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the structure, dynamics, thermodynamics, rheology and 
mechanical properties of polymer-nanoparticle (NP) 
mixtures.

There are numerous excellent reviews of the field avail-
able [1–19]. The present overview, organized according to 
the answers to specific questions posed and not according 
to the simulation methods employed, aims at illustrating 
how molecular simulations have enhanced our understand-
ing of the complex and fascinating field of PNCs.

1.1 � Polymer‑Matrix Nanocomposites

In the simplest sense, a composite is an object made up of 
two or more distinct parts. Within materials science and 
engineering, composite materials are put together from two 
or more components that remain distinct or separate within 
the final product. Composites can be found anywhere, 
being as simple as a matrix material that envelops a rein-
forcing material, such as concrete surrounding steel bars, 
the latter preventing failure under tension. The real chal-
lenge is that the options in making a composite material 
are almost limitless, but only a few sets of materials will 
combine synergistically, and the design criteria may not be 
obvious. The observation that, other things being equal, the 
effectiveness of the filler increases with an increase in sur-
face to volume ratio has provided large impetus to the shift 
from micron- to nanosized particles. With the appearance 
of synthetic methods that can produce nanometer sized fill-
ers, resulting in an enormous increase of surface area, a 
new class of materials emerged, known as PNCs, i.e., poly-
mer hosts filled with nanoparticles, which possess proper-
ties that typically differ significantly from those of the pure 
polymer, even at low nanoparticle concentrations [1, 15].

Nanocomposite materials contain particles of size 
�p ∼ 10 nm dispersed at a volume fraction, �, often lower 
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major achievements in modeling polymer matrix nanocom-
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lar simulations at multiple length and time scales, working 
hand-in-hand with sensitive experiments, have enhanced 
our understanding of how nanofillers alter the structure, 
dynamics, thermodynamics, rheology and mechanical 
properties of the surrounding polymer matrices.

1  Introduction

Polymer-matrix nanocomposites (PNCs) have drawn 
intense research interest over the last decade owing to 
both the rich fundamental physics associated with mixing 
macromolecules and particles and their unique mechani-
cal, optical, magnetic and other material properties [1]. 
Driven by the need to develop functionally superior mate-
rials, significant effort has been invested in understanding 
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than 10−3 within a polymer matrix. They are thus character-
ized by particle number densities 
�n = 3�∕

(
4��3

p

)
≈ 1020 m−3, interfacial areas per unit 

volume 3�∕�p ≈ 106 m−1, and interparticle spacings, 
�
−1∕3
n − 2�p ≈ 100 nm that are commensurate with the par-

ticle dimensions, �p and the radii of gyration of matrix 
chains, Rg ≈ 10 nm.

The practice of adding nanoscale filler particles to rein-
force polymeric materials can be traced back to the early 
years of the composite industry, in the second half of the 
19th century. Charles Goodyear, inventor of vulcanized 
rubber, attempted to prepare nanoparticle-toughened auto-
mobile tires by blending carbon black, zinc oxide, and/or 
magnesium sulfate particles with vulcanized rubber [20]. 
Another example was the clay-reinforced resin known as 
Bakelite that was introduced in the early 1900s as one of 
the first mass-produced polymer–nanoparticle compos-
ites and fundamentally transformed the nature of practical 
household materials [21–24]. Then, a long period of time 
passed till the early 1990s when it was first demonstrated 
that the thermal and mechanical properties of Nylon-6 were 
improved by the addition of a few percent (2–4 % w/w) 
mica-type layered silicates to the extent that it could be 
used in an automotive engine compartment [25, 26].

Even though some property improvements have been 
achieved in nanocomposites, nanoparticle dispersion is dif-
ficult to control, with both thermodynamic and kinetic pro-
cesses playing significant roles. It has been demonstrated 
that dispersed spherical nanoparticles can yield a range of 
multifunctional behavior, including a viscosity decrease, 
reduction of thermal degradation, increased mechanical 
damping, enriched electrical and/or magnetic performance, 
and control of thermomechanical properties [27–31]. The 
tailor-made properties of these systems are very impor-
tant to the manufacturing procedure, as they fully over-
come many of the existing operational limitations. As a 
final product, a polymeric matrix enriched with dispersed 
particles may have better properties than the neat poly-
meric material and can be used in more demanding and 
novel applications. Therefore, an understanding and quan-
titative description of the physicochemical properties of 
these materials is of major importance for their successful 
production.

As part of this renewed interest in nanocomposites, 
researchers also began seeking design rules that would 
allow them to engineer materials that combine the desir-
able properties of nanoparticles and polymers. In light of 
the diversity of polymers and nanoparticles, the potential 
for use of PNCs is nearly limitless. The ensuing research 
revealed a number of key challenges in producing nano-
composites that exhibit a desired behavior. The great-
est stumbling block to the large-scale production and 

commercialization of nanocomposites is the dearth of 
cost-effective methods for controlling the dispersion of the 
nanoparticles in polymeric hosts. The nanoscale particles 
typically aggregate, which negates any benefits associated 
with the nanoscopic dimension. PNCs generally possess 
nonequilibrium morphologies due to the complex interplay 
of enthalpic and entropic interactions leading to particle 
aggregation, particle bridging interactions, and phase sepa-
ration at various length scales [32, 33]. The second chal-
lenge is associated with understanding and predicting prop-
erty enhancements in these materials, which are intimately 
connected to their morphology.

Nanocomposite research has recently expanded to con-
sider more complicated systems involving polymer blends 
and block copolymers, where novel electrical, magnetic 
and optical properties arise [15, 34, 35].

1.2 � Multiscale Modeling

Understanding the fascinating and complex structure and 
dynamics of polymeric materials has been an ongoing 
challenge for many decades. From the point of view of 
molecular simulations, the spectrum of length and time 
scales associated with polymer melts of long chains poses 
a formidable challenge to studying their long-time dynam-
ics [36, 37]. The topological constraints arising from chain 
connectivity and uncrossability (entanglements) domi-
nate intermediate and long-time relaxation [38] and trans-
port phenomena when polymers become sufficiently long. 
Atomistic molecular simulations of dense phases of soft 
matter prove to be difficult for many systems across length 
and time scales of practical interest. Even coarse-grained 
particle-based simulation methods may not be applicable 
due to the lack of faithful descriptions of polymer–polymer 
and polymer–surface interactions. Since complex interac-
tions between constituent phases at the atomic level ulti-
mately manifest themselves in macroscopic properties, a 
broad range of length and time scales must be addressed 
and a combination of modeling techniques is therefore 
required to simulate meaningfully the bulk-level behavior 
of nanocomposites [9].

Soft condensed matter is a relatively new term describ-
ing a huge class of rather different materials such as col-
loids, polymers, membranes, complex molecular assem-
blies, complex fluids etc. Though these materials are rather 
different in their structures, there is one unifying aspect, 
which makes it very reasonable to treat such systems from 
a common point of view. Compared to “hard matter” the 
characteristic energy density is much smaller. While the 
typical energy of a chemical bond (C–C bond) is about 
10−18 J ≈ 250kBT  at room temperature of 300 K, the non-
bonded interactions are of the order of kBT  and allow for 
strong density fluctuations even though the molecular 
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connectivity is never affected (kB is the Boltzmann’s con-
stant). It is instructive to compare the cohesive energy den-
sity, which gives a first estimate of the elastic constants, 
between a typical “hard matter” crystal to soft matter. The 
ratio between the two shows that polymeric systems are 
typically 100–10,000 times softer than classical crystals. 
As a consequence the average thermal energykBT  is not 
negligible for these systems any more, but rather defines 
the essential energy scale. This means that entropy, which 
typically contributes to the free energy a term of the order 
of kBT  per degree of freedom, plays a crucial role. Espe-
cially in the case of macromolecules, this is mainly intra-
molecular entropy, which for a linear polymer of length 
N contributes to the free energy a term of order NkBT , 
representing about 90% of the free energy of polymeric 
materials [39]. As an immediate consequence it is clear 
that typical quantum chemical electronic structure calcula-
tions (Hartree-Fock or DFT) which focus on obtaining the 
energy as a function of nuclear coordinates cannot be suf-
ficient to characterize soft condensed matter and will even 
be less sufficient to properly predict/interpret macroscopic 
properties. Molecular theoretical and simulation methods 
which incorporate entropic effects are required for this.

The length and time scales governing polymer physics 
range from Å and femtoseconds for the vibrations of atomic 
bonds to millimeters and seconds for crack propagation in 
polymer composites. The entities used as basic degrees of 
freedom are: electrons (quantum chemistry), atoms (classi-
cal forcefields), monomers or groups of monomers (coarse-
grained or mesoscopic models) and entire polymer chains 
(soft fluids). All these methods and many others have been 
applied side by side to polymers. Until recently, however, 
multiscale methods with rigorous bridging between the dif-
ferent scales have been few.

1.2.1 � Atomistic Molecular Dynamics (MD)

The stepping stone of classical molecular simulations is 
atomistic Molecular Dynamics (MD). As accurate MD 
potentials are developed for a broad range of materials 
based on quantum chemistry calculations and with the 
increase of supercomputer performance, atomistic MD 
simulations have become a very powerful tool for analyz-
ing complex physical phenomena in polymeric materials, 
including dynamics, viscosity and shear thinning. However, 
as discussed above, entangled polymer systems are charac-
terized by a wide range of spatial and temporal scales. It is 
still not feasible to equilibrate atomistic MD simulations of 
highly entangled polymer chain systems, due to their long 
relaxation times, long-range electrostatic interactions and 
tremendous number of atoms. The atomistic MD model for 
such a system, with a typical size of about a micrometer 
and a relaxation time on the scale of microseconds (or even 

up to the scale of seconds for long-chain polymer melts), 
would consist of billions of atoms and would require bil-
lions of time steps to run, which is obviously beyond the 
capability of the technique, even with the most sophisti-
cated supercomputers available today.

1.2.2 � Monte Carlo (MC)

A robust sampling of the configuration space of polymeric 
substances is a prerequisite for the reliable prediction of 
their physical properties. The constraints posed by atomis-
tic MD simulations can be overcome by resorting to MC 
simulations, which enable us to use the complete arsenal of 
equilibrium statistical mechanics, e.g. perform sampling in 
all sorts of ensembles [36, 37, 40–42]. Through the design 
of efficient unphysical moves, configurational sampling can 
be dramatically enhanced. MC moves such as concerted 
rotation [43], configurational bias   [44, 45], and internal 
configurational bias [46] have thus successfully addressed 
the problem of equilibrating polymer systems of moderate 
chain lengths.

Even these moves prove incapable of providing equi-
libration when applied to long-chain polymer melts, 
however. A solution to this problem was given by the 
development and efficient implementation of a chain con-
nectivity-altering MC move, end-bridging [47, 48]. Using 
end-bridging, atomistic systems consisting of a large num-
ber of long chains, up to C6000, have been simulated in full 
atomistic detail [48, 49]. Despite its efficiency in equilibrat-
ing long-chain polymer melts, end-bridging cannot equili-
brate monodisperse polymer melts; a finite degree of poly-
dispersity is necessary for the move to operate. While this 
is not a drawback in modeling industrial polymers, which 
are typically polydisperse, an ability to equilibrate strictly 
monodisperse polymers is highly desirable for comparing 
against theory or model experimental systems. Morover, 
end-bridginig relies on the existence of chain ends, ren-
dering itself inappropriate for dense phases of chains with 
nonlinear architectures. These limitations have been over-
come by the introduction of Double Bridging (DB) and 
Intramolecular Double Rebridging (IDR) [50, 51]. The 
key innovation of those moves is the construction of two 
bridging trimers between two different chains, as far as the 
former is concerned, or along the same chain, as far as the 
latter move is concerned, thus preserving the initial chain 
lengths.

MC simulations using atomistic forcefields have inher-
ent limitations, as Doxastakis et al. have shown [52]. The 
hard interactions between atoms reduce the acceptance rate 
of the moves. Thus, it is essential to resort to parallel tem-
pering techniques in order to allow motion of the system in 
its phase space [53].
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1.2.3 � Coarse Graining (CG)

Polymers show a hierarchy of length and time scales. How-
ever, the connectivity in a polymer molecule enforces an 
interdependence between features on different scales. As 
a consequence, the choice of where one building block 
ends and where the next one begins is not unique, and it is 
not obvious how to abstract from a fundamental degree of 
freedom and use it in an implicit way in a coarser model. 
Thus, we will use the generic term “coarse-grained” for 
any model employing the idea of soft interacting particles 
(blobs) equal to or larger than the monomers constituting 
the polymeric chains.

The degree of coarse-graining is application-driven 
and describes the number of atoms/molecules in a typical 
blob considered by the coarse-grained model. It is closely 
related to the minimal features of the atomistic model that 
should be retained in order to reproduce the desired proper-
ties from the coarse-grained model. Mapping an atomistic 
model to a coarse-grained one is very important in defin-
ing the positions of coarse-grained particles and directly 
influences the parameterization of the coarse-grained force 
field.

A general procedure in coarse-graining usually involves: 
defining the observable of interest and determining the 
degree of coarse-graining; deciding an appropriate map-
ping of the atomistic model to the coarse-grained one; 
deriving interactions between the coarse-grained parti-
cles; reproducing target functions with the coarse-grained 
model; optimizing parameters/functions in the coarse-
grained model and validating its range of applicability; 
conducting coarse-grained simulations.

1.2.4 � Mesoscopic Simulations

A major challenge in simulating realistic PNCs is that 
neither the length nor the time scales can be adequately 
addressed by atomistic simulations alone, because of the 
extensive computational load. Until relatively recently, a 
somewhat neglected level of description in materials mode-
ling has been the mesoscopic regime, lying between atomic 
(or super-atomic like) particles and finite element-based 
representations of a continuum, and covering characteristic 
length scales of 10−8–10−5 m. At this scale, the system is 
still too small to be regarded as a continuum, yet too large 
to be simulated efficiently using atomic models. In a more 
precise way, a mesoscale can be defined as an intermedi-
ate length scale at which the phenomena at the next level 
below (e.g. particle motions) can be regarded as having 
been equilibrated, and at which new phenomena emerge 
with their own characteristic time scales.

Among the several mesoscopic methods applied to the 
study of polymers, Self Consistent Field theory has been a 

well-founded tool [54]. This method adopts a field-theoretic 
description of the polymeric fluids and makes a saddle-
point (mean-field) approximation. An alternative to invok-
ing the saddle-point approximation is performing a normal 
Metropolis Monte Carlo (MC) simulation, with the effec-
tive potential energy of the system given by field-theoretic 
functionals. One of the first attempts has been made by 
Laradji et al. [55] for polymer brushes and then by Daoulas 
and Müller [56] and Detcheverry et  al. [57, 58] for poly-
meric melts. The coordinates of all particles in the system 
are explicitly retained as degrees of freedom and evolve 
through MC moves. Tracking the motion of mesoscopic 
particles requires the use of stochastic dynamics [59].

2 � Selected Unresolved Issues in PNCs

PNCs have been an area of intense industrial and academic 
research for the past twenty years. Irrespectively of the 
measure employed - articles, patents, or funding-efforts in 
PNCs have been exponentially growing worldwide over 
the last 10 years. PNCs represent a radical alternative to 
conventional filled polymers or polymer blends-a staple of 
the modern plastics industry. Considering the multitude of 
potential nanoparticles, polymeric resins, and applications, 
the field of PNCs is immense [60]. The restricted class 
of polymer nanocomposites defined above still presents a 
complex and fascinating problem in statistical mechan-
ics due to the richness of physical phenomena in mixtures 
of flexible polymer coils and hard impenetrable objects. 
Despite the unprecedented efforts placed on PNCs research 
there are still open questions which have not been definitely 
addressed yet. In the following we will summarize a few of 
them; later we will analyze the perspective simulations and 
theoretical calculations have provided us with.

Fundamental issues and questions include, but are not 
limited to: the packing and structure of dense mixtures of 
long polymer chains and hard impenetrable fillers, in the 
presence of attractive, neutral or repulsive interactions; per-
turbation of polymer packing and the possible nonexistence 
of a bulk region of the polymer matrix, especially in the 
case of PNC films; non-universal filler-induced polymer 
conformational changes triggered by interfacial effects and/
or modification of the excluded volume screening mecha-
nism of a pure polymer melt; the way in which geometric 
and chemical factors determine, in a nonadditive manner, 
the competing entropic and enthalpic contributions to the 
mixture free energy, miscibility and the physical nature of 
phase separated states. In all cases, the large particle sur-
face-to-volume ratio leads to an amplification of a number 
of rather distinct molecular processes, implying pervasive 
interference between layers of polymers around nanoparti-
cle surfaces.
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2.1 � Segmental Dynamics and the Glass Transition 
Temperature

When cooling a glass forming liquid, instead of freez-
ing at a well defined temperature, one observes a huge 
increase of the viscosity which takes place continuously. 
Such glass formers can be either simple liquids or poly-
mer liquids, and many features are similar in both regard-
ing the glass transition. One defines the glass transition 
temperature, Tg, as the temperature at which the dominant 
relaxation time on the molecular scale (or monomeric 
scale in the case of polymers) reaches about ~100 s, 
which corresponds typically to a viscosity of 1012 Pa s in 
the case of simple liquids. Typically for such glass form-
ing liquids, the viscosity increases by twelve orders of 
magnitude over a change of temperature of about 100 K 
down to Tg. The underlying mechanisms involved in this 
dramatic increase are still poorly understood [61, 62].

Experimental results on polymer dynamics and the 
glass transition in PNCs are not conclusive concern-
ing the mechanism and the details of this modification. 
Increases or decreases in Tg by as much as 30 K [63] have 
been reported depending on polymer–nanoparticle inter-
actions. Reduction of Tg has been reported in the case 
of weak interactions between filler and polymer [64]. In 
other cases the addition of nanoparticles causes no sig-
nificant change to the glass transition of the polymer, pre-
sumably because effects causing increase and decrease of 
polymer mobility are present simultaneously, effectively 
canceling out each other [65]. Moreover, strong interac-
tions between the filler particles and the polymer sup-
press crystallinity, yielding new segmental relaxation 
mechanisms in semicrystalline polymers, originating 
from polymer chains restricted between condensed crys-
tal regions and the semi-bound polymer in an interfacial 
layer with strongly reduced mobility [66].

Concerning the spatial extent of the Tg-shift, several 
studies [67, 68] on PNCs show an increase of the glass 
transition temperature, suggesting that the mobility of the 
entire volume of the polymer is restricted by the presence 
of the nanoparticles. However, there are many experi-
mental results suggesting that the restriction of chain 
mobility caused by the nanoparticles does not extend 
throughout the material but affects only the chains within 
a few nanometers of the filler surface [69]. The existence 
of such an interfacial layer seems relatively well-estab-
lished in the case of silica-filled elastomers, however its 
exact nature is not well understood: experimental results 
have been described in terms of one or two distinct inter-
facial layers or a gradual change in dynamics with chang-
ing distance from the particle.

2.2 � Enhancing Nanoparticle Dispersion by Surface 
Grafting

One of the biggest challenges is the rational control of filler 
clustering or aggregation, which often adversely affects 
material properties. The idea of achieving a good, uniform 
nanoparticle dispersion state has been the focus of consid-
erable research, especially because of its favorable impact 
on optical and some mechanical properties of the resulting 
composites [70, 71]. In the past few years, several research 
groups have modified the surface of nanoparticle fillers in 
an effort to improve their dispersion in a polymer matrix. A 
promising strategy for controlling the dispersion and mor-
phology of PNCs is to graft polymer chains onto the nano-
particles to form a brush layer [33]. The free chain/brush 
interfacial interactions may be “tuned” by controlling graft-
ing density, �g, the degree of polymerization of the grafted 
chains, Ng, and of the polymer host, Nf, the nanoparticle 
size, �p, and its shape. For example, if nanoparticles are 
grafted with chains compatible with the matrix polymer, 
filler dispersion is favored [72–76]. Motivated by this con-
cept, experimentalists have synthesized nanometer sized 
particles with high surface grafting density [74, 77, 78]. 
At fixed polymer chemistry, when the molecular weight of 
matrix polymer is lower than that of grafted polymer, nano-
particles disperse. On the contrary, if the molecular weight 
of the matrix polymer is higher than that of the grafted 
polymer, nanoparticles are thought to aggregate [74]. 
Since both the matrix and the brush have the same chemi-
cal structure, the immiscibility for longer matrix chains is 
entropic in origin and attributable to the concept of “brush 
autophobicity” [72, 79–83].

2.3 � Mechanical and Rheological Properties

The dispersion of micro- or nano-scale rigid particles 
within a polymer matrix often—but by no means always—
produces an enhancement in the mechanical properties of 
these materials. As mentioned earlier, the most important 
application of this sort involves rigid inorganic particles 
(originally carbon black, later also silica) in a cross-linked 
elastomer matrix, where an improvement of mechanical 
properties is sought. This so-called rubber reinforcement is 
a complex phenomenon, which may involve an enhanced 
grip of tires on wet roads, an improved resistance to wear 
and abrasion, low rolling resistance, and an increase of 
tires’ ultimate mechanical strength (toughness, tearing 
resistance).

There is a variety of phenomena seeking an explana-
tion. For the sake of readability, we will focus on a subset 
of them. Under very small cyclic deformations, there is a 
linear viscoelastic regime characterized by a very signifi-
cant increase (sometimes even by two orders of magnitude 
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compared to the reference unfilled network) of the in-phase 
storage modulus, both under elongation and under shear 
[84]. At medium-to-large strains, filled elastomers exhibit 
a markedly non-linear response which is absent in unfilled 
elastomers (“Payne effect”) [85]. The degree of non-line-
arity increases strongly with particle loading. An order-of-
magnitude drop in the modulus is often observed on going 
to 5–10 % deformation (under shear), bringing the asymp-
totic modulus of the filled systems much closer to that of 
the reference unfilled network.

Other related effects are commonly observed in filled 
elastomers. One is deformation hysteresis (“Mullins 
effect”): under cyclic deformation, the elastic modulus 
in the first cycle is higher than that in the following ones 
[86]. This points to some kind of “damage” of the material, 
which, however, is often reversible. The original properties 
can be recovered within a few hours, by high-temperature 
annealing of the sample. Secondly, fillers affect also the 
dissipative, out-of-phase components of the modulus. This 
is expected, since, probably, friction of the polymer chains 
against the filler surfaces, or of two particles against each 
other produces new energy dissipation mechanisms, which 
are absent in unfilled elastomers. Elastic and dissipative 
effects likely share a common origin. Finally, reinforcement 
effects have a remarkable temperature dependence. The 
small-strain (linear) modulus of filled rubbers decreases 
with temperature, pointing to important enthalpic effects. 
The situation is completely reversed compared to unfilled 
elastomers, where the modulus increases linearly with 
absolute temperature due to the entropic nature of rubber 
elasticity.

