0,0.0D0, 0000029P 52

35P9200000;0D0.1,0D0.0,0D0.0,0D0.0-,0D574568118760170.7-
126,3,3,1,0,1,0,-7.071067811865475D0,-7.071067811865475D0, 0000031P 54
-7.071067811865475D0,-7.071067811865475D0,-0.0D0,-0.0D0,-0.0D0, 0000031P 55
-0.0D0,1.0D0,1.0D0,1.0D0,1.0D0,5.0D0,0.0D0,0.0D0, 0000031P 56

75P1300000,0D0.0,0D666666666666666.1,0D433333333333333.3
1.666666666666666D0,3.333333333333334D0,0.0D0,0.0D0,5.0D0,0.0D0, 0000031P 58

95P1300000;0D0.1,0D0.0,0D0.0,0D0.0-,0D574568118760170.7-
126,1,1,1,0,1,0,-5.0D0,-5.0D0,-0.0D0,-0.0D0,1.0D0,1.0D0,5.0D0, 0000033P 60
0.0D0,0.0D0,0.0D0,0.0D0,0.0D0,-5.0D0,-0.0D0,0.0D0,0.0D0,1.0D0; 0000033P 61
126,1,1,1,0,1,0,0.0D0,0.0D0,5.0D0,5.0D0,1.0D0,1.0D0,0.0D0,5.0D0, 0000035P 62
0.0D0,0.0D0,0.0D0,0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,1.0D0; 0000035P 63
126,1,1,1,0,1,0,0.0D0,0.0D0,5.0D0,5.0D0,1.0D0,1.0D0,0.0D0,0.0D0, 0000037P 64
0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,1.0D0; 0000037P 65
126,1,1,1,0,1,0,0.0D0,0.0D0,5.0D0,5.0D0,1.0D0,1.0D0,0.0D0,0.0D0, 0000039P 66
0.0D0,5.0D0,0.0D0,0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,1.0D0; 0000039P 67

86P1400000;93,1,1,73,53,1,1,33,13,1,1,92,3,72,3,1,141
96P3400000;14,1,72,1,341
1T9600000P4400000D1100000G1000000S

File 2: IGES trimming example – solid model
S 1

1H,,1H;,, G 1
72HC:\Users\Marussig\Desktop\LinuxSync\simpleTrimmingExampleBooleanIGES.G 2
igs, G 3
26HRhinoceros ( Sep 27 2012 ),31HTrout Lake IGES 012 Sep 27 2012, G 4
32,38,6,308,15, G 5
, G 6

7G,810412.628061H31,0D452.0,1,MMH2,2,0D0.1
0.001D0, G 8
5D0, G 9
, G 10
, G 11

21G;810412.628061H31,0,01
314 1 0 0 0 0 0 000000200D 1
314 0 1 1 0 0 0 COLOR 0D 2
406 2 0 0 1 0 0 000000300D 3
406 0 -1 1 3 0 0LEVELDEF 0D 4
128 3 0 0 1 0 0 000010000D 5
128 0 -1 7 8 0 0 Shell 0D 6

126 10 0 0 1 0 0 000010000D 7
126 0 -1 3 1 0 0 Shell 1D 8
126 13 0 0 1 0 0 000010500D 9
126 0 -1 4 1 0 0 Shell 1D 10
126 17 0 0 1 0 0 000010000D 11
126 0 -1 5 1 0 0 Shell 2D 12
126 22 0 0 1 0 0 000010500D 13
126 0 -1 5 1 0 0 Shell 2D 14
126 27 0 0 1 0 0 000010000D 15
126 0 -1 5 1 0 0 Shell 3D 16
126 32 0 0 1 0 0 000010500D 17
126 0 -1 4 1 0 0 Shell 3D 18
126 36 0 0 1 0 0 000010000D 19
126 0 -1 3 1 0 0 Shell 4D 20
126 39 0 0 1 0 0 000010500D 21
126 0 -1 3 1 0 0 Shell 4D 22
141 42 0 0 1 0 0 000010000D 23
141 0 -1 1 0 0 0 Shell 1D 24
143 43 0 0 1 0 0 000000000D 25
143 0 -1 1 0 0 0 Shell 1D 26
128 44 0 0 1 0 0 000010000D 27
128 0 -1 4 8 0 0 Shell 0D 28
126 48 0 0 1 0 0 000010000D 29
126 0 -1 2 1 0 0 Shell 1D 30
126 50 0 0 1 0 0 000010500D 31
126 0 -1 2 1 0 0 Shell 1D 32
126 52 0 0 1 0 0 000010000D 33
126 0 -1 2 1 0 0 Shell 2D 34
126 54 0 0 1 0 0 000010500D 35
126 0 -1 2 1 0 0 Shell 2D 36
126 56 0 0 1 0 0 000010000D 37
126 0 -1 3 1 0 0 Shell 3D 38
126 59 0 0 1 0 0 000010500D 39
126 0 -1 6 1 0 0 Shell 3D 40
141 65 0 0 1 0 0 000010000D 41
141 0 -1 1 0 0 0 Shell 1D 42
143 66 0 0 1 0 0 000000000D 43
143 0 -1 1 0 0 0 Shell 2D 44

