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Abstract
Resistance in micro-organisms against antimicrobial compounds is an emerging phenomenon in the modern era as compared 
to the traditional world which brings new challenges to discover novel antimicrobial compounds from different available 
sources, such as, medicinal plants, various micro-organisms, like, bacteria, fungi, algae, actinomycetes, and endophytes. 
Endophytes reside inside the plants without exerting any harmful impact on the host plant along with providing ample of 
benefits. In addition, they are capable of producing diverse antimicrobial compounds similar to their host, allowing them 
to serve as useful micro-organism for a range of therapeutic purposes. In recent years, a large number of studies on the 
antimicrobial properties of endophytic fungi have been carried out globally. These antimicrobials have been used to treat 
various bacterial, fungal, and viral infections in humans. In this review, the potential of fungal endophytes to produce diverse 
antimicrobial compounds along with their various benefits to their host have been focused on. In addition, classification 
systems of endophytic fungi as well as the need for antimicrobial production with genetic involvement and some of the vital 
novel antimicrobial compounds of endophytic origin can further be utilized in the pharmaceutical industries for various 
formulations along with the role of nanoparticles as antimicrobial agents have been highlighted.
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Introduction

Endophytes are micro-organisms that live in a symbiotic 
relationship with plants and reside within their healthy 
tissues. These microbes range from prokaryotic bacteria, 
actinomycetes, and eukaryotic fungi to latent virus or patho-
gens which expresses different symbiotic lifestyles with the 
host plant (Schulz and Boyle, 2006; Bao and Roossinck, 
2013; Wani et al. 2015). De Bary in 1886, was the first to 
put forth the concept of endophytes wherein he defined the 
endophytes as “any organism that grows within plant tis-
sues” (de Bary, 1866). However, the definition of endophytes 
has been modified and reformed by different authors from 
time to time. Unlike various phytopathogens or mycorrhi-
zas which cause visible morphological changes in the host 

plants, endophytes do not cause any symptomatic changes. 
They live in the inter and intracellular spaces of almost every 
plant organ, i.e., stem, roots, petioles, leaves, bark, seeds 
and latex without showing any overt symptom (Strobel and 
long, 1998; Kumara et al. 2014; Gunawardana et al. 2015).

They are reported from a variety of host plants, such as 
algae, bryophytes, pteridophytes, gymnosperms, and angio-
sperms (Hyde and Soytong, 2008). Of the reported 1.5 mil-
lion fungi, only 100,000 fungal species have been discovered. 
However, Petrini (1991) suggested that approximately one 
million species of endophytic fungi have been estimated to 
exist (Hawksworth 1991; Petrini, 1991; Dreyfuss and Chapera, 
1994). Also, it has been estimated that only 5% of fungal spe-
cies have been studied and many fractions of the total number 
of species have yet to be explored (Hawksworth 1991). Nev-
ertheless, for several years endophytes did not receive much 
attention, but currently, the potential of endophytes has been 
recognized in different sectors, like, agriculture, pharmaceu-
tical, and biotechnology industries (Gouda et al. 2016). The 
evolution of fungal endophytes has been reported to be associ-
ated with the evolution of plants and it still continues to evolve 
inside the host plants (Krings et al. 2012).
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Endophytes are known to produce various secondary 
metabolites, i.e., terpenoids, diterpenoids, polyketides, 
alkaloids, steroids, and anthraquinones (Zheng et al. 2021). 
In most cases, the majority of the compounds have antimi-
crobial properties and it is estimated that these properties 
include protection of the host plant from various pathogens, 
like bacteria, virus, fungi, nematodes, etc. (Gunatilaka 
2006). The exact phenomenon with respect to the involve-
ment of microbe or host in the production of these secondary 
metabolites is still not clear (Ludwig-Muller, 2019). Also, 
with the record elevation in the incidences of many existing 
and new pathogenic microbes, their recurrence and resist-
ance towards the currently available pharmaceuticals, the 
clinicians are searching for alternate sources of compounds 
to treat such infections. The antimicrobial compounds pro-
duced by the endophytes are considered advantageous over 
the conventional ones as they are environment-friendly, spe-
cifically toxic to certain harmful pathogens, whereas non-
toxic to humans (Singh et al. 2017). This purely endorses 
the use of secondary metabolites of endophytic origin as 
promising sources of antimicrobial compounds.

In recent years, the potential of fungal endophytes in vari-
ous sectors has been evaluated globally by many research-
ers, still, there is a need to get more insights into the ben-
efits conferred by them (Suryanarayanan et al. 2020). For 
instance, the first secondary metabolite isolated from an 
endophytic fungus was an anticancer diterpenoid alkaloid 
“taxol” which was obtained from an endophyte Taxomyces 
andreanae from the bark of Taxus brevifolia (Stierle et al. 
1993). After the discovery of this drug of endophytic origin, 
the trend of studying them for obtaining novel secondary 
metabolites of medicinal properties took a remarkable break-
through. Also, they have been reported to produce higher 
number of secondary metabolites than any other class of 
endophytes (Zhang et al. 2006).

In addition, recent advancements in the production of 
antimicrobial compounds by using CRISPR/Cas system 
which facilitates the production of novel classes of antimi-
crobial compounds viz., antibiotic enhancers, engineered 
antibodies, engineered phages, siderophore conjugates, 
photo-switchable antibiotics are also opening new ways 
for exploring novel antimicrobial compounds (Mantravadi 
et al. 2019). The recent techniques, like, nanotechnology 
and micro-engineering also makes it possible to cultivate 
the endophytic microbes which are not easy to culture from 
the plant (Mantravadi et al. 2019).

Classification of endophytes

The classification of endophytes has been a complex process 
and this continues from several years to make their defini-
tion more clear for better understanding. Initially, endophytes 

were divided into two distinct groups, with first group includ-
ing those endophytic fungi that remain symptomless for the 
whole life cycle inside the host and the second group which 
develop some external symptoms on the host plant, such as, 
root nodules (Azevedo et al. 2007). As per another classifica-
tion, endophytes were simply categorized into two different 
sub-groups, obligate endophytes and facultative endophytes 
(Hardoim 2008). The former were considered to be dependent 
solely on their host for their growth, survival and transmission 
whereas the latter to be administered to the host from outside 
environment and can also survive independent of their host 
(Abreu-Tarazi et al. 2010).

Endophytic fungi have also been categorized as clavicipita-
ceous and non-clavicipitaceous endophytes based on the range 
of hosts, mode of transmission, plant tissue being colonized, 
colonization frequency, biodiversity (high or low) and habi-
tat and non-habitat specific functions (Rodriguez et al. 2009). 
Both these groups are included in four different classes, i.e., 
Classes 1,2,3 and 4. Class 1 type of endophytes include cla-
vicipitaceous endophytes which are seen mainly predominant 
in grasses whereas other three classes are included in non-
clavicipitaceous type of endophytes which are mainly predom-
inant in non-grasses and higher vascular plants (Rodriguez 
et al. 2009).

According to a recent classification, endophytes are clas-
sified into two broader groups such as, systemic or true endo-
phytes and non-systemic or transient type of endophytes 
depending on a range of characters, like, biology, functional 
diversity, taxonomy, evolution and their mode of transmission 
(Wani et al. 2015). Systemic type of endophytes are known to 
inhabit the same plant in different seasons and exhibit verti-
cal (via seeds) mode of transmission than horizontal. On the 
contrary, non-systemic type of endophytes show variability in 
their abundance and diversity within the plant with the dynam-
ics in external climatic conditions and exhibit a horizontal 
mode of transmission (Wani et al. 2015). A brief description 
of the common classification system of endophytes is depicted 
in Fig. 1.

However, novel ways of classification of fungal endophytes 
have been adopted by different authors as per their host range, 
such as fungal endophytes of grasses (Tanaka et al. 2012), 
medicinal plants (Kaul et al. 2012), conifers (Kim et al. 2013) 
and mangroves (Demers et al. 2018). Similarly, based on the 
type of tissues being colonized, they are designated as foliar 
fungal, dark septate, root endophytes as well as stem/bark / 
seed endophytes and so on (Gakuubi et al. 2021).
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Benefits conferred by the endophytes 
to the host plant

The maintenance of the relationship between an endophyte 
and the host plant has continued for several years and during 
this course of time, they co-evolved in the vicinity of each 
other which has proved beneficial to both of them (Palani-
chamy et al. 2018; Adeleke et al. 2019). Endophytes play an 
important role in the survival of their host plants by provid-
ing both direct and indirect benefits (Mattoo and Nonzom, 
2021). Some of the direct benefits include:

Phytohormones production

The phytohormones produced by the endophytes are known 
to exhibit various morphological as well as structural 
changes in plants which aid in the sustainable agricultural 
systems (Sturz et al. 2000). For example, an endophytic fun-
gus Cladosporium sphaerospermum isolated from Glycine 
max is known to produce gibberellic acid (Hamayun et al. 
2009). In many cases, it has been reported that the endo-
phytes act indirectly by expressing the genes responsible 
for the production of hormones in the plants (Waqas et al. 
2012). It has been well exemplified by an endophytic fungus, 
Dietzia natronolimnaea which has been observed to modu-
late ABA signaling pathways in wheat to alleviate salinity 
stress by upregulating the genes, such as, TaABARE and 
TaOPRI (Ilangumaran and Smith, 2017).