3 � From Statistical Mechanics to Computer 
Simulations

Our discussion starts by introducing the formalism of sta-
tistical mechanics and briefly describing the basic methods 
used in computer simulations. We limit ourselves to the 
absolute minimum of definitions and methods to be pre-
sented, trying not to sacrifice consistency and rigor.

3.1 � Motion in Phase Space

Statistical physics describes a system of N particles at a 
given state as one point in 6N/dimensional phase space, 
containing the atom positions and momenta (and neglecting 
the internal degrees of freedom of atoms) [87]. In classical 
mechanics, the state of the system is completely specified 
in terms of a set of generalized coordinates{�i} and gener-
alized momenta{�i}, where i = 1,… ,N [88]. We will refer 
to the 3N-dimensional set from which the generalized coor-
dinates of the system {�} ≡ {

�1, �2,… , �N
}
 take on values 

as configuration space, and to the 3N-dimensional set from 
which the generalized momenta {�} ≡ (

�1, �2,… , �N
)
 take 

on values as momentum space. Any instantaneous micro-
scopic state of the system can be written as a point:

in the phase space of the system. The set of values of the 
macroscopic observables, such as temperature, pressure, 
etc., describes the system’s macroscopic state. One macro-
scopic state corresponds to all the microscopic states that 
provide the same values of the macroscopic observables, 
defined by the macroscopic state.

If we know the Hamiltonian, ℋ
({

�i
}
,
{
�i
}
, t
)
, for the 

system, then the time evolution of the quantities �i and �i 
(i = 1,… ,N) is given by Hamilton’s equations of motion

and

where i = 1, 2,… ,N and �∕�� ≡ ∇� symbolizes the gra-
dient operator with respect to the vectorial quantity �. As 
the system evolves in time and its state changes, the system 
point traces out a trajectory in Γ-space. Since the subse-
quent motion of a classical system is uniquely determined 
by the initial conditions, it follows that no two trajecto-
ries in phase space can cross. If the Hamiltonian ℋ does 
not depend explicitly on time, then ℋ is a constant of the 
motion. Such is the case for conservative systems.

3.1.1 � Time Average

Any property of the system, �, is then a function of the 
points traversed by the system in phase space. The instantane-
ous property at a time t is �(Γ(t)) and the macroscopically 
meaningful observable property �obs is the time average of 
this,

In experiments, the time average comes about quite natu-
rally, since almost all experimental methods measure over 
much longer time scales than the longest relaxation time of 
the system. A straightforward approach, in order to get � 
from molecular simulations, is to determine a time average, 
taking a discrete sum over M time steps of length Δt:

(1)Γ =
({

�i
}
,
{
�i
})

(2)�̇i ≡ 𝜕�i

𝜕t
= −

𝜕ℋ
({

�i
}
,
{
�i
}
, t
)

𝜕�i

(3)�̇i ≡ 𝜕�i

𝜕t
=

𝜕ℋ
({

�i
}
,
{
�i
}
, t
)

𝜕�i

(4)�obs = ⟨�(Γ(t)) ⟩t = lim
tobs→∞

1

tobs ∫
tobs

0

�(Γ(t))dt

(5)�obs ≃ lim
M→∞

1

MΔt

M∑
j=1

�(Γ(jΔt))Δt
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This is the approach undertaken in Molecular Dynamics 
(MD) simulations, where the atoms’ trajectory is followed 
as a function of time, so it is straightforward to obtain the 
average.

3.1.2 � Phase Space Probability Density

When we deal with real systems, we can never specify 
exactly the state of the system, despite the deterministic 
character of its motion in phase space. There will always 
be some uncertainty in the initial conditions. Therefore, 
it is useful to consider Γ as a stochastic variable and to 
introduce a probability density �(Γ, t) on the phase space. 
In doing so, we envision the phase space filled with a con-
tinuum (or fluid) of state points. If the fluid were composed 
of individual discrete points, then each point would be 
equipped with a probability in accordance with our initial 
knowledge of the system and would carry this probability 
for all time, since probability is conserved. Because state 
points must always lie somewhere in the phase space, we 
have the normalization condition

where the integration takes place over the entire phase 
space. Similarly, the probability of finding the system in a 
small finite region D of Γ-space at time t is found by inte-
grating the probability density over that region:

The probability density for finding a system in the vicinity 
of Γ depends on the macroscopic state of the system, i.e. 
on the macroscopic constraints defining the system’s size, 
spatial extent, and interactions with its environment. A set 
of microscopic states distributed in phase space accord-
ing to a certain probability density is called an ensemble. 
A very important measure of the probability distribution of 
an equilibrium ensemble is the partition functionQ. This 
appears as a normalizing factor in the probability distribu-
tion defined by the ensemble.

3.1.3 � Ensemble Average

The ergodic hypothesis, originally due to L. Boltzmann [89], 
states that, over long periods of time, the time spent by a sys-
tem in some region of the phase space of microstates with the 
same energy is proportional to the volume of that region, i.e., 
that all accessible microstates are equiprobable over a long 
period of time. Ergodicity is based on the assumption (prov-
able for some Hamiltonians) that any dynamical trajectory, 
given sufficient time, will visit all “representative” regions 

(6)�Γ

�(Γ, t)dΓ ≡ �Γ

�
(
{�i}, {�i}, t

)
d3Np d3Nq = 1

(7)P(D, t) = ∫D

�
(
{�i}, {�i}, t

)
d3Np d3Nq

in phase space, the density distribution of points in phase 
space traversed by the trajectory converging to a stationary 
distribution.

According to the ergodic hypothesis we can calculate the 
observables of a system in equilibrium as averages over phase 
space with respect to the probability density of an equilib-
rium ensemble, �ens(Γ). If �ens(Γ) obeys the normalization 
condition, Eq. (6), on the entire phase space Γ and also is zero 
for all points outside the hypersurface ℋ(Γ) = E, the ensem-
ble average can be defined as:

In Monte Carlo (MC) simulations, the desired thermody-
namic quantities are determined as ensemble averages:

If we wish to obtain an average over points in phase space, 
there is no need to simulate any real time dependence of 
the system; one need only construct a sequence of states in 
phase space in the correct ensemble. In the context of equi-
librium simulations, it is always important to make sure 
that the algorithm used in the simulation is ergodic. This 
means that no particular region in phase space should be 
excluded from sampling by the algorithm. Such an exclu-
sion would render the simulation wrong, even if the simu-
lated object itself is ergodic. From a practical point of view, 
the ergodicity of the system can and should be checked 
through reproducibility of the calculated thermodynamic 
properties (pressure, temperature, etc.) in runs with differ-
ent initial conditions.

3.2 � Statistical Ensembles

3.2.1 � Microcanonical (NVE) Ensemble

In the microcanonical (NVE) ensemble the number of par-
ticles, N, the volume of the system, V and the total energy, 
E, are conserved. This corresponds to a completely closed 
system which does not interact in any way with the environ-
ment and lies in a container of fixed volume, V. For simplic-
ity, we neglect the intramolecular degrees of freedom. Then, 
the system energy will be a sum of kinetic, �, and potential, 
� energies. Since the total energy E must be conserved, the 
criterion for adding states in the ensemble would be

(8)�obs = ⟨�⟩ens = ∫ �(Γ)�ens(Γ)dΓ

(9)⟨�⟩ens =
∑
Γ

�(Γ)�ens(Γ)

∑
Γ

�ens(Γ)

(10)
ℋ

(
{�i}, {�i}

)
=𝒦

(
{�i}, {�i}

)
+𝒱

(
{�i}, {�i}

)

= constant = E0
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which means that not all, but only those states in phase 
space Γ that have total energy E0 are allowed. This can also 
be stated so that the probability density of the ensemble is

where � is the Kronecker delta for a discrete system, and 
the Dirac delta function for a continuous one. The partition 
function in the microcanonical ensemble, QNVE, is:

The summation over states, 
∑

Γ, is used if microscopic 
states are discrete and �(Γ) has the meaning of a probabil-
ity. For one-component classical systems, the sum can be 
replaced by an integral, yielding

where N! takes care of the indistinguishability of particles 
of the same species and h3N is the ultimate resolution for 
counting states allowed by the uncertainty principle.

The proper thermodynamic potential for the microca-
nonical ensemble is the entropy:

where kB is the Boltzmann constant. We therefore have a 
statistical thermodynamic definition of entropy as a quan-
tity proportional to the logarithm of the number of micro-
scopic states under given N, V, E. Eq. (14) establishes 
a fundamental thermodynamic equation in the entropy 
representation.

3.2.2 � Canonical (NVT) Ensemble

In the canonical (NVT) ensemble the number of parti-
cles, N, the volume of the system, V, and temperature, T 
are conserved. This corresponds to a closed system, which, 
however, can exchange heat with a large surrounding bath. 
The energy is fluctuating, but the temperature is constant, 
describing the probability distribution of energy fluctua-
tions. The total energy of the system is given by its Ham-
iltonian, ℋ

(
{�i}, {�i}

)
. The probability density of the 

ensemble is:

(11)�NVE
(
{�i}, {�i}

)
=

1

QNVE

�
[
ℋ

(
{�i}, {�i}

)
− E0

]

(12)QNVE =
∑
Γ

�
[
ℋ(Γ) − E0

]

(13)

QNVE =
1

N!

1

h3N ∫ dΓ�
[
ℋ(Γ) − E0

]

=
1

N!

1

h3N ∫
N∏
i=1

d3ri d
3pi �

[
ℋ

(
{�i}, {�i}

)
− E0

]

(14)S = kB ln
(
QNVE

)

(15)

�NVT
(
{�i}, {�i}

)
=

1

QNVT

1

N!h3N
exp

[
−
ℋ

(
{�i}, {�i}

)
kBT

]

with kB being the Boltzmann’s constant and QNVT the parti-
tion function in the NVT ensemble:

The thermodynamic function of the system is the Helm-
holtz energy:

Eq. (17) defines a fundamental equation in the Helmholtz 
energy representation by expressing A as a function of N, 
V, T.

3.2.3 � Isothermal ‑ Isobaric Ensemble (NpT)

The isothermal-isobaric ensemble describes the equilib-
rium distribution in phase space of a system under constant 
number of particles, temperature, and pressure. The volume 
of the system is allowed to fluctuate. Thus, a point in phase 
space is defined by specifying V, 

{
�i
}
 and 

{
�i
}
, where the 

domain from which the �is take on values depend on the 
value of V.

The probability density of the NpT ensemble can be 
derived from that of the microcanonical ensemble, by con-
sidering a bath around the system which acts as both a heat 
and a work reservoir for the system under study. The prob-
ability density, in a classical statistical mechanical formula-
tion, is:

where QNpT is the isothermal-isobaric partition function:

where V0 denotes some basic unit of volume introduced to 
make the partition function dimensionless (the exact mag-
nitude of V0 is immaterial).

The connection between the formalism of the isother-
mal-isobaric ensemble and macroscopic thermodynamic 
properties is established via the Gibbs energy:

(16)

QNVT =
1

N!h3N ∫
N∏
i=1

d3qi d
3pi exp

[
−
ℋ

(
{�i}, {�i}

)
kBT

]
.

(17)A = −kBT ln
(
QNVT

)

(18)

�NpT
(
{�i}, {�i};V

)
=

1

QNpT

× exp

[
−
ℋ

(
{�i}, {�i}

)
+ pV

kBT

]

(19)

QNpT =
1

N!h3N
1

V0
∫ dV ∫

N∏
i=1

d3qi d
3pi

× exp

[
−
ℋ

(
{�i}, {�i}

)
+ pV

kBT

]

(20)G(N, p,T) = −kBT ln
(
QNpT (N, p,T)

)
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3.2.4 � Configurational Integral

As long as the Born-Oppenheimer approximation [90] is 
valid (as it practically always is in equilibrium thermody-
namics) the potential energy of the system, �(Γ), depends 
only on the generalized coordinates, 

{
�i
}
. Similarly, the 

kinetic energy, �(Γ), depends only on the momenta 
{
�i
}
. 

Hence we can rewrite the expression for the system Ham-
iltonian as:

It can be now seen that, in a classical (as opposed to quan-
tum mechanical) treatment, the partition function, e.g. 
of the NVT ensemble, factorizes into a product of kinetic 
(ideal gas) and potential (excess) parts:

This can be written as a product of the ideal gas contribu-
tion, and the excess contribution as:

where:

is the so called configurational integral. The partition func-
tion of the ideal gas is:

with Λ being the de Broglie or thermal wavelength:

From the perspective of a particle-based model, the fun-
damental problem of equilibrium statistical mechanics, 
according to Chandler [91], is to evaluate a configurational 
partition function of the form of Eq. (24).

Two important consequences arise from Eq. (23). First, 
all the thermodynamic properties can be expressed as a 
sum of an ideal gas part and an excess part. The chemical 
details which govern the interactions between the atoms of 
the system are included in the latter. In fact, in MC simu-
lations the momentum part of the phase space is usually 
omitted, and all calculations are performed in configuration 
space. The second important consequence of Eq. (23) is 
that the total average kinetic energy is a universal quantity, 

(21)ℋ(Γ) = 𝒦
({

�i
})

+𝒱
({

�i
})

(22)

QNVT =
1

N!

1

h3N ∫
N∏
i=1

d3pi exp

[
−
�

({
pi
})

kBT

]

× ∫
N∏
i=1

d3qi exp

[
−
�
({

qi
})

kBT

]

(23)QNVT = Qid
NVT

V−N
�NVT

(24)�NVT = ∫
N∏
i=1

d3qi exp

[
−
�
({

qi
})

kBT

]

(25)QNVT =
VN

N!Λ3N

(26)Λ =

(
h2

2�mkBT

)1∕2

independent of the interactions in the system. Indeed, com-
puting the average of

with respect to the probability distribution of Eq. (15) and 
using the factorization of Eq. (23) we obtain that [87]:

or, more generally ⟨�⟩ = 1∕2NdofkBT  for a system of Ndof 
degrees of freedom.1

4 � Simulation Methods

4.1 � Molecular Dynamics

In Cartesian coordinates, and under the assumption that the 
potential energy � is independent of velocities and time, 
Hamilton’s equations of motion read:

hence

where �i is the force acting on atom i:

with the gradient being taken keeping all positions other 
than �i constant. Solving the equations of motion then 
involves the integration of 3N second-order differential 
equations Eq. (31) which are Newton’s equations of motion.

The classical equations of motion possess some inter-
esting properties, the most important one being the con-
servation law. If we assume that � and � do not depend 
explicitly on time, then it is straightforward to verify that 
ℋ̇ = dℋ∕dt is zero, i.e., the Hamiltonian is a constant of 
the motion. In actual calculations this conservation law 
is satisfied if there exist no explicitly time- or velocity-
dependent forces acting on the system. A second important 
property is that Hamilton’s equations of motion are revers-
ible in time. This means that, if we change the signs of 
all velocities, we will cause the molecules to retrace their 

(27)� =

N∑
i=1

�2
i

2m

(28)⟨�⟩ = 3

2
NkBT

1  If the kinetic energy can be separated into a sum of terms, each of 
them being quadratic in only one momentum component, the average 
kinetic energy per degree of freedom is 1∕2k

B
T , which is a special 

case of the equipartition theorem [92].

(29)�̇i ≡ �i =
�i

mi

(30)�̇i ≡ −
𝜕�

𝜕�i
= �i

(31)mi�̈i = �i

(32)�i = −∇�i
�
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trajectories backwards. The computer-generated trajecto-
ries should also possess this property.

Concerning the solution of equations of motion, in the 
limit of very long times, it is clear that no algorithm pro-
vides an essentially exact solution. However, this turns out 
to be not a serious problem, because the main objective of 
an MD simulation is not to trace the exact configuration of 
a system after a long time, but rather to predict thermody-
namic properties as time averages and calculate time cor-
relation functions representative of the dynamics.

In the following we briefly describe the most popular 
family of algorithms used in MD simulations for the solu-
tion of classical equations of motion: the Verlet algorithms. 
Another family of algorithms comprises higher-order meth-
ods, whose basic idea is to use information about positions 
and their first, second, and higher order time derivatives at 
time t in order to estimate the positions and their deriva-
tives at time t + Δt [93].

In general, higher-order methods are characterized by 
a much better accuracy than the Verlet algorithms, par-
ticularly at small times. However, their main drawback is 
that they are not reversible in time, which results in insuf-
ficient energy conservation, especially in very long-time 
MD simulations. On the contrary, the Verlet methods are 
not essentially exact for small times but their inherent time 
reversibility guarantees that the energy conservation law is 
satisfied even for very long times. This feature renders the 
Verlet methods, and particularly the velocity-Verlet algo-
rithm, the most appropriate ones to use in long atomistic 
MD simulations.

4.1.1 � Verlet Algorithm

The initial Verlet algorithm [94] ends up calculating the 
positions at time t + Δt by using two Taylor expansions 
around times t − Δt and t + Δt, respectively:

Summing these two equations we obtain:

The estimate of the new positions contains an error that is 
in the order of Δt4, where Δt is the time step employed in 

(33)
�i(t − Δt) = �i(t) − �i(t)Δt +

�i(t)

2mi

Δt2

− �⃛i(t)
Δt3

3!
+ �

(
Δt4

)

(34)
�i(t + Δt) = �i(t) + �i(t)Δt +

�i(t)

2mi

Δt2

+ �⃛i(t)
Δt3

3!
+ �

(
Δt4

)

(35)�i(t + Δt) ≈ 2�i(t) − �i(t − Δt) +
�i(t)

mi

Δt2

our MD scheme. It should be noted that the Verlet algo-
rithm does not use the velocities to compute the new posi-
tions. One can, however, derive the velocities from knowl-
edge of the trajectory, using

which is only accurate to order Δt2.

4.1.2 � Velocity‑Verlet Algorithm

The problem of defining the positions and velocities at 
the same time can be overcome by casting the Verlet 
algorithm in a different way. This is the Velocity-Verlet 
algorithm [95], according to which positions are obtained 
through the usual Taylor expansion

whereas velocities are calculated through

with all accelerations computed from the forces at the con-
figuration corresponding to the considered time.

4.2 � Langevin Dynamics

When a large system is simulated, it is generally desired 
to keep the number of degrees of freedom as low as pos-
sible. If a certain subset of particles can be distinguished, 
of which details of the motion are not relevant, these 
particles can be omitted from a detailed MD simulation. 
However, the forces they exert on the remaining particles 
must be represented as faithfully as possible. This means 
that correlations of such forces with positions and veloci-
ties of particle i must be incorporated in the equations 
of motion of particle i, while uncorrelated contributions 
can be represented by random forces. This brings us to 
the field of Langevin Dynamics (LD) [96, 97]. In LD a 
frictional force, proportional to the velocity, is added to 
the conservative force, in order to mimic an implicitly 
treated background (e.g. solvent). The friction removes 
kinetic energy from the system. In order to compensate 
for the friction, a random force adds kinetic energy to the 
system.

In the simplest case of LD, the random force is taken to 
have white-noise character, and no correlations between 
the various degrees of freedom are assumed to exist. 
Under these conditions, the velocity dependent frictional 
forces become proportional to the instantaneous velocity 

(36)�i(t) =
�i(t + Δt) − �i(t − Δt)

2Δt
+ �

(
Δt2

)

(37)�i(t + Δt) = �i(t) + �i(t)Δt + �̈i(t)
Δt2

2

(38)�i(t + Δt) = �i(t) +
Δt

2

[
�̈i(t) + �̈i(t + Δt)

]
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of the particle considered. Thus, the equation of motion 
of a particle i is transformed into the stochastic equation:

where the friction coefficient of a particle is denoted by �i 
and the random force by �i. The systematic force �i is the 
explicit mutual force between the N particles of the system, 
which is to be derived from the potential (or free) energy of 
the system, which depends on the positions of all particles, 
denoted by 

{
�i
}
.

The stochastic force, �i(t), is assumed to be a station-
ary Gaussian random variable with zero mean and to 
have no correlations with prior velocities or with the sys-
tematic force:

where ⟨… ⟩ens denotes averaging over an equilibrium 
ensemble, indices �, � run over the Cartesian components 
(x, y and z), kB is Boltzmann’s constant, Tref is the reference 
temperature of the LD simulation and W(�) is the (Gauss-
ian) probability distribution of the stochastic force. Accord-
ing to van Gunsteren et al. [98], the solution of the linear, 
inhomogeneous, first order differential equation, Eq. (39), 
is:

4.2.1 � Fluctuation‑Dissipation Theorem

To generate a canonical ensemble, the friction and random 
force have to obey the fluctuation - dissipation theorem 
[99]. Einstein was the first to extract the diffusion coeffi-
cient and mobility in a special case of Brownian motion 
[100], and made allusions to the existence of a balance 
between random forces and friction. Then, Nyquist [101] 
formulated a limited version of the theorem, in his study of 
noise in resistors. Later, Callen and Welton [102] proved 
the theorem in a generalized form.
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According to Kubo [103], two different kinds of the 
fluctuation-dissipation theorem can be distinguished. The 
fluctuation-dissipation theorem of the first kind relates the 
linear response of a system to an externally applied pertur-
bation and a two-time correlation function of the system 
in the absence of external forces. The latter form is closely 
related to the famous Green-Kubo expressions for transport 
coefficients. The fluctuation-dissipation theorem of the sec-
ond kind constitutes a relationship between the frictional 
and random forces in the system, relying on the assump-
tion that the response of a system in thermodynamic equi-
librium to a small applied perturbation is the same as its 
response to a spontaneous fluctuation [59].

4.2.2 � Mori‑Zwanzig Projection Operator Formalism

A formal way of deriving LD is the projection operator 
formalism of Zwanzig [104, 105] and Mori [106, 107]. 
The basis of the formulation is the assumption that we 
have partial knowledge of the evolving system, for exam-
ple we can only track certain variables, while the effect of 
the other variables is modeled or approximated in a rigor-
ous way. In this approach the phase space is divided into 
two parts, which we are called interesting and uninterest-
ing degrees of freedom. For the approach to be useful, the 
uninteresting degrees of freedom should be rapidly varying 
in comparison to the interesting ones. Mori introduced two 
projection operators, which project the whole phase space 
onto the sets of interesting and uninteresting degrees of 
freedom. The full equations of motion are projected only 
onto the set of interesting degrees of freedom. The result is 
a differential equation with three force terms: a mean force 
between the interesting degrees of freedom, a dissipative or 
frictional force exerted by the uninteresting degrees of free-
dom onto the interesting ones and a third term containing 
forces not correlated with the interesting degrees. When the 
uncorrelated force is approximated by a random force the 
interesting degrees of freedom are considered independent 
of the uninteresting degrees of freedom.