1P1000000;)0,0,0(BGRH02,0.0,0.0,0.0,413
2P3000000;tluafeDH7,1,2,604

128,1,1,1,1,0,0,1,0,0,0.0D0,0.0D0,7.071067811865475D0, 0000005P 3
7.071067811865475D0,0.0D0,0.0D0,9.999999999999998D0, 0000005P 4
9.999999999999998D0,1.0D0,1.0D0,1.0D0,1.0D0,5.0D0,0.0D0,-5.0D0, 0000005P 5
8.881784197001252D-16,4.999999999999999D0,-5.0D0,5.0D0,0.0D0, 0000005P 6
4.999999999999998D0,8.881784197001252D-16,4.999999999999999D0, 0000005P 7
4.999999999999998D0,0.0D0,7.071067811865475D0,0.0D0, 0000005P 8

9P5000000;0D899999999999999.9
01P7000000,0D574568118760170.7,0D0.0,0D0.0,0,1,0,1,1,1,621

7.071067811865475D0,1.0D0,1.0D0,5.0D0,0.0D0,0.0D0,0.0D0,5.0D0, 0000007P 11
0.0D0,0.0D0,7.071067811865475D0,0.0D0,0.0D0,1.0D0; 0000007P 12

31P9000000,0D574568118760170.7,0D0.0,0D0.0,0,1,0,1,1,1,621
7.071067811865475D0,1.0D0,1.0D0,0.0D0,5.0D0,0.0D0, 0000009P 14
7.071067811865475D0,5.000000000000001D0,0.0D0,0.0D0, 0000009P 15

61P9000000;0D0.1,0D0.0,0D0.0,0D574568118760170.7
126,1,1,1,0,1,0,5.000000000000001D0,5.000000000000001D0, 0000011P 17
9.999999999999998D0,9.999999999999998D0,1.0D0,1.0D0,0.0D0,5.0D0, 0000011P 18

91P1100000,0D999999999999999.4,61-D252100791487188.8,0D0.0
4.999999999999998D0,5.000000000000001D0,9.999999999999998D0, 0000011P 20

12P1100000;0D0.0,0D0.0,0D0.1
126,1,1,1,0,1,0,5.000000000000001D0,5.000000000000001D0, 0000013P 22
9.999999999999998D0,9.999999999999998D0,1.0D0,1.0D0, 0000013P 23

42P3100000,0D0.0,0D100000000000000.5,0D574568118760170.7
52P3100000,0D0.0,0D899999999999999.9,0D574568118760170.7

5.000000000000001D0,9.999999999999998D0,0.0D0,0.0D0,1.0D0; 0000013P 26
126,1,1,1,0,1,0,-7.071067811865475D0,-7.071067811865475D0, 0000015P 27

82P5100000,61-D252100791487188.8,0D0.1,0D0.1,0D0.0-,0D0.0-
4.999999999999999D0,4.999999999999998D0,5.0D0,0.0D0, 0000015P 29

4.999999999999998D0,-7.071067811865475D0,-0.0D0,0.0D0,0.0D0, 0000015P 30
1.0D0; 0000015P 31

23P7100000,0D574568118760170.7,0D0.0,0D0.0,0,1,0,1,1,1,621
7.071067811865475D0,1.0D0,1.0D0,7.071067811865475D0, 0000017P 33
9.999999999999998D0,0.0D0,0.0D0,9.999999999999998D0,0.0D0,0.0D0, 0000017P 34

53P7100000;0D0.1,0D0.0,0D0.0,0D574568118760170.7
126,1,1,1,0,1,0,-9.999999999999998D0,-9.999999999999998D0, 0000019P 36
-5.0D0,-5.0D0,1.0D0,1.0D0,5.0D0,0.0D0,4.999999999999998D0,5.0D0, 0000019P 37
0.0D0,0.0D0,-9.999999999999998D0,-5.0D0,1.0D0,0.0D0,0.0D0; 0000019P 38

93P1200000,0D899999999999999.4,0D0.0,0D0.0,0,1,0,1,1,1,621
4.999999999999998D0,1.0D0,1.0D0,0.0D0,9.999999999999998D0,0.0D0, 0000021P 40
0.0D0,5.0D0,0.0D0,0.0D0,4.999999999999998D0,0.0D0,0.0D0,1.0D0; 0000021P 41
141,1,3,5,4,7,1,1,9,11,1,1,13,15,1,1,17,19,1,1,21; 0000023P 42

