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Abstract
Tobacco (Nicotiana tabacum L.) is an economic crop and a model organism for studies of plant biology and genetics. As an 
allotetraploid plant generated from interspecific hybridization, tobacco has a massive genome (4.5 Gb). Recently, a genetic 
map with 45,081 single nucleotide polymorphism (SNP) markers was constructed using whole-genome sequencing data for a 
tobacco population including 274 individuals. This provides a basis for quantitative trait locus (QTL) mapping and genomic 
selection, which have been widely applied to other crops but have not been feasible in tobacco. Based on this high-density 
genetic map, we identified QTLs associated with important agronomic traits, chemical compounds in dry leaves, and haz-
ardous substances in processed cigarettes. The LOD values for major QTLs were highest for agronomic traits, followed by 
chemical compounds and hazardous substances. In addition to the identification of molecular markers, we evaluated genomic 
selection models and found that BayesB had the highest prediction accuracy for the recombinant inbred line population. Our 
results offer new insights into the genetic mechanism underlying important traits, such as agronomic traits and quality-related 
chemical compounds in tobacco, and will be able to support the application of molecular breeding to tobacco.
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Introduction

Tobacco (Nicotiana tabacum L.) is an important industrial 
crop and is a model for transient expression. As a com-
mercial crop, tobacco is widely cultivated in more than 
120 countries (Sierro et al. 2014). According to the FAO, 
approximately 6.7 million tons of tobacco are produced 
worldwide, and China accounts for ~ 39.6% of the total 
yield (Geneva: World Health Organization 2017). Tobacco 
goods are mainly derived from dried leaves, which are pro-
cessed as cigarettes, cigars, chewing tobacco, pipe tobacco, 
and shisha tobacco. It is predominantly consumed for the 
addictive and stimulant alkaloid nicotine. Tobacco essen-
tially started the era of plant genetic engineering (Vasil 
and Hildebrandt 1965; Hoekema et al. 1983). It is a model 
plant for genetic detection, pathology investigations, and 
biotechnology. The tobacco leaf has been used as a model 
for studies of mechanisms underlying diseases in the fam-
ily Solanaceae and in other crops (Wang and Bennetzen 
2015; Wang and Balint-Kurti 2016). It is commonly used 
to evaluate protein subcellular localization via transient 
expression in epidermal cells (Liu et al. 2013; Sun et al. 
2015; Xiu et al. 2016) and for functinal analyses of genes 
in other species (Bao et al. 2017; Pagliano et al. 2017; Lee 
and Kim 2018). Despite its wide utilization as a model 
plant, the genetic mechanisms underlying important agro-
nomic traits in tobacco are not well-characterized owing 
to the genome complexity and limited molecular markers 
(Julio et al. 2006; Lewis et al. 2007). Since the genome 
assembly of different tobacco cultivars has been reported 
(Sierro et al. 2014), allotetraploid tobacco (2n = 4x = 48) 
has been a model system for studies of genomic structure 
and evolution.

As a member of the family Solanaceae, tobacco is an 
allotetraploid generated from the interspecific hybridiza-
tion of Nicotiana sylvestris (2n = 24) and Nicotiana tomen-
tosiformis (2n = 24) (Leitch et al. 2008; Sierro et al. 2013). 
The genome of tobacco (4.5 Gb) is complex, with numer-
ous repetitive sequences (Kenton et al. 1993). Advances 
in sequencing technologies and genome assembly methods 
have enabled the generation of a nearly complete reference 
genome for allotetraploid tobacco (Thimmegowda et al. 
2018; Tong et al. 2020). In addition, the development of 
molecular genetic markers is increasing (Ganal et al. 2009; 
Thimmegowda et al. 2018). For example, both restriction 
site-associated DNA sequencing (RAD-seq) and whole 
genome resequencing approaches have been employed to 
identify single-nucleotide polymorphisms (SNPs) and to 
construct linkage maps (Xiao et al. 2015; Thimmegowda 
et al. 2018). Recently, a genetic map with 45,081 SNPs 
markers has been constructed by whole genome sequenc-
ing using a tobacco population including 274 accessions 

(Tong et al. 2020). This high-density genetic map provides 
a foundation for tobacco quantitative trait locus (QTL) 
studies.