4.3 � Brownian Dynamics

If the friction exerted by the background to the particles 
under consideration is high, correlations in the velocity 
will decay in a time period over which changes in the sys-
tematic force are negligible. Such a system can be called 
overdamped. In this case, the left-hand side of Eq. (39) can 
be neglected, after averaging over short times. The result is 
Brownian Dynamics (BD), which is described by the posi-
tion Langevin equation:

(46)�i(t) =
1

�i
�i

({
�i(t)
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+

1

�i
�i(t)
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The time scale separation makes possible the exchange of 
the second order stochastic differential equation Eq. (39) 
for a first order stochastic differential equation, Eq. (46), 
without affecting the dynamics on time scales longer than 
mi∕�i.

Van Gunsteren and Berendsen [108, 109] have proposed 
several algorithms for integrating Eq. (46). We will pay a 
closer look to the one which reduces to the Verlet algorithm 
for zero friction. If we assume a timestep of Δt, for large val-
ues of �i∕miΔt in the diffusive regime, when the friction is so 
strong that the velocities relax within Δt, the BD algorithm 
reduces to:

with i enumerating the particles, 1 ≤ i ≤ N, and � marking 
a Cartesian component of the vectors. The components of 
the random displacement ℛ(Δt) are sampled from a Gauss-
ian distribution with zero mean and width:

The reader is reminded that the integration timestep Δt 
should be small enough, such that systematic forces do 
not change significantly over its duration. The integration 
scheme for BD Eq. (47) resembles a MC algorithm, except 
that there is no acceptance criterion. Rossky et  al. [110] 
have derived the correct acceptance probability and intro-
duced their method under the name “Smart Monte Carlo”.

4.4 � Dissipative Particle Dynamics

Molecular Dynamics (MD) is a powerful simulation tech-
nique capable of producing realistic results in a wide spec-
trum of applications. However, the computational cost of a 
detailed atomistic interaction model in that paradigm severely 
limits its applicability beyond extremely small spatial and 
short temporal scales. Within the family of simulation tech-
niques designed to overcome the limitations of MD, we turn 
our attention to Dissipative Particle Dynamics (DPD), which 
allows the study of complex hydrodynamic phenomena in 
extensive scales. The DPD method was introduced in 1990s 
as a novel scheme for mesoscopic simulations of complex 
fluids [111, 112]. In DPD simulations, the particles represent 
clusters of molecules that interact via conservative (non-dissi-
pative), dissipative and fluctuating stochastic forces. Because 
the effective interactions between clusters of molecules are 
much softer than the interactions between individual mol-
ecules, much longer time steps can be taken relative to MD 
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simulations. This approach is ultimately based on the Lan-
gevin equation, the stochastic differential equation describing 
Brownian motion accounting for the omitted degrees of free-
dom by a viscous force and a noise term.

The original DPD model tracks the equation of motion 
of the particles:

where mi, �i and �i =
��i

�t
 are the mass, position and velocity 

of particle i, respectively. The total force, �i, acting on each 
particle consists of three parts:

where �C
ij
, �D

ij
 and �S

ij
 represent the conservative, dissipative 

and stochastic forces between particles i and j, respectively. 
The conservative force depends on the distance between 
particles i and j, rij and is directed along the unit vector of 
their separation, �̂ij:

where f C
(
rij
)
 is a non-negative (i.e. neutral or repulsive) 

scalar function determining the form of the conservative 
interactions, depending on the particular system of interest. 
In literature it is frequently implemented as a soft repulsion 
of the form:

where �ij is a parameter determining the maximum repul-
sion between the particles and rc is a cut-off distance.

The dissipative force, �D
ij
, represents the effect of vis-

cosity and depends on the relative positions and veloci-
ties of the particles. The form usually used for this inter-
action in DPD simulations is [113]:

where � is a friction coefficient, �ij = �i − �j and wD
(
rij
)
 is 

a distance-dependent weighting function. The fluctuating 
random force depends on the relative positions of the parti-
cles, and is defined as:

with � being a coefficient, wS
(
rij
)
 is a distance-dependent 

weighting function and �i is a random variable sampled 
from a Gaussian distribution with zero mean and unit vari-
ance. It should be noted that both the dissipative and the 
random force act along the particle separation vector and 
therefore conserve linear and angular momentum. Also, the 

(49)mi

��i

�t
= �i ,

(50)�i =
∑
j≠i

(
�C
ij
+ �D

ij
+ �S
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)
,

(51)�C
ij
= f C

(
rij
)
�̂ij

(52)f C
(
rij
)
=

{
𝛼ij

(
1 −

rij
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)
rij ≤ rc

0 rij > rc

(53)�D
ij
= −𝛾wD

(
rij
)(
�̂ij ⋅ �ij

)
�̂ij

(54)�S
ij
= 𝜎wS

(
rij
)
𝜉i�̂ij ,
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resulting model fluids are Galilean invariant because the 
particle–particle interactions depend only on relative posi-
tions and velocities. The fluctuating stochastic force, �S

ij
, 

heats up the system, whereas the dissipative force, �D
ij
, 

reduces the relative velocity of the particles, thus removing 
kinetic energy and cooling down the system. Therefore, the 
stochastic and dissipative forces act together to maintain an 
essentially constant temperature which fluctuates around 
the nominal temperature of the simulation, T. Dissipative 
particle dynamics simulations can be thought of as thermo-
statted molecular dynamics simulations with soft parti-
cle–particle interactions.

Despite qualitative observations, there was no theoreti-
cal justification that DPD produces the correct hydrody-
namic behavior until Español and Warren [114] formulated 
the Fokker-Planck equation for studying the equilibrium 
properties of the stochastic differential equation describing 
DPD. Later, Español [115] derived the macroscopic hydro-
dynamic variables starting from the microscopic descrip-
tion. In order to recover the proper thermodynamic equi-
librium for a DPD fluid at a temperature T, the coefficients 
and the weighting functions for the dissipative and random 
forces should be related by:

and

as required by the fluctuation-dissipation theorem. All 
interaction energies are expressed in units of kBT , which is 
usually assigned a value of unity. One straightforward and 
commonly used choice is:

where rc is the cut-off distance of the the dissipative and 
the random force. In conventional DPD formulation, it 
usually takes the same value as the cut-off distance of the 
conservative force but it can vary in order to modify the 
dynamic properties in DPD simulations. For conventional 
DPD simulations, the exponent of the weighting function, 
s, is set equal to 2 with wD and its gradient being continu-
ous at rij∕rc = 1.

Summarizing, Español and Warren [114] established 
a sound theoretical basis for DPD and Groot and War-
ren [116] obtained parameter ranges to achieve a sat-
isfactory compromise between speed, stability, rate of 
temperature equilibration, and compressibility. Unlike tra-
ditional DPD methods using conservative pairwise forces 
between particles, the multi-body DPD model presented 

(55)wD
(
rij
)
=
[
wS

(
rij
)]2

(56)� =
�2

2kBT

(57)wD
(
rij
)
=
[
wS

(
rij
)]2

=

{(
1 −

rij

rc

)s

r < rc

0 r ≥ rc

by Pagonabarraga and Frenkel [117] assumes that the con-
servative force depends on the instantaneous local particle 
density, which in turn depends on the positions of many 
neighboring particles. As far as the integration of the DPD 
equations of motion is concerned, Pagonabarraga et  al. 
[118] proposed a leap-frog scheme which was self-consist-
ent and satisfied a form of microscopic reversibility. Thus, 
the correct equilibrium properties could be recovered from 
trajectories generated with that algorithm.

4.5 � Monte Carlo

The Monte Carlo (MC) method is a statistical approach for 
finding approximate solutions to problems by means of ran-
dom sampling. In addition to molecular simulations and 
physics, it is widely applied in other natural sciences, math-
ematics, engineering and social sciences [119]. The earliest 
treatments in the subject, such as this by Babier [120], were 
made in connection with the “Buffon’s needle problem”.2 
According to Metropolis [121], the invention of the modern 
class of MC algorithms is due to Enrico Fermi, when he 
was studying the properties of the then newly-discovered 
neutron in 1930. It was further developed during the 1940s 
by physicists working in the nuclear weapons program of 
the United States, at the Los Alamos National Laboratory. 
The technique was given its name by Nicholas Metropolis, 
in reference to the famous casino in Monaco, considering 
the use of randomness and the repetitive nature of the sam-
pling process.

In their simplest version, MC simulations of simple flu-
ids are carried out by sampling trial moves for the mole-
cules from a uniform distribution. For example, in a canon-
ical (NVT) ensemble simulation, a molecule is chosen at 
random, and then displaced, also randomly to a new posi-
tion. The trial move is accepted or rejected according to an 
importance sampling scheme [93, 122, 123]. A frequently 
used importance sampling algorithm is the Metropolis 
algorithm, originally derived for the specific case of the 
Boltzmann distribution [122] and later generalized to other 
distributions [124] which need not to be analytical (e.g. the 
force-bias method of Pangali et al. [123] provides a classi-
cal example of such algorithms).

The probability of accepting a move, Paccept, of the form:

2  The following problem was posed by Georges-Louis Leclerc, 
Comte de Buffon: given a needle of length l dropped on a floor 
striped with parallel lines t units apart, to find the probability that 
the needle will land such that it crosses a line. (The answer being 
(2l)∕(t�).)

(58)Paccept = min

[
1,

P(�|�)P(�)

P(�|�)P(�)
]
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will asymptotically sample the configuration space accord-
ing to a probability P. In Eq. (58), Paccept is the probability 
with which trial moves are accepted or rejected, P(�|�) is 
the transition probability of making a trial move from state 
� to state �, and P(�) is the probability of being at state 
�. This means that, at equilibrium, the average number of 
accepted trial moves that result in the system leaving state 
� must be exactly equal to the number of accepted trial 
moves from all other states � to the state �. This is a looser 
statement of the detailed balance condition, reflected in Eq. 
(58), that at equilibrium the average number of accepted 
moves from � to any other state � should be exactly 
canceled by the number of reverse moves.

In the original Metropolis scheme [122], the prob-
abilities P(�|�) form a symmetric matrix, constructing 
a Markov chain that has the Boltzmann distribution as 
its equilibrium distribution. In this case, there is no bias 
involved in making the move and Eq. (58) reduces to the 
standard Metropolis acceptance criterion:

The advanced MC methods are based on judicious choices 
of P(�|�) [93]. It should be noted that the simulation 
steps in the MC technique are steps in configuration space 
and there is no notion of “time” in MC simulations. This is 
contrast to MD, where the simulation steps are explicit time 
steps. Moreover, a computational advantage of MC over 
MD is that only the energy needs to be calculated, not the 
forces, rendering the Central Processing Unit (CPU) time 
needed per step smaller than that of an MD simulation.

4.6 � Reduced Units

Molecular simulations can conveniently be performed in 
non-dimensional or reduced units, based on the character-
istic physical dimensions of the system under study. Work-
ing with reduced units is preferred mainly because they 

(59)Paccept = min

{
1, exp

[
−
�(�) −�(�)

kBT

]}

are physically easier to interpret, and the results obtained 
become applicable to all materials modeled by the same 
potential. Reduced units are obtained by expressing all 
quantities of the simulation in terms of selected base units 
which are characterizing the system, in order to make 
equations dimensionless. Table  1 presents some reduced 
quantities. For example, in the case of the Lennard-Jones 
potential, the particle diameter, �, the depth of the potential 
well, �, together with the mass of the simulated particles, 
m, provide a meaningful and complete set of base units for 
simulations.

5 � Structural Predictions

5.1 � Chain Dimensions in the Bulk

One of the most important and probably the most funda-
mental question in the area of PNCs is how the size of 
the polymer chains is affected by the dispersion of nano-
particles. There has been considerable controversy in the 
experimental literature over whether nanoparticles cause 
chain expansion (swelling) [125, 126], contraction, [127] 
or neither [128–133]. The sign (attractive or repulsive) and 
strength of the nanoparticle/polymer interactions, the rela-
tive dimensions of the chains with respect to the size of the 
nanoparticle, Rg∕Rn, and the exact state of dispersion, have 
been identified as the key factors that can account for the 
aforementioned differences in the structure of the matrix 
chains.

5.1.1 � Experimental Findings

Chain conformations in PNCs have been primarily meas-
ured by small angle neutron scattering (SANS). These 
measurements are greatly facilitated by combining deuter-
ated and hydrogenated chains such that the average scat-
tering length density of the polymer blend matches that 
of the filler. This zero average contrast condition [134], 
which is hard to achieve, minimizes the scattering due to 
the nanoparticles. To date, studies which report increases 
in polymer dimensions, in the case of spherical nanopar-
ticles, invoke the presence of attractive nanoparticle/poly-
mer interactions, combined with Rg > Rn, and good nano-
particle dispersion [135], to conclude that the nanoparticles 
behave as a good solvent for the polymer chains. However, 
even though the existence of a shell containing polymer of 
reduced mobility is acceptable in nanocomposites com-
posed of strongly interacting particles and polymer, e.g. 
composed by silica and PMMA, the size of the chains, e.g. 
in terms of their radius of gyration, Rg, is intrinsically inde-
pendent of the the volume fraction, �, (up to � ≃ 0.1) and 
the polymer-to-particle size ratio [132]. All other studies 

Table 1   Conversion to reduced units for some commonly used quan-
tities with �, � and m as the basis units for energy, length and mass, 
respectively

Quantity In reduced units

Energy E∗ = E∕�

Length L∗ = L∕�

Mass M∗ = M∕m

Density �∗ = �3�

Temperature T∗ = (k
B
T)∕�

Force F∗ = (�F)∕�

Pressure p∗ = (�3p)∕�

Time t∗ = t
√
�∕(m�3)
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on spherical nanoparticles showed little if any changes in 
polymer Rg, that is where the nanoparticle–polymer intrac-
tions are believed to be athermal, or significant nanoparti-
cle aggregation was present, due to unfavorable nanoparti-
cle/polymer interactions [136].

In an early study of a poly(dimethylosiloxane) / poly-
silicate (Rn = 1 nm) nanocomposite [125], a significant 
increase of the polymer chain dimensions (reaching 60% 
expansion at nanoparticle volume fraction, � = 40%) was 
observed for Rg > Rn and a decrease in polymer dimen-
sions for Rg ≤ Rn. Neutron scattering studies of an ather-
mal polystyrene (PS) PNC, indicated swelling of the matrix 
chains, induced by dispersed tightly cross-linked PS nano-
particles [126]. PS chains around crosslinked PS particles 
(Rn = 2 − 3.6 nm) were found to be expanded by up to 20 
% relative to their unperturbed size, when their unperturbed 
radius of gyration was comparable to or larger than the 
radius of the dispersed particles. More recent studies of PS/
silica nanocomposite [128, 129, 131] for Rg∕Rn = 2 − 4, 
[131] and poly(ethylene-propylene)/silica nanocompos-
ites, [127] found no perturbation of the matrix chain 
dimensions.

We may attribute the qualitatively different trends 
deduced by different experimental studies to several fac-
tors, including, but not limited to the following: (a) most 
of the polymers used exhibit significant polydispersity, (b) 
particle dispersion/agglomeration cannot be adequately 
quantified, (c) the molecular weight of the isotopic poly-
mers blended with the filler was quite different in at least 
one case. The compound effect of these factors can result in 
significant uncertainty in the chain dimensions measured. 
Molecular simulations can shed some light on the role of 
nanoparticles on chain dimensions, especially in regimes 
where it is hard to conduct experiments.

5.1.2 � Insight Obtained from Simulations

From the point of view of molecular simulations, there 
also exists controversy as to whether the incorporation of 
nanoparticles in a polymer melt causes polymer chains to 
expand, remain unaltered or reduce [137–139] their dimen-
sions compared to their size in the bulk material. To date, 
all studies have indicated that, irrespectively of the absolute 
dimensions of the chains in the interparticle region, these 
retain their unperturbed Gaussian scaling. This is a striking 
feature, resembling the scaling behavior of chains in thin 
films [140, 141], where chain conformations parallel to the 
surface assume their unperturbed values even for film thick-
nesses < Rg. Most of the simulation works have addressed 
polymer dimensions in nanocomposites below the percola-
tion threshold (�c = 31% [142]), except the early works of 
Vacatello [137–139, 143] that were implemented at con-
stant density and spatially frozen nanoparticles.

Sen et  al. [128] employed polymer reference interac-
tion site model (PRISM) [144, 145] calculations in order 
to interpret small angle neutron scattering findings on poly-
styrene loaded with spherical silica nanoparticles under 
contrast-matched conditions. They considered blends with 
66 wt% hPS and 34% dPS, which almost contrast match 
the silica. Nanocomposites with 0, 2.9, 6.1 and 9.1% vol 
silica were prepared for each molecular weight and 15.9 
and 27.4 vol% for the higher molecular weights considered. 
However, in their experiments, as in earlier studies [146, 
147], the particles were imperfectly mixed with the poly-
meric matrix, with particles being surrounded by “voids”, 
especially at large filler contents. In parallel, the PRISM 
theory was applied, by modeling the fillers as hard spheres 
and polymers as freely jointed chains with a realistic per-
sistence length. Polymer–polymer and particle–particle 
interactions were taken to be hard-core, while monomers 
and filler interact via an exponentially decreasing attrac-
tion over a predefined spatial range. From the experimen-
tal point of view (Fig.  1), the low-q intensity increases 
dramatically with increasing silica content, especially for 
loadings ≤10 vol%, implying that the matrix is not totally 
contrast matched to the filler (unsurprising in light of voids 
surrounding particles [146]). However, the scaling and 
dimensions of the polymer chains can be obtained from 
the high-q intensity which is expected to be independent of 
the filler structure [146]. Their results (Fig. 1) showed that 
chain conformations follow unperturbed Gaussian statistics 
independent of chain molecular weight and filler composi-
tion. Liquid state theory calculations were consistent with 
this conclusion and also predicted filler-induced modifica-
tion of interchain polymer correlations which had a dis-
tinctive scattering signature that was in nearly quantitative 
agreement with the experimental observations. The chain 
Rg varied from ~8 nm (90 kg/mol) to 22 nm (620 kg/mol), 
bracketing the nanoparticle diameter (~14 nm), suggesting 
that the ratio of the particle size to Rg was not an important 
variable in that context.

The structure of a polystyrene matrix filled with tightly 
cross-linked polystyrene nanoparticles, forming an ather-
mal nanocomposite system, has been investigated by 
means of a Monte Carlo sampling formalism by Vogiatzis 
et  al. [148]. Although the level of description is coarse-
grained (e.g., employing freely jointed chains to represent 
the matrix), the approach developed aims at predicting the 
behavior of a nanocomposite with specific chemistry quan-
titatively, in contrast to previous coarse-grained simula-
tions. A main characteristic of the method was that it treats 
polymer–polymer and polymer–particle interactions in a 
different manner: the former are accounted for through a 
suitable functional of the local polymer density, while the 
latter are described directly by an explicit interaction poten-
tial. The simulation methodology was parameterized in a 
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bottom-up fashion in order to mimic the experimental stud-
ies. Many particle systems, with volume fractions up to 15 
vol%, were simulated. The positions of the nanoparticles 
were held constant in the course of the simulation, while 
polymeric chains were allowed to equilibrate via a combi-
nation of MC moves. The generation of many independent 
initial configurations compensated for the immobility of 
the particles along the simulation. The values of the radius 
of gyration Rg, relative to the value for the pure polymer 
melt Rg0, are shown in Fig. 2 as a function of the nanopar-
ticle volume fraction for the four different chain molecular 
weights used in that work (23, 47, 93 and 187 kg/mol). In 
general, an expansion of polymeric chains with increas-
ing nanoparticle volume fraction can be observed for all 
chain lengths. This expansion is maximal for 23 kg/mol, 

where the unperturbed radius of gyration Rg,0 ≃ 42 Å is 
comparable to the radius of the nanoparticle, Rn = 36 Å. It 
seems that there is a tendency of chains to swell when their 
dimension is equal to or approaches the dimension of the 
nanoparticle. This observation is in very good quantitative 
agreement with experimental data reported for the same 
system [126]. In all other cases, the swelling due to the 
presence of the nanoparticles could hardly be discerned.

Karatrantos et  al. [135] have investigated the effect of 
various spherical nanoparticles on chain dimensions in 
polymer melts for high nanoparticle loading which was 
larger than the percolation threshold, using coarse-grained 
molecular dynamics simulations of the Kremer-Grest 
model [149]. Their results, presented in Fig.  3, revealed 
different behavior of the polymer chains in the presence of 
repulsive or attractive particles. In nanocomposites con-
taining repulsive nanoparticles (black symbols), the poly-
mer dimensions were not altered by the particle loading. 
These authors reported that the polymers were phase sep-
arated from the repulsive nanoparticles (of Rn = 2) in the 
nanocomposites, thus, there were no changes in the radius 
of gyration values. On the contrary, in the nanocomposites 
containing attractive nanoparticles, the overall polymer 
dimensions increased dramatically at high particle load-
ing. In particular, the magnitude of expansion of polymer 
dimensions was larger for polymers with N = 200 follow-
ing qualitatively the experimental data [125, 150]. The 
relation Rg∕Rg,0 = (1 − �)−1∕3, included in Fig. 3 was pro-
posed by Frischknecht et al. [151] for predicting the poly-
mer expansion due to the excluded volume introduced by 

Fig. 1   a Transmission electron microscopy (TEM) micrographs of 
nanocomposites formed from PS of 250 kg/mol molecular weight 
and indicating % vol loading of silica in each sample. b Ratio of the 
radius of gyration of the PS chains in the presence of particles to 
their corresponding value in the pure blend for 90 kg/mol PS (green 
squares), 250 kg/mol PS (blue circles) and 620 kg/mol PS (red tri-
angles) as functions of the silica volume fraction. In the inset to the 
figure, a plot of small angle neutron scattering intensities in abso-
lute units as a function of q for the 250 kg/mol PS nanocomposites. 
The interested reader can refer to [128] for more details. (Color fig-
ure online) (Reprinted figure with permission from [128]. Copyright 
2007 by the American Physical Society)

Fig. 2   Radius of gyration of polystyrene chains in melts filled with 
tightly cross-linked PS nanoparticles of radius Rn = 3.6 nm, normal-
ized by its value in the bulk, Rg,0, as a function of the particle volume 
fraction. The corresponding molecular weights are 23 (a), 47 (b), 93 
(c) and 187 (d) kg/mol, respectively. (Reprinted from [148] with per-
mission from Elsevier.)
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the nanoparticles, assuming no change in density on mix-
ing. Finally, Karatrantos et al. [135] reported that polymer 
chains, in all cases considered, did not depart from Gauss-
ian statistics.