34P5200000;32,1,5,1,341
128,1,1,1,1,0,0,1,0,0,0.0D0,0.0D0,5.0D0,5.0D0,0.0D0,0.0D0,5.0D0, 0000027P 44
5.0D0,1.0D0,1.0D0,1.0D0,1.0D0,0.0D0,0.0D0,0.0D0,0.0D0,5.0D0, 0000027P 45
0.0D0,5.0D0,0.0D0,0.0D0,5.0D0,5.0D0,0.0D0,0.0D0,5.0D0,0.0D0, 0000027P 46
5.0D0; 0000027P 47
126,1,1,1,0,1,0,-5.0D0,-5.0D0,-0.0D0,-0.0D0,1.0D0,1.0D0,5.0D0, 0000029P 48
0.0D0,0.0D0,0.0D0,0.0D0,0.0D0,-5.0D0,-0.0D0,0.0D0,0.0D0,1.0D0; 0000029P 49
126,1,1,1,0,1,0,0.0D0,0.0D0,5.0D0,5.0D0,1.0D0,1.0D0,0.0D0,5.0D0, 0000031P 50
0.0D0,0.0D0,0.0D0,0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,1.0D0; 0000031P 51
126,1,1,1,0,1,0,0.0D0,0.0D0,5.0D0,5.0D0,1.0D0,1.0D0,0.0D0,0.0D0, 0000033P 52
0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,1.0D0; 0000033P 53
126,1,1,1,0,1,0,0.0D0,0.0D0,5.0D0,5.0D0,1.0D0,1.0D0,0.0D0,0.0D0, 0000035P 54
0.0D0,5.0D0,0.0D0,0.0D0,0.0D0,5.0D0,0.0D0,0.0D0,1.0D0; 0000035P 55
126,1,1,1,0,1,0,-7.071067811865475D0,-7.071067811865475D0, 0000037P 56
-0.0D0,-0.0D0,1.0D0,1.0D0,0.0D0,5.0D0,0.0D0,5.0D0,0.0D0,0.0D0, 0000037P 57

85P7300000;0D0.1,0D0.0,0D0.0,0D0.0-,0D574568118760170.7-
126,3,3,1,0,1,0,-7.071067811865475D0,-7.071067811865475D0, 0000039P 59
-7.071067811865475D0,-7.071067811865475D0,-0.0D0,-0.0D0,-0.0D0, 0000039P 60
-0.0D0,1.0D0,1.0D0,1.0D0,1.0D0,5.0D0,0.0D0,0.0D0, 0000039P 61

26P9300000,0D0.0,0D666666666666666.1,0D433333333333333.3
1.666666666666666D0,3.333333333333334D0,0.0D0,0.0D0,5.0D0,0.0D0, 0000039P 63

46P9300000;0D0.1,0D0.0,0D0.0,0D0.0-,0D574568118760170.7-
56P1400000;93,1,1,73,53,1,1,33,13,1,1,92,3,72,3,1,141
66P3400000;14,1,72,1,341
1T6600000P4400000D2100000G1000000S

File 3: STEP trimming example – surface model
ISO -10303 -21;
HEADER;
/* Generated by software containing ST-Developer
* from STEP Tools , Inc. (www.steptools.com)
*/

/* OPTION: using custom schema -name function */

FILE_DESCRIPTION(
/* description */ (’’),
/* implementation_level */ ’2;1’);

FILE_NAME(
/* name */ ’Trim’,
/* time_stamp */ ’2016-09-06T17 :08:41+02:00 ’,
/* author */ (’’),
/* organization */ (’’),
/* preprocessor_version */ ’ST-DEVELOPER�v15’,
/* originating_system */ ’’,
/* authorisation */ ’’);

FILE_SCHEMA ((’AUTOMOTIVE_DESIGN ’));
ENDSEC;