For the characterization of complex traits, the combina-
tion of QTL mapping and molecular marker-assisted selec-
tion is an effective strategy. This approach has been applied 
to many crops, including maize (Liu et al. 2014; Zhang 
et al. 2017), rice (Dixit et al. 2017; Hu et al. 2018), and 
wheat (Prat et al. 2017; Tura et al. 2020). In Solanaceae, this 
approach has been used in tomato (Bennewitz et al. 2018; 
Diouf et al. 2018). However, the application of QTL map-
ping to tobacco is limited by the genome complexity and 
insufficient molecular markers (Julio et al. 2006; Lewis et al. 
2007). Recently, QTL mapping has been used to identify 
disease resistance-associated QTLs. For example, QTLs for 
resistance to black shank disease (caused by Phytophthora 
nicotianae), brown spot (caused by Alternaria alternata), 
soilborne disease, cucumber mosaic virus, and Phytophthora 
nicotianae have been identified in tobacco via genetic link-
age mapping and association analyses (Tong et al. 2012; 
Drake-Stowe et al. 2017; Zhang et al. 2018; Cheng et al. 
2019; Ma et al. 2019). Moreover, molecular markers asso-
ciated with other important agronomic traits, such as plant 
height, leaf number, and leaf color, have been identified by 
QTL mapping (Lewis et al. 2007; Wu et al. 2014; Cheng 
et al. 2015). However, analyses of economic traits are lim-
ited, and related QTLs are insufficient for molecular breed-
ing, especially for quality improvement of tobacco products. 
In addition, with a large number of genetic markers, genomic 
selection (GS), which exploits a reference population with 
genotypic and phenotypic data to predict performance or 
genomic breeding values for population inferences, is useful 
for complex trait breeding not only in model crop species but 
also in non-model species (Bhat et al. 2016). GS methods 
have been reviewed for crop breeding and is now a common 
approach (Wang et al. 2018). However, few studies have 
utilized GS in tobacco.

The quality of tobacco products is mainly determined by 
leaf chemical compounds, including aromatic substances, 
nicotine, tar, total nitrogen, starch, total sugar, reduc-
tive sugars, and hazardous substances (e.g., benzo[a]pyr-
ene, phenol, and nicotine) (McAdam et al. 2016). Quality 
improvement in tobacco is achieved by the optimization of 
the proportions of aromatic substances, nicotine, and tar and 
reductions in hazardous substances. However, studies of 
molecular mechanisms underlying related traits are scarce, 
despite implications for molecular breeding. In this study, 
we identified QTLs associated with important agronomic 
traits, chemical compound contents of dry leaves, and haz-
ardous substances in processed cigarettes using a published 
high-density genetic map with whole genome sequenc-
ing (Tong et al. 2020). QTLs for seven agronomic traits, 
including plant height, leaf number, stem girth, internode 
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length, length of the largest leaf, width of the largest leaf, 
and yield, were mapped to linkage group 6 (LG6). Multiple 
QTLs affecting the contents of 23 chemical compounds in 
dry leaves and hazardous substances in processed cigarette 
were mapped to different LGs. Along with the identification 
of QTLs, we estimated that the GS model (BayesB) had the 
highest accuracy for the RIL population. These QTLs with 
functional annotations and the accurate GS pilot test provide 
new insights into genetic mechanisms underlying important 
agronomic traits and quality-related chemical compounds 
in tobacco and offer a foundation for molecular breeding.

Materials and methods

Plant material, genetic linkage map, phenotyping, 
and trait evaluation

The population, including 271 RIL_F7 individuals (7th 
generation from parental lines), the parents (Y3, a landrace 
variety, and K326, a commercial cultivar with a reference 
genome), and an F1 individual, was planted in Yanhe and 
Shilin (Yunnan Province, China) in 2018 and 2019 under 
natural conditions. We have previously published the genetic 
linkage map (Tong et al. 2020). In brief, a linkage map span-
ning 3484.78 cM with 45,081 markers was characterized. 
This high-density genetic linkage map was used for a QTL 
analysis.

Seven agronomic traits, including natural plant height 
(npH), natural leaf number (nLN), stem girth (SG), inter-
node length (IL), length of the largest leaf (LL), width of 
the largest leaf (WL) and yield per plant (Y), were measured 
at the Yanhe (N: 24.35; E: 102.54) and Shilin (N: 23.46; E: 
103.17) stations in two consecutive years (2018 and 2019, 
except data for yield were collected only in 2018). The four 
environmental conditions in which tobacco lines were cul-
tivated were E1 (2018 Shilin), E2 (2018 Yanhe), E3 (2019 
Shilin), and E4 (2019 Yanhe). Seven agronomic traits were 
measured 65 days after planting in the field (First green fruit 
stage). The heritability analysis of six agronomic traits (two 
points at 2 years) was performed with Best linear unbiased 
prediction (BLUP) among replicates using the R package 
“lme4” (Bates et al. 2007).