Mathioudakis et al. [153] applied a hierarchical simula-
tion approach in order to study the behavior of PS–SiO2 
nanocomposites. Two interconnected levels of representa-
tion were employed. (a) A coarse-grained one [154], 
wherein each polystyrene repeat unit was mapped into a 
single “superatom” and each silica nanoparticle into a 
sphere. The smoother effective potential energy hypersur-
face of the coarse-grained representation permitted its equi-
libration at all length scales by using powerful connectiv-
ity-altering Monte Carlo algorithms [155]. (b) A united 
atom representation, wherein polymer chains were repre-
sented by a united-atom model and a silica nanoparticle 
was represented in full atomistic detail. Coarse-graining 
and reverse-mapping between the two levels of representa-
tion was accomplished in a manner that preserved tacticity 
and respected the detailed conformational distribution of 
chains [156]. At the coarser level, these authors estimated 
the root-mean-square radius of gyration 

⟨
R2
g

⟩1∕2

 as a func-

tion of the molecular weight for neat and nanocomposite 
polystyrene systems. Their results are presented in Fig.  4 
along with neutron scattering results for bulk monodisperse 
PS [152] from 21 to 1100 kg/mol. As far as the 

nanocomposite polystyrene systems are concerned, the 
presence of the nanoparticles affected the root- mean-
square radius of gyration only slightly.

5.2 � Polymer Structure in the Vicinity of the Filler 
Particles

5.2.1 � Experimental Findings

SANS measurements show a clear scattering signature of 
a polymer bound layer around the particles, which arises 
due to a scattering length density different from the bulk 
polymer matrix material, either due to H or D enrichment 
or a modification of the polymer density in the bound layer 
compared to the surrounding polymer matrix [132, 133]. 
The measurements of Jouault et al. [133] revealed that the 
bound layer is independent of the particles’ volume frac-
tion. Then, as observed by Jiang et  al. [157], the bound 
layer volume fraction is larger at the surface (that region 
being mostly composed of loops) and decreases at larger 
distances as the bound layer becomes more diffuse due to 
the contribution from the tails. One can estimate the thick-
ness of the bound polymer layer around 2 nm. However, 
this thickness value is a simplification because it does not 

Fig. 3   Radius of gyration of polymers in melt with nanoparticles of 
radius Rn = 1, 2 normalized with its value in the bulk for polymer 
chains of N = 200 and N = 100 (inset) repeat units (monomers): (i) 
polymer melt (blue filled circles), (ii) nanocomposite: attractive mon-
omer-nanoparticle (Rn = 2) interactions (red filled circles), (iii) nano-
composite: repulsive monomer-nanoparticle (Rn = 2) interactions 
(black filled diamonds), (iv) nanocomposite: attractive monomer-
nanoparticle (Rn = 1) interactions (red open circles), (v) nanocom-
posite: repulsive monomer-nanoparticle (Rn = 1) interactions (black 
open diamonds). The black dashed line shows Rg∕Rg,0 ∝ (1 − �)−1∕3. 
(Color figure online) (Reprinted from [135]—Published by The Royal 
Society of Chemistry.)

Fig. 4   Root mean squared radius of gyration of the coarse-grained 
chains of neat and nanocomposite polystyrene systems as a function 
of molar mass, M, in the melt at 500 K (red, green and magenta 
rhomboid symbols ). The systems contain one nanoparticle of diame-
ter 3 nm (� ≃ 1%) and 6 nm (� ≃ 6%). Neutron scattering measure-
ments [152] for high molar mass PS are also included (blue rhomboid 
symbols). The black dotted line is a linear least-squares fit to a rela-
tion of the form 

⟨
R2
g

⟩1∕2

∝ M1∕2 in the loglog coordinates of the plot. 

(Color figure online) (Reproduced from Ref. [153] with permission 
from The Royal Society of Chemistry.)
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completely describe the complex chain behavior, some 
aspects of which will be analyzed below.

5.2.2 � Insight Obtained from Simulations

The local density of the polymer in the proximity of the 
surface of a filler is often employed as an indication of the 
strength of polymer–surface interactions and a decrease of 
the first peak of the radial density distribution is expected 
with curvature [158]. At this point we resort to the detailed 
analysis of Pandey and Doxastakis [159] concerning a 
polyethylene layer close to a filler surface (Fig.  5). These 
authors coupled the application of preferential sampling 
techniques [160] with connectivity-altering Monte Carlo 
algorithms [161, 162] in order to explore the configura-
tional characteristics of a polyethylene melt in proximity to 
a silica surface or around a nanoparticles and the changes 
induced by high curvature when the particle radius is com-
parable to the polymer Kuhn segment length.

The inset to Fig. 5 shows that indeed as we move from a 
flat surface to a smaller nanoparticle a decrease is observed 
with the exception of the fullerene where a significantly 
higher density is found. To investigate further the concen-
tration of adsorbed monomers, these authors followed the 
use of a simple distance criterion (adsorbed polymer chains 
have an atom within 0.6 nm of an atom of the surface; 
introduced by Daoulas et al. [163]) to decompose polymer 
segments according to the Scheutjens-Fleer theory [164] 
into trains, tails and loops. Tails are the segments which are 
hinged to the surface at one end while the other end is dan-
gling freely into the bulk polymer. Train segments consist 
of monomers consecutively adsorbed on the surface. The 

loop segments are constituted by the monomers in-between 
two train segments, which are not adsorbed on the surface. 
Figure 5 exhibits three regimes for adsorbed chains: a first 
layer of adsorbed monomers constituting train segments, 
a second layer where a decay is dominated by a decrease 
of loop segments while tail density is constant and a third 
layer where tail segments extend in the bulk melt. As 
shown in the inset to Fig. 5(a) the area under the first peak 
broadens as we move to smaller particles.

An interesting feature of the interfacial systems to study 
is the number of monomers that are in contact with the sur-
face. To this end, Pandey and Doxastakis [159], defined a 
surface concentration by integrating the density profile of 
train segments:

where Rn is the radius of the nanoparticle, �train is the den-
sity profile of train segments, and A is the accessible sur-
face area to the polymer. If we assume that nanoparticles 
are spheres surrounded by a constant density of polymer, 
�0, in a layer of Δr thickness, the surface concentration is 
given by:

where a constant density is multiplied with the ratio of the 
volume of a spherical shell representing the first adsorbed 
monolayer to the surface of the sphere. The geometric pre-
dictions following the above line of reasoning, are shown 
for different chain lengths by the dashed lines in Fig. 5(b). 
It is apparent that a modest increase and ultimate leveling 

(60)Φs =
∫ ∞

Rn
�train(r)4�r

2dr

A
,

(61)Φs =
(r + Δr)3 − r3

3r2
�0 ,

Fig. 5   a Density distribution of a polyethylene melt as a function of 
distance from the surface of a filler (graphite slab, silica nanoparti-
cle or fullerene C60). The decomposition into tails, trains and loops is 
carried out following Scheutjens and Fleer [164]. The inset provides 

profiles for selected systems. b Surface concentration together with 
predictions based upon geometrical arguments for ideal spheres and 
surface monomer density in the proximity of silica slabs. (Reprinted 
from [159], with the permission of AIP Publishing.)
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off of the surface concentration with decreasing nanopar-
ticle radius is observed in sharp contrast to the estimations 
based on the geometric arguments, which predict a con-
tinuous increase. The lower than anticipated increase of 
surface concentration with curvature suggests that collec-
tive properties beyond the enthalpic interactions appear to 
play a crucial role on surface concentration. At the extreme 
limit where particles are comparable to the polymer Kuhn 
segment length, curvature penalizes the formation of long 
train segments. As a result, an increased number of shorter 
contacts belonging to different chains were made, compet-
ing with the anticipated decrease of the bound layer thick-
ness with particle size if polymer adsorbed per unit area 
remained constant.

Starr et al. [165] carried out extensive molecular dynam-
ics simulations of a single nanoscopic filler particle sur-
rounded by a dense polymer melt. The polymers were mod-
eled as chains of monomers connected via a finitely 
extensible nonlinear elastic (FENE) anharmonic potential 
and interacting via a Lennard-Jones potential. That type of 
“coarse-grained” model is frequently used to study general 
trends of polymer systems but does not provide information 
for a specific polymer. The filler particle shape was icosa-
hedral with interaction sites assigned at the vertices, at four 
equidistant sites along each edge, and at six symmetric sites 
on the interior of each face of the icosahedron. These 
authors considered a filler particle with an excluded volume 
interaction only, as well as one with excluded volume plus 
attractive interactions in the dilute nanoparticle regime 
(where bulk chain dimensions are unlikely to be affected by 
the confinement between nanoparticles). By focusing on 
the dependence of Rg on the distance d from the filler sur-
face, these authors were among the first to report a change 
in the overall polymer structure near the surface. In Fig. 6, 
R2
g
, as well as the radial component of from the filler center 

R⟂2
g

 (approximately the component perpendicular to the 

filler surface) for both attractive and nonattractive poly-
mer–filler interactions at one temperature. A striking fea-
ture of Fig.  6 is that R2

g
 increases by about 30% on 

approaching the filler surface, while at the same time R⟂2
g

 

decreases by more than a factor of 2 for both (attractive and 
neutral) systems. The combination of these results indicates 
that the chains become slightly elongated near the surface 
and flatten significantly. The range of the flattening effect 
roughly spans a distance of an unperturbed radius of gyra-
tion, Rg,0, from the surface and depends only weakly on the 
simulation temperature, T. Moreover, the chains retain a 
Gaussian structure near the surface.

Mathioudakis et al. [153] studied the shape of chains in 
the presence of a silica nanoparticle by employing coarse-
grained MC simulations. These authors analyzed the 

eigenvalues of the the radius of gyration tensor, which 
serve as a measure for characterizing the shape of the poly-
mer chains. In the polymer melt, the intrinsic shape of 
chains is that of a flattened ellipsoid or soap bar [166]. Fol-
lowing ref. [166], Mathioudakis et  al. diagonalized the 
instantaneous radius of gyration tensor of every chain to 
determine the eigenvalues L2

3
≥ L2

2
≥ L2

1
 (squared lengths of 

the principal semiaxes of the ellipsoid representing the seg-
ment cloud of the chain) and the corresponding eigenvec-
tors (directions of the principal semiaxes). The three semi-
axes are generally unequal. The sum L2

1
+ L2

2
+ L2

3
 equals 

the squared radius of gyration of the chain. These authors 
observed that, when the distance of the center of mass of 
the chain from the center of the nanoparticle was shorter 
than the mean size of the chain, the chains expanded along 
their principal semiaxis, L3. That led to an increase of the 
radius of gyration, R2

g
= L2

1
+ L2

2
+ L2

3
 near the nanoparticle. 

The deformation of the molecules was smaller for chains 
whose dimensions exceed by far the radius of the nanopar-
ticle. Far from the surface of the nanoparticle, the sum of 
the squares of the principal semiaxes (sum of the eigenval-
ues of the radius of gyration tensor) reaches the bulk aver-
age value of the squared radius of gyration of PS, since the 
molecules were not affected by the presence of the nano-
particle. These results are shown in Fig. 7. Changes in the 

Fig. 6   Radius of gyration, Rg, in reduced Lennard-Jones units, of the 
polymer chains as a function of the distance d∕

⟨
Rg

⟩
 of the center of 

mass of a chain from the filler surface (d is normalized by the average ⟨
Rg

⟩
 of all chains). Results are presented for a attractive and b nonat-

tractive interactions. The component of Rg perpendicular to the sur-
face, R⟂

g
 is resolved. The dotted line shows 

⟨
R2
g

⟩
 for the pure system. 

The increase of Rg, coupled with the decrease of R⟂

g
, indicates that the 

chains become increasingly elongated and flattened as the surface of 
the particle is approached. (Reprinted figure with permission from 
[165]. Copyright 2001 by the American Physical Society)
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intrinsic shape of chains were quantified as a function of 
distance of the center of mass of the chain from the center 
of mass of the silica particle by calculating the ratio of larg-
est to smallest eigenvalue of the radius of gyration tensor. 
This local anisotropy of the chains as a function of distance 
from the centre of mass of the nanoparticle is also shown in 
Fig. 7.

The presence of the filler surface also influences the ori-
entation of the chains. Ndoro et  al. [158] studied the dis-
tance dependence of the angle between the longest axis of 
the radius of gyration tensor and the surface normal of bare 
silica nanoparticle. Their results are presented in Fig.  8. 
The observation that the free polymer chains generally pre-
fer to align tangentially to the ungrafted surface is in agree-
ment with conclusions from other researchers [148, 167]. 
In their coarse-grained model using Monte Carlo simula-
tions, Vogiatzis et al. [148] studied the orientational angles 
of local chain segments. They also concluded that chain 
segments in the vicinity of the nanoparticle surface were 
structured and oriented tangentially to the interface.

Bačová et  al. [168] conducted atomistic molecular 
dynamics simulations of graphene-based polymer nano-
composites composed of hydrogenated and carboxylated 
graphene sheets dispersed in polar and nonpolar short poly-
mer matrices, in order to gain insight into the effects of the 
edge group functionalization of graphene sheets on the 
properties of hybrid graphene-based materials. 
Poly(ethylene oxide) and polyethylene serve as the polar 
and nonpolar matrix, respectively. In Fig.  9 the structural 
properties of the short polymer chains, i.e. their mean 

square end-to-end distance 
⟨
R2
e

⟩
, and the radius of gyra-

tion, 
⟨
R2
g

⟩
, for the chains, whose center of mass is placed 

within a given layer. The five layers employed are set up in 
accordance with the positions of the minima in the density 
profiles (cf. Fig. 9). The results for all five parallel layers 
and both polymer matrices are plotted in Fig. 9. The data 
are normalized by the bulk values. The error bars corre-
spond to the standard deviation and were obtained through 

Fig. 7   Ratio L2
3
∕L2

1
 of the largest to the smallest eigenvalue of the 

radius of gyration tensor of the chain as a function of the distance 
of the center of mass of the chain from the center of mass of a silica 
nanoparticle. The systems consist of chains of molar mass M = 208 
kg/mol and one nanoparticle of radius either 3 nm (silica volume 
fraction �SiO2

 = 1%) or 6 nm (�SiO2
= 3 and �SiO2

 = 6%). The expected 
value from the random walk model for bulk PS is also included (black 
dotted line) [148]. (Reproduced from Ref. [153] with permission 
from The Royal Society of Chemistry.)

Fig. 8   a Schematic representation of the orientational angle � 
between the longest axis of the radius of gyration tensor and the 
surface normal (simulation snapshot). (Reprinted with permission 
from Ref. [158]. Copyright (2011) American Chemical Society.) 
b PS Chain orientation as a function of the chain (center-of-mass) 
distance from the silica nanoparticle surface. The considered nano-
particle diameters were 3, 4, and 5 nm. The orientation angle is cal-
culated between the longest axis of the squared radius of gyration 
tensor (eigenvector corresponding to its largest eigenvalue, disregard-
ing the sign) and the surface normal (c.f. (a)). The horizontal line at 
57.3 marks the average orientational angle for a random distribution. 
(Reprinted with permission from Ref. [158]. Copyright (2011) Amer-
ican Chemical Society.)
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typical block averaging techniques. In both matrices (PEO 
and PE), chains in the first layer appear to be slightly swol-
len with 

⟨
R2
e

⟩
 and 

⟨
R2
g

⟩
 higher than the bulk values. In the 

case of PE, the difference is larger, which can be caused by 
its tendency to lie flat on the surface [169]. Small devia-
tions from the bulk values are observed also for the second 
and the third layer, while beyond the fourth layer the vales 
of 

⟨
R2
e

⟩
 and 

⟨
R2
g

⟩
 are consistent with those in the bulk 

within error bars.
Karatrantos et  al. [170] investigated the static proper-

ties of monodisperse polymer/single wall carbon nanotube 
(SWCNT) nanocomposites by molecular dynamics simula-
tions of a polymer coarse grained model [171, 172]. The 
SWCNT studied had a large aspect ratio and radius smaller 
than the polymer radius of gyration (e.g. in a well dis-
persed PS/SWCNT nanocomposite the radius of the nano-
tube is of the order of the Kuhn length of PS). Polymer 
chains are composed of bead-spring chains of Lennard-
Jones monomers m, of diameter �m = 1 and mass mm = 1. 
Three different SWCNTs ((12,0), (17,0), (22,0) of radius 
rSWCNT = 0.46�m, 0.66�m, 0.85�m, respectively) are con-
sidered and span the simulation cell with their atoms held 
fixed in a centered position in the simulation cell along the 
z-axis. In Fig. 10, root mean squared average ⟨Re⟩ and 

⟨
Rg

⟩
 

of the polymer chains that remained in contact with the 
SWCNT (so polymers in the polymer/SWCNT simulations 
that do not always contact the SWCNT were omitted from 

those values) are shown. As can be clearly seen, the dimen-
sions of polymer chains in contact with the SCWCNT 
almost overlap with those in the polymer melt for all the 
polymer molecular weight when interacting with the 
SWCNT with energy in the kBT  range.

5.3 � End Grafted Polymers onto Nanoparticles

Controlling the spatial dispersion of nanoparticles is criti-
cal to the ultimate goal of producing polymer nanocompos-
ites with desired macroscale properties. Experimental stud-
ies [14, 73, 150] have shown that, often, nanoparticles tend 
to aggregate into clusters, with the property improvements 
connected to their nanoscale dimension being lost. One 
commonly used technique for controllably dispersing them 
is end grafting polymer chains to the nanoparticle surface, 
so that nanoparticles become “brush coated” [14]. When 
the coverage is high enough, the nanoparticles are sterically 
stabilized, which results in good spatial dispersion [173, 
174]. Moreover, spherical nanoparticles uniformly grafted 
with macromolecules robustly self-assemble into a variety 
of anisotropic superstructures when they are dispersed in 
the corresponding homopolymer matrix [14].

A simpler system that is useful for understanding poly-
mer brushes grafted on spherical nanoparticles immersed 
in melts is that of a brush grafted to a planar surface in 

Fig. 9   Mean square end-to-end distance of polymer chains located at 
different layers parallel to graphene, normalized by the same quan-
tity measured in bulk. In the inset to the figure, the normalized radius 
of gyration is plotted for the same set of data. The first layer extends 
within distances 0.0 and 0.6 nm from the graphene sheet, the sec-
ond between 0.6 and 1.0 nm, the third between 1.0 and 1.5 nm, the 
fourth between 1.5 and 2.0 nm and the last one, fifth, between 2.0 
and approximately half the edge length of the simulation box, 5.0 nm. 
(Reprinted with permission from Ref. [168]. Copyright (2011) Amer-
ican Chemical Society.)

Fig. 10   End-to-end distance and radius of gyration of poly-
mer chains of different molecular weight of a polymer/SWCNT 
(rSWCNT = 0.66) nanocomposite system from molecular dynamics 
simulations: (i) end-to-end distance of a polymer melt (blue open dia-
monds), (ii) fitting of the scaling law Re ∼ N1∕2 on the simulation data 
(blue line), (iii) end-to-end distance of polymer chains in contact with 
the SWCNT, interacting with kBT  energy with the SWCNT (blue 
filled diamonds), (iv) radius of gyration of a polymer melt (red open 
circles), (v) fitting of the scaling law Rg ∼ N1∕2 on the simulation 
data (red line), and (vi) radius of gyration of polymer chains in con-
tact with the SWCNT, interacting with kBT  energy with the SWCNT 
(red filled circles). (Color figure online) (Reprinted with permission 
from Ref. [170]. Copyright (2011) American Chemical Society.)
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contact with a melt of chemically identical chains. Impor-
tant molecular parameters for this system are the Kuhn 
segment length of the chains, b, the lengths (in Kuhn seg-
ments) of the grafted, Ng and free, Nf, chains, and the sur-
face grafting density (chains per unit area), �. The case of 
planar polymer brushes exposed to low molecular weight 
solvent was studied theoretically by de Gennes [175] and 
Alexander [176]. These authors used a scaling approach 
in which a constant density was assumed throughout the 
brush: all the brush chains were assumed to be equally 
stretched to a distance from the substrate equal to the 
thickness of the brush. Aubouy et al. [177] extracted the 
phase diagram of a planar brush exposed to a high molec-
ular weight chemically identical matrix. Their scaling 
analysis is based on the assumption of a steplike concen-
tration profile and on imposing the condition that all 
chain ends lie at the same distance from the planar sur-
face. Five regions with different scaling laws for the 
height, h, of the brush were identified. For low enough 
grafting densities, 𝜎 < N−1

g
a−2 (with a being the mono-

mer size) and short free chains, Nf < N
1∕2
g , the brush 

behaves as a swollen mushroom, with h ∼ N
3∕5
g . By keep-

ing the grafting density below N−1
g
a−2 and increasing Nf, 

so that Nf > N
1∕2
g , the brush becomes ideal with h ∼ N

1∕2
g . 

For intermediate grafting densities, N−1
g

< 𝜎 < N
−1∕2
g , 

high molecular weight free chains, Nf > N
1∕2
g , can pene-

trate the brush, thus ideally wetting it and leading to 
h ∼ N

1∕2
g . Increasing the grafting density while keeping 

Nf < N
1∕2
g  forces the chains to stretch, thus leading to a 

brush height scaling as h ∼ Ng.
Wijmans and Zhulina [178] employed similar ideas in 

order to understand the configurations of polymer brushes 
grafted to spherical nanoparticles dispersed in a polymer 
melt. Here the radius of the nanoparticle, Rn, enters as 
an additional parameter. Long polymers grafted to a sur-
face at fixed grafting density, �, are strongly perturbed 
from their ideal random-walk conformation [179]. Planar 
geometry scaling (infinite radius of curvature) is inade-
quate to explain the case when the particle size is reduced 
to a level comparable with the size of the brushes. The 
SCF theory has been applied to convex (cylindrical and 
spherical) surfaces by Ball et al. [179]. For the cylindri-
cal case, under melt conditions, it was found that the free 
ends of grafted chains are excluded from a zone near the 
grafting surface. The thickness of this dead zone varies 
between zero for a flat surface to a finite fraction of the 
brush height, h, in the limit of strong curvature, when 
Rn∕h is of order unity, with Rn being the radius of curva-
ture of the surface.