DATA;
#10= SHAPE_REPRESENTATION_RELATIONSHIP(’’,’’ ,#100,#15);
#11= PRESENTATION_LAYER_ASSIGNMENT(’Default’,’’ ,(#13));
#12= PRESENTATION_LAYER_ASSIGNMENT(’Default’,’’ ,(#14));
#13= SHELL_BASED_SURFACE_MODEL(’shell_1’ ,(#16));
#14= SHELL_BASED_SURFACE_MODEL(’shell_2’ ,(#17));
#15= MANIFOLD_SURFACE_SHAPE_REPRESENTATION(’shell_rep_0’ ,(#13,#14,#102),
#99);
#16= OPEN_SHELL(’’ ,(#18));
#17= OPEN_SHELL(’’ ,(#19));
#18= ADVANCED_FACE(’’ ,(#20),#80,.T.);
#19= ADVANCED_FACE(’’ ,(#21),#81,.T.);
#20= FACE_OUTER_BOUND(’’ ,#22,.T.);
#21= FACE_OUTER_BOUND(’’ ,#23,.T.);
#22= EDGE_LOOP(’’ ,(#24,#25,#26 ,#27));
#23= EDGE_LOOP(’’ ,(#28,#29,#30));
#24= ORIENTED_EDGE(’’ ,*,*,#52,.T.);
#25= ORIENTED_EDGE(’’ ,*,*,#53,.T.);
#26= ORIENTED_EDGE(’’ ,*,*,#54,.T.);
#27= ORIENTED_EDGE(’’ ,*,*,#55,.T.);
#28= ORIENTED_EDGE(’’ ,*,*,#56,.T.);
#29= ORIENTED_EDGE(’’ ,*,*,#57,.T.);
#30= ORIENTED_EDGE(’’ ,*,*,#58,.T.);
#31= PCURVE(’’ ,#80,#38);
#32= PCURVE(’’ ,#80,#39);
#33= PCURVE(’’ ,#80,#40);
#34= PCURVE(’’ ,#80,#41);
#35= PCURVE(’’ ,#81,#42);
#36= PCURVE(’’ ,#81,#43);
#37= PCURVE(’’ ,#81,#44);
#38= DEFINITIONAL_REPRESENTATION(’’ ,(#60) ,#152);
#39= DEFINITIONAL_REPRESENTATION(’’ ,(#62) ,#152);
#40= DEFINITIONAL_REPRESENTATION(’’ ,(#64) ,#152);
#41= DEFINITIONAL_REPRESENTATION(’’ ,(#66) ,#152);
#42= DEFINITIONAL_REPRESENTATION(’’ ,(#68) ,#152);
#43= DEFINITIONAL_REPRESENTATION(’’ ,(#70) ,#152);
#44= DEFINITIONAL_REPRESENTATION(’’ ,(#72) ,#152);
#45= SURFACE_CURVE(’’ ,#59,(#31),. PCURVE_S1 .);
#46= SURFACE_CURVE(’’ ,#61,(#32),. PCURVE_S1 .);
#47= SURFACE_CURVE(’’ ,#63,(#33),. PCURVE_S1 .);
#48= SURFACE_CURVE(’’ ,#65,(#34),. PCURVE_S1 .);
#49= SURFACE_CURVE(’’ ,#67,(#35),. PCURVE_S1 .);
#50= SURFACE_CURVE(’’ ,#69,(#36),. PCURVE_S1 .);
#51= SURFACE_CURVE(’’ ,#71,(#37),. PCURVE_S1 .);
#52= EDGE_CURVE(’’ ,#75,#76,#45,.T.);
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#53= EDGE_CURVE(’’ ,#76,#73,#46,.T.);
#54= EDGE_CURVE(’’ ,#73,#74,#47,.T.);
#55= EDGE_CURVE(’’ ,#74,#75,#48,.T.);
#56= EDGE_CURVE(’’ ,#78,#79,#49,.T.);
#57= EDGE_CURVE(’’ ,#79,#77,#50,.T.);
#58= EDGE_CURVE(’’ ,#77,#78,#51,.T.);
#59= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#116,#117),. UNSPECIFIED.,.F.,.F.,(2,
2) ,(0. ,7.07106781186547) ,. UNSPECIFIED .);
#60= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#118,#119),. UNSPECIFIED.,.F.,.F.,(2,
2) ,(0. ,7.07106781186547) ,. UNSPECIFIED .);
#61= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#120,#121),. UNSPECIFIED.,.F.,.F.,(2,
2),(5.,10.),. UNSPECIFIED .);
#62= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#122,#123),. UNSPECIFIED.,.F.,.F.,(2,
2),(5.,10.),. UNSPECIFIED .);
#63= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#124,#125),. UNSPECIFIED.,.F.,.F.,(2,
2) ,( -7.07106781186547 ,0.) ,. UNSPECIFIED .);
#64= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#126,#127),. UNSPECIFIED.,.F.,.F.,(2,
2) ,( -7.07106781186547 ,0.) ,. UNSPECIFIED .);
#65= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#128,#129),. UNSPECIFIED.,.F.,.F.,(2,
2),(-10.,-5.),. UNSPECIFIED .);
#66= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#130,#131),. UNSPECIFIED.,.F.,.F.,(2,
2),(-10.,-5.),. UNSPECIFIED .);
#67= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#139,#140),. UNSPECIFIED.,.F.,.F.,(2,
2) ,( -7.07106781186547 ,0.) ,. UNSPECIFIED .);
#68= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#141,#142),. UNSPECIFIED.,.F.,.F.,(2,
2) ,( -7.07106781186547 ,0.) ,. UNSPECIFIED .);
#69= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#143,#144),. UNSPECIFIED.,.F.,.F.,(2,
2),(-5.,0.),. UNSPECIFIED .);
#70= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#145,#146),. UNSPECIFIED.,.F.,.F.,(2,
2),(-5.,0.),. UNSPECIFIED .);
#71= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#147,#148),. UNSPECIFIED.,.F.,.F.,(2,
2),(0.,5.),. UNSPECIFIED .);
#72= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#149,#150),. UNSPECIFIED.,.F.,.F.,(2,
2),(0.,5.),. UNSPECIFIED .);
#73= VERTEX_POINT(’’ ,#112);
#74= VERTEX_POINT(’’ ,#113);
#75= VERTEX_POINT(’’ ,#114);
#76= VERTEX_POINT(’’ ,#115);
#77= VERTEX_POINT(’’ ,#136);
#78= VERTEX_POINT(’’ ,#137);