Enhancement in photosynthetic activity

Endophytes are known to enhance the photosynthetic activ-
ity of many plants by increasing their chlorophyll content 

(Almuhayawi et al. 2021). For example, the root endophytic 
fungus Trichoderma is well recognized as a beneficial part-
ner in various crop plants as it is known to upregulate certain 
genes of the host involved in pigment formation for photo-
synthesis (Harman et al. 2021). The inoculation of Tricho-
derma sp., in wheat has also been reported to have a role 
in enhancing the water uptake and photosynthetic capac-
ity which in turn induced biomass production under salt 
stress (Oljira et al. 2020). Similarly, an Epichloe typhina 
endophytic to Dactylis glomerata improves photosynthetic 
efficiency by improving carbon assimilation and photochem-
istry of PSII (Rozpadek et al. 2015).

Siderophores production

Siderophores production by fungal endophytes prevents 
the plant from iron deficiency, as these compounds help in 
iron acquisition by the plant (Ansari et al. 2017). Numer-
ous endophytes produce siderophores which exhibit iron-
chelating properties and they indirectly compete with the 
pathogens for iron assimilation, thereby playing a dual role 
(Suman et al. 2016). For instance, many plants, such as, 
Cymbidium aloifolium, Triticum aestivum, and Vigna radiata 
have been observed to harbor many siderophores producing 
endophytes that not only help them in combating various 
phytopathogens but also promoted their growth and germi-
nation (Ripa et al. 2019; Chowdappa et al. 2020).

Nitrogen fixation

Fungal endophytes plays an important role in agriculture 
due to their nitrogen-fixing ability (Yang et al. 2015). For 
instance, an endophytic fungus Phomopsis liquidambaris 

Fig. 1   Successive classifications 
of endophytes a (Azevedo et al. 
2007) b (Hardoim et al. 2008) c 
(Rodriguez et al. 2009) d (Wani 
et al. 2015)
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increases nodulation and enhances nitrogen uptake of the 
host plant Arachis hypogaea L. (Xie et al. 2019). The inocu-
lation of these beneficial endophytic fungi in crop plants 
increases their growth and maintenance by the acquisi-
tion of nitrogen uptake (Poveda et al. 2021). Similarly, an 
endophytic yeast, Rhodotorula mucilaginous which was 
isolated from Typha angustifolia when inoculated in rice 
plant promotes and increases the nitrogen content in the tis-
sues (Paul et al. 2020). In addition, there are several similar 
experiments performed on different crop species for nitrogen 
assimilation in response to fungal endophytic inoculation 
(Rinu et al. 2014; Adnan et al. 2018; Christian et al. 2019; 
Tang et al. 2019; Wu et al. 2019).

Mineral solubilization

More than 99% of phosphorus present in the soil is non-
soluble and unavailable to plants (Rodriguez and Fraga, 
1999). Many studies have revealed the phosphate-solubi-
lizing activities of diverse endophytic fungi (Nath et al. 
2015; Almario et al. 2017; Rana et al. 2019). A recent study 
concluded that microbial inoculations in plants also help in 
increasing nutrients acquisition, like, P, K and Zn (Poveda 
et al. 2021) and organic acid concentration in root exudates 

which lowers the pH of the soil and assists in solubilization 
of these mineral nutrients (Sirohi et al. 2015). Apart from 
these, various experimental studies claim the importance of 
fungal endophytes for their host plant. Some of the recent 
examples of various benefits conferred by the endophytes is 
tabulated in Table 1.

On the other hand, the indirect benefits conferred to the 
plant include the following.

Biotic stress

Endophytes have been reported to perform various strategies 
to protect the plant from a number of biotic stresses, such 
as insects, pest, pathogens, and herbivores. Foliar fungal 
endophytes have been reported to upregulate the defense 
genes of the host plant which enhances the defense system 
of the host against various biotic stresses including patho-
gens and herbivores (Mejia et al. 2014). They colonize the 
epidermal tissues of the plant where they absorb nutrients 
for themselves, as well as inhibit the growth of pathogens 
inside the tissue and thereby induce resistance of the plant 
against different biotic stresses (Meena et al. 2017). They 
are also known to produce some toxic metabolites inside the 
different parts of the plant, such as, the stem, root or leaves 

Table 1   Benefits provided by endophytic fungi to host plants

S. No Endophyte Host Rewards to the host Reference

1 Paecilomyces formosus Cucumis sativus L IAA and various gibberellic acids 
(GA1, GA3, GA4, GA8, GA9, GA12, 
GA20, GA24)

Khan et al. (2012)

2 Penicillium sp. Camellia sinensis L Phosphate solubilization Nath et al. (2012)
3 Colletotrichum gloeosporioides CG60 Halophyte Gibberellin hormone Khalmuratova et al. (2015)
4 Chaetomium globosum Amaranthus viridis Cytotoxic and antimicrobial properties Piyasena et al. (2015)
5 Lasidioplodia pseusotheobromae Hottuynia cordata Thunb IAA and siderophore production Aramsirirujiwet et al. (2016)
6 Fusarium oxysporum and F. solani Solanum lycopersicum Prevent nematode production Bogner et al. (2016)
7 Sordariomycetes sp. Boswellia sacra IAA production, and enzymes like, 

phosphatase, cellulase and glucosi-
dase

Khan et al. (2016)

8 Penicillium crustosum Teucrium polium IAA production and phosphate solu-
bilization

Hassan, (2017)

9 Trichoderma harzianum TH 5–1-2 Pistacia vera Chitinase enzyme production Dolatabad et al. (2017)
10 Fusarium proliferatum BRL1 Oxalis corniculate Phosphate solubilization, siderophores 

production, IAA and Gibberellins 
production

Bilal et al. (2018)

11 Colletotrichum fructicola Coffea arabica IAA Numponsak et al. (2018)
12 Trametes versicolor and Piriformos-

pora indica
Triticum aestivum Increase biomass and Phosphorus 

content
Taghinasab et al. (2018)

13 Aspergillus awamori Wl1 Withania somnifera IAA production Mehmood et al. (2019)
14 Fusarium oxysporum Solanum lycopersicum GA3 production Ben Rhouma et al. (2020)
15 Daldinia eschscholtzii 2NTYL11 Stemona tuberosa Phosphate solubilization Suebrasri et al. (2020)
16 Trichoderma erinaceum ST-KKU2 Zingiber officinale Phosphate solubilization Suebrasri et al. (2020)
17 Aspergillus niger Solanum lycopersicum IAA, ascorbic acid, phenols, catalases Aziz et al. (2021)
18 Bipolaris spp. Zea mays IAA production Yousaf et al. (2021)
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to protect them from herbivory (Bischoff and White 2005; 
Saikkonen et al. 2002; Stone et al. 2004). In addition, they 
produce antimicrobial compounds as secondary metabo-
lite to protect the plant from different pathogenic microbes 
(Mousa and Raizada2015; Zhang et al. 2015). For example, 
the finger millet which is considered to be resistant to patho-
gens inhabits Phoma sp., as an endophyte that possesses 
strong antifungal activities against the pathogenic strain of 
Fusarium graminearum (Mousa et al. 2015).

Also, reports on some entomopathogenic fungi for their 
use in the biocontrol of insects have gained attention (Vega 
et al. 2008). Certain entomopathogenic fungi have also been 
reported to exist as an endophytes in plants for some part 
of their life cycle, suchas, Beauveria, Isaria, Lecanicillium 
and Metarrhizium (Lughtenberg et al. 2016). These kinds 
of fungi after becoming endophytic help the plants to over-
come biotic stresses, such as, nematodes and phytopathogens 
(Moraga 2020).

Abiotic stress

Fungal endophytes also helps the plants to overcome many 
abiotic stresses, such as, high temperature, soil salinity, oxi-
dative stress, cold stress, heat stress, drought, phytoremedia-
tion, and so on. (Rodriguez et al. 2009; White and Torres, 
2010; Waqas et al. 2012; Larriba et al. 2015; Mattoo and 
Nonzom, 2021). A study has revealed the inoculation of 
endophytic fungi Phoma glomerata and Penicillium sp., in 
the host cucumber helps the plant to overcome salinity and 
drought stress by increasing their biomass, various growth 
parameters and as well as assimilating the essential nutri-
ents (K, Ca and Mg) under induced salinity and drought 
stress as compared to the control (Waqas et al. 2012). The 
most prominent mechanism observed behind this scenario 
is the maintenance of the osmotic gradient of the cell, cell 
wall elasticity and proper assimilations and translocations of 
compounds inside the cell (Nieves-Cordones et al. 2019). It 
has also been observed that the fungal endophytes can also 
confer thermotolerance to the host plants to alleviate heat 
stress (Rodriguez et al. 2008; Ismail et al. 2018).

In addition to the aforementioned abiotic stresses, endo-
phytic fungi have also been reported to help the plant to 
overcome various oxidative stress, like, hydrogen peroxide, 
hydroxyl radicals, and superoxide anions (Sun et al. 2010; 
Lata et al. 2018). Similarly, they have also been reported to 
exhibit metal-chelating, metal sequestering as well as suit-
able degradation pathways which helps the plant to alleviate 
heavy metal-stressed habitat conditions (Aly et al. 2011). 
Also, reports on various fungal endophytes that assist in 
phytohormone production by alleviating metal stress are 
well established (Khan et al. 2017).