Borukhov and Leibler [180] presented a phase dia-
gram for brushes grafted to spherical particles, in which 

the five regions of the work of Aubouy et al. can still be 
located, but they also provide the scaling of the exclusion 
zone, where matrix chains are not present. Such exclu-
sion zones have been observed in a special limiting case 
of grafted polymers, namely, star shaped polymers. 
Daoud and Cotton [181] showed that, in the poor-solvent 
limit, the free ends of the chains are pushed outward, 
because of high densities near the center of the star. The 
Daoud-Cotton model assumes that all chain ends are a 
uniform distance away, while the Wijmans-Zhulina model 
[178] has a well-defined exclusion zone. For Θ solvents, 
in the limit of large curvature (small particle radius, Rn), 
the segment density profile, �(r), decreases with the 
radius as [178] �(r) ∝ �1∕2

(
Rn∕r

)
. It must be noted that � 

is not linear in � because the brush height depends on �. 
In the limit of small curvature (large Rn), a distribution of 
chain ends must be accounted for [182], leading the seg-
ment density profile to a parabolic form: [178] 

�(r�) =
3�Ngb

3

h0

(
h

h0

)2
(
1 −

(
r�

h

)2
)

 where b is the statistical 

segment length, r� = r − Rn is the radial distance from the 
particle surface, h0 is the effective brush height for a flat 
surface and h is the brush thickness. For large nanoparti-
cles, the above form asymptotically recovers the planar 
result (h → h0). In the case of intermediate particle radii, 
a combination of large and small curvature behaviors is 
anticipated: [178] the segment density profile exhibits 
large curvature behavior near the surface of the particle, 
followed by a small curvature behavior away from it. 
Finally, following Daoud and Cotton, the brush height is 
expected to scale as h ∝ �1∕4N

1∕2
g . Recently, Chen et  al. 

[183] revisited the scaling laws for spherical polymer 
brushes and identified significant assumptions overlooked 
by Daoud and Cotton.

5.3.1 � Experimental Findings

Hasegawa et al. [173] used rheological measurements and 
SCF calculations to show that particles are dispersed opti-
mally when chains from the melt interpenetrate, or wet, a 
grafted polymer brush (“complete wetting”). This occurs 
at a critical grafting density, which coincides with the for-
mation of a stretched polymer brush on the particle sur-
face [175, 176]. Grafting just below this critical density 
produces aggregates of particles due to attractive van der 
Waals forces between them. The results of these authors 
suggest that mushrooms of nonoverlapping grafted poly-
mer chains have no ability to stabilize the particles against 
aggregation (“allophobic dewetting”). Grafting just above 
this critical density also results in suboptimal dispersions, 
the aggregation of the particles now being induced by an 
attraction between the grafted brushes. For high curvature 
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(small radius) nanoparticles, the polymer brush chains 
can explore more space, resulting in less entropic loss to 
penetrate the brush, reducing the tendency for autophobic 
dewetting.

Until recently, the experimental verification of theoreti-
cal and simulation predictions was mostly limited to global 
information concerning the brush, such as its average height, 
but not its profile [184]. Recently Chevigny et al. [185] used 
a combination of X-ray and Small Angle Neutron Scattering 
(SANS) techniques to measure the conformation of chains 
in polystyrene polymer brushes grafted to silica nanopar-
ticles with an average radius of 13 nm dispersed in polysty-
rene matrix. They found that, if the molecular weight of the 
melt chains becomes large enough, the polymer brushes are 
compressed by a factor of two in thickness compared to their 
stretched conformation in solution. Also, polymer brushes 
exposed to a high molecular weight matrix are slightly com-
pressed in comparison to brushes exposed to a low molecu-
lar weight matrix environment. This observation implies a 
wet to dry conformational transition. The low molar mass 
free chains can penetrate into the grafted brush and swell it 
(“wet” brush). Conversely, when grafted and free chain molar 
masses are comparable, free entities are expelled from the 
corona (“dry” brush). Later, they examined the dispersion 
of these grafted particles in melts of different molar masses, 
Mf [186]. They showed that for Mg∕Mf < 0.24, the nano-
particles formed a series of compact aggregates, whereas for 
Mg∕Mf > 0.24, the nanoparticles were dispersed within the 
polymer host.

5.3.2 � Insight Obtained from Simulations

Klos and Pakula [187] simulated linear flexible polymers 
of Ng repeat units, end-grafted at density � onto a spherical 
surface of radius R (“hairy nanoparticle”), including the case 
of flat impenetrable wall (R → ∞) using their cooperative 
motion algorithm [188, 189]. The simulations were carried 
out for a wide range of parameters characterizing the hairy 
surfaces (Ng, �, and R) and concerned in detail the influence 
of length of matrix chains on the anchored ones. That was 
achieved by gradually varying the polymerization degree N 
of the matrix chains between the two extremes of a dense 
melt of identical chains (N = Ng) and a simple solvent con-
sisting of single beads (N = 1). Their analysis of free grafted 
chain-ends concentrations, �fe(z), is shown in Fig. 11 (a, b) 
for R =3, 10 and for � =1, 0.2, respectively. The length unit 
used in their work was c  /  2 with c being the lattice con-
stant of the employed lattice Monte Carlo simulations. The 
curves indicate how the medium in which the hairy sphere is 
immersed influences the profiles of free ends of the grafted 
chains. For both sizes of the spheres, the observed tendency 
is such that the longer the matrix chains become, the closer 
to the surface the free ends concentrate. In particular, this is 

also the case for chains grafted to a flat surface, as presented 
in Fig. 11(c). Furthermore, for N = Ng,R = 10, and R → ∞, 
the concentration of the free ends is finite even at the surface, 
which means that a small fraction of the ends concentrate in 
that region, creating grafted chain loops, in agreement with 
earlier Molecular Dynamics simulations of brushes on flat 
surfaces by Grest [190].

Spatial integration of the radial mass density profiles 
around the nanoparticle allows for estimating the height of 
the grafted polymer brush, which is usually defined as the 
second moment of the segment density distribution, �(r), as 
[178, 191]:

with respect to the height h ≡ r − Rn. However, comparison 
with experimental brush heights requires a measurement of 
where the major part of the grafted material is found. To 

(62)
⟨
h2
⟩ 1

2 =

[∫ ∞

Rn
4�r2dr(r − Rn)

2�(r)

∫ ∞

Rn
4�r2dr�(r)

] 1

2

Fig. 11   a Concentration of the free ends of grafted chains, �fe(z) as 
a function of the distance z from the sphere surface for chains with 
Ng = 50 grafted to the a sphere of radius R = 3 for various lengths of 
free chains, N, and grafting densities. b Same as in (a) except R = 10. 
c Same as in (a) except Ng = 80, R → ∞. (Reprinted with permission 
from Ref. [187]. Copyright (2004) American Chemical Society.)
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this effect, the brush height can also be arbitrarily defined 
as the radius marking the location of a spherical Gibbs 
dividing surface, in which 99% of the grafted material is 
included. The theory of spherical polymer brushes was 
pioneered by Daoud and Cotton [181]. In analogy to the 
scaling model developed by Alexander and de Gennes for 
planar interfaces, Daoud and Cotton developed a model for 
spherical surfaces through geometric considerations based 
on starlike polymers. The spherical brush is divided into 
three regions, an inner meltlike core region, an intermedi-
ate concentrated region (dense brush), and an outer semi-
dilute region (swollen brush). Daoud and Cotton predicted 
for star shaped polymers in the matrix a change in the scal-
ing behavior as the blobs of the chains become non-ideal. 
The density profile is directly related to the average brush 
height, h, or the extension of the corona chains. Neglect-
ing the contribution of the core to the radius of the star, 
they found that h ∝ N

1∕2
g �1∕4b. Although the former rela-

tion exhibits “ideal” scaling with respect to the chain length 
dependence, the presence of the factor �1∕4

r  shows that the 
radius is in fact larger than it would be for a single linear 
chain. Thus, although we are in a regime where the chain 
seems to be ideal, the structure is actually stretched.

Vogiatzis and Theodorou [192] investigated the struc-
tural features of polystyrene brushes grafted on spherical 
silica nanoparticles immersed in polystyrene by means 
of a Monte Carlo methodology based on polymer mean 
field theory. The nanoparticle radii (either 8 or 13 nm) 
were held constant, while the grafting density and the 
lengths of grafted and matrix chains were varied system-
atically in a series of simulations. The primary objective 
of that work was to simulate realistic nanocomposite sys-
tems of specific chemistry at experimentally accessible 
length scales and study the structure and scaling of the 
grafted brush. In Fig. 12 the average thickness is plotted 
versus N1∕2

g �1∕4. Ng is measured in Kuhn segments per 
chain and � in chains per nm2. The scaling prediction of 
Daoud and Cotton seems to be fullfilled for both the rms 
height 

⟨
h2
⟩ 1

2 and the height containing 99% of the brush 
material, h99%. The dashed lines are linear fits, confirm-
ing the good agreement of the simulation data with the 
theoretical scaling behavior. The agreement seems to be 
better for the h99% data points. This was expected, since 
the average brush thickness, as defined in Eq. (62), is 
more sensitive to the discretization of the model and 
to the post processing of the data, than the straight-
forward definition of the shell in which the 99% of the 
brush material can be found. Moreover the results for 
the h99% estimate and the scattering pattern of the whole 
grafted corona were in favorable agreement with SANS 
measurements.

Voyiatzis et al. [193] studied the confinement induced 
effects on the accessible volume and the cavity size dis-
tribution in polystyrene-silica nanocomposites by atom-
istic Molecular Dynamics simulations. The composite 
systems contained a single �-quartz silica nanoparticle, 
either bare or grafted with atactic PS chains, which was 
embedded into an unentangled atactic PS matrix [158]. 
Both free and grafted chains consisted of 20 monomers. 
The considered nanoparticle diameters were 3.0, 4.0 and 
5.0 nm and three different grafting densities were studied: 
0.0, 0.5 and 1.0 chains / nm2. Those authors investigated 
the cavity distribution size by employing four spherical 
probe particles. Apart from the limiting case of a dot-like 
probe particle (zero radius), the considered probe parti-
cles had radii, rp, of 0.128, 0.209 and 0.250 nm, corre-
sponding to hard-sphere representations of helium, meth-
ane and ethane. The “unoccupied” volume was defined as 
the volume accessible to a probe particle of rp = 0.

The influence of the grafting density on the spatial dis-
tribution of the unoccupied volume fraction, vUn, and the 
specific volume, vSp, for a nanoparticle with a diameter 
of 3 nm is presented in Fig. 13. The black horizontal line 
corresponds to the bulk value of vUn. The greatest reduc-
tions of vUn relative to the bulk value occur very close to 
the surface, at distances smaller than 1 nm. The variation 

Fig. 12   The calculated brush thickness (either 
⟨
h2
⟩ 1

2 or h99%) is plot-
ted versus the degree of polymerization of grafted chains, Ng, times 
the grafting density, �1∕4. Points correspond to systems containing an 
8-nm-radius silica particle grafted with PS chains and dispersed in PS 
matrix. Linear behavior is predicted by the model proposed by Daoud 
and Cotton for star shaped polymers [181]. (Reprinted with permis-
sion from Ref. [192]. Copyright (2011) American Chemical Society.)
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in the vUn distribution of a grafted and an ungrafted nan-
oparticle is different. The separation from the particle 
for which vUn is below the bulk value for the grafted 1.0 
chains/nm2 system exceeds by approximately 50% the dis-
tance for the ungrafted system. The vUn profile for a graft-
ing density of 0.5 chains / nm2 lies in between the two 
extremes. Unlike vUn, the vSp spatial distributions exhibit 
a strong dependence on the grafting density. An increase 
of the grafting density leads to increased vUn values close 
to the particle’s surface. This behavior was attributed to 
the (i) the chemistry of the employed linker molecule and 
(ii) the expulsion of the free chains from adsorbing on the 
nanoparticle surface. Contrary to intuitive expectations, 
variations of the accessible volume were not directly 
related to changes of the specific volume.

6 � Dynamics

A complete understanding of PNC dynamics requires con-
fronting the difficult many-body problem associated with 
non-dilute particle concentrations and coupled nanoparticle 
and polymer motions over many time- and length- scales 
[194–196]. Simulations are a valuable option, but are 
computationally very intensive, resulting in only a limited 
parameter range being tractable to study, typically involv-
ing rather small particles and weakly entangled polymers. 
The transport properties of nanoparticle-polymer mixtures 

have been the focus of much recent attention [197–207]. 
Central problems in the area are the diffusion of nanopar-
ticles and polymers through the nanocomposite melts, as 
well as the local polymer dynamics in the proximity of the 
filler particles. For example, the incorporation of nanopar-
ticles can strongly modify the viscosity of polymer melts 
[208], and the center-of-mass mobility of polymer chains 
can be strongly retarded depending on nanoparticle size 
and concentration [209, 210].

6.1 � Nanoparticle Diffusion in Polymers

6.1.1 � Experimental Findings

There is good understanding of the motion of very large 
or very small colloidal particles of radius Rn in a polymer 
melt. The nanoparticle diffusion coefficient, D, in the large 
particle limit follows the classic continuum Stokes-Einstein 
relation [211]. For a large and massive solute molecule 
of radius Rn in a solvent consisting of much smaller and 
lighter molecules, the diffusion coefficient, D, of the solute 
is given by [212]:

where kB is Boltzmann’s constant, T is the absolute tem-
perature, � is the solvent viscosity and f takes the values 
of 4 or 6 for slip or stick boundary conditions at the solute 
surface, respectively [203]. The corresponding behavior of 
small nanoparticles, comparable to the size of a monomer, 
is also described by the Stokes-Einstein relationship but 
with a length-scale dependent viscosity that is smaller than 
the macroscopic bulk value [213]. The relevant apparent 
viscosity is controlled by the relaxation of subsections of 
chains with an end-to-end distance comparable to the nano-
particle size, as has been verified by Molecular Dynamics 
simulations [214]. Understanding nanoparticle diffusion in 
the polymer matrix is of fundamental importance.

Despite the rather good understanding of the diffusion of 
the particles in the two limits (very large and very small), 
the dynamical behavior of nanoparticles of size compara-
ble to the entanglement mesh size of the polymer is conten-
tious [205, 215–217]. Brochard-Wyart and de Gennes [213] 
argued that the particle diffusion constant follows normal 
Stokes-Einstein behavior essentially when its size becomes 
larger than the entanglement mesh size. Such a sharp size-
dependent crossover to Stokes-Einstein scaling has been 
observed by Szymanski et  al. [218]. On the contrary, Cai 
et al. [201] speculated that the motion of these intermedi-
ate sized nanoparticles should be faster than Stokes-Ein-
stein behavior, since diffusion can be facilitated by hoplike 
motions trough the polymer’s entanglement mesh. The lat-
ter is also supported by a microscopic force-level theory, 

(63)D =
kBT

f��Rn

Fig. 13   Distribution of unoccupied volume fraction, vUn, (lefty-axis) 
and the specific volume, vSp, (righty-axis) in the vicinity of a nano-
particle with a diameter of 3 nm at a termperature of 590 K. The-
horizontal line corresponds to the PS bulk value of vUn. The grafting 
density is varying from 0.0 (ungrafted) to 0.5 and 1.0 grafted chains / 
nm2. (Reprinted from [193] with permission from Elsevier.)
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wherein chain relaxation and local entanglement mesh fluc-
tuations, i.e. “constraint release”, dominate over hopping 
[219].

Somoza et  al. [220] studied experimentally the 
anthracene rotation in poly(dimethylosiloxane) and 
poly(isobutylene) by gradually increasing the chain length. 
These authors reported that the diffusivity of the particles 
exhibited a sharp transition with the increase of the poly-
mer radius of gyration, Rg, becoming dependent on the 
“nanoviscosity” (rotation time of dissolved anthracene was 
used as a measure of the viscosity on a nanometer-sized 
object) rather than the macroscopic viscosity for small 
Rn∕Rg ratios (with Rn being the particle size). Narayaman 
et al. [221] used X-ray photon correlation spectroscopy in 
conjunction with resonance-enhanced grazing-incidence 
small-angle X-ray scattering to probe the particle dynamics 
in thin films, and also found that the particle dynamics dif-
fer from the Stokes-Einstein Brownian motion, the differ-
ence being caused by the viscoelastic effects and interpar-
ticle interactions. Meanwhile, Tuteja et  al. [198] reported 
that the nanoparticles diffuse two orders of magnitude 
faster in a polymer liquid than the prediction of the Stokes-
Einstein relation, an observation possibly attributable to the 
nanoparticles being smaller than the entanglement mesh. 
Later, Grabowski et al. [199] also observed strong enhance-
ment (250 times) of the diffusion of gold nanoparticles in 
poly(butyl methacrylate), under conditions where the nano-
particle dimensions were smaller than the entanglement 
mesh length of the polymer.

Cai et  al. [201] have carried out an extensive study of 
nanoparticle diffusion by employing scaling theory to pre-
dict the motion of a probe nanoparticle of size Rn experi-
encing thermal motion in polymer solutions and melts. 
Particles with size smaller than the solution correlation 
length, �, undergo ordinary diffusion with a diffusion coef-
ficient similar to that in pure solvent. The motion of par-
ticles of intermediate size (𝜉 < d < 𝛼pp), where �pp is the 
tube diameter for entangled polymer liquids, is subdiffusive 
at short time scales, since their motion is affected by sub-
sections of polymer chains. At long time scales the motion 
of these particles is diffusive, and their diffusion coefficient 
is determined by the effective viscosity of a polymer liq-
uid with chains of size comparable to the particle diameter 
Rn. The motion of particles larger than the tube diameter 
�pp at time scales shorter than the relaxation time �e of an 
entanglement strand is similar to the motion of particles of 
intermediate size. At longer time scales (t > 𝜏e) large parti-
cles (d > 𝛼pp) are trapped by the entanglement mesh, and to 
move further they have to wait for the surrounding polymer 
chains to relax at the reptation time scale �rep. At longer 
times t > 𝜏rep, the motion of such large particles (d > 𝛼pp) 
is diffusive with diffusion coefficient determined by the 
bulk viscosity of the entangled polymer liquids. Finally, 

for nanoparticles with diameters larger than the entangle-
ment mesh size it appears that the competition of full chain 
relaxation versus the nanoparticle hopping through entan-
glement gates controls nanoparticle diffusion [222].

6.1.2 � Insight Obtained from Simulations

Liu et al. [214] employed Molecular Dynamics simulations 
of the Kremer-Grest model [149] in order to investigate 
the diffusion process of spherical nanoparticles in poly-
mer melts. Their results indicated that the radius of gyra-
tion of the polymer chains was the key factor determining 
the validity of the Stokes-Einstein relation in describing the 
particle diffusion at infinite dilution. In Fig. 14 the diffusion 
coefficient estimated by the MD simulations is presented 
alongside the predictions of the Stokes-Einstein formula. It 
was found that, with the increase of the size ratio of Rn∕Rg, 
the Stokes-Einstein diffusion coefficient gradually approxi-
mates the MD data under the slip (dotted curve) boundary 
condition. The use of purely repulsive non-bonded interac-
tions fully justifies the use of the slip ( f = 4), instead of 
the stick ( f = 6), boundary condition. As the size ratio, 
Rn∕Rg increases to 1, the predicted diffusion coefficients 
agree reasonably well with those extracted from the simu-
lations. However, in the small size ratio, large deviation is 
observed which qualitatively agrees with the experimental 
results [198]. It seems like the local viscosity experienced 
by nanoparticles is much smaller than the macroscopic vis-
cosity, as speculated by Wyart and de Gennes [213] and 
other researchers [223–226]. Finally, it should be noted 
that in the experiments chains are strongly entangled, in 

Fig. 14   The diffusion coefficient, D, of a spherical particle as a 
function of the ratio Rn∕Rg. The particle mass is proportional to its 
volume. Open squares represent Molecular Dynamics data, while 
full dots represent the Stokes–Einstein relation predictions with slip 
boundary condition. (Reprinted with permission from Ref. [214]. 
Copyright (2008) American Chemical Society.)
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the reptation regime, while the polymer length used by Liu 
et al. is smaller than the entanglement length of the poly-
mer chain [227].

Yamamoto and Schweizer [219, 228] have formulated 
and applied a microscopic statistical-mechanical theory, 
based on the Polymer Reference Interaction Site Model 
(PRISM) integral equation theory [229], for the non-
hydrodynamic relative diffusion coefficient of a pair of 
spherical nanoparticles in entangled polymer melts. Their 
work was based on a combination of Brownian motion, 
mode-coupling, and polymer physics ideas. They focused 
on the mesoscopic regime, where particles are larger than 
the entanglement spacing. The overall magnitude of the 
relative diffusivity was controlled by the ratio of the par-
ticle to tube diameter and the number of entanglements 
per chain. Figure  15 presents model calculations of the 
total relative diffusivity, D(rel)(h) as a function of h∕2Rn 
(with h being the interparticle surface-to-surface sepa-
ration distance) for two reduced particle diameters. The 
ordinate of the figure is normalized by the single particle 
Stokes-Einstein result, DSE, while the abscissa extends 
up to the point where the theory is argued to be reason-
able. That theory is based on the mode-coupling idea 
that the relevant slow dynamical variable is the bilinear 
coupling of the nanoparticle and the collective polymer 
density fluctuations. The original approach [219] was 

not self-consistent since it assumed that the constrain-
ing forces on a particle relax entirely due to the length-
scale dependent motions of the polymer melt (constraint 
release regime), which is an accurate simplification when 
particles are larger than dT.

Figure  15 exhibits several interesting trends. First, 
the relative diffusivity approaches the asymptotic value 
D(self)∕DSE at h∕2Rn >> 1, verifying the “isolated” limit 
(two particles at infinite dilution). Note that it does not 
necessarily approach unity if a Stokes-Einstein violation is 
present at the single-particle level. The overall deviation of 
D(rel) from the hydrodynamic result is enhanced as 2Rn∕dT 
decreases or N∕Ne increases, in analogy with a single-
particle Stokes-Einstein violation effect. The underlying 
physical mechanism can be understood as small nanopar-
ticles acquiring high mobility due to a weaker coupling 
to the slow relaxation of entangled melts compared to the 
continuum theory. As a consequence, the overestimate of 
friction by a hydrodynamic approach grows as particle size 
decreases and/or chain length increases. The second gen-
eral feature in Fig. 15 concerns the role of the number of 
entanglements, N∕Ne. Deviations cannot be discerned from 
the hydrodynamic behavior for weakly entangled cases 
(N∕Ne ∼ 1) for either particle size. One may physically 
rationalize this result by recalling that the Rouse- like col-
lective relaxation is diffusive above the segmental length-
scale. Finally, the most important feature of Fig. 15 is the 
predicted non-trivial mobility enhancement compared 
to the hydrodynamic result over a wide range of h∕2Rn. 
Hydrodynamics predicts zero relative diffusivity as h → 0

, whereas the results of Yamamoto and Schweizer remain 
non-zero down to small separations.