#79= VERTEX_POINT(’’ ,#138);
#80= B_SPLINE_SURFACE_WITH_KNOTS(’’ ,1,1,((#108 ,#109) ,(#110 ,#111)),
.UNSPECIFIED.,.F.,.F.,.F. ,(2 ,2) ,(2 ,2) ,(0. ,7.07106781186547) ,(0. ,10.) ,
.UNSPECIFIED .);

#81= B_SPLINE_SURFACE_WITH_KNOTS(’’ ,1,1,((#132 ,#133) ,(#134 ,#135)),
.UNSPECIFIED.,.F.,.F.,.F.,(2,2),(2,2),(0.,5.),(0.,5.),. UNSPECIFIED .);

#82= SHAPE_DEFINITION_REPRESENTATION (#83 ,#100);
#83= PRODUCT_DEFINITION_SHAPE(’Document’,’’ ,#85);
#84= PRODUCT_DEFINITION_CONTEXT(’3D�Mechanical�Parts’,#89,’design’);
#85= PRODUCT_DEFINITION(’A’,’First�version’ ,#86,#84);
#86= PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(’A’,
’First�version’ ,#91,.MADE.);
#87= PRODUCT_RELATED_PRODUCT_CATEGORY(’tool’,’tool’ ,(#91));
#88= APPLICATION_PROTOCOL_DEFINITION(’Draft�International�Standard’,
’automotive_design ’ ,1999,#89);
#89= APPLICATION_CONTEXT(
’data�for�automotive�mechanical�design�processes’);
#90= PRODUCT_CONTEXT(’3D�Mechanical�Parts’,#89,’mechanical’);
#91= PRODUCT(’Document’,’Document’,’Rhino�converted�to�STEP’ ,(#90));
#92=(
LENGTH_UNIT()
NAMED_UNIT (*)
SI_UNIT(.MILLI.,.METRE.)
);
#93=(
NAMED_UNIT (*)
PLANE_ANGLE_UNIT ()
SI_UNIT($,.RADIAN.)
);
#94= DIMENSIONAL_EXPONENTS (0.,0.,0.,0.,0.,0.,0.);
#95= PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE (0.01745329252) ,#93);
#96=(
CONVERSION_BASED_UNIT(’DEGREES’ ,#95)
NAMED_UNIT (#94)
PLANE_ANGLE_UNIT ()
);
#97=(
NAMED_UNIT (*)
SI_UNIT($,.STERADIAN.)
SOLID_ANGLE_UNIT ()
);
#98= UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE (0.001) ,#92 ,
’DISTANCE_ACCURACY_VALUE ’,
’Maximum�model�space�distance�between�geometric�entities�at�asserted�c
onnectivities ’);
#99=(
GEOMETRIC_REPRESENTATION_CONTEXT (3)
GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT ((#98))
GLOBAL_UNIT_ASSIGNED_CONTEXT ((#97 ,#96 ,#92))
REPRESENTATION_CONTEXT (’ID1’,’3D’)
);
#100= SHAPE_REPRESENTATION(’Document’ ,(#101 ,#102) ,#99);
#101= AXIS2_PLACEMENT_3D(’’ ,#107 ,#103 ,#104);
#102= AXIS2_PLACEMENT_3D(’’ ,#151 ,#105 ,#106);
#103= DIRECTION(’’ ,(0.,0.,1.));
#104= DIRECTION(’’ ,(1.,0.,0.));
#105= DIRECTION(’’ ,(0.,0.,1.));
#106= DIRECTION(’’ ,(1.,0.,0.));
#107= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#108= CARTESIAN_POINT(’’ ,(5.,0.,-5.));
#109= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#110= CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5.,-5.));
#111= CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5. ,5.));
#112= CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5. ,5.));
#113= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#114= CARTESIAN_POINT(’’ ,(5. ,0. ,8.88178419700125E-16));
#115= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,8.88178419700125E-16));
#116= CARTESIAN_POINT(’’ ,(5. ,0. ,8.88178419700125E-16));
#117= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,8.88178419700125E-16));