Benefits conferred by the host plant 
to the endophytic fungi

In this symbiotic relationship of endophytism, along with 
the host plant, the endophytes also obtain different advan-
tages from this close association. As discussed earlier, these 
two groups have shown co-evolution over the course of time 
(Khare et al. 2018). Fungal endophytes are benefited from 
this symbiotic relationship in a number of ways which are 
as follows:

Nutrient absorption

Endophytes absorbs nutrients especially the carbon sources 
from the host, by invading the photosynthesizing tissues of 
the plant (Mack and Rudgers, 2008). The host plant produces 
various metabolites which are bio-transformed by the endo-
phytes to further use them for their nutrition acquisition. For 
example, Cephalotaxus harringtonia produces glycosylated 
flavonoids which are bio-transformed by its endophytic fun-
gus, Paraconiothyrium variabile (a foliar fungal endophyte) 
to aglycones for enhancing the growth of its germinating 
hypha (Tian et al. 2014). Similarly, β-1,6-glucanase enzymes 
produced by an endophyte Neotyphodium sp., in the apoplast 
of host Poa alpina at the time of infecting the host helps in 
their nutrient acquisition, as well as protect the plant from 
other infecting pathogens (Moy et al. 2002).

Shelter

The plants provide shelter to the endophytes by conferring 
them a range of benefits. Endophytes gets attracted towards 
the plant through the root exudates, such as sugars, pheno-
lics, organic acids, and amino-acids, etc. (Mattoo and Non-
zom, 2021). In addition, plants also provide protection to the 
beneficial endophytes in extremely dry environmental condi-
tions, such as Epichole, Neotyphodium and Balansia which 
reside in the moist tissues of plants (Dutta et al. 2014). Most 
medicinal plants have been reported to provide shelter only 
to their beneficial counterparts which have the capabilities 
of producing various secondary metabolites by which they 
get benefitted in numerous ways (Rosa et al. 2010).

Low competition

In general, endophytes maintain a balanced antagonism with 
other endophytes inside the host tissues (Schulz et al. 2015). 
Thus, they face less competition than the rhizospheric and 
phyllospheric micro-organisms due to less number of com-
petitors inside the host endosphere, enriched nutrients avail-
ability, optimum pH, and moisture (Backman and Sikora, 
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2008). In addition, they also render the plants less responsive 
to the other invading microbes (Christensen et al. 2002). 
Also, colonization of foreign endophytes is not permitted 
easily by the native endophytes, as they generally show envy 
behavior against them (Suryanarayanan et al. 2018).

Dispersion

The seeds of the plants that may harbor endophytic microbes 
become resistant to dehydration and various adverse envi-
ronmental conditions and, thus, helps in the vertical trans-
mission of endophytes (Truyens et al. 2013). For instance, 
the endophytes of ryegrass (foraging grasses) can reproduce 
only by infecting the seeds of the plant (Bultman and Mur-
phy, 2000). Therefore, the propagules of the host plants have 
a role in the dissemination of endophytes present inside them 
(Schardl et al. 2004). Similarly, plants allow the dispersion 
of endophytes through their different parts, such as leaf sur-
face, stem surface, or any other region for their horizontal 
dissemination via asexual spores (Tadych et al. 2012).

Demand for antimicrobial drugs

Resistance to the antimicrobial drug is a leading crisis 
worldwide (WHO, 2014). The problem of resistance of 
microbes against various antimicrobial drugs was well rec-
ognized about 38 years ago in Annals (Kunin 1993). This 
resistance has been developed due to a number of factors, 
like (a) misuse of medicines, (b) l long-term improper use 
of medicines, (c) lack of public awareness, (d) poor sani-
tary conditions (e) feeble immune system of people, and (f) 
postponement in disease diagnosis (Kunin 1983; Rice 2008). 
Also, horizontal gene transfer between different microbial 
communities has led to an increase in antimicrobial resist-
ance in them (Thomas and Nielsen, 2005). For example, 
approximately 20% genome of E. coli is modified through 
horizontal gene transfer which renders them resistant to 
traditionally known antibiotic compounds (Lawrence and 
Ochman, 1997; Browne et al. 2020). Certain examples of 
microbes that are continuously developing resistance against 
the available drugs in the markets are Haemophilus influ-
enza, Mycobacterium tuberculosis, Neisseria gonnorrhoea, 
Streptococcus pneumoniae, Salmonella and Shigella species 
(Seften, 2002). There are a number of antimicrobial drugs 
discovered from time to time but all these drugs have at 
least one side effect. For example., Amphotericin B, a well-
used antibiotic usually in the treatment of various fungal 
infections show side effects, such as, acute renal failure and 
tubular damage (Fanos and Kataldi, 2000).

In the present scenario, the need for new antimicrobial 
agents is increasing due to the emergence of resistance in 
both plant and human pathogens (Prestinaci et al. 2015). 

Developing countries are mostly affected by severe diseases, 
like, malaria, tuberculosis every year and have witnessed 
an increase in the normal death rate which poses the need 
for using novel antimicrobials (Mohan et al. 2022). Apart 
from this, various fungi and yeasts, such as Aspergillus, 
Cryptococcus, Candida are responsible for causing several 
mycotic disorders (Karkowska-Kuleta, et al. 2009). Also, 
serious fungal infections which can be caused by chemo-
therapy, organ transplant, and other surgeries, like, allogenic 
bone marrow transplantations impose a need to use effective 
and safe antifungal drugs (Bhardwaj and Agrawal, 2014). In 
addition, antimicrobial compounds also find its way to be 
used as preservatives in food to prevent foodborne diseases 
(Liu et al. 2008). The increasing health problems are broad-
ening issues worldwide these days and the need to find new 
antibiotics and therapeutic agents with less toxicity with no 
environmental impact and which are beneficial to mankind 
is increasing (Strobel and Daisy, 2003).

Recently, in the situation of COVID-19 pandemic, many 
patients are developing the symptoms of secondary bacterial 
and fungal infections (Selarka et al. 2021). However, due 
to insufficient time to evaluate the patients effectively for 
micro-biological confirmation, they are usually prescribed 
with antimicrobials for rapid recovery which sometimes 
leads to overuse or misuse by patient (Langford et al. 2021). 
Patients, in some cases, are using antimicrobials continu-
ously without having any serious infection which in turn 
leads to the development of resistance against antimicrobi-
als (Lansbury et al. 2020; Rawson et al. 2020). To deal with 
this problem of drug resistance, one should minimize the 
rate of acquisition of drugs and use appropriate measures to 
lessen the spread of the disease. In spite of the introduction 
of many new antimicrobials against these micro-organisms, 
they are posing major threats to living organisms due to their 
evolutionary efficient mechanisms to overcome the effect of 
these antimicrobials over time (Lowy 2003).

The production of antimicrobial compounds has faced 
numerous problems over the years like, (a) the non-availabil-
ity of commercial bioactive secondary metabolites, sources 
of derivation are slow-growing medicinal plants or rare plant 
species (c) even sometimes the synthesis of the bioactive 
secondary metabolite is very expensive or (d) its high com-
plexity or molecular weight (Rustamova et al. 2020). To deal 
with these problems medicinal plants are continuously being 
used in large quantities for producing desired drugs which, 
however, leads to a decrease in their population. Therefore, 
alternatives such as endophytes (bacteria or fungi) can be 
employed for this purpose. As discussed earlier, paclitaxel 
a rare and important bioactive compound obtained from an 
endophytic fungus Taxomyces andreanae provides an alter-
native method for producing this costly drug without using 
the host plant (Stierle et al. 1993). This will, however, reduce 
our reliance on slow-growing medicinal plants for medicinal 
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drugs and also helps in preserving our declining biodiversity. 
These drugs of microbial origin are less costly, time-saving, 
and more economical, thus making them a worthy choice 
from the pharmaceutical perspective (Strobel and Daisy, 
2003).

As discussed earlier, endophytes are known to produce 
secondary metabolites similar to their host and this mim-
icking ability is a leading perspective for the development 
of desired drugs (Zhang et al. 2006). Some of the drugs 
produced by them are widely used nowadays well exempli-
fied by taxol, camptothecin, podophyllotoxin, vinblastine, 
vincristine, azadirachtin, hypericin, diosgenin and rhitukine 
(Sachin et al. 2013; Nicoletti and Fiorentino, 2015). Some 
of the well-known antimicrobial compounds produced by 
the fungal endophytes similar to their host plant are given in 
Table 2. Also, the employment of endophytes as an alterna-
tive antimicrobial production can be attributed to the diverse 
advantages, like, faster growth rate than medicinal plants, 
fermentation potential, easy nutrient availability, host-mim-
icking compounds production, and enhanced antimicrobial 
potential than plants. Thus, fungal endophytes provide a safe 
alternative way to produce novel antimicrobial compounds 
in high quantities to deal with this situation (Yu et al. 2010; 
Kumar et al. 2014).