Kalathi et  al. [230] have employed large-scale molecu-
lar dynamics simulations in order to examine the role of 
entanglements on nanoparticle dynamics in the crosso-
ver regime, where the diameter of the particles, �NP, is 
larger than 2 − 10dT with dT being the entanglement tube 
diameter. The transport behavior of nanoparticles in the 
crossover size limit appears to be complicated by hopping 
effects, length-scale dependent entanglement forces and 
dynamics, and the interactions of polymers and nanoparti-
cles. These authors simulated weakly interacting mixtures 
of nanoparticles and bead-spring polymer melts. For the 
polymer melts considered in that work, the entanglement 
chain length is approximately 45, Ne~45, and dT in units of 
monomer diameter, �, is around 7 (the nanoparticle diam-
eters were �NP = 1 − 15, in units of polymer �). The dif-
fusion coefficients of nanoparticles smaller than dT∼7 − 10 
(i.e. �NP = 1, 3, and 5, respectively, Fig.  16(a)) in long 
chain melts show that the relevant viscosity corresponds 
to a section of the chain with NNP monomers that satisfies 
�2
NP

= NNP�
2. For shorter chains the data can be described 

Fig. 15   Relative diffusivity normalized by the single-particle Stokes-
Einstein self-diffusion coefficient as a function of h∕2Rn (with h being 
the interparticle surface-to-surface separation distance), based on the 
structural continuum model of Yamamoto and Schweizer [219, 228]. 
Calculations are presented for 2Rn∕dT = 10 (with dT representing the 
tube diameter) and N∕Ne = 1 (dashed line), 4 (short-dashed line), 16 
(short-dotted line), and 128 (dashed-dotted line), with Ne being the 
number of chain segments per entangled strand. The hydrodynamic 
result (solid curve) is also included as a reference. In the inset to the 
figure, the same results as the main frame are presented, for larger 
particle size, 2Rn∕dT = 40. (Reprinted from [228], with the permis-
sion of AIP Publishing.)
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by the Stokes-Einstein relation with the macroscopic vis-
cosity of the chain fluid, i.e.,

where � = �1N (where �1 is the viscosity of a mono-
mer fluid at the same density) and f∼4 (asymptote in 
Fig. 16(a)). The results of Kalathi et  al. [230] for smaller 
nanoparticles are in good agreement with the predictions 
of the theory of Yamamoto and Schweizer [228]. Fig-
ure  16(b) presents the results for nanoparticles with sizes 
larger than the entanglement mesh length, dT∼7 − 10. The 
diffusion of these particles in the longer chain melts does 
not follow the “universal” plateau seen for small nanopar-
ticles. These results suggest that the chain-scale dynamics 
does not control nanoparticle diffusion (no Stokes-Einstein 
scaling). However, the fact that the diffusivity at high N of 
these intermediate-sized particles does not reach the same 
plateau as the small nanoparticles (Fig.  16) suggests that 
another effect, probably entanglements, plays an impor-
tant role. Despite the fact that no conclusive evidence of 
hopping-controlled transport was found, the spontaneous 
fluctuations of the entanglement mesh (constraint release) 
in the moderately long chain melts, may be the most impor-
tant mode of nanoparticle transport through the bulk of the 
material, in agreement with theoretical predictions [228].

6.2 � Polymer Diffusion and Dynamics

Early theoretical studies [231–233] have shown that polymer 
diffusion through heterogeneous media is slowed down due 

(64)D∗
NP

=
kBT

f���NP
=

kBT

f��1N�NP

to entropy losses associated with impenetrable obstacles. A 
natural choice of a parameter for quantifying the ability of a 
nanocomposite to slow down polymer diffusion is the spac-
ing between the surfaces of neighboring nanoparticles [234]. 
For monodisperse nanoparticles, this spacing can be defined 
as the interparticle distance, dinter, given by [235]:

where d and � are the nanoparticle diameter and nanopar-
ticle volume fraction, respectively.The maximum packing 
density of the nanoparticles, �max, depends on the packing 
type, such as simple cubic (�max = 0.524), face-centered 
cubic (�max = 0.740), body-centered cubic (�max = 0.680), 
and random dense packing (�max = 0.637). Independently 
of �max, dinter decreases as nanoparticle size decreases at 
fixed �, suggesting that smaller nanoparticles slow down 
polymer diffusion more effectively than larger ones [231, 
232].

6.2.1 � Experimental Findings

Gam et al. [210] have measured the tracer diffusion of deu-
terated polystyrene (dPS) in a polystyrene nanocomposite 
containing silica nanoparticles, with number average diam-
eters, dn, of 28.8 and 12.8 nm, using elastic recoil detec-
tion. The corresponding volume fractions of the large and 
small nanoparticles, �, ranged from 0 to 0.5, and 0 to 0.1, 
respectively. At the same volume fraction of nanoparticles, 
the tracer diffusion of dPS is reduced as nanoparticle size 

(65)dinter = d

[(
�max

�

) 1

3

− 1

]

Fig. 16   Terminal diffusion coefficient of nanoparticles of different 
size, D∗

NP
, in melts of different N plotted in scaled form. The combi-

nation of the Stokes-Einstein equation with the Rouse model viscos-
ity for a melt of chain length NNP, � = �1NNP (where �1 is the viscos-
ity of a monomer fluid at the same density) yields that the quantity 
D∗

NP
�3
NP

 should be a constant, independent of chain length [201, 214]. 
a Nanoparticles that are smaller than the entanglement mesh size, 
𝜎NP < dT. b Nanoparticles that are larger than the entanglement mesh 

size, �NP ≥ dT. In all cases, a slip boundary condition was assumed. 
Predictions of the theory of Yamamoto and Schweizer [228] are 
presented in solid lines. Moreover, if we estimate the Rouse viscos-
ity based on the actual chain length N, we get D∗

NP
�3
NP

∼ (N∕�2
NP
)−1, 

which corresponds to the decaying curves on the left-hand side of (a). 
(Reprinted figure with permission from [230]. Copyright 2014 by the 
American Physical Society)
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decreases because the interparticle distance between nan-
oparticles, dinter, decreases. The reduced diffusion coeffi-
cient, defined as the tracer diffusion coefficient in the nano-
composite relative to pure PS (D∕D0) is plotted against the 
confinement parameter divided by the tracer size in Fig. 17. 
All measurements nearly collapse onto a master curve 
[234], although D∕D0 is slightly higher for the smaller 
particles. For dinter = ID < 2Rg, D∕D0 decreases rapidly as 
ID∕2Rg decreases. For ID > 2Rg, D∕D0 remains less than 
1 indicating that entropy loss reduces diffusion even when 
nanoparticles are far apart relative to the tracer size. The 
dashed line is an empirical fit, because a theory relating D 
to the fundamental system parameters is lacking.

Schneider et al. [236] studied experimentally the relaxa-
tion of entangled poly(ethylene-alt-propylene) (PEP) chains 
(tube diameter ~5 nm) filled with silica nanoparticles (aver-
age diameter ~17 nm). The silica volume fraction was var-
ied between 0.0 and 0.6 (as that was estimated from the 
measured weight fraction of silica in the nanocomposite). 
Neutron spin echo spectroscopy (NSE) was empoloyed in 
order to explore chain dynamics in these nanocomposites, 
characterized by non-attractive interactions. The result-
ing collective dynamic scattering function data were ana-
lyzed by employing the idea of a tube-like confinement for 

chain relaxation below the reptation time. The following 
conclusions were drawn from their study: (i) the mono-
meric relaxation rates were not unaffected by the addition 
of nanoparticles, even at high particle loadings; (ii) chain 
conformations remain Gaussian for all loadings considered; 
and (iii) the tube diameter determined from analysis of neu-
tron spin echo data decreases monotonically upon adding 
nanoparticles. Two contributions to overall chain dynam-
ics were speculated. On the one hand, the number of topo-
logical chain-chain entanglements decreases with increased 
nanoparticle loading, i.e., the chains disentangle from each 
other since a part of the system volume is occupied by the 
NPs. On the other hand, the chain acceleration caused by 
the reduction of entanglements is (more than) compensated 
by the geometric constraints that nanoparticles present to 
chain dynamics. Since that second factor dominates at large 
loadings, the neutron scattering experiments suggested an 
increase in chain relaxation time, while at the same time a 
reduction of chain-chain entanglements and an increase of 
particle-chain entanglements take place.

6.2.2 � Insight Obtained from Simulations

Desai et al. [237] investigated the chain dynamics of Kre-
mer-Grest polymer melts, composed of chains with a rela-
tively high degree of polymerization (N = 80) filled with 
solid nanoparticles using molecular dynamics simulations. 
These authors found that chain diffusivity is enhanced rela-
tive to its bulk value when polymer–particle interactions 
are repulsive and is reduced when polymer–particle inter-
actions are strongly attractive (Fig. 18). In both cases chain 
diffusivity assumes its bulk value when the chain center 

Fig. 17   Reduced diffusion coefficient of a dPS polymer tracer 
(D∕D0) in a silica-polystyrene nanocomposite, plotted against the 
confinement parameter, namely the interparticle distance, ID = dinter, 
relative to the tracer size, Rg. Open and closed squares represent 
experimental data for nanoparticles with number average diameters 
of 12.8 and 28.8 nm. Employing the interparticle distance estimated 
from the average number nanoparticle diameter for monodisperse 
particles, the scaling of D∕D0 seems reasonable, although the values 
for the smaller particles are higher than those for the larger particles. 
(Reprinted from [210]—Published by The Royal Society of Chemis-
try.)

Fig. 18   The normalized (by its bulk value) overall diffusion coeffi-
cient of bead-spring polymer chains as a function of % volume frac-
tion of nanoparticles for repulsive and strongly attractive systems. 
(Reprinted from [237], with the permission of AIP Publishing.)
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of mass is about one radius of gyration, Rg, away from the 
particle surface. As shown in Fig. 18 for the particle vol-
ume fraction of 10%, the average chain diffusion coeffi-
cient is reduced by a factor of 2 in the presence of strongly 
attractive particles. The case of repulsive particles appears 
to be even more interesting, where the diffusion coefficient 
initially increases with increasing particle concentration, 
but then reaches a maximum before decreasing with further 
increase of the particle concentration. While the initial par-
ticle concentration dependence of the diffusion coefficient 
reflects the polymer–particle interactions, higher concen-
trations always lead to a reduction of the diffusion coeffi-
cient, which may be attributed to geometrical reasons (i.e. 
the presence of tortuous paths in systems with high particle 
loadings).

Kalathi et  al. [239] employed large-scale molecular 
dynamics simulations in order to study the internal relaxa-
tions of chains in nanoparticle/polymer composites. They 
examined the Rouse modes of the chains, which resem-
ble the observables of the self-intermediate scattering 
function, typically determined in an (incoherent) inelas-
tic neutron scattering experiment. The Rouse modes, 
p = 0, 1, 2, ...,N − 1, of a chain of length N are defined as 
[240]:

The time autocorrelation of the Rouse modes is predicted 
to decay exponentially and independently for each node p 
for an ideal chain, with relaxation time, �p. The p = 0 mode 
describes the motion of the chain center-of-mass, while the 
modes with p ≥ 1 describe internal relaxations with a mode 
number p corresponding to a sub-chain of (N − 1)∕p seg-
ments. The comparison of the relaxation times of the differ-
ent modes for chains in the PNCs for three different degrees 
of polymerization, N, filled with nanoparticles of different 
sizes for � = 0.1 to neat melt is presented in Fig. 19(a)–(c). 
Their results (Fig. 19) showed that, for weakly interacting 
mixtures of nanoparticles and polymers, the effective mon-
omeric relaxation rates are faster than in neat melt when the 
nanoparticles are smaller that the entanglement mesh size. 
In this case, the nanoparticles serve to reduce both the 
monomeric friction and the entanglements in the polymer 
melt, as in the case of polymer-solvent mixtures. On the 
contrary, for nanoparticles larger than half the entangle-
ment mesh size, the effective monomer relaxation remains 
unaffected for low nanoparticle concentrations. Even in this 
case, strong reduction of chain entanglements was 
observed. These authors concluded that the role of nano-
particles is to always reduce the number of entanglements. 
By assuming that the relaxation time for a chain follows the 
crossover bridging Rouse to reptation dynamics, the large p 

(66)�p =

√
2

N

N∑
i=1

�i cos
[p�
N

(
i −

1

2

)]
.

modes directly yield information on the monomer friction 
and in the limit of p = 1, the plateau of �eff

p
∕�eff

p,neat
 is directly 

proportional to the ratio of �0∕Ne in the PNC compared to 
that in the pure melt. For small nanoparticles, which act as 
a diluent, there was an additional speedup, which was 
attributed to a reduction in entanglements, quantified by 
Ne, melt∕Ne, PNC∼0.9 for long chains, which can also be 
extracted by the stretching exponents (Fig. 19(e)).

6.3 � Local Polymer Dynamics

6.3.1 � Insight Obtained from Simulations

Brown et al. [167, 241] were among the first to study the 
local dynamics of a model nanocomposite system. They 
examined the structure and dynamics of a system contain-
ing an inorganic (silica) nanoparticle embedded in a poly-
mer (polyethylene-like) matrix. They thoroughly discussed 
the variation of structure and dynamics with increasing 
distance from the polymer–particle interface and as a func-
tion of pressure. A clear structuring of the linear polymer 
chains around the silica nanoparticle was observed, with 
prominent first and second peaks in the radial density func-
tion and concurrent development of preferred chain orien-
tation. Evidence of chain immobilization was less obvious 
overall, although dynamic properties were more sensitive 
to changes in the pressure. Long simulations were carried 
out to determine the variation in the glass transition of the 
filled polymers as compared to the pure systems. In Fig. 20 
the average relaxation times of the torsional autocorrelation 
function are presented, resolved into concentric shells of 5 
Å thickness around the nanoparticle center of mass. This 
assignment was based on the position of the center of mass 
of the four atoms involved in the torsion at the time ori-
gin of the observation. Although this means that at some 
later time an angle may belong to a different shell, it avoids 
the bias that would result from selecting only angles that 
remain in a particular shell (in any case diffusion of chains 
is relatively slow so that should not be a problem). Based 
on Fig.  20, there is some indication that the decreased 
translational mobility near the interface increases the relax-
ation time associated with torsional equilibration (estab-
lishment of the trans-gauche equilibrium in the systems 
containing the nanoparticles with diameters of 3 and 6 nm 
(R30L and R60L, respectively), but otherwise most of the 
characteristic times are very close to those obtained for the 
neat system, in agreement with previous studies [241, 242] 
of the same authors. It was concluded that, within errors, 
the interphase thickness was independent of the size of the 
nanoparticle for the range of particle systems analyzed.

Vogiatzis and Theodorou [156] produced atomistic con-
figurations of fullerene-filled polystyrene melts by reverse 
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mapping well-equilibrated coarse-grained melt configura-
tions, sampled by connectivity altering Monte Carlo, to the 
atomistic level via a rigorous quasi Metropolis reconstruc-
tion. The main goal of their work, i.e., the study of PS-C60 
dynamics at the segmental and local levels, has been 
accomplished by analyzing long MD trajectories of their 
well-equilibrated reverse-mapped structures. Their simula-
tion results generally indicate that the addition of C60 to PS 
leads to slower segmental dynamics (as estimated by char-
acteristic times extracted from the decay of orientational 
time-autocorrelation functions of suitably chosen vectors), 

suggesting an increase of the bulk glass transition tempera-
ture, Tg, by about 1 K, upon the addition of C60 at a concen-
tration of 1% by weight (in favorable agreement with dif-
ferential scanning calorimetry measurements [243]). They 
then employed a space discretization in order to study the 
effect of C60 on segmental dynamics at a local level. Each 
fullerene served as the center of a Voronoi cell, whose vol-
ume was determined by the neighboring fullerenes. Back-
bone carbons lying in every cell were tracked throughout 
the atomistic Molecular Dynamics trajectory and their 
mean-square displacement (MSD) was measured for the 

Fig. 19   Normalized effective relaxation times of the p-th Rouse 
mode for chains in nanocomposites for different nanoparticle sizes 
at � = 0.1: a N = 40; b N = 100; c N = 400. d Effect of nanoparti-
cle loading for N = 400, �NP = 10� (closed triangles correspond 

to �NP = 10� in N = 500 at similar nanoparticle loading as in ref. 
[238]). e Corresponding plot for the stretching exponent �. (Reprinted 
from [239]—Published by The Royal Society of Chemistry.)
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time they resided in the same cell. Overall mean-square 
displacement of backbone atoms was found to be smaller in 
the presence of fullerenes, than in bulk PS. However, atoms 

moving in smaller (more confined) Voronoi cells exhibited 
faster motion than the atoms moving inside larger Voro-
noi cells. Figure 21 presents the MSD of backbone carbon 
atoms as a function of time at a temperature of 480 K for 
both the filled and unfilled systems. As can be seen, nano-
composite systems exhibit lower mobility when compared 
to their neat counterparts. The MSD of backbone carbons 
is depressed upon the addition of fullerenes, in good agree-
ment with the neutron scattering observations of Kropka 
et al. [243]. In the inset to Fig. 21, a logarithmic plot of the 
MSD is presented. The scaling of t1∕2 is expected for the 
very short time behavior studied, as Likhtman and McLeish 
[244] have estimated that the time marking the onset of the 
effect of topological constraints on segmental motion, �e, is 
3.36 × 104 s for polystyrene.

Moreover, Vogiatzis and Theodorou [156] estimated the 
local mean-square displacement (MSD) of backbone car-
bon atoms of PS, for the timespan an atom spends inside a 
particular cell of the Voronoi tessellation. In their analysis 
they used the average MSD from the three most confined 
and three least confined cells. They observed that the vol-
ume of the Voronoi cells did not change significantly as a 
function of time. Based on that analysis for the nanocom-
posite system, the degree of depression was found to be 
a function of the confinement induced by the fullerenes. 
The diffusion of chains was spatially inhomogeneous, as 
observed by Desai et al. [237] earlier. Small Voronoi cells 
lead to higher mobility of the polymer segments within 
them. Despite the fact that the addition of fullerenes limited 
the diffusion of polymeric chains, there existed regions in 
space, where the polymer could recover part of its dynam-
ics due to the high level of confinement. This finding was 
then correlated with the increased rotational diffusion 
of fullerenes, as the volume of the Voronoi cells became 
smaller. These authors envisioned fullerenes as nanoscopic 
millstones, forcing the polymeric chains to diffuse faster, 
when close to them, while the geometrical constraints 
imposed by their presence force the chains to diffuse more 
slowly.

Pandey et  al. [245] have extensively studied the local 
dynamics and the conformational properties of polyiso-
prene next to a smooth graphite surface constructed by 
graphene layers, via a multiscale simulation methodology. 
These authors first performed fully atomistic molecular 
dynamics simulations of isoprene oligomers, next to the 
surface. Subsequently, Monte Carlo simulations of a sys-
tematically derived coarse-grained model were employed 
in order to create several uncorrelated structures for poly-
mer systems. A reverse mapping strategy was developed 
in order to reintroduce atomistic detail into the coarse-
grained configurations. Finally, multiple extensive fully 
atomistic simulations with large systems of long macro-
molecules were conducted to examine local dynamics in 

Fig. 20   The radial dependence of the relaxation time of the torsional 
autocorrelation function of polyethylene around a silica nanoparticle. 
All values are averages taken in 5 Åshells around the nanoparticle 
center of mass. The points have been offset slightly for the three sys-
tems along the x axis for clarity. The dotted line simply indicates the 
value obtained for the 30-chain pure polymer system at the same tem-
perature (400 K). (Reprinted with permission from Ref. [167]. Copy-
right (2008) American Chemical Society.)

Fig. 21   Mean-squared atomic displacements (MSD) of backbone 
carbon atoms as a function of time for filled and unfilled polysty-
rene systems at T = 480 K. In the case of fullerene nanocomposites, 
an analysis of the dependence of backbone MSD on confinement is 
also presented for most and least confined Voronoi cells (indicative 
error bars also included). In the inset to the figure, the same data are 
presented in logarithmic axes. (Reprinted with permission from Ref. 
[156]. Copyright (2014) American Chemical Society.)
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proximity to graphite. Their findings supported the pres-
ence of increased dynamic heterogeneity emerging from 
both intermolecular interactions with the flat surface and 
intramolecular cooperativity. For each system, Pandey et al. 
extracted bond orientation autocorrelation functions and 
sorted them in intervals of 0.03 nm based on the position 
of the midpoint of the c–CH bond throughout the simula-
tion trajectory. For each interval, the autocorrelation curves 
were averaged weighting by the population of c–CH vec-
tors found in a specific interval from each run. The mean 
correlation times increased substantially in the proxim-
ity of the surface, with dynamics at the surface almost 20 
times slower (independently of the molecular weight of the 
chains) than in bulk PI.

Figure  22 presents a qualitative visual inspection of 
the distribution of times for a specific configuration. Pan-
dey et  al. [245] evaluated an autocorrelation function 

individually for every c-CH vector and colored each seg-
ment from blue to red signifying lower relaxation times 
and higher mobility. As shown, segments in proximity to 
the surface were found to be slower. They then separated 
all train segments based on their length and calculated cor-
relation times for each position along the length of the train 
segment (Fig 22(b)), which was an extremely challenging 
task. Despite a significant statistical error, several features 
are evident in Fig.22(b). Specifically, when a chain makes 
a single contact, dynamics is only decelerated to a small 
extent. The second important finding was that, as train 
segments grow in length along the surface, the dynam-
ics of the repeat units becomes progressively slower, with 
the findings implying that, similar to chain-ends in bulk 
dynamics, [246, 247] the ends of train segments contribute 
to increased dynamic heterogeneities on the surface. How-
ever, the former are only significant for short chains, the 
latter were present for any chain length studied. In addition, 
short train segments can be more pronounced around sur-
faces with higher curvature [16, 159]. Finally, a PI specific 
result was the asymmetry present along a train segment 
originating from the methyl group, much alike findings on 
bulk dynamics along the chain backbone [247].