#118= CARTESIAN_POINT(’’ ,(0.,5.));
#119= CARTESIAN_POINT(’’ ,(7.07106781186547 ,5.));
#120= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,8.88178419700125E-16));
#121= CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5. ,5.));
#122= CARTESIAN_POINT(’’ ,(7.07106781186547 ,5.));
#123= CARTESIAN_POINT(’’ ,(7.07106781186547 ,10.));
#124= CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5. ,5.));
#125= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#126= CARTESIAN_POINT(’’ ,(7.07106781186547 ,10.));
#127= CARTESIAN_POINT(’’ ,(0.,10.));
#128= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#129= CARTESIAN_POINT(’’ ,(5. ,0. ,8.88178419700125E-16));
#130= CARTESIAN_POINT(’’ ,(0.,10.));
#131= CARTESIAN_POINT(’’ ,(0.,5.));
#132= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#133= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#134= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#135= CARTESIAN_POINT(’’ ,(5.,5.,0.));
#136= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#137= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#138= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#139= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#140= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#141= CARTESIAN_POINT(’’ ,(5.,0.));
#142= CARTESIAN_POINT(’’ ,(0.,5.));
#143= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#144= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#145= CARTESIAN_POINT(’’ ,(0.,5.));
#146= CARTESIAN_POINT(’’ ,(0.,0.));
#147= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#148= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#149= CARTESIAN_POINT(’’ ,(0.,0.));
#150= CARTESIAN_POINT(’’ ,(5.,0.));
#151= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#152=(
GEOMETRIC_REPRESENTATION_CONTEXT (2)
PARAMETRIC_REPRESENTATION_CONTEXT ()
REPRESENTATION_CONTEXT (’pspace’,’’)
);
ENDSEC;
END -ISO -10303 -21;

File 4: STEP trimming example – solid model
ISO -10303 -21;
HEADER;
/* Generated by software containing ST-Developer
* from STEP Tools , Inc. (www.steptools.com)
*/

/* OPTION: using custom schema -name function */

FILE_DESCRIPTION(
/* description */ (’’),
/* implementation_level */ ’2;1’);

FILE_NAME(
/* name */ ’Boolean’,
/* time_stamp */ ’2016-09-06T17 :07:00+02:00 ’,
/* author */ (’’),
/* organization */ (’’),
/* preprocessor_version */ ’ST-DEVELOPER�v15’,
/* originating_system */ ’’,
/* authorisation */ ’’);

FILE_SCHEMA ((’AUTOMOTIVE_DESIGN ’));
ENDSEC;