Genes responsible for antimicrobial 
production

As per the earlier studies, it was proposed that genes respon-
sible for the production of secondary metabolites are scat-
tered in the whole genome of the microbe, like the genes 
of primary metabolite production in fungi (Hoffmeister 
and Keller 2007). Later, it was found that genes respon-
sible for antimicrobial production are present in clusters, 
i.e., polyketide synthase (PKS) and non-ribosomal peptide 
synthase (NRPS) found in extra-chromosomal material or 
plasmid of the endophytic fungi that synthesize polyketides 
and oligopeptides associated with antimicrobial activities 
(Brakhage and Schroeckh, 2011; Sachin et al. 2013; Mishra 
et al., 2017).

According to Keller et al. (2005), fungi produce second-
ary metabolites with the help of a few precursors which 
result from the primary metabolic pathways (Keller et al. 
2005). Endophytic fungi produce various classes of antimi-
crobial compounds, such as alkaloids, polyketides, terpe-
noids, phenylpropanoids, peptides, and aliphatic compounds 
(Mousa and Raizada, 2013). The ability of the endophytes to 
produce host-based secondary metabolites shows that there 
is possibility of the existence of various complex cross-talks 
between the host plant and endophytes at the gene level. The 
evolutionary studies and the inability of endophytic fungi to 
produce secondary metabolites in subculturing (either due to 

loss of extra-chromosomal material acquired from the host 
plant or silencing of genes in the absence of host) supports 
the possibility of host-based secondary metabolites produc-
tion (Kumara et al. 2014).

The horizontal gene transfer i.e., the transmission of 
genetic material among different organisms is observed in 
bacteria, fungi, and other eukaryotic organisms (Bansal and 
Meyer et al. 2002; Vos et al. 2015). Although, this can be 
an efficient reason for the production of host-origin second-
ary metabolites in endophytes due to their co-evolution over 
millions of years (Venieraki et al. 2017). As discussed ear-
lier, genetic studies on antimicrobial production in fungal 
endophytes revealed that the genes responsible are present 
on the chromosomes in clusters (Mousa and Raizada, 2013). 
According to Bielecka et al. (2022) the transfer of these gene 
clusters from the host plant to endophytic fungi leads to 
the production of novel and versatile compounds (Bielecka 
et al. 2022). Similarly, the production of similar secondary 
metabolites by different fungal endophytes belonging to dif-
ferent plants (brefeldin A, paclitaxel and echinocandin) also 
facilitates the hypothesis of horizontal gene transfer between 
different fungal endophytes during the evolutionary process 
(Mousa and Raizada, 2013).

Although, the biosynthetic gene clusters present in the 
endophytic fungi are present in insufficient amounts, the 
secondary metabolites produced by fungal strains are not 
produced in accordance with it (Rashmi and Venkateswara 
Sarma 2019). There are a number of ways for enhancing 
the metabolite production by endophytic fungi in cultural 
conditions outside their host such as, (1) by changing the 
cultivation parameters (constituents of the medium used, 
aeration condition, enzyme inhibitors being used, cultural 
vessels, etc.) of secondary metabolite production (2) co-
culturing (co-cultivation or mixed fermentation) (3) by use 
of epigenetic modifiers (DNA methyltransferases inhibitors 
and histone deacetylases inhibitors) and various molecular 
approaches (genetic engineering, manipulation of negatively 
regulatory genes, overexpression of positively regulatory 
genes) (Yu et al. 2010; Gakuubi et al. 2021). For example, 
overexpression of ε-PL synthetase genes in fungal endo-
phyte Epichloe festucae of the host plant Lolium perenne 
(perennial ryegrass) results in the enhanced production of 
an antifungal compound ε-poly-l-lysine (Purev et al. 2020). 
Similarly, several new techniques, like, CRISPR–Cas appli-
cation is being employed nowadays to enhance the bioactive 
potential of fungal endophytes (Yan et al. 2018).

As per the studies by many researchers, the shikimic 
or enzymatic pathways are also involved in the synthesis 
of secondary metabolites in endophytic fungi (Aharwal 
et al. 2021). On the other hand, various studies on genome 
sequencing indicate that the genes responsible for the pro-
duction of similar secondary metabolites in the host and their 
respective endophytes not the same (Mattoo and Nonzom 
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Table 2   Antimicrobial compounds mimicked by the reported fungal endophytes

S. 

No

.

Antimicrobial

compounds

Chemical 

Structure

Genera Host plant Tissue Activities 

against 

Referenc

e

1. Podophyllotoxi

n
O

O

O

OH

O

O

O
O

Podophyllotoxin

Phialoceph

ala fortinii

Podophyllu

m peltatum

Rhizome Bacteria Eyberger 

et al.

(2006)

2. Emodin OH O OH

O
OH

Emodin

Chaetomiu

m 

globosum

Hypericum 

perforatum

Stem Bacteria, 

fungi

Kusari et

al. (2008)

3. Hypericin
OH
OH

OH O OH

OH O OH

Hypericin

C. 

globosum

H. 

perforatum

Stem Bacteria, 

fungi

Kusari et 

al. (2008)

4. Chlorogenic 

acid
OH

O
OHOH

O

OOH

OH

OH

Chlorogenic acid

Sordariom

ycetes sp.

Eucommia 

ulmoides

Stem Bacteria, 

fungi

Chen et 

al. (2010)

5. Piperine
N

O
O

O
Piperine

Periconia 

sp.

Piper 

longum

- Mycobacteri

a

Verma et 

al. (2011)

6. Tanshinone I

O

O
O

Tanshinone I

Trichoder

ma 

atroviride

Salvia 

miltiorrhiza

Roots Bacteria Ming et 

al. (2012)

7. Tanshinone II A

O

O
O

Tanshinone II A

T. 

atroviride

S. 

miltiorrhiza

Roots Bacteria Ming et 

al. (2012)

8. Rhein OH O OH

O

O

OH

Rhein

Fusarium 

solani

Rheum 

palmatum 

Roots Bacteria, 

Fungi

You et al. 

(2013)

9. Cajanol

O O

O
O

O
H

H

O
H

Cajanol

Hypocrea 

lixii

Cajanus 

cajan

Roots Bacteria, 

fungi

Zhao et al.
(2013)

10. Sanguinarine
N+

O

O

O
O

Sanguinarine

Fusarium 

proliferatu

m

Macleaya 

cordata

Leaves Bacteria Wang et 

al. (2014)
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et al. 2021). This, however, makes their evolution independ-
ent of their host. For example, Taxol is produced by Taxus 
sp. as well by its endophyte Taxomyces andreaneae, but both 
producers did not show any sequence homology with respect 
to each other (Heinig et al. 2013). Similarly, a defensin mol-
ecule is known to be produced by the plant, Picea glauca, 
but later it was found that this defensin molecule (endopicea-
sin) was originally produced by one of its endophytic fungi 
(Mygind et al. 2005; Picart et al. 2012). This may be due to 
cross-activation of genes by common precursors between the 
plant and its endophytes during stress (Khare et al. 2018).

There are also evidence of duplication of the whole gene 
cluster for antimicrobial production in endophytes (Mousa 
and Raizada, 2015). For example, Neotyphodium uncinatum 
encodes two duplicate clusters of genes (LOL-1 and LOL-2) 
responsible for loline (alkaloid) production (Spiering et al. 
2005). However, much clarification is needed to understand 
the genetic involvement and different pathways in antimicro-
bial production by endophytes. Likewise, to understand the 
potential of biosynthetic gene clusters of endophytic fungi, 
it is imperative to follow multi-dimensional approaches, 
such as, bioinformatics, chemical characterization, molecu-
lar approach, the study of physical environment effects on 
metabolite production and omics (Rashmi and Venkateswara 
Sarma 2019).

Endophytic fungi: an enriched source 
of antimicrobial compounds

There are numerous micro-organisms associated with plants 
that are known to produce compounds with antimicrobial 
properties (Raaijmakers and Mazzola, 2012). Endophytes 
as a beneficial partners provide multiple rewards to the host 
plants especially the production of antimicrobial compounds 
to protect them from various pathogens (Rodrigo et  al. 
2022). This property of endophytes in protection is increas-
ingly used in healthy crop production (Dong et al. 2021). 
They show antagonistic behavior against different pathogens 
to protect their host. For example, fungal endophytes, such 
as Trichoderma atroviride, Metarhizium anisopliae and 
Hypoxylon rubiginosum exhibit antifungal activities against 
phytopathogens Diplodia pinea, Fusarium graminearum and 
Hymenosciphus fraxineus, respectively (Santamaria et al. 
2012; Halecker et al. 2020; Hao et al. 2021). This potential 
for the production of antimicrobial metabolites of endo-
phytic fungi leads to its effective utilization in agriculture 
and pharmaceutical industries, for the production of novel 
drugs (Sudha et al. 2016; Farhat et al. 2019). There are some 
antimicrobial compounds, such as, atenusin, ambuic acid, 
cryptocin, dihydroxycadalene, nodulosporins, phomenone 
and trichodermin produced by the fungal endophytes that 
are considered to have an important role in the protection of 

the plant against various phytopathogens (Kaul et al. 2012; 
Chen et al. 2014). More than 300 endophytes have been 
successfully isolated and cultured in laboratory conditions 
for the production of secondary metabolites of therapeutic 
importance in the past 5 years (Patil et al. 2016).