Twenty-three chemical compounds (sugar alkali ratio, 
shim uke value, total plant alkali, total sugar, reducing 
sugar, total nitrogen, potassium, chlorine, starch, nicotine, 
nornicotine, the ratio of nornicotine, anabasine, anatabine, 
ruti, glucose, fructose, sucrose xanthophyl II, beta-car-
otene, free citric acid, crude fiber and petroleum ether) 
were collected in dry leaves of plants at the Yanhe and 
Shilin stations in 2018. In brief, a sample of C3F grade 
dry leaves were selected to make 100 g leaves powder 
for chemical compounds determination. Total plant alkali, 

total nitrogen, chlorine and starch were measured using 
continuous flow method. Total sugar and reducing sugar 
were measured subbing water-soluble sugar determination 
method. Potassium was determined using fame photom-
etry. Nicotine, nornicotine, the ratio of nornicotine, ana-
basine and anatabine were measured by GC–MS. Ruti, 
glucose, fructose, sucrose xanthophyl II and beta-carotene 
were measured by high-performance liquid chromatogra-
phy (HPLC). Free citric acid was measured by gas chroma-
tographic method. Crude fiber and petroleum ether were 
determined by gravimetric method (Julio et al. 2006).

The seven hazardous substances, including benzo[a]
pyrene, hydrocyanic acid, phenol, carbon monoxide, tar, 
nicotine and total particle matter, were collected in the 
mainstream smoke of cigarettes produced using tobacco 
planted at Yanhe in 2018. In brief, the cigarette was placed 
in a constant temperature and humidity box with temper-
ature at 22 ± 2 °C and relative humidity of 60 ± 5% for 
48 h. After selected by the weight and absorption resist-
ance, total particle matter of smoke was collected using 
Cambridge filter with the SM450 linear smoking machine 
(suction time 2 s, suction interval 58 s, suction capacity 
35 mL). Benzo[a]pyrene and nicotine were measured by 
GS–MS. Hydrocyanic acid was measured by continuous 
flow method. Phenol was measured by HPLC. Carbon 
monoxide was determined by near-infrared reflectance 
spectrometry (NIRS). Tar was determined by gravimetric 
method. Details of related traits are provided in Table S1. 
Average values for six biological replicates were obtained. 
The frequency distributions and correlation coefficients of 
all traits were analyzed using the describe() function of 
the psych module and the cor() function of the spearman 
module in R, respectively.

QTL analysis

The QTL analysis was performed using MapQTL 6.0. 
Data for all traits in different environments and years 
were analyzed separately. The genome-wide LOD thresh-
old (p < 0.05) for each trait was calculated using the 
PERMUTATION test with 1000 permutations (Churchill 
and Doerge 1994). LOD values for all significant mark-
ers associated with candidate traits were obtained by the 
regression approach and interval mapping. All mapping 
markers whose LOD values were equal to or greater than 
the thresholds were retained and used as cofactors in the 
multiple-QTL models (MQM) in MapQTL 6.0. All map-
ping information including chromosomal location, mag-
nitude and environmental situations were generated using 
R. The markers with LODs greater than the LOD threshold 
were identified as the optimal final markers.
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Candidate gene prediction

All candidates within the confidence interval were aligned 
against databases, including KEGG (http:// www. genome. 
jp/ kegg/) and NR (NCBI Non-redundant protein), using 
BLASTp with an E value cutoff of 1 E−5. InterPro (Mulder 
and Apweiler 2007) was used to annotate protein motifs and 
domains, and Gene Ontology (GO) terms were retrieved 
(Ashburner et al. 2000).

Genomic prediction

The accuracy of GS is determined by a few factors, including 
the population size, GS model, marker density, and relative 
training set and test set sizes. Four model types, including 
ridge regression BLUP (rrBLUP), which estimates marker 
effects by ridge regression (Endelman 2011), and Bayesian 
regression using mixture models (BayesB assumes that each 
marker has a unique variance and a proportion (π) of mark-
ers has large effects, while most markers have no effect), 
including BayesA, BayesB, and BayesC (Meuwissen et al. 
2001; R development core team, 2011), were investigated for 
7 agronomic traits, 23 chemical compounds, and 7 harmful 
components. For marker density, we tested the prediction 
accuracy with different gradients of SNPs (1K, 2K, 4K, 7K, 
11K, 16K, 22K, 29K, 37K, and all SNPs) with 50 cycles for 
each group. We evaluated population sizes of 50, 100, 150, 
200, 250, and 271 (all) with 50 cycles for each group. For 
the ratio of the training set to the test set population size, we 
evaluated 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, and 10) with 50 
cycles for each group.