Rissanou and Harmandaris [248] presented a detailed 
analysis of the dynamics of three different polymer-gra-
phene systems, through atomistic Molecular Dynamics 
simulations. In more detail they studied (a) PS-graphene, 
(b) PMMA-graphene and (c) PE-graphene interfacial sys-
tems, as well as the corresponding bulk polymer systems. 
For PS and PMMA polymer chains were 10-mers while PE 
chains were 20-mer, in order to ensure that the backbone 
consisted of almost the same number of CH2, and/or CH 
groups for all systems (i.e. approximately 20 in all cases). 
A characteristic quantity of the molecular level is the end-
to-end vector �ee(t), whose autocorrelation function pro-
vides information for the orientational dynamics at the 
entire chain level. Rissanou and Harmandaris performed 
an analysis of end-to-end autocorrelation function at dif-
ferent adsorption layers and fit the corresponding curves 
for all chains to the Kohlrausch-Williams-Watts (KWW) 
function [249–251]. At the entire chain level, the integral 
below the KWW curves defines the molecular chain end-
to-end relaxation time, ��ee

mol
. The molecular relaxation times 

together with the stretching exponent, �, of the KWW fits 
are presented in Fig. 23 (a) and (b) as functions of the dis-
tance from the surface. Data in Fig.  23(a) reveal the dra-
matic increase of ��ee

mol
 close to the graphene layer, compared 

to the corresponding bulk values, shown with dashed lines. 
Furthermore, a slight difference in the distance at which 
the ��ee

mol
 reaches the plateau distance-independent bulk 

value was observed: for PE it is about ∼2 nm, whereas for 
PMMA and PS is about 3 − 4 nm. The extreme difference 
in relaxation times between PE and the other two systems is 

Fig. 22   a Visual representation of the distribution of − log �c along 
the normal to the surface and on the surface of graphene planes (�c 
is average per slab relaxation time of the c–CH bonds). Each repeat 
unit is colored with a scheme where red corresponds to the faster seg-
ments and blue to the slowest. b Average dynamics of repeat units 
on graphite along a train segment as a function of the length of it. 
(Color figure online) (Reprinted from [245], with the permission of 
AIP Publishing.)
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obvious. The � exponent of the KWW relation for PE and 
PS reaches a constant value in the bulk region, while the 
same does not apply for PMMA. These values show that in 
the bulk region PMMA has the wider distribution of relax-
ation times, PS follows and PE has the narrowest one.

7 � Phase Behavior

Polymer-nanoparticle blends exhibit a rich phase behav-
ior which is directly tied to the thermal, mechanical, and 
optical properties of the composite system, with the 

achievement of uniform dispersion being a long-standing 
challenge [1, 14, 15, 33, 150, 252, 253].

Significant progress towards the development of micro-
scopic predictive theories of the equilibrium structure and 
phase behavior of polymer nanocomposites has been made 
recently based on liquid state integral equation formula-
tions, density functional calculations and self-consistent 
mean field approaches. All these methods can complement 
or surpass the explicit atom methods like Monte Carlo and 
Molecular Dynamics, which have the potential to quantita-
tively predict structural correlations, thermodynamics and 
phase behavior.

Chatterjee and Schweizer were the first to develop an 
analytical integral equation theory for treating polymer-
induced effects on the structure and thermodynamics of 
dilute suspensions of hard spheres [254]. Results were pre-
sented for the potential of mean force, free energy of inser-
tion per particle into a polymer solution, and the second 
virial coefficient between spheres. Later, Hoopper et  al. 
[255] employed the Polymer Reference Interaction Site 
Model (PRISM) theory to investigate structure, effective 
forces, and thermodynamics in dense polymer-particle mix-
tures in the one and two particle limit [144, 145].

Fig. 23   a Molecular relaxation time of the end-to-end orientational 
decorrelation function for PS, PMMA and PE hybrid polymer-gra-
phene systems as a function of the distance from graphene. Dashed 
lines represent the values of the molecular relaxation times of the cor-
responding bulk systems. b The stretching exponent, �, as extracted 
from the fit with KWW functions for the three systems. (Reprinted 
from [248]—Published by The Royal Society of Chemistry.)

Fig. 24   Nanoparticle volume fraction at spinodal phase separation 
predicted by the Polymer Reference Interaction Site Model (PRISM) 
theory for hard spheres of D∕d = 10 (with D and d being the diam-
eters of the nanoparticle and the polymeric beads, respectively) in 
a freely jointed chain polymer system of length N = 100, as a func-
tion of the strength of exponential interfacial attraction at fixed spa-
tial range. Total mixture packing is 0.4. The depletion and bridging 
induced phase separated regime bracket a window of miscibility at 
intermediate interfacial cohesion strength. The type of polymer-medi-
ated nanoparticle organization is schematically indicated. (Reprinted 
from [256] with permission from Elsevier.)
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7.1 � Bare Nanoparticles

Hall et  al. [256, 257] employed Polymer Reference 
Interaction Site Model (PRISM) liquid state theory to 
study phase transitions and structure of dense mixtures 
of hard nanoparticles and flexible polymer coils. Their 
calculations were performed over the entire composi-
tional range from the polymer melt to the hard sphere 
fluid, with the focus being on polymers that adsorb on 
nanoparticles. Many body correlation effects were fully 
accounted for in the determination of the spinodal phase 
separation instabilities. An example phase diagram is 
presented in Fig.  24. It can be discerned that depletion 
and bridging phase separation occur at low and high 
attraction strengths, respectively. Quantitatively, many 
particle effects are found to always reduce miscibil-
ity. Depletion phase separation was similar for differ-
ent attraction ranges, with a critical point at rather low 
filler volume fractions. This is in contrast to the bridg-
ing induced demixing transition where the critical point 
is located at very high nanoparticle volume fractions. 
Moreover, increasing the attraction range increases the 
thickness of the bound layer and the importance of many 
body effects, which further decreases miscibility in the 
high filler volume fraction regime relative to what was 
predicted by a two particle virial analysis [145]. How-
ever, when bridging effects are very strong and phase 
separation occurs at low volume fractions, decreasing 
the attraction range can lead to a stronger, shorter range 
bridging attraction that reduces miscibility. Increasing 
particle size generally disfavors miscibility on both the 
depletion and bridging sides of the spinodal phase dia-
gram, though the effect on depletion is more significant.

Wei et  al. [258] have investigated silica nanoparticle 
dispersions in polystyrene, poly(methyl methacrylate), 
and poly(ethylene oxide) melts by means of a density 
functional approach. The polymer chains were regarded 
as coarse-grained semi-flexible coils whose segment size 
matched the Kuhn length of the polymer under investi-
gation. The particle-particle and particle–polymer inter-
actions were calculated in the grounds of the Hamaker 
theory, following Vogiatzis and Theodorou [148, 192]. 
In order to characterize nanoparticle dispersion, Wei 
et al. employed the second virial coefficient, B2, defined 
as:

where the first term accounts for the particle contribu-
tion, and the second one is the polymer mediated contri-
bution. The local density of particles is denoted as �n(�), 
while the average particle density as �n. �n(�) varies as a 

(67)B2 =
2

3
��3

n
+ 2� ∫

∞

�n

[
1 −

�n(�)

�n

]
r2dr

function of distance between particles, making it a critical 
link to particle microstructure. The pair correlation func-
tion approaches asymptotically �n(�)∕�n = 0 when r < 2Rn 
(Rn being the radius of the particles) as particles cannot 
interpenetrate and �n(�)∕�n ≃ 1 as r → ∞ as the likelihood 
of finding a particle becomes proportional to the average 
particle density. Figure 25 shows the second virial coeffi-
cients for different particle sizes at constant particle volume 
fraction � = 5%. Positive values of B2 indicate stable parti-
cle dispersion (effective particle-particle repulsion), while 
a negative value signifies unstable dispersion. The results 
are in agreement with previous theoretical studies: the ten-
dency to dispersion increases as the particle size increases 
[259]. It can be seen that B2 becomes independent of the 
particle size after a threshold value, that meaning the effect 
of particle size on the pair correlation function becomes 
insignificant. Before that critical value, B2 increases but its 
increasing amplitude declines as the particle size increases. 
Density functional theory confirms that large particles 
are more likely to achieve stable dispersion than small 
particles.

7.2 � Polymer Grafted Nanoparticles

One approach for controlling the particle dispersion in the 
polymer matrix is to alter the particle surface chemistry 
through the attachment of polymer chains. The composi-
tion, architecture, and distribution of the grafted chains 
can be carefully designed to tailor interparticle interac-
tions, thereby controlling the dispersion state [33]. In the 
special case where the chemical composition of the graft 
and matrix chains are identical, the entropic contributions 

Fig. 25   Second virial coefficient as a function of particle size 
for silica particles dispersed in PS matrix at volume fraction 5 %. 
(Reprinted with permission from Ref. [258]. Copyright (2015) Amer-
ican Chemical Society.)
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dominate the thermodynamics [175, 260], and uniform dis-
persion can be achieved both for the case of spherical nano-
particles [174, 261], and the case of nanorods [262].

7.2.1 � Experimental Findings

In a number of studies, empirical phase diagrams have been 
developed for this special case, where the particle misci-
bility is a function of grafting density, �, the ratio between 
the molecular weight of the grafted chains, N, and matrix 
chains, P, i.e. P / N, as well as the particle radius, Rn [14, 
71, 72, 173, 174, 261, 263–266]. Sunday et al. [174, 267] 
quantified the stability of polystyrene-grafted silica nano-
particles in PS matrices with ultrasmall angle X-ray scat-
tering (USAXS) and transmission electron microscopy 
(TEM). They developed the phase diagram presented in 
Fig. 26 to predict nanoparticle dispersion based on the graft 
polymer density, �, and the graft and free polymer molecu-
lar weights, or N and P, respectively.

The phase diagram of Fig.  26 shows three distinct 
regions. When � is below the allophobic limit (�1), the 
surface coverage of grafted chains is low enough that the 
interactions between the particle and the matrix chains 
are not screened out sufficiently and the grafted particles 

behave similarly to block copolymers, aggregating into dis-
tinct morphologies [14, 268, 269]. As � increases above 
�1, the matrix and grafted chains interpenetrate, resulting 
in a “wet” brush and repulsive interactions between nano-
particles, thus stabilizing their dispersion. The autophobic 
dewetting line corresponds to a continuous, second-order 
transition, resulting from the expulsion of the melt from 
the brush for densely grafted chains (𝜎N1∕2 > 1) which 
should lead to nanoparticle aggregation through the attrac-
tion between graft layers [270]. Larger values of Rn, �, or 
P/N result in a larger entropic penalty for intermixing due 
to crowding of the grafted layer. As the entropic penalty 
grows, the interpenetration width between the matrix and 
grafted chains decreases until the matrix chains are com-
pletely expelled, resulting in attractive interactions and par-
ticle aggregation. This occurs above the autophobic phase 
transition at �2, a discontinuous, first-order transition at low 
grafting densities.

Bansal et  al. [27] have experimentally observed and 
modeled the anisotropic self-assembly of small PS-g-
silica nanoparticles with cores of Rn∼10 − 13nm in the 
allophobic dewetting region at lower grafting densities 
(� = 0.01 − 0.10 chains∕nm2) [14]. Using slightly higher 
grafting densities (�∼0.2 − 0.7 chains∕nm2), Chevi-
gny et  al. [186] used similar-sized PS-g-silica NPs with 
N = 5 − 50 kg/mol in P = 140 kg/mol where particles 
with the longest grafts (P∕N = 2.8) dispersed uniformly, 
whereas those with the shortest grafts (P∕N = 28) phase 
separated from the bulk, forming spherical aggregates. 
The dispersion of silica NPs with higher graft densities has 
been investigated in which two sets of PS-g-silica NPs, the 
first with N = 110 kg/mol and � = 0.27 chains∕nm2 and 
the second with N = 160 kg/mol and � = 0.57 chains∕nm2 
have been shown to disperse at least up to P∕N = 2.3 [271] 
and 1.6 [27], respectively.

Another way of tuning the mechanical properties of 
composite materials is by dispersing hydrophilic nanofill-
ers in highly hydrophobic polymer matrices [272]. Martin 
et  al. [273] have performed simulations and experiments 
on mixtures containing polymer grafted nanoparticles in 
a chemically distinct polymer matrix, where the graft and 
matrix polymers exhibit attractive enthalpic interactions at 
low temperatures that become progressively repulsive as 
temperature is increased.

7.2.2 � Insight Obtained from Simulations

Trombly and Ganesan [264] have calculated the potential of 
mean force (PMF) between grafted nanoparticles immersed 
in a chemically identical polymer melt using a numeri-
cal implementation of polymer mean-field theory. These 
authors focused on the interpenetration width between 

Fig. 26   Illustration of the phase diagram for nanoparticle stability as 
a function of grafting density (�) and the ratio of the lengths of the 
free over the grafted chains (P/N). Particles at low grafting densities 
encounter the allophobic dewetting transition at �1. Increasing � leads 
to complete wetting of the brush by the melt, stabilizing the nano-
particle dispersion. Increasing the graft density further leads to the 
autophobic dewetting transition at �2 and unstable dispersion. Particle 
dispersion is unstable at all grafting densities when P∕N > (P∕N)∗. 
(Reprinted with permission from Ref. [174]. Copyright (2012) Amer-
ican Chemical Society.)
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the grafted and free chains and its relationship to the pol-
ymer-mediated interparticle interactions. To this end, they 
quantified the interpenetration width as a function of par-
ticle curvature, grafting density, and the relative molecular 
weights of the grafted and free chains.

Meng et al. [266] used Molecular Dynamics simulations 
to delineate the separation dependent forces between two 
polymer-grafted nanoparticles in a homopolymer melt and 
the associated potential of mean force (PMF). The nano-
particle radius (=5 in units of the chain monomers) and 
grafted brush length (=10) were held constant, while the 
grafting density and the polymer matrix length were var-
ied systematically in a series of simulations. At first, it was 
shown that simulations of a single nanoparticle did not 
reveal any signatures of the expected autophobic dewet-
ting of the brush with increasing polymer matrix length 
(in agreement with Monte Carlo simulations of Vogiatzis 
and Theodorou [192]). In fact, density distributions of the 
matrix and grafted chains around a single nanoparticle 
appeared to only depend on the grafting density, but not 
on the matrix chain length. However, the calculated forces 
between two nanoparticles in a melt, presented in Fig. 27, 
showed that increasing the matrix chain length, M, from 10 
to 70 causes the interparticle PMF to go from purely repul-
sive to attractive with a well depth of the order of kBT  (with 
kB being the Boltzmann constant). It was speculated that 
these results were purely entropic in origin and arise from 
a competition between brush-brush repulsion and an attrac-
tive inter-particle interaction caused by matrix depletion 

Fig. 27   Potential of mean force between two grafted nanoparticles in 
two cases, Σ = 0.38 chains/�2 and matrix chain length M = 10 shown 
in solid black lines; Σ = 0.76 chains∕�2 and M = 70 shown in solid 
red lines. The dotted lines show the potential of mean force obtained 
from the corresponding cases of the work of Smith and Bedrov [274]. 
(Color figure online) (Reprinted from [266]—Published by The Royal 
Society of Chemistry.)

Fig. 28   Potential of Mean Force (PMF) in units of kBT  versus inter-
particle distance, r − D (in units of monomer diameter, d), between 
grafted nanoparticles (D = 5d) at grafting denisties of a 0.1, b 0.25 
and c 0.65 chains∕d2 and polydispersity indices 1.0 (circles), 1.5 
(squares), 2.0 (upward facing triangles), and 2.5 (downward facing 
triangles) with average grafted chain length of 20 in a dense solution 
of monodisperse homopolymer matrix chains of lenght 10 (solid sym-
bols) and 40 (open symbols). The insets have the same axis labels as 
the main plots. (Reprinted figure with permission from [275]. Copy-
right 2013 by the American Physical Society)
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from the inter-nanoparticle zone (i.e. an Asakura-Oosawa 
type inter-particle attraction). Figure 27 compares the PMF 
with the results from Smith and Bedrov’ simulations [274] 
of a similar coarse-grained system using the umbrella sam-
pling method for an apparently identical chain length and 
coverage. The two studies are in qualitative agreement to 
each other, with the PMF of Meng et al. consistently shifted 
toward smaller separations.

Martin et  al. [275] presented an integrated theory and 
simulation study of polydisperse polymer grafted nano-
particles in a polymer matrix to demonstrate the effect of 
polydisperisty in graft length on the potential of mean force 
between the grafted particles. It is evident from Fig.  28 
that increasing polydispersity in graft length reduces the 
strength of repulsion at contact and weakens the attrac-
tive well at intermediate interparticle distances, completely 
eliminating the latter at high polydispersity index. The 
reduction in contact repulsion was attributed to polydisper-
sity relieving monomer crowding near the particle surface, 
especially at high grafting densities. The elimination of the 
midrange attractive well could be attributed to the longer 
grafts in the polydisperse graft length distribution that in 
turn introduced longer range steric repulsion and altered 
the wetting of the grafted layer by matrix chains. That 
work demonstrated that at high grafting densities, polydis-
persity in graft length can be used to stabilize dispersions 
of grafted nanoparticles in a polymer matrix at conditions 
where monodisperse brushes would cause aggregation.

8 � Rheology

8.1 � Polymer Entanglements

One of the fundamental concepts in the molecular descrip-
tion of structure—property relations of polymer melts is 
chain entanglement. As the molecular weight of the mol-
ecules in a polymer melt is increased, the spatial domain 
spanned by any given chain increasingly overlaps with 
those occupied by its neighbors. When macromolecules 
interpentrate, the term entanglements intends to describe 
the topological interactions resulting from the uncross-
ability of chains. The fact that two polymer chains cannot 
go though each other in the course of their motion changes 
their dynamical behavior dramatically, without altering 
their equilibrium properties. Entanglements play a key role 
in the viscoelastic properties of polymers, as evidenced, for 
example, by the emergence of a plateau region in measure-
ments of the storage modulus as a function of frequency.

Molecular simulations have confirmed that the overall 
motion of the chains in a polymer melt is restricted to diffu-
sion along their “primitive paths”, which represent the dif-
fusive paths that linear chain molecules follow between their 

two ends as a result of topological constraints [149]. The 
advent of computational algorithms enabled direct observa-
tion of entanglements that arise in polymeric melts [276–278]. 
Anogiannakis et  al. [38] have examined microscopically at 
what level topological constraints can be described as a col-
lective entanglement effect, as in tube model theories, or as 
certain pairwise uncrossability interactions, as in slip-link 
models. They employed a novel methodology, which ana-
lyzes entanglement constraints into a complete set of pairwise 
interactions (links), characterized by a spectrum of confine-
ment strengths. As a measure of the entanglement strength, 
these authors used the fraction of time for which the links are 
active. The confinement was found to be mainly imposed by 
the strongest links. The weak, trapped, uncrossability interac-
tions cannot contribute to the low frequency modulus of an 
elastomer, or the plateau modulus of a melt.

8.1.1 � Insight Obtained from Simulations

Riggleman et al. [279] have carried out a detailed examina-
tion of entanglements in a nanocomposite glass. They have 
conducted Molecular Dynamics simulations of an ideal 
bead-spring polymer [149] nanocomposite model in which 
the nanoparticles were dispersed throughout the polymeric 
matrix. After equilibration in the melt state, all configura-
tions were cooled below their glass transition temperature, 
where they were subsequently aged using MD for a short 
period. Finally, a simulation of the creep response of each 
sample was performed, where tensile and compressive 
stresses were applied to the glassy specimens. In order to 
reduce the chains to their primitive paths, these authors 
employed the CReTA algorithm of Tzoumanekas and The-
odorou [278]. During the reduction process, the diameter of 
the particles is reduced to facilitate slippage of entangled 
chains past each other, up to the point that further decrease 
in the diameter of the particles no longer has an appreci-
able effect on primitive path statistics. The nanoparticles 
are necessarily frozen in space as the algorithm proceeds.

By examining all particles, one can calculate the distri-
bution of the number of primitive path contacts per particle 
in the system, shown in Fig. 29(a). The majority of the par-
ticles trap at least one primitive path. The entanglements 
due to polymer chains crossing each other are expected to 
exhibit little (if any) change during deformation. The only 
mechanism for the entanglements to disappear is through 
chain ends slipping past an entanglement junction; such 
effects are anticipated to be minimal in the glassy state. 
However, Fig.  29(a) reveals appreciable changes in the 
distribution of the number of primitive path contacts per 
particle; the number of contacts per particle increases sig-
nificantly upon deformation. Figure  29(b) shows how the 
average number of contacts per particle increases with 
time for both tensile and compressive deformations. An 
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intriguing, overall physical picture emerges from the heter-
ogenous nonaffine displacements and the particle-induced 
nucleation of entanglements (Fig. 29(b)). Figure 29(c) pro-
vides the number of entanglements for three particles. The 

particle that exhibits the largest nonaffine displacements 
begins with two primitive path contacts, and as the defor-
mation proceeds loses its primitive path contacts. Since 
that particle was not hindered by any primitive paths, it was 
able to move throughout the system more easily. In con-
trast, the particle with the smallest nonaffine displacements 
(plotted using up triangles) experienced two or more primi-
tive path contacts during the entire deformation. Those 
entanglements served to trap the particle and forced it to 
move along them, in an affine manner. Nanoparticles were 
found to serve as entanglement attractors, particularly at 
large deformations, altering the topological constraint net-
work that arises in the composite material.

Hoy and Grest [280] performed primitive path analysis 
[276] of polymer brushes embedded in long-chain melts. All 
simulations were for a coarse-grained model [149] in which 
monomers were represented by beads (of size �) connected 
by springs. The systems studied consisted of long grafted 
chains of length N = 501 beads, whereas the entangle-
ment length in a melt is approximately Ne = 70 [281]. The 
polymeric matrix studied consisted of melt chains of length 
P = 1000 beads. As expected, the brush-brush entanglement 
density, �bb

e
(z), increases rapidly with the grafting density for 

overlapping brushes. The brush-melt entanglement density, 
�bm
e
(z), increases also with the grafting density, but even at 

low grafting densities there is considerable brush-melt entan-
glement. Moreover, there is clear crossover from dominance 
of brush-melt entanglements to brush-brush entanglements 
as coverage increases. Figure 30 depicts brush-brush, brush-
melt and melt-melt entanglement densities for three differ-
ent grafted densities 0.008, 0.03 and 0.07 (in units of �−2

). The peak of �bm
e
(z) is always at z ≃ 15�, but the width of 

the first peak increases dramatically with increasing grafting 
density. At low z, the crossover between a preponderance of 
brush-melt entanglements and preponderance of brush- brush 
entanglements clearly occurs at 0.03�−2 grafting density. 
At this coverage, the peaks of the brush-brush and brush-
melt entanglement densities are of nearly equal height. For 
higher coverages, the peak of the brush-brush entanglement 
density is higher, the reverse of the situation for lower cov-
erages. Summarizing, when surrounded by melt, the brushes 
entangle predominantly with the melt at low coverage and 
with themselves at high coverage. The peak of the brush-melt 
entanglement density is highest at an intermediate coverage, 
but the integrated areal brush-melt entanglement density con-
tinues to increase with coverage for the studied systems.

8.2 � Viscosity

8.2.1 � Experimental Findings

Nanoparticles have been shown to influence mechanical 
properties, as well as transport properties, such as viscosity. 