Antimicrobial compounds originally are the natural 
organic compounds of low molecular weight produced by 
various microbes and exhibit the property of killing other 
micro-organisms under their influence (Guo et al. 2000). 
Their production of secondary metabolites with antioxidant 
and antimicrobial properties have been discovered in the 
past two decades (Bhardawaj et al. 2015). The secondary 
metabolites produced by medicinal plants are being used in 
pharmaceutical sectors since time immemorial (Hamid and 
Aiyelaagbe, 2011). Similarly, fungal endophytes obtained 
from these medicinal plants also act as an alternative source 
of production of nearly half of the identified bioactive com-
pounds (Supaphon et al. 2013).

In this world of ever-increasing human population, a large 
number of antimicrobial drugs are already discovered, but 
still, there is a need to find out new therapeutic agents due 
to the emergence of resistant varieties (Karam et al. 2016). 
Fungal endophytes are known to produce a diverse range of 
bioactive compounds which have been used in the pharma-
ceuticals and pesticide industries (Rodriguez et al. 2000; 
Onifade 2007). They are studied for their capability of pro-
ducing antimicrobial compounds in vitro and the results are 
sometimes even better than the plant itself with exceptionally 
enhanced antimicrobial potential (Arora and Kour, 2019).

It is estimated that out of 22,500 microbes derived meta-
bolic compounds including antibiotics, fungi constitute a 
large population (approximately 38%) to produce these com-
pounds (Berdy et al. 2005). The antimicrobial compounds 
obtained from endophytes belong to different classes, such 
as, alkaloids, aliphatics, phenolics, polyketides, terpenoides, 
peptides and various nitrogeneous compounds (Mousa et al. 
2013). The wide range of antimicrobial compounds which 
are produced by the host as well as their endophytic part-
ners is enormous (Gakuubi et al. 2021). The ability of the 
endophytes to produce similar antimicrobial compounds pro-
duced by their host will also help to utilize the rare or endan-
gered plants in a very convenient way (Sharma et al. 2021).

The demand for fungal endophytes has increased after 
realizing their potential for producing anticancer com-
pounds, like, taxol and camptothecin due to the scarcity of 
natural plant sources (Gupta et al. 2020). There are a number 
of drugs available in the market which are of endophytic 
origin with reference to fungal endophytes. These drugs 
are commercially available in the market after several tri-
als and costs million or billion dollars, such as, Piperine 
(antimicrobial), Podophyllotoxin (anticancer), Vinblastine 
(anticancer), Vincristine (anticancer), Griseofulvin (antioxi-
dant), Rohitukine (anticancer), Huperzine A (antimicrobial, 
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cholinesterase inhibitor), Altersolanol (Antiangiogenic), 
Quinine (antimalarial agent) and so on. These important 
compounds are being utilized in pharmaceutical industries 
as an alternative source of medicine rather than using the 
important medicinal plant itself (Tiwari and Bae, 2022). A 
detailed study on the action of antimicrobial compounds 
obtained from endophytic fungi revealed their involvement 
in the impairment of nucleic acid metabolism; enzyme 
synthesis blockage; disturbance in DNA or RNA synthesis 
repair system and inhibition of protein synthesis (Samanta 
et al. 2021; Silva et al. 2022).

Recently, a new aliphatic compound, Kheiric acid was 
isolated from an endophytic fungus Curvularia papendorfii 
inhabiting Vernonia amygdalina which was found active 
against methicillin-resistant Staphylococcus aureus (MRSA) 
(Khiralla et al. 2020). Similarly, a new enamide dimer, Pho-
moenamide (an antifungal compound) was produced by a 
Phomopsis sp. isolated as an endophytic fungus from the 
healthy leaves of Garcinia dulcis (Rukachaisirikul et al. 
2008). A new polyketide, named Talafun was also isolated 
from a fungal endophyte, Talaromyces funiculosus from 
Salicornia bigelovii and exhibited great antibacterial poten-
tial against E. coli (Guo et al. 2016). Likewise, two new 
sesquiterpene derivatives, trichocadinin B and trichocadinin 
D produced by Trichoderma virens isolated from Artemi-
sia argyi having antibacterial activities against P. aerugi-
nosa, Aeromonas hydrophila, E. coli, Vibrio harveyi and V. 
parahaemolyticus (Shi et al. 2019). Some of the important 
antimicrobial compounds and their mode of action against 
pathogenic microbes are discussed below:

Sordaricin

It is one of the potent antifungal compounds which was first 
isolated from Xylaria sp. endophytic to the plant Garcinia 
dulcis that exhibited great activity against Candida ablicans 
(Pongcharoen et al. 2008). The mechanism involved the pro-
cess of inhibition of ribosomal translocation with mRNA to 
prevent polypeptide chain synthesis by stabilizing the EF2/
ribosome complex (Liang 2008).

Piperine

Piperine is a well-known compound with a number of prop-
erties including antimicrobial and was first produced by 
Piper longum. However, research in endophytic metabolite 
production leads to the discovery of this host-mimicking 
compound by one of its endophytes, Periconia sp. in the 
liquid fermentation broth. This was the first report of piper-
ine production by an endophyte. It was found active against 
Mycobacterium smegmatis and M. tuberculosis (Verma et al. 

2011). The mechanism behind this involved the inhibition 
of an efflux pump of M. tuberculosis (Sharma et al. 2010).

Phomopsichalasin

It is an antimicrobial cytochalasin of the alkaloid group first 
reported as a novel antimicrobial compound from an endo-
phyte Phomopsis sp. inhabiting the twigs of Salix gracili-
styla var. melanostachys (Horn et al. 1995). It binds to the 
actin filament to block its polymerization and exhibits great 
antimicrobial potential against various human pathogenic 
bacteria, such as Pseudomonas sp., Salmonella galinarum, 
Staphylococcus aureus and Bacillus subtilis and yeast Can-
dida tropicalis (Binder, and Tamm, 1973; Zhou et al. 2009).

Hypericin

It is an antimicrobial compound earlier reported to be 
produced by the plant Hypericum perforatum L. Later it 
was also produced by its endophytic fungus, Chaetomium 
globosum for the first time and found active against both 
pathogenic bacteria and fungi, such as E. coli, Klebsiella 
pneumoniae, P. aeruginosa, S. aureus subspecies aureus, 
Aspergillus niger and Candida albicans (Kusari et al. 2008). 
Hypericin reduces the expression of Staphylococcal acces-
sory regulator A (SarA), which is a global virulence regula-
tor, and decreases resistance in methicillin-resistant Staphy-
lococcus aureus (MRSA) against β-lactam antibiotic which 
plays an important role in the treatment of MRSA (Wang 
et al. 2019). Similar antimicrobial compounds produced 
by different endophytes in the past years are presented in 
Table 3.

Nanoparticles as antimicrobial agents

Nanotechnology is an approach of using nanoparticles with 
sizes ranging from 10 to 100 nm (Allaker et al. 2010). Nano-
particles are classified into different groups, such as, metal, 
carbon, polymeric, ceramic-based nanoparticles, and so on 
(Khan et al. 2019). They are used in various fields, such 
as, electronics, cosmetics, pharmaceutical, manufacturing 
and construction (Mohajerani et al. 2019). They have also 
been focused for their utilization in different aspects, such 
as drug delivery and diagnosis of disease against microbial 
infections (Singh et al. 2013). Nanoparticles also find their 
application in various pharmaceutical industries, such as, 
in the treatment of cancers in humans or in novel methods 
of drug delivery (Kapil et al. 2014; Hosseini et al. 2016).

Synthesis of nanoparticles using micro-organisms is an 
imperative branch of nanotechnology (Shankar et al. 2003). 
The nanoparticles are synthesized by different physical, 
chemical, or biological methods (Messaoudi and Bendahou, 
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Table 3   Antimicrobial compounds produced by endophytic fungi of different plants, and their bioactivities

S.

N

o.

Antimicrobial

compound

Chemical Structure Genera Host plant Tiss

ues

Acti

vity 

agai

nst

Reference

1. Phomopsichala

sin

NH

OH OH

H
OO

H

H
H

Me

Me

Me

Me

Me
Me

Phomopsichalasin

Phomopsi

s

Salix

gracilistyla

var. 

melanostach

ys

- Bact

eria

Horn et al. 

(1995)

2. Sordaricin H

H

OH

CHO
CO2H

Sordaricin

Xylaria 

sp.

Garcinia 

dulcis

Leav

es

Fung

i

Pongcharo

en et al. 

2008

3. Phomoenamid

e OH
NH

O

NH
OHO

Phomoenamide

Phomopsi

s sp.

Garcinia 

dulcis

Leav

es

Fung

i

Rukachais

irikul et al. 

(2008)

4. 2-phenylethyl 

1-H-indol-3-

yl-acetate

O

O

NH

2-phenylethyl 1-H-indol-3-yl-acetate

Colletotri

chum 

gloeospori

oides 

Michelia 

champaca

- Fung

i

Chapla et 

al. (2014)

5. Kaempferol
O

OH
OOH

OH

OH

Kaempferol

Fusarium 

chlamydos

porum

Tylophora 

indica

Stem Bact

eria 

Chaturved

i et al. 