Results

Trait analysis of the recombinant inbred line 
population

Phenotypic data were obtained from two field stations in 
2 years, yielding four data sets for RIL population traits. 
For seven agronomic traits, 26 environmental trait data sets 
(excluding yield data for 2019) were collected. For example, 
the average tobacco natural plant height (npH) ranged from 
144.94 cm (E3) to 196.44 cm (E2). The average tobacco 
natural leaf number (nLH) ranged from 26 (E1) to 29 (E2). 
The average tobacco stem girth (SG) ranged from 7.96 cm 
(E4) to 10.16 cm (E2). Detailed information for other traits 
is shown in Table S2. These seven agronomic traits varied 
among environments. The Spearman correlation coefficients 
indicated that the relationships among these traits were gen-
erally significant (p ≤ 0.01), indicating a normal distribution 
among populations (Fig. S1). To evaluate the genetic factors 
contribution in the trait variation, we performed the herit-
ability analysis among six agronomic traits which had data 
sets at two stations in 2 years. The heritability of npH, nLN, 
SG, IL, LL and WL is 77.6%, 69.02%, 66.45%, 0%, 36.07% 
and 58.13% with BLUP methods. The result showed that 
most of the phenotype trait have high heritability except IL 
(Table 1).

For the contents of 23 chemical compounds in the dry 
leaf, 46 environmental trait data sets (two stations at 2018) 
were collected and used for correlation analyses (Fig. S2). 
Summary statistics and correlation coefficients for these 
environmental traits (means, SD, and CV in the RIL popula-
tion) are shown in Table S3. The contents of the same chem-
ical compound in different environments were significantly 
correlated (p ≤ 0.01). Data for seven hazardous substances 
were only collected in Yanhe 2018 owing to a limited sample 
size. The contents of hazardous substances per cigarette are 
provided in Table S4. The data followed a normal distribu-
tion and Spearman correlation coefficients were evaluated 

Table 1  Heritability analysis of six agronomic traits with two stations in 2 years

Trait Range Mean ± SE Heritability (%)

Parents RIL population

YK326 YY3 YF1

npH (cm) 111.44–193.88 221.31–270.56 153.07–223.56 87.33–275.67 177.74 ± 1.70 77.60
nLN (n) 25.22–28 36.33–36.74 27.80–32 18.5–45.00 27.96 ± 0.25 69.02
SG (cm) 7.28–11 9.9–11.22 8.10–10.83 5.00–13.17 8.85 ± 0.07 66.45
IL (cm) 3.70–7.44 4.98–6.33 4.5–5.55 2.64–7.55 4.66 ± 0.04 0.00
LL (cm) 58.35–73.11 61.92–74.06 60.90–71.5 37.40–92.33 62.74 ± 0.39 36.07
WL (cm) 25.45–34.91 29.48–36.67 27.56–36.53 13.50–45.27 27.74 ± 0.25 58.13

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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(Fig. S3). SC7 (total particle matter) showed strong, posi-
tive, and significant correlations with SC2 (hydrocyanic 
acid), SC3 (pheno), SC4 (carbon monoxide), SC5 (tar), and 
SC6 (nicotine) (p < 0.01). These results showed that the cor-
relations between chemical compounds content were signifi-
cantly weaker than those among agronomic traits.