DATA;
#10= SHAPE_REPRESENTATION_RELATIONSHIP(’’,’’ ,#92,#13);
#11= PRESENTATION_LAYER_ASSIGNMENT(’Default’,’’ ,(#12));
#12= SHELL_BASED_SURFACE_MODEL(’shell_1’ ,(#14));
#13= MANIFOLD_SURFACE_SHAPE_REPRESENTATION(’shell_rep_0 ’ ,(#12 ,#94) ,#91);
#14= OPEN_SHELL(’’ ,(#15 ,#16));
#15= ADVANCED_FACE(’’ ,(#17),#72,.T.);
#16= ADVANCED_FACE(’’ ,(#18),#73,.T.);
#17= FACE_OUTER_BOUND(’’ ,#19,.T.);
#18= FACE_OUTER_BOUND(’’ ,#20,.T.);
#19= EDGE_LOOP(’’ ,(#21 ,#22,#23 ,#24));
#20= EDGE_LOOP(’’ ,(#25 ,#26,#27));
#21= ORIENTED_EDGE(’’ ,*,*,#48,.T.);
#22= ORIENTED_EDGE(’’ ,*,*,#49,.T.);
#23= ORIENTED_EDGE(’’ ,*,*,#50,.T.);
#24= ORIENTED_EDGE(’’ ,*,*,#51,.T.);
#25= ORIENTED_EDGE(’’ ,*,*,#52,.T.);
#26= ORIENTED_EDGE(’’ ,*,*,#53,.T.);
#27= ORIENTED_EDGE(’’ ,*,*,#48,.F.);
#28= PCURVE(’’ ,#72,#35);
#29= PCURVE(’’ ,#72,#36);
#30= PCURVE(’’ ,#72,#37);
#31= PCURVE(’’ ,#72,#38);
#32= PCURVE(’’ ,#73,#39);
#33= PCURVE(’’ ,#73,#40);
#34= PCURVE(’’ ,#73,#41);
#35= DEFINITIONAL_REPRESENTATION(’’ ,(#55) ,#140);
#36= DEFINITIONAL_REPRESENTATION(’’ ,(#57) ,#140);
#37= DEFINITIONAL_REPRESENTATION(’’ ,(#59) ,#140);
#38= DEFINITIONAL_REPRESENTATION(’’ ,(#61) ,#140);
#39= DEFINITIONAL_REPRESENTATION(’’ ,(#63) ,#140);
#40= DEFINITIONAL_REPRESENTATION(’’ ,(#65) ,#140);
#41= DEFINITIONAL_REPRESENTATION(’’ ,(#66) ,#140);
#42= SURFACE_CURVE(’’ ,#54,(#28,#34),. PCURVE_S1 .);
#43= SURFACE_CURVE(’’ ,#56,(#29),. PCURVE_S1 .);
#44= SURFACE_CURVE(’’ ,#58,(#30),. PCURVE_S1 .);
#45= SURFACE_CURVE(’’ ,#60,(#31),. PCURVE_S1 .);
#46= SURFACE_CURVE(’’ ,#62,(#32),. PCURVE_S1 .);
#47= SURFACE_CURVE(’’ ,#64,(#33),. PCURVE_S1 .);
#48= EDGE_CURVE(’’ ,#69,#68,#42,.T.);
#49= EDGE_CURVE(’’ ,#68,#70,#43,.T.);
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#50= EDGE_CURVE(’’ ,#70,#71,#44,.T.);
#51= EDGE_CURVE(’’ ,#71,#69,#45,.T.);
#52= EDGE_CURVE(’’ ,#69,#67,#46,.T.);
#53= EDGE_CURVE(’’ ,#67,#68,#47,.T.);
#54= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#113,#114),. UNSPECIFIED.,.F.,.F.,(2,
2) ,(0. ,7.07106781186547) ,. UNSPECIFIED .);
#55= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#115,#116),. UNSPECIFIED.,.F.,.F.,(2,
2) ,(0. ,7.07106781186547) ,. UNSPECIFIED .);
#56= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#117,#118),. UNSPECIFIED.,.F.,.F.,(2,
2),(5.,10.),. UNSPECIFIED .);
#57= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#119,#120),. UNSPECIFIED.,.F.,.F.,(2,
2),(5.,10.),. UNSPECIFIED .);
#58= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#121,#122),. UNSPECIFIED.,.F.,.F.,(2,
2) ,( -7.07106781186547 ,0.) ,. UNSPECIFIED .);
#59= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#123,#124),. UNSPECIFIED.,.F.,.F.,(2,
2) ,( -7.07106781186547 ,0.) ,. UNSPECIFIED .);
#60= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#125,#126),. UNSPECIFIED.,.F.,.F.,(2,
2),(-10.,-5.),. UNSPECIFIED .);
#61= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#127,#128),. UNSPECIFIED.,.F.,.F.,(2,
2),(-10.,-5.),. UNSPECIFIED .);
#62= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#129,#130),. UNSPECIFIED.,.F.,.F.,(2,
2),(-5.,0.),. UNSPECIFIED .);
#63= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#131,#132),. UNSPECIFIED.,.F.,.F.,(2,
2),(-5.,0.),. UNSPECIFIED .);
#64= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#133,#134),. UNSPECIFIED.,.F.,.F.,(2,
2),(0.,5.),. UNSPECIFIED .);
#65= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#135,#136),. UNSPECIFIED.,.F.,.F.,(2,
2),(0.,5.),. UNSPECIFIED .);
#66= B_SPLINE_CURVE_WITH_KNOTS(’’ ,1,(#137,#138),. UNSPECIFIED.,.F.,.F.,(2,
2) ,(0. ,7.07106781186547) ,. UNSPECIFIED .);
#67= VERTEX_POINT(’’ ,#108);
#68= VERTEX_POINT(’’ ,#109);
#69= VERTEX_POINT(’’ ,#110);
#70= VERTEX_POINT(’’ ,#111);
#71= VERTEX_POINT(’’ ,#112);
#72= B_SPLINE_SURFACE_WITH_KNOTS(’’ ,1 ,1,((#100 ,#101),(#102,#103)) ,
.UNSPECIFIED.,.F.,.F.,.F. ,(2 ,2) ,(2 ,2) ,(0. ,7.07106781186547) ,(0. ,10.) ,

.UNSPECIFIED .);
#73= B_SPLINE_SURFACE_WITH_KNOTS(’’ ,1,1,((#104 ,#105),(#106,#107)) ,
.UNSPECIFIED.,.F.,.F.,.F.,(2,2),(2,2),(0.,5.),(0.,5.),. UNSPECIFIED .);