(2014)

6. Penialidin B 

O
O

O
OH

OH

O OH

O
Penialidin B

Penicilliu

m sp.,

Gracinia 

nobilis

Leav

es

Bact

eria

Jouda et 

al. (2014)

7. Penialidin C

O

O

O
OH

OH

OOH

Penialidin C

Penicilliu

m sp.,

G. nobilis Leav

es

Bact

eria

Jouda et 

al. (2014)

8. Rutin

O

O

O
O

OH

OH

O

OH
OH

OH

OH

OH O

OH
OH

OH

Rutin

Aspergillu

s flavus

Aegle 

marmelos

plant 

part

Bact

eria, 

fung

i

Patil et al. 

(2015)
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Table 3   (continued)

9. 3-

hydroxypropio

nic acid

OH OH

O

3-HPA

Diaporthe 

phaseolor

um

Picrorhiza 

kurroa

Rhiz

ome

Bact

eria

Qadri et 

al. (2015)

10

.

Equisetin

H

OH

O

O

H

OH

Equisetin

Fusarium 

sp.,

Opuntia 

dilleni

Pistil Bact

eria

Ratnaweer
  al. 

(2015)

11

.

Phomopsidone 
O

O
O

O

OOHO

Phomopsidone

Phomopsi

s sp.

Kandelia 

candel

Leav

es

Fung

i

Zhang et 

al. (2014)

12

.

Talafun

OH

OH
O O

O

O

O

Talafun

Talaromy

ces

funiculosu

s

Salicornia

bigelovii

Shoo

t

Bact

eria

Guo et al. 

(2016)

13

.

Dichlorodiapor

tinolide
O

OOH

Cl Cl

O

O

OH

O
Dichlorodiaportinolide

Trichoder

ma species

Myoporum 

bontioides

Root

s

Fung

i

Li et al. 

(2016)

14

.

(4S,6S)-6-

[(1S,2R)-1,2-

dihydroxybuty

l]-4-hydroxy-

4-

methoxytetrah

ydro-2H-

pyran-2-one

O

OH

OH
O

O OH

(4S,6S)-6-[(1S,2R)-1,2-dihydroxybutyl]
-4-hydroxy-4-methoxytetrahydro-2H-p
yran-2-one

Pestalotio

psis sp., 

DO14

Dendrobium 

officinale

Shoo

t

Fung

i

Wu et al. 

(2016)

15

.

(6S,2E)-6-

hydroxy-3-

methoxy-5-

oxodec-2-

enoic acid

O

OH
O

O
OH

(6S,2E)-6-hydroxy-3-methoxy-5-oxo
dec-2-enoic acid

Pestalotio

psis sp., 

DO14

Dendrobium 

officinale

Shoo

t

Fung

i

Wu et al. 

(2016)

16

.

Terrein 

O

OH

OH

Terrein

Phoma 

sp.,

Acyranthus 

aspera

Flow

er

Bact

eria, 

fung

i

Goutam et 

al. (2017)

17

.

7-desmethyl 

derivatives of 

Fusarin C 
O

NH
O

O
OH

O

O

OH

NH

O

O

OH

O
OH

7-desmethyl derivatives of Fusarin C

F. solani Chlorophor

a regia

Root

s

Bact

eria

Kyekyeku 

et al. 

(2017)

a
et
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Table 3   (continued)

18

.

4-(2’R,4’-

dihydroxybuto

xy) benzoic 

acid

OOH

O

OH

OH
4-(2R,4-dihydroxybutoxy) benzoic
acid

Penicilliu

m sp. R22

Nerium 

indicum

Root

s

Fung

i

Ma et al. 

(2017)

19

.

5-hydroxy-8-

methoxy-4-

phenylisoquin

oline-1(2H)-

one

NH

OH

OO
5-hydroxy-8-methoxy-4-phenylisoquin
oline-1(2H)-one

Penicilliu

m sp. R22

Nerium 

indicum

- Fung

i

Ma et al. 

(2017)

20

.

Brefeldin A 

derivatives
R5

OH
OR1

R3R4
R2

Brefeldin A derivatives
1 R1=R2=O R3=H R4=OH R5=OAc

2 R1=OAc R2=H R3=H R4=OH R5=COCH3

3 R1=OAc R2=H R3=OH R4=H R5= COCH3

4 R1=H R2=OH R3=H R4=OH R5= CH3CHOAc

5 R1=OH R2=H R3=H R4=OH R5= CH3CHOAc

Penicilliu

m sp.,

SYP-

ZL1031

Panax 

notoginseng

Root

s

Bact

eria, 

fung

i

Xie et al. 

(2017)

21

.

Penochalasin 

K
NH

NH
O O

O O
Penochalasin K

P. 

chrysogen

um V11

Myoporum 

bontioides

- fung

i

Zhu et al. 

(2017)

22

.

Fusarithioamid

e B
NH

NH
OHO

NH NHO

O
O

NH2
SH

O

Fusarithioamide B

F. 

chlamydos

pores

Anvillea 

garcinii

leav

es

Bact

eria, 

fung

i

Ibrahim et 

al. (2018)

23

.

Emericelacton

es A-D

O O

O

OH

Emericelactone A

Emericell

a sp.,

Panax 

notoginseng

leav

es

Bact

eria, 

fung

i

Pang et al. 
(2018)

Emericelactone B

O O

O

O

OH

O O

O

O

OH

Emericelactone C

O

O O

O

Emericelactone D
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2020). The biological methods (use of living organisms, 
such as plant, seaweeds, and micro-organisms) are more 
beneficial than physical or chemical methods, which produce 

toxic chemicals in the environment (Patra and Baek 2014). 
This method is eco-friendly, non-toxic, cost-effective, and 
beneficial in the large-scale production of nanoparticles 

Table 3   (continued)

24

.

Byspectin C
O

OH O

Bysspectin C

Byssochla

mys 

spectabilis

Edgeworthia 

chrysantha

Leaf Bact

eria

Wu et al. 

(2018)

25

.

Brasiliamide j-

a and

Brasiliamide J-

b 

O
O

NHO

O

O

Brasiliamide j-a

N

O

O
O

O

NH
O

Brasiliamide J-b

P. 

janthinell

um

P. 

notoginseng

plant 

part

Bact

eria

Xie et al. 

(2018)

26

.

Peniciolidone

OH

O

N

O
O

O
O

Peniciolidone

P. 

janthinell

um

P. 

notoginseng

plant 

part

Bact

eria

Xie et al. 

(2018)

27

.

1,8-dihydroxy-

3-methoxy-6-

methylanthrac

ene-9,10-dione 

and 1,3,8-

trihydroxy-6-

methoxyanthra

cene-9,10-

dione

H

H
OHO

OH
O

H
OH

1,8-dihydroxy-3-methoxy-6-methylant
hracene-9,10-dione

H
O

H
OH

O

O

H
OH

H
OH

1,3,8-trihydroxy-6-methoxyanthracene
-9,10-dione

Fusarium 

sp.

Phyllanthus 

niruri Linn.

leav

es

Bact

eria

Yuniati 

and 

Rollando 

et al. 

(2018)

28

.

Palmaerones E
O

O O
OH

OH
Br

Palmaerone E

Lachnum 

palmae

Przewalskia 

tangutica

- Bact

eria, 

fung

i

Zhao et al. 

(2018)

29

.

Fusarihexins A 

and B
NH

O
NH

NH
NH

NH O

O

O
O

O
O

L-Phe3
HICA2

D-Tyr1

L-Phe4

L-Phe5
L-Phe6

Fusarihexin A

Fusarium 

sp. R5

Myoporum 

bontioides

Root

s

Fung
i

Zhu et al. 

(2018)
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Table 3   (continued)

O

O
O

NH
N

N

NH

N O
O

O

L-Pro4
L-Phe3

L-Pro2

HICA1
L-Ala6

L-Phe5

Fusarihexin B

30

.

Fusariumins C 

and D

OOH

O

Fusariumin C

O
OO

Fusariumin D

Fusarium 

oxysporu

m ZZP-R1

Rumex 

madaio 

Makino

Root

s

Bact

eria

Chen et 

al., 2019

31

.

Isocumarin 

derivatives O

O OH
OH

OH O

OH

O OH
OH

O

OH O

OH

Isocoumarin derivatives

Trichoder

ma 

harzianum

Ficus 

elastica

leav

es

Bact

eria

Ding et al. 
(2019)

32

.

Fumiquinone 

B

O
O

OH
O

OH

Fumiquinone B

Neopestal

otiopsis 

sp.

Begonia sp. - Fung

i

Grigoletto 

et al. 

(2019)

33

.

Violaceol 
O

OH
OH

OH
OH

Violaceol I

T. 

polyalthia

e

Polyalthia 

debilis

Stem Bact

eria, 

fung

i

Nuankeaw 

et al. 

(2019)

34

.

Violaceol 
O

OH
OH

OH

OH

Violaceol II

T. 

polyalthia

e

P. debilis Stem Bact

eria, 

fung

i

Nuankeaw 

et al. 

(2019)

35

.

Trichocadinin 

B and 

Trichocadinin 

D

O

H

OH

O
H

Trichocadinin B

T. virens Artemisia

argyi

Root Bact

eria

Shi et al. 

(2019)

OOH

OH

O

H

αH

Trichocadinins D



442	 Plant Biotechnology Reports (2023) 17:427–457

1 3

Table 3   (continued)

36

.