QTL analysis

To detect QTLs for each of the three kinds of traits by inte-
grating phenotypic and genetic data for the RIL population, 
an interval mapping method was used to determine loga-
rithm of odds (LOD) scores (Jansen 1993). Different envi-
ronmental conditions and the same traits were compared. 
For agronomic traits, most LOD scores were approximately 
3.6–3.8, except the LOD score for the length of the larg-
est leaf (LL) in E1 was 2.3. Thirteen regions, including 43 
significant QTLs, were identified in different environments 
(Table S5). In detail, these QTLs were mapped to linkage 
group (LG) 1, LG5, LG6, LG8, and LG17 with 2, 2, 5, 3, and 
1 region, respectively (Fig. 1). There were 3447 SNP mark-
ers corresponding to 171 protein-coding genes distributed 
on 2651 scaffolds in these 13 QTL regions. Gene annotation 
(171 genes) revealed that some QTLs encode proteins, such 
as SMAD/FHA domain-containing protein and glycosyl 
hydrolase family protein, which are related to growth and 
development. The QTL results showed that nearly all the 
seven traits were associated with a major region of LG6 with 
the highest LOD. The main effect QTL regions for natural 
plant height (nPH), natural leaf number (nLN), and stem 
girth (SG) were located in LG6 from 101.14 to 158.72 cM 

with LOD values exceeding 25 (Fig. 1 and Table S5). Simi-
lar regions were also identified for the length of the largest 
leaf (LL) with an LOD of 12.5 and yield per plant (Y) with 
an LOD of 7 (Fig. 1 and Table S5). The identification of 
the same QTL location for these five agronomic traits was 
consistent with the high correlations between phenotypic 
values for these traits. Compared with agronomic traits, the 
chemical compounds in the dry leaf were more complex, 
involving more factors. In the QTL analysis of 23 chemical 
compounds in the dry leaf, 17 regions were identified in 
different environments with LOD scores of 3.2–4.0 LOD 
(most frequently 3.6, 3.7, and 3.8) (Table S6). The identified 
QTLs mapped to linkage group (LG) 1, LG3, LG4, LG6, 
LG8, LG12, LG14, LG15, and LG22 with 2, 1, 1, 4, 2, 2, 4, 
1, and 1 region, respectively (Fig. 2). There were 4301 SNP 
markers (655 bin markers) distributed on 3423 scaffolds in 
these regions. In total, 195 genes were annotated. A Gene 
Ontology (GO) analysis of these genes showed enrichment 
for metabolic processes (biological process) and catalytic 
activity (molecular function) (Fig. S4). These terms were 
related to the biosynthesis of chemical compounds. The 
LOD values for major QTLs for chemical compounds were 
significantly lower than those for agronomic traits. The main 
major QTL for eight chemical compounds, including sugar 
alkali ratio (CC1), shi Muke value (CC2), total plant alkali 
(CC3), nicotine (CC10), nornicotine (CC11), the ratio of 
nornicotine (CC12), anabasine (CC13), and anatabine 
(CC14), were mapped to the same location from 86.40 to 
135.30 cM in LG14 (Fig. 2 and Table S6). The highest LOD 
value was > 16 in CC3, CC10, CC12, and CC13. The other 
chemical compounds showed relatively low LOD values, 

Fig. 1  QTL mapping results for seven agronomic traits in the RIL 
population in four environmental conditions. Different blocks rep-
resent linkage groups (LGs). LOD cutoff values are indicated by 

the dotted line. nPH natural plant height, nLN natural leaf number, 
SG stem girth, IL internode length, LL length of the largest leaf, WL 
width of the largest leaf, Y yield per plant
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maybe owing to the complexity of these traits. For the seven 
hazardous substances in cigarette mainstream smoke, six 
QTL regions were identified with LOD scores of 3.6–3.8 
(Table S7). Four were mapped to LG4 and the remaining 
two were in LG12 and LG14 (Fig. 3). These six regions 
contained 1933 SNP markers (208 bin markers) distributed 
on 1460 scaffolds. The 128 annotated genes included genes 
encoding enzyme activity proteins, such as synthase, oxi-
dase, and hydrolase, which might be involved in the biosyn-
thesis of harmful substances. The major QTL regions of SC3 
(pheno), SC4 (carbon monoxide), SC5 (tar), SC6 (nicotine), 
and SC7 (total particle matter) were located in LG6 from 
123.28 to 158.72 cM. The similar locations were consist-
ent with the strong positive correlations among these traits. 
The LOD values (~ 4) for hazardous substances were slightly 
higher than the cutoff LOD, suggesting that hazardous sub-
stance contents were complex traits, making the identifica-
tion of QTLs more difficult compared with agronomic traits 
and chemical compounds.