Fig. 29   a Probability that a nanoparticle has a given number of con-
tacts in the initial state (open circles), after compressive deformation 
(open diamonds), and after tensile deformation (open squares). The 
errors are approximately the size of the symbols. b The total number 
of primitive path contacts per nanoparticle as the system deforms in 
tension (solid line) or compression (dashed line). c Number of primi-
tive path contacts plotted against the instantaneous strain for three 
chosen particles as the nanocomposite system deforms. The particle 
that exhibited the largest nonaffine displacements is represented by 
left triangles while the one with the smallest nonaffine displacements 
is plotted using up triangles. (Reprinted from [279], with the permis-
sion of AIP Publishing.)
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Until recently, the commonly held opinion was that particle 
addition to liquids, including polymeric liquids, produces an 
increase in viscosity, as predicted by Einstein a century ago 
[282, 283]. However, it was recently found by Mackay and 
coworkers [208, 284, 285] that the viscosity of polystyrene 
melts blended with crosslinked polystyrene particles (and 
later also with fullerenes and other particles) decreases and 
scales with the change in free volume (due to introduction of 
athermal excluded volume regions in the melt) and not with 
the decrease in entanglement. Later, [285] fullerenes and 

magnetite particles were found to produce the same non-Ein-
stein viscosity decrease effect.

Micron-sized spherical fillers increase the viscosity of a 
pure polymer melt from �p to a value of � predicted by the 
Einstein–Batchelor law:

where � is the particle volume fraction [201, 219, 286]. 
However, for nanosized fillers, � can be reduced or 
increased relative to the pure polymer [208, 284, 287–293]. 
While there have been extensive simulations on nanocom-
posites, a few of them have focused on the importance of 
nanoparticle addition on flow behavior [290, 294].

8.2.2 � Insight Obtained from Simulations

Kalathi et  al. [196] employed nonequilibrium Molecu-
lar Dynamics simulations in order to find out whether 
the shear viscosity of a polymer melt can be significantly 
reduced when filled with small energetically neutral nano-
particles. That proved to be the case, apparently indepen-
dently of the polymer’s chain length. Analogous to solvent 
molecules, small nanoparticles seem to act as plasticizers 
and reduce the viscosity of a polymer melt. Their simula-
tions allowed them to organize the viscosity data of filled 
polymer melts as a function of the dimensions of the matrix 
chains and the particles. Figure 31(a) plots simulation data 
for athermal (with respect to the strength of polymer–parti-
cle interactions) polymer nanocomposite melts, which cor-
respond to the experiments where the nanoparticles and the 

(68)
�

�p
= 1 + 2.5� + 6.2�2

Fig. 30   Brush-brush (dashed), brush-melt (solid) and melt-melt 
(dash-dotted) entanglement densities, �bb

e
(z), �bm

e
(z), and �mm

e
(z) for 

three different grafting densities of a 0.008, b 0.03 and c 0.08 chains 
�−2. (Reprinted with permission from Ref. [280]. Copyright (2007) 
American Chemical Society.)

Fig. 31   Viscosity of polymer nanocomposites as a function of 
the polymer radius of gyration and nanoparticle diameter. Square  
symbols correspond to 𝜂∕𝜂p < 1, diamonds to 𝜂∕𝜂p > 1, circles to 
�∕�p ≃ 1 at low nanoparticle loading, and triangles to the case where 
an initial increase of viscosity with nanoparticle loading is followed 
by a decrease. a Experimental data for athermal systems are from 
[208, 284]. Systems above the solid orange line should be miscible. 
The black “viscosity” line is extrapolated from the simulation find-
ings. b Corresponding plot for dissimilar mixtures. Only the viscosity 
line is shown, Data are from [287–293] (Reprinted figure with per-
mission from [196]. Copyright 2001 by the American Physical Soci-
ety)
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melts have the same chemical structure [208, 284], while 
chemically dissimilar mixtures are considered in Fig. 31(b) 
[287–293]. In Fig. 31(a), Kalathi et al. have also included 
the miscibility line from ref. [150] suggesting that the 
experiments correspond to miscible nanoparticle-polymer 
mixtures. The “viscosity” line drawn from the simulations 
separates regions where the nanocomposite’s viscosity is 
smaller from those where viscosity is larger than that of the 
pure melt. For short chains, the viscosity crossover occurs 
when the nanoparticle size is comparable to Rg. In contrast, 
the limited data for large Rg suggest that the line is nearly 
vertical.

Stephanou et al. [295] introduced a continuum model for 
polymer melts filled with nanoparticles capable of describ-
ing in a unified way their microstructure, phase behavior, 
and rheology in both the linear and nonlinear regimes. That 
model was based on the Hamiltonian formulation of transport 
phenomena for fluids with a complex microstructure with 
the final dynamical equations derived by means of a general-
ized (Poisson plus dissipative) bracket. The model describes 
the polymer nanocomposite melt at a mesoscopic level by 
using three fields (state variables): a vectorial (the momen-
tum density) and two tensorial ones (the conformation tensor 
for polymer chains and the orientation tensor for nanoparti-
cles). A key ingredient of the model is the expression for the 
Helmholtz energy, A, of the polymer nanocomposite. Beyond 
equilibrium, A contains additional terms that account for the 
coupling between microstructure and flow. In the absence 
of chain elasticity, the proposed evolution equations capture 
known models for the hydrodynamics of a Newtonian sus-
pension of particles. Figure 32 presents the relative viscosity 

predicted by the model of Stephanou et  al. for an unentan-
gled PEO melt with molecular weight M = 1000 g/mol filled 
with silica nanoparticles of diameter D = 43 nm [296]. Due 
to the large nanoparticle volume fractions covered in the 
measurements (up to 50%), neither the Einstein equation nor 
the Einstein- Berthelot-Green one are applicable [296]. A 
better choice is the empirical equation proposed by Krieger 
and Dougherty [297] for dense Newtonian suspensions. It can 
also be observed that for � ≥ 0.27 the data in Fig. 32 exhibit 
a plateau in the limit of infinitely high shear rates. At those 
shear rates, flow is so fast that thermal motion cannot destroy 
the imposed structure (fully aligned molecules) on polymer 
chains.

9 � Mechanical Properties

9.1 � Moduli of PNCs

Three different models [298] have been proposed by Ein-
stein [282, 283], Eilers [299], and Guth [300] for estimat-
ing the enhancement of the shear modulus of composites 
incorporating spherical particles:

with � being the volume fraction of particles dispersed 
and G and Gp the shear moduli of the pure polymer and 
the composite, respectively. Einstein derived his model for 
small volume fractions of particles, where the enhance-
ment in the shear modulus (or viscosity increase) can be 
estimated by a linear superposition of the shear distortions 
arising from individual particles; though this relation-
ship was originally derived for shear viscosity of particle 
suspensions, it is also applicable to a host of other prop-
erties, including the shear modulus of composites. Later, 
Guth extended this model to higher � by accounting for 
additional shear distortion arising from the interactions 
between the distortions arising from neighboring particles. 
Eilers made empirical corrections to Einstein model to 
account for the dramatic rise in the viscosity of suspensions 
observed when the volume fraction approaches the close-
packing sphere density limit.

Surve et  al. [312] employed a combination of polymer 
mean field theory and Monte Carlo simulations to study the 
polymer-bridged gelation, clustering behavior, and elastic 
moduli of polymer-nanoparticle mixtures. Polymer self-
consistent field theory was first numerically implemented 
in order to quantify both the polymer induced interaction 
potentials and the conformational statistics of polymer 
chains between two spherical particles. Subsequently, the 

(69)
G

Gp

=

⎧⎪⎨⎪⎩

1 + 2.5� Einstein

1 + 2.5� + 14.1�2 Guth�
1 + 1.25� +

1.25�

1−1.35�

�2
Eilers

Fig. 32   Comparison of the model predictions of Stephanou et  al. 
[295] for the relative viscosity of a polymer nanocomposite as a 
function of nanoparticle volume fraction and imposed shear with 
the experimental measurements of Anderson and Zukoski [296]. 
(Reprinted with permission from Ref. [295]. Copyright (2014) Amer-
ican Chemical Society.)
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formation and structure of polymer-bridged nanoparticle 
gels were examined using Monte Carlo simulations. These 
authors used the number distribution of bridges, obtained 
from their simulations, to quantify the elastic properties of 
the polymer nanocomposites in the postgel regime. Simi-
lar to classical network theories, they assumed that the only 
contribution to the elastic response of the system comes 
from the backbone of the percolated network and that the 
“sol” fraction and the dangling ends of the network do not 
impact elasticity to the system. They defined the backbone 
of the percolated network as the percolated cluster, exclud-
ing the dangling tails and dangling loops, that can be iden-
tified as the largest biconnected component of a percolated 
cluster. Since, for the case of bridging induced percola-
tion, the interparticle bridges served as the stress bearing 
bonds between the particles, the enhancement in the elastic 
modulus was assumed to be proportional to the number of 
such bridges, at a given volume fraction of particles. Fig-
ure 33(a) displays the elastic moduli scaled by a constant 
factor as a function of particle volume fraction, expressed 
as � − �c, with � and �c being the volume fraction and 
the percolation volume fraction of the particles, respec-
tively. As observed from the figure, the elastic moduli fol-
low a universal power law scaling, G ∝

(
� − �c

)��, with 
�� ≃ 1.79. If energetic contributions to elasticity are taken 
into account, higher elastic exponents appear from ��∼2.1 
to 3.8 depending on the relative influence of stretching 
entropy and bending energy [313, 314] (Fig. 33(b)).

McEwan et  al. [315] predicted the storage modulus by 
employing a Zwanzig–Mountain relation and Monte Carlo 
simulations. In parallel, these authors measured the modu-
lus from rheology experiments on samples well character-
ized with ultra-small angle X-ray scattering. These authors 
connected particle microstructure to the storage modulus 

at infinite frequency, G�
∞

, through the Zwanzig-Mountain 
equation for isotropic molecular fluids [316]:

where the first term within the parentheses represents an 
ideal contribution to the modulus due to the presence of the 
particles and the second term accounts for the contribution 
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⎛⎜⎜⎝
3�c

4�
+

3�2
c

40� ∫
∞

0

g(r)
d

dr

⎡⎢⎢⎣
r4
U
⋅
(r)∕

�
kBT

�

dr

⎤⎥⎥⎦
dr

⎞⎟⎟⎠

Fig. 33   a Master curve for the scaled elastic modulus obtained from 
simulations as a function of the particle volume fraction � − �c.  b 
Scaled elastic modulus for experimental polymer-particle sys-

tems. The sources of experimental data are listed in refs [301–311]. 
(Reprinted from [312], with the permission of AIP Publishing.)

Fig. 34   Correspondence between the measured and the predicted 
moduli, G�

∞
, of radius Rn ≃ 100 nm silica particles in 2 kg mol−1 

PDMS (filled circles), R ≃ 100 nm particles in 13 kg mol−1 PDMS 
(filled light gray circles) and R ≃ 600 nm particles in 8 kg mol−1 
PDMS (open dark gray circles). Modulus predictions are also shown: 
MC simulations (matching colored “x” symbols), the analytical 
Zwanzig-Mountain relation (matching colored solid lines), and Hall 
equation for close packed hard spheres (dark gray dashed line). 
(Reprinted from [315]—Published by The Royal Society of Chemis-
try.)
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due to their interaction and microstructure. The radial dis-
tribution of nanoparticles, g(r), was obtained from Monte 
Carlo simulations of the particles obeying a Mewis-Russel 
[317] potential for polymer-grafted spheres. Their results 
are presented in Fig.  34. Silica particles of radii R ≃ 100 
nm and 600 nm were synthesized, grafted with hydroxyl-
terminated polydimethylosiloxane (PDMS) chains and 
finally dispersed in PDMS matrices at volume fractions, �c,

ranging from 0.02 to 0.65. The experimental measurements 
are presented alongside the theoretical results in Fig.  34. 
It can be clearly seen that the storage modulus increases 

upon the addition of particles, following an almost univer-
sal scaling with the volume fraction of the particles. In all 
cases, the Zwanzing-Mountain predictions are very close to 
the experiments and to the predictions of the Hall equation 
of state for solids [318] (at high volume fractions where the 
materials behave in a solid-like manner).

To provide insights into how polymer-grafted nanopar-
ticles (NPs) enhance the viscoelastic properties of poly-
mers, Hattemer and Arya [319] computed the frequency-
dependent storage and loss moduli of coarse-grained 
models of polymer nanocomposites by employing Molec-
ular Dynamics simulations. Figures 35(a) and (b) present 
the computed G�∕G�

0
 and G��∕G��

0
 ratios plotted against � 

for the six polymer nanocomposites containing bare and 
grafted nanoparticles at low- and high-frequency regimes 
along with the the moduli predicted by using the theo-
retical models of Einstein, Eilers and Guth. It is evident 
that both G�∕G�

0
 and G��∕G��

0
 increase with increasing vol-

ume fraction, consistent with the trend obtained from 
the strain distortion models, though the different models 
differ somewhat from each other. Moreover, the moduli 
ratio computed from simulations at high frequencies are 
of comparable magnitude to those predicted by the mod-
els, especially the model proposed by Guth, whereas the 
ratios computed at low frequencies tend to exceed all 
model predictions. At low frequencies, the computed 
G�∕G�

0
 ratios are more strongly affected compared to 

G��∕G��
0
, which is consistent with the expectation that G′ is 

more strongly affected by changes in the relaxation times 
of the polymer chains (quadratic dependence with the 
Rouse time) as compared to G′′ (linear dependence).

Fig. 35   Ratio of storage (a) and loss modulus (b) of the three bare- 
and the three grafted-nanoparticle systems to that of pure polymer 
plotted as a function of the effective nanoparticle volume fraction. 
The moduli ratios obtained from simulations at low and high frequen-
cies are shown as blue circles and red squares, respectively. Open 
symbols represent bare nanoparticles, and filled symbols represent 
grafted nanoparticles. The black solid, dotted, and dashed lines repre-
sent predictions from the models of Einstein [282, 283], Eilers [299], 
and Guth [300], respectively. (Color figure online) (Reprinted with 
permission from Ref. [319]. Copyright (2015) American Chemical 
Society.)

Fig. 36   a Distribution of local C̄44 with respect to the distance r 
from the center of a nanoparticle for three different types of interac-
tion considered at temperature T = 0.5. b Distribution of the local C̄44 

with respect to the distance r from the center of the nanoparticle for 
the attractive particle in the melt and glass regime. (Reprinted figure 
with permission from [320]. Copyright 2005 by the American Physi-
cal Society)
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9.2 � Local Moduli

It is now generally accepted that a nanoparticle will per-
turb the conformation of the polymer around it. However, 
the question still remains open whether such conforma-
tional changes are directly responsible for the mechanical 
behavior of the polymer, i.e. whether there are any rein-
forcement or weakening effects of a polymer by a nanom-
eter-sized particles, whether such effects are localized, and 
if so, what is the extent and the magnitude of that localiza-
tion. Papakonstantopoulos et al. [320, 321] have developed 
a formalism and applied it to calculate the local mechani-
cal properties of a nanocomposite system in detail. Their 
coarse-grained, bead-spring Monte Carlo simulations 
revealed that a glassy layer is formed in the vicinity of the 
attractive filler, contributing to the increased stiffness of the 

composite material. Following Yoshimoto et al. [322], the 
local mechanical properties of the system were determined 
by discretizing the simulation box into small cubic ele-
ments and measuring the internal stress fluctuations within 
each cubic subdomain [323].

Figure 36(a) shows the local shear modulus as a function 
of the distance from the surface of the filler. An increase 
of the local C̄44 is observed for the attractive systems in the 
vicinity of the particle. This pronounced increase may be 
indicative of the existence of a glassy layer around the par-
ticles, even at temperatures above the glass transition tem-
perature (T∕Tg = 1.16), which was hypothesized by Berriot 
et al. [324]. The results of the neutral and repulsive system 
are more intriguing. The nanoparticle is surrounded by a 
region of negative modulus which is followed by a second 
region of higher than the bulk modulus. Figure 36(b) shows 
the local shear modulus as a function of temperature for 
the attractive particle. It can be seen that, as the temper-
ature decreases, the shear modulus of the solid-like layer 
around the particle increases. The thickness of that glassy 
layer, which is comparable to the radius of gyration of the 
polymer, also increases. In all cases, far from the particle, 
the shear modulus decays to the value corresponding to the 
pure polymer at the given temperature, as expected. Sum-
marizing, it seems that, even above the glass transition tem-
perature, nanoparticles induce the formation of a solid-like 
layer, whose existence has been invoked to explain experi-
mentally observed increases of the storage modulus in 
nanocomposites.

9.3 � Deformation Simulations

Riggleman et  al. [325] have examined the response of a 
polymer and a polymer nanocomposite glass to creep and 
constant strain rate deformations using Monte Carlo and 
Molecular Dynamics simulations. These authors found 
that nanoparticles stiffened the polymer glass, as evidenced 
by an increase in the initial slope of the stress-strain curve 
and a suppression of the creep response. Figure 37 shows 
the stress-strain curves obtained by Riggleman et al. [325] 
for both the neat and the nanocomposite polymer for both 
tension and compression at two different strain rates. All 
curves exhibit similar features: it can be discerned an ini-
tial elastic response followed by yield and strain softening 
when the strain � ≃ 0.05. For strains beyond � ≃ 0.10 the 
stress rises again as strain hardening begins. The Young’s 
modulus, E, was obtained by fitting the linear part of the 
elastic response (� ≤ 0.02) � = E�. Both under tension and 
compression, the nanocomposite system was found to be 
stiffer. Moreover, these authors reported that constant strain 
rate and constant stress deformations had different effect 
on the material’s position on its energy landscape, in a 

Fig. 37   Stress-strain curves for both the pure polymer and the nano-
composite at two true strain rates in both tension and compression. 
The strain rates are indicated in each figure. Error bars are indica-
tive. (Reprinted with permission from Ref. [325]. Copyright (2009) 
American Chemical Society.)
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way that neither the stress nor the strain rate were uniquely 
indicative of the relaxation times in the material [326].

Chao and Riggleman [327] studied the effect of nano-
particle curvature and grafting density on the mechanical 
properties of polymer nanocomposites. In their study, they 
developed a coarse-grained model of a polymer glass con-
taining grafted nanoparticles and examined the resulting 
effects on the elastic constants, strain hardening modulus, 
as well as the mobility of the polymer segments during 

deformation. They found that the elastic constants and 
yield properties were enhanced nearly uniformly for all 
nanocomposite systems studied, while the strain hardening 
modulus depended weakly on the grafted density and the 
nanoparticle size. Figure 38 shows the mechanical response 
of the systems studied under compressive deformation at a 
constant rate, where the measured stress is plotted against 
the ideal rubber elasticity factor, g(�) = 1∕� − �2, with 
� being the macroscopic stretch imposed on the speci-
mens. Early in the deformation, the polymer nanocompos-
ites exhibit an elastic response (g(𝜆) < 0.15) followed by 
yielding and strain softening. Finally, at larger stretches 
(g(𝜆) > 0.3), the polymer glasses enter the strain harden-
ing regime, and the stress resumes an increasing trend as 
strain continues to grow. These authors decomposed the 
stress calculated in their simulations into its components. 
The normalized contribution from the non-bonded interac-
tions between the nanoparticles and the grafted chains is 
presented in Fig. 38(a). It can be seen that the interaction 
between the nanoparticle and the grafted chains increases 
with the particle size, and its effect is only observed in the 
strain hardening region. This finding is coherent with the 
expected depletion of the matrix from particle surfaces 
with increasing particle size. Similarly, the stress contribu-
tions from the non-bonded interactions among the grafted 
chains is presented in Fig. 38(b). For low grafting densities 
(0.05 and 0.1) the non-bonded interaction between beads 
belonging to grafted chains does not contribute signifi-
cantly to the stress increase during strain hardening. How-
ever, for higher grafting densities (0.2 and 0.4), the non-
bonded interactions between the grafted chains contribute 
significantly to strain hardening. In contrast to the obvious 

Fig. 38   Different contributions to the stress tensor plotted against 
g(�). a Stress contributions from the non-bonded interaction between 
particles and the grafted chains for the systems with grafting density 
0.2, and Rn = 1.5 (black), 3.0 (red), and 4.5 (green). b Stress contri-
butions from the non-bonded interactions between the monomers of 

the grafted chains for the systems with Rn = 3 and grafting densities 
0.05 (black), 0.1 (red), 0.2 (green), and 0.4 (blue). All the stress val-
ues are normalized by the total number of grafted chains, M. (Color 
figure online) (Reprinted from [327] with permission from Elsevier.)

Fig. 39   Stress–strain relations of cross-linked polymer nanocompos-
ite networks with dispersed nanoparticles. Values of stress depend on 
the strength of polymer–nanoparticle interactions. In the high strain 
region, a rapid increase of the stress can be seen due to extended 
subchains of the crosslinked network. (Reprinted with permission 
from Ref. [328]. Copyright (2016) American Chemical Society.)
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dependence of the non-bonded component of the stress ten-
sor to the grafting density and particle radius, the bonded 
component of the stress tensor did not exhibit significant 
changes in behavior across the various nanocomposite sys-
tems investigated by Chao and Riggleman [327].

Hagita et al. [328] performed coarse-grained Molecu-
lar Dynamics simulations of nanocomposite rubbers with 
spherical nanoparticles on the basis of the Kremer-Grest 
[149] model. Figure 39 shows the stress–strain relations 
of a small mesh cross-linked polymer network for three 
nanoparticle–polymer interactions (repulsive, slightly 
attractive and attractive). There are clear differences 
between the repulsive and the attractive cases. However, 
both cases with attractive nanoparticle–polymer interac-
tions seem to behave similarly, probably due to the few 
contacts existing between the nanoparticles. Thus, the 
effect of the exact interaction strength on the stress–strain 
relations is minor. When the nanoparticles are trapped 
and fixed in a cross-linked polymer network, the num-
ber of contacts between them is expected to increase for 
a larger elongation ratio due to the compression in the 
directions perpendicular to the elongation axis. These 
authors [328] have also calculated the two-dimensional 
scattering patterns of nanoparticles during the elonga-
tion of the network. For strain levels >50% they observed 
a spot pattern in the structure factor and a two-point bar 
pattern in the scattering intensity.

10 � Concluding Remarks

We have presented a detailed, result-driven, review of 
research to address the fundamental problem of PNCs by 
implementing computer simulations at different levels of 
description. It is unfeasible through the use of a single 
simulation technique to capture all the relevant physics of 
the problem. On the one hand, fully atomistic Molecular 
Dynamics (MD) can account for the chemical interaction 
between nanoparticles and the polymer matrix. However, 
due to the computational demands of atomistic MD, the 
polymer matrix has to be comprised of oligomers rather 
than entangled polymers. On the other hand, coarse-
grained methods can provide us with an understanding 
of the underlying phenomena. However, due to the lack 
of explicit chemical information, coarse-grained meth-
ods should be carefully parameterized based on findings 
of more detailed simulations. In any case, even the wide 
spectrum of molecular simulation methods developed till 
now cannot fully capture the macroscopic behavior of 
PNCs. Coupling molecular simulations to continuum cal-
culations is the way to achieve this [329–331].
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