Terezine E

NH
O

NH O

OH

N
OH

Terezine E

Mucor sp., Centaurea 

stoebe

- Fung

i

Abdou et 

al. (2020)

37

.

Methyl 
hemiterpenoat
e and

O
O

Methyl hemiterpenoate

Athelia 

rolfsii

Coleus 

amboinicus

leav

es

Bact

eria

Astuti et 

al. (2020)

38

.

Methyl ,2,3 
diene-
butanoate

O
O

Methyl,2,3 diene-butanoate

Athelia 

rolfsii

Coleus 

amboinicus

leav

es

Bact

eria

Astuti et 

al. (2020)

39

.

Fusaisocoumar

in A O

O

O

OOH
OH

Fusaisocoumarin A

F. 

verticillioi

des

Mentha 

piperita

leav

es

Fung

i

Ebrahim 

et al. 

(2020)

40

.

Diaporone A
O

OH O

Diaporone A

Diaporthe 

sp.,

Pteroceltis 

tatarinowii

Stem Bact

eria

Guo et al. 

(2020)

41

.

Kheiric acid
OH

OH

O OH OH OH

Kheiric acid

Curvulari

a

papendorf

ii

Vernonia

amygdalina

- Bact

eria

Khiralla et 

al. (2020)

42

.

Fusarioxazin O

NHOOH
HFusarioxazin

F. 

oxysporu

m

Vicia faba Root

s

Bact

eria, 

fung

i

Mohamed 

et al. 

(2020)

43

.

Aspergillethers 

B O OH

OH

Aspergillethers B

A. 

versicolor

Pulicaria 

crispa 

Forssk

Root

s

Bact

eria, 

fung

i

Mohamed 

et al. 

(2020)

44

.

Dendrobine

H
OH

H
O

N

H

H H

Dendrobine

T. 

longibrac

hiatum

Dendrobium 

nobile

Stem Bact

eria

Sarsaiya 

et al. 

(2020)

45

.

Bipolatoxin D

O

O

H OH
H

H
H

H
OH

Bipolatoxin D

Bipolaris 

sp., 

TJ403-B1

Triticum 

aestivum

Leav

es

Bact

eria

Shen et al. 

(2020)
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Table 3   (continued)

46

.

Cytospomarin
OH

OH O

OH

O
Cytospomarin

Cytospora 

sp.

Ceriops 

tagal

hypo

cotyl

s

Bact

eria

Wei et al. 

(2020)

47

.

Anofinic acid O

O

OH

Anofinic acid

A. 

tubengins

es ASH4

Hyoscyamus 

muticus

Plant 

part

Bact

eria

Elkhouly 

et al. 

(2021)

48

.

Petrichoderma

mide A
N N

O

OH

H

H

O

O

H

H

OH

O

S
S

Petrichodermamide A

T. 

harzianum

Zingiber 

officinale

- Bact

eria, 

fung

i

Harwoko 

et al. 

(2021)

49

.

2-

azaanthraquino

ne derivatives

N

O

O

O

O

Scorpinone

N

O

O

O

OH

5-deoxybostrycoidin

Lophiosto

ma sp. Eef 

-7

Eucalyptus 

exserta

bran

ches 

and 

fruit

s

Bact

eria

Mao et al. 

(2021)

50

.

2,4- di-tert 

butyl phenol

OH

2,4- di-tert butyl phenol

Diaporthe 

longicolla

Saraca 

asoca

leaf MR

SA

Nishad et 

al. (2021)

51

.

Ravenelin OH O OH

OH
Ravenelin

Exserohil

um 

rostratum

Phanera 

splendens

healt

hy 

tissu

es

Bact

eria

Pina et al. 

(2021)

52

.

(3S)-3,6,7-

trihydroxy-α-

tetralone

OH

OH

O

OH

(3S)-3,6,7-trihydroxy-α-tetralone

Phoma 

moricula

Withania 

somnifera

leav

es

Bact

eria, 

fung

i

Roshan 

and 

Mohana, 

(2021)

53

.

Pinophicin A
Pinophol A O

OH

Pinophicin A

OH
OH

OH

Pinophol A

Talaromy

ces 

pinophilus

Salvia 

miltiorrhiza

aeria

l part

Bact

eria, 

fung

i

Zhao et al. 

(2021)
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(Singh et al. 2017). The nanoparticles produced by micro-
organisms are characterized by their wavelength range 
(200–800 nm), morphology (scanning electron microscopy 
and transmission electron microscopy), chemical structure 
(using X-Ray diffraction method), and functional groups 
(Fourier transform infrared spectroscopy) (Messaoudi and 
Bendahou, 2020). Numerous micro-organisms are known 
to produce nanoparticles, such as, algae, fungi, and bacteria 
(Khalil et al. 2018). These are being used nowadays due 
to their potential of reducing metals into nanoparticle sizes 
and also to reduce the dependency on plants (Staniek et al. 
2008).

Recently, the endophytes are gaining attention for their 
potential of producing different nanoparticles of therapeutic 
importance (Rahman et al. 2019). They have been able to 
produce different nanoparticles, such as silver, gold, cop-
per, zinc, etc. which are used in pharmaceutical industries 
(Kulkarni and Ramakrishna 2020; Mani et al. 2021). Accord-
ing to Rahman et al. (2019), the silver nanoparticles pro-
duced by endophytes have various properties, such as anti-
microbial, seed germination, anticancer, antioxidant activity, 
potent bactericidal activities, photocatalytic degradation of 
dyes, in food packaging and various agricultural applica-
tions as depicted in Fig. 2 (Rahman et al. 2019; Mustapha 
et al. 2022). A number of researchers have reported them as 
valuable tools against various antibiotic resistance Gram-
positive as well as Gram-negative bacteria (Liu et al. 2015). 
The nanoparticles produced by endophytic fungi are consid-
ered to be more stable as they can produce proteins and bio-
molecules which prevent their agglomeration (Netala et al. 

2016). The biosynthesis of nanoparticles from endophytes 
is considered a novel approach with immense potential in 
drug formulations (Messaoudi and Bendahou, 2020). The 
diversity of antimicrobial nanoparticles from endophytic 
fungi has been summarized in Table 4.

Fungal endophytes as a source of antiviral 
agents

Viruses are acellular micro-organisms, considered living 
(inside the host) or non-living (outside the host) depending 
on the availability of the host. Viral infections often cause 
serious issues at the global level resulting in outbreaks, epi-
demics, and pandemics, the most recent being the SARS-
CoV-2. However, with time evolution, they get evolved into 
more resistant varieties, thus raising the need to explore and 
formulate novel therapeutic agents against them (Saxena 
et al. 2021).

Fungal endophytes as a source of the antiviral have 
has been considered as a new approach towards its thera-
peutic importance. It has been reported that endophytes 
produce antiviral drugs in response to biotic stress inside 
the host against the virus. For example, an endophytic 
fungus Cytonaema sp. isolated from an unidentified host 
was reported to produce two novel antiviral compounds, 
viz., cytogenic acids A and B, the inhibitors of human 
cytomegalovirus (hCMV) protease (Guo et  al. 2000). 
Another antiviral compound, Hinnuloquinone isolated 
from an endophytic fungus, Nodulisporium hinnuleum, 

Table 3   (continued)

54

.

Epicoccethers 

K, L, M and N O

O

OHOO

OH

O

Epicoccethers K

O

OH

OO

OH

O

OH

O

Epicoccethers L

O

OH

OO

OH

O

O

O

Epicoccethers M

O

OH

OO

OH

O

O

O
O

Epicoccethers N

Epicoccu

m 

sorghinum

Myoporum 

bentoides

- Bact

eria, 

fung

i

Junjie et 

al. (2021)
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Fig. 2   Production of nanoparti-
cles by endophytic fungi and its 
various applications

Table 4   Antimicrobial nanoparticles produced from endophytic fungi

S. No Nanoparticles Fungal endophyte Host Tissue Activity against Reference

1 Silver Aspergillus clavatus Azadirachta indica Stem Fungi Verma et al. (2010)
2 Silver Pestalotia sp., Syzygium cumini Leaves Bacteria Raheman et al. (2011)
3 Silver Penicillium sp Curcuma longa Leaves Bacteria Singh et al. (2013)
4 Silver Epicoccum nigrum Phellodendron amurense Cambium Fungi Qian et al. (2013)
5 Silver Curvularia lunata Cathranthus roseus Leaves Bacteria Ramalingmam et al. (2015)
6 Silver A. versicolor Centella asiatica Leaves Bacteria, fungi Netala et al. (2016)
7 Silver P. oxalicum Phlogacanthus thyrsi-

florus
– Bacteria Bhattacharjee et al. (2017)

8 Silver A. niger Simarouba glauca Leaves Bacteria Hemashekhar et al. (2017)
9 Silver A. terreus Calotropis procera Healthy tissues Bacteria Rani et al. (2017)
10 Silver Alternaria sp. Raphanus sativus Leaves Bacteria Singh et al. (2017)
11 Gold Alternaria sp. Rauvolfia tetraphylla Roots Bacteria Hemashekhar et al. (2019)
12 Silver Talaromyces purpureo-

genus
Pinus densiflora Leaves Bacteria Hu et al. (2019)

13 ZnO A. tenuissima – – Bacteria, fungi Abdelhakim et al. (2020)
14 Silver Trichoderma atroviride Chiliadenus montanus Aerial parts Bacteria, fungi Abdel-Azeem et al. (2020)
15 ZnO Periconium sp Balanites aegyptiaca Leaves Bacteria, fungi Ganesan et al. (2020)
16 ZnO A. niger Mangifera indica Bark Bacteria Kulkarni and Ramakrishna, 

(2020)
17 Silver P. cinnamopurpureum Curculigo orchioides Rhizome Bacteria Dinesh et al. (2022)
18 CuO A. terreus Aegle marmelosa – Bacteria, fungi Mani et al. (2021)
19 Silver T. purpureogenus Taxua baccata – Bacteria Sharma et al. (2022)
20 Gold Phoma sp. Prunus persica Vascular tissues Bacteria, fungi Soltani Nejad et al. (2022)
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inhabiting the leaves of Quercus coccifera was observed 
active against human immunodeficiency virus type 1 pro-
tease (HIV-1) (Singh et al. 2004). Similarly, Emerimi-
dine A and B were isolated from the endophytic fungus 
Emericella sp. which exhibited moderate activity against 
Influenza virus H1 N1 (Zhang et al. 2011).