Genomic selection analysis

GS has not been reported in tobacco to date. We applied GS 
to the tobacco RIL population. The effects of marker num-
ber, population size, and the ratio of the training set to the 
test set population size on prediction accuracy were tested 

for all of the phenotypic traits. As shown in Fig. 4, as the 
number of markers increased from 1 to 2k, the prediction 
accuracy for the yield in YH in the RIL population increased 
slightly (from 0.155 to 0.181), followed by a slight decrease 
at 7k (0.114) and a subsequent increase in prediction accu-
racy at 45.9k (0.202). The population size was a significant 
determinant of prediction accuracy. When the population 
size increased to 250, the prediction accuracy nearly reached 
its maximum value. The optimal ratio for the test set to the 
training set with respect to prediction accuracy was 10. Four 
statistical models (rrBLUP, BayesA, BayesB, and BayesC) 
were evaluated (Fig. 4), with average accuracies of 0.242, 
0.262, 0.264, and 0.206, respectively. Significant differ-
ences could be identified for the RIL population with aver-
age accuracies in rrBLUP and Bayes models. The BayesB 
model showed the highest accuracy for the RIL population. 
A similar trend was observed for other phenotype traits, with 
slight differences.

Discussion

Using a previously established high-density genetic linkage 
map (Tong et al. 2020), we identified QTLs associated with 
yield-related traits, including plant height, leaf number, stem 
girth, internode length, length of the largest leaf, width of 

Fig. 2  QTL mapping results for chemical compound contents in 
the dry leaf in the RIL population in two environmental conditions. 
Linkage groups (LGs) are indicated by different blocks. Dotted lines 

represent the cutoff values for LODs. The abbreviations for chemical 
compounds are defined in Table S1

Fig. 3  QTL mapping results for harmful ingredients in cigarette smoke in the RIL population. Different blocks represent linkage groups (LGs). 
LOD cutoff values are indicated by the dotted line. The abbreviations for harmful ingredients in cigarette smoke are defined in Table S1
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the largest leaf, and yield of single plants. Compared with 
previous reports focused on plant height, leaf number, and 
leaf color (Lewis et al. 2007; Wu et al. 2014; Cheng et al. 
2015), we performed a comprehensive analysis of impor-
tant agronomic traits. In addition, we mapped QTLs for the 
contents of chemical compounds, providing the first analy-
sis of the genetic control of these quality-related traits in 
tobacco. We specifically isolated seven harmful ingredients 
for QTL analyses. Compared with traditional technologies 
used to reduce harmful ingredients in cigarette smoke, strat-
egies targeting the molecular mechanisms underlying the 
production of hazardous substances would be an innovation 
approach to improve safety. The functional annotation of 

genes corresponding to these QTLs provides new insight 
into the genetic mechanism underlying important agronomic 
traits. In addition, these results provide foundational infor-
mation for both yield and quality improvement in tobacco 
by molecular breeding.

Among the three trait types, QTLs for agronomic traits 
showed the highest LOD values and fewer genomic regions. 
The LODs for hazardous substances in cigarette mainstream 
smoke were lower than those for chemical compounds in 
the dry leaf. It is possible that more complex traits showed 
lower LODs and mapped to more QTLs. Alternatively, 
natural phenotypes not involving artificial processing were 
more directly controlled by genetic factors (Melchinger et al. 

Fig. 4  Prediction accuracy (total value = 1) of four different statisti-
cal models for the yield of YH in RIL populations. a Marker number 
was the variable factor. b Population size was the variable factor. c 

Ratio of training set to test set population sizes was the variable fac-
tor. d Different statistical models were used for prediction. Prediction 
accuracy is calculated as 1 in the Y axis
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2004). Traits with high correlation coefficients clustered 
within the same linkage group (e.g., agronomic traits clus-
tered in LG6), while those with low correlation coefficients 
were distributed across different LGs. These results indicate 
that the genetic map/SNP markers are effective for additional 
QTL studies and provide reference information for further 
QTL mapping of complex traits.

We also performed a pilot test of GS in tobacco. This 
approach is a more efficient strategy to predict and select 
for complex traits than marker-assisted selection, which is 
usually based on established mapping results (Crossa et al. 
2017; Yamamoto et al. 2017; Cerrudo et al. 2018). The 
prediction accuracy was mainly determined by the popula-
tion size and proportion (ratio of the test set to the train-
ing set) and was weakly related to the density of markers. 
The genomic prediction analysis was conducted on the RIL 
population using different marker numbers, population sizes, 
and models. Population size was most effective factor for 
improving the predication accuracy and the BayesB model 
may be the most well-suited for the tobacco RIL popula-
tion. Combined, our results demonstrate that GS prediction 
is promising in this tobacco RIL population, supporting the 
application of this approach to tobacco breeding.
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