#74= SHAPE_DEFINITION_REPRESENTATION (#75 ,#92);
#75= PRODUCT_DEFINITION_SHAPE(’Document’,’’ ,#77);
#76= PRODUCT_DEFINITION_CONTEXT(’3D�Mechanical�Parts’,#81,’design’);
#77= PRODUCT_DEFINITION(’A’,’First�version’ ,#78,#76);
#78= PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE (’A’,
’First�version’ ,#83,.MADE.);
#79= PRODUCT_RELATED_PRODUCT_CATEGORY(’tool’,’tool’ ,(#83));
#80= APPLICATION_PROTOCOL_DEFINITION(’Draft�International�Standard’,
’automotive_design ’ ,1999,#81);
#81= APPLICATION_CONTEXT(
’data�for�automotive�mechanical�design�processes’);
#82= PRODUCT_CONTEXT(’3D�Mechanical�Parts’,#81,’mechanical ’);
#83= PRODUCT(’Document’,’Document’,’Rhino�converted�to�STEP’ ,(#82));
#84=(
LENGTH_UNIT ()
NAMED_UNIT (*)
SI_UNIT(.MILLI.,.METRE.)
);
#85=(
NAMED_UNIT (*)
PLANE_ANGLE_UNIT ()
SI_UNIT($,.RADIAN.)
);
#86= DIMENSIONAL_EXPONENTS (0.,0.,0.,0.,0.,0.,0.);
#87= PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE (0.01745329252) ,#85);
#88=(
CONVERSION_BASED_UNIT(’DEGREES’ ,#87)
NAMED_UNIT (#86)
PLANE_ANGLE_UNIT ()
);
#89=(
NAMED_UNIT (*)
SI_UNIT($,.STERADIAN.)
SOLID_ANGLE_UNIT ()
);
#90= UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE (0.001) ,#84 ,
’DISTANCE_ACCURACY_VALUE ’,
’Maximum�model�space�distance�between�geometric�entities�at�asserted�c
onnectivities ’);
#91=(
GEOMETRIC_REPRESENTATION_CONTEXT (3)
GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT ((#90))
GLOBAL_UNIT_ASSIGNED_CONTEXT ((#89 ,#88 ,#84))
REPRESENTATION_CONTEXT(’ID1’,’3D’)
);
#92= SHAPE_REPRESENTATION(’Document’ ,(#93 ,#94) ,#91);
#93= AXIS2_PLACEMENT_3D(’’ ,#99,#95,#96);
#94= AXIS2_PLACEMENT_3D(’’ ,#139,#97,#98);
#95= DIRECTION(’’ ,(0.,0.,1.));
#96= DIRECTION(’’ ,(1.,0.,0.));
#97= DIRECTION(’’ ,(0.,0.,1.));
#98= DIRECTION(’’ ,(1.,0.,0.));
#99= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#100= CARTESIAN_POINT(’’ ,(5.,0.,-5.));
#101= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#102= CARTESIAN_POINT(’’ ,(8.88178419700125E-16,5.,-5.));
#103= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,5.));
#104= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#105= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#106= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#107= CARTESIAN_POINT(’’ ,(5.,5.,0.));
#108= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#109= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#110= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#111= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,5.));
#112= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#113= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#114= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#115= CARTESIAN_POINT(’’ ,(0.,5.));
#116= CARTESIAN_POINT(’’ ,(7.07106781186547 ,5.));
#117= CARTESIAN_POINT(’’ ,(0.,5.,0.));

#118= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,5.));
#119= CARTESIAN_POINT(’’ ,(7.07106781186547 ,5.));
#120= CARTESIAN_POINT(’’ ,(7.07106781186547 ,10.));
#121= CARTESIAN_POINT(’’ ,(8.88178419700125E-16 ,5. ,5.));
#122= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#123= CARTESIAN_POINT(’’ ,(7.07106781186547 ,10.));
#124= CARTESIAN_POINT(’’ ,(0.,10.));
#125= CARTESIAN_POINT(’’ ,(5.,0.,5.));
#126= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#127= CARTESIAN_POINT(’’ ,(0.,10.));
#128= CARTESIAN_POINT(’’ ,(0.,5.));
#129= CARTESIAN_POINT(’’ ,(5.,0.,0.));
#130= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#131= CARTESIAN_POINT(’’ ,(0.,5.));
#132= CARTESIAN_POINT(’’ ,(0.,0.));
#133= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#134= CARTESIAN_POINT(’’ ,(0.,5.,0.));
#135= CARTESIAN_POINT(’’ ,(0.,0.));
#136= CARTESIAN_POINT(’’ ,(5.,0.));
#137= CARTESIAN_POINT(’’ ,(0.,5.));
#138= CARTESIAN_POINT(’’ ,(5.,0.));
#139= CARTESIAN_POINT(’’ ,(0.,0.,0.));
#140=(
GEOMETRIC_REPRESENTATION_CONTEXT (2)
PARAMETRIC_REPRESENTATION_CONTEXT ()
REPRESENTATION_CONTEXT(’pspace’,’’)
);
ENDSEC;
END -ISO -10303 -21;
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