Another novel antiviral compound 7-dehydroxyl-
zinniol was isolated from an endophytic isolate, Alter-
naria solani from the roots of Aconitum transsectum 
that exhibited moderate activity against hepatitis B virus 
(Ai et al. 2012). Also, different types of Altertoxins, for 
example, altertoxin I, II, III, and V have been reported to 
be produced by Alternaria tenuissima endophytic to the 
stem of Quercus emoryi that inhibited the growth of HIV 
virus at different concentrations. Quantitative Structural 
Activity Relationships (QSAR) studies have been carried 
out on these compounds to check their potential as anti-
viral agents (Bashyal et al. 2014). Similarly, alternariol 
and alternariol-9-methyl ether produced by A. alternata 
endophytic to the peel of Punica granatum also exhibited 
potent activity against HCV NS3/4a protease (El-Kassem 
et al. 2019). The various antiviral compounds isolated 
from fungal endophytes illustrated above are given with 
their chemical structure in Fig. 3.

Inhibition of biofilm production 
by endophytic fungi

Biofilm formation is a complex process involving a large 
number of bacteria (Ahmad et al. 2020). This is a method of 
protection in both plants and animals to protect themselves 
from host defense systems and antimicrobial compounds. 
Although biofilms are well studied in the case of bacterial 
pathogen but are poorly studied in the development and 
structure of filamentous fungi, as well as their role in patho-
genicity (Shay et al. 2022). The antimicrobial compounds 
are effective against free-living bacteria or micro-organisms, 
but bacterial species most commonly prefer to grow by bio-
film formation in natural conditions which hinders their 
proper killing (Qvortrup, et al. 2019).

In most of the developed countries, it is seen that more 
than 80% of microbial infections are caused by biofilm 
formation only. Human skin, dental plaque, and gut repre-
sent biofilm formation's most common site (Qvortrup et al. 
2019). To eradicate this serious infection, many natural com-
pounds have been introduced or are utilized in pharmaceuti-
cal industries. Various phytochemicals, such as phenolics, 
essential oils, terpenoids, lectins, alkaloids, polypeptides, 

Fig. 3   Antiviral compounds isolated from fungal endophytes



447Plant Biotechnology Reports (2023) 17:427–457	

1 3

and polyacetylenes have been reported to possess antibi-
ofilm properties (Yong et al. 2019). Secondary metabolites 
of endophytic origin have also been reported to be a source 
of natural compounds that help eradicate biofilm formation 
by these micro-organisms (Caruso et al. 2022).

Similarly, quorum sensing (ability to detect cell popula-
tion) is one of the probable mechanisms exhibited by bac-
teria which is responsible for biofilm formation. Therefore, 
quorum-quenching compounds for breaking the quorum-
sensing ability of these microbes are needed to break the 
chain of biofilm formation. Several endophytic fungi have 
been shown to exhibit the potential of secreting quorum-
quenching compounds. There are a number of strategies to 
fight against quorum-sensing molecules, such as inhibition 
of QS signal biosynthesis, inhibition of QS signal detec-
tion, degradation and inactivation of QS signals, and use 
of antibiotics as QS inhibitors (LaSarre and Federle 2013). 
For example, Alternaria alternata endophytic to Carica 
papaya exhibited the quorum-quenching ability in its crude 
extract form and inhibit the quorum-sensing ability of Pseu-
domonas aeruginosa. The extract is known to exhibit the 
inhibition potential of biofilm formation up to 65.2% and 
the mechanism involved is the inhibition of the production 
of exopolysaccharide and cell surface hydrophobicity which 
greatly explained the endophytic potential in the treatment 
of biofilm formation (Rashmi et al. 2018).

Also, Fusarium graminearum and Lasiodiplodia sp. 
isolated from Ventilago madraspatana produced quorum-
quenching molecule as a secondary metabolite that inhibited 
the quorum-sensing phenomenon of the pathogens (Rajesh 
and Ravishanker Rai et al. 2013). Similarly, exudates of an 
endophytic fungus (Penicillium restrictum) isolated from 
Silybum marianum contain polyhydroxyanthraquinones 
as quorum-sensing inhibitors, and these metabolites were 
found to be active against the growth of methicillin-resist-
antt Staphylococcus aureus (MRSA) strain by inhibiting its 
peptide and delta toxin production (Figueroa et al. 2014). 
Another species, Penicillium citrinum isolated from a halo-
phyte, Halocnemum strobilaceum as endophyte produced a 
known compound,1,3,6-trihydroxy-7-methoxy-9H-xanthen-
9-one that exhibited 100% efficiency in inhibiting the biofilm 
formation by Pseudomonas aeruginosa (Abdel Razek et al. 
2020).

Similarly, the activity of an aromatic butyrolactone, fla-
vipesin A, isolated from an endophytic fungus Aspergillus 
flavipes belonging to a mangrove host Acanthus ilicifolius, 
resulted in the disruption of the biofilm of S. aureus (Bai 
et al. 2014). In another instance, Alternaria destruens iso-
lated from the healthy tissues of Calotropis gigantea exhib-
ited an alpha-glucosidase inhibitor potential of 93.4%. The 
further purification of ethyl acetate extract of the fungus dis-
played two active fractions AF1 and AF2 which upon analy-
sis found active against biofilm formation by various tested 

pathogens, such as P. aeruginosa and C. albicans whereas 
the other active fraction AF2 exhibited maximum inhibition 
of biofilm formation by C. albicans and S. enterica (Kaur 
et al. 2020).

Conclusion and future perspectives

In today’s scenario, resistance against available drugs 
is considered one of the major problems associated with 
microbes. Despite many discoveries on antimicrobial com-
pounds, more resistant varieties have evolved. An effective 
antimicrobial compound should have good fungicidal or 
bactericidal activities. Novel antimicrobials from different 
alternative sources, like, endophytes can help in treating 
serious diseases, like, typhoid, tetanus, cholera, pneumonia, 
candidiasis, and aspergillosis which are diseases of concern. 
Despite various available drugs, the discovery of new drugs 
is still a challenge either due to (a) the appearance of con-
tinuous resistance in pathogenic microbes, (b) the occur-
rence of novel diseases, like, SARS-COV 2, (c) associated 
side effects (d) constant recurrence of many diseases and (e) 
unavailability of sources for drug discovery. Endophytes on 
the other hand provide an efficient way of drugs production 
due to various factors, such as (a) emerging resistance varie-
ties for discovering new drug targets, (b) source of obtaining 
drugs, (c) minimizing the burden on medicinal plants, (d) 
to compensate expensive drug delivery, (e) to obtain greater 
variety of drugs, (f) fermentation potential and reproduc-
ibility of endophytes, (g) faster growth rate and (h) easily 
available nutrients, (i) host-mimicking compound potential, 
(j) enhanced antimicrobial potential than plants and (k) their 
balanced symbiotic relationship with different endophytic 
microbes.

To better understand the role and benefits of fungal 
endophytes and their relationship with the host plant, it is 
imperative to study modern-based approaches, like, nano-
technology (production of antimicrobial nanoparticles 
from endophytes), metabolomic profiling, next-generation 
sequencing, metabolomics, proteomics, metagenomics, bio-
informatics, and molecular networking approaches. These 
modern techniques are helpful in studying and character-
izing the structural analysis of a wide range of molecules 
in extract efficiently. Isolation and purification of bioactive 
compounds from medicinal plants is an expensive and labo-
rious process that involves the use of various plant parts in 
large quantities. Therefore, it is advantageous to shift from 
medicinal plants to fungal endophytes for isolating various 
plant-mimicking compounds as well as plant-independent 
bioactive compounds produced by them. There is also a 
possibility for increased production of these compounds 
by involving the fermentation potential of endophytic fungi 
which can be progressed on a large scale. However, more 
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explorations of medicinal plants are required to search for 
more novel drugs with antimicrobial potential. Moreover, 
studies on the genetic and molecular basis have to be focused 
on for a better understanding of various interactions involved 
between endophyte and the host plant for antimicrobial 
production.
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