Skip to main content

Advertisement

Log in

Metabolic engineering of low-molecular-weight antioxidants in sweetpotato

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Environmental stress leads to the production of reactive oxygen species (ROS) and consequently oxidative stress, which limits plant productivity. Thus, new crop cultivars that are able to overcome oxidative stress are required to address the global issues of environmental, food, and energy security. Sweetpotato (Ipomoea batatas [L.] Lam) is considered an emerging multifunctional crop because of its high carbohydrate content and adaptation to marginal lands. Moreover, sweetpotato offers several health benefits for the aging population, as it is rich in low-molecular-weight antioxidants (LMWAs) (e.g., carotenoids, ascorbate, tocopherols, and polyphenols), dietary fiber, potassium, and minerals. We speculate that metabolic engineering of LMWAs in sweetpotato will lead to the development of smart cultivars with enhanced levels of antioxidants and abiotic stress tolerance. This review describes the current status of metabolic engineering of LMWAs in sweetpotato and the potential of sweetpotato in ensuring food and nutrition security in the twenty-first century. Here, we focus on carotenoids, ascorbate, tocopherols, and polyphenols including anthocyanins in transgenic sweetpotato plants. Additionally, we discuss the potential role of the sweetpotato Orange (IbOr) gene, involved in carotenoid accumulation and stress tolerance, in improving crop productivity under the changing global climate and alleviating the problem of vitamin A deficiency. Genetic engineering of the biosynthetic and metabolic genes of LMWAs in sweetpotato is currently under investigation via molecular breeding. We predict that metabolic engineering of antioxidants in sweetpotato will lead to the development of new cultivars with enhanced nutritional value and abiotic stress tolerance, which will ensure global food and nutrition security in the face of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Kim et al. 2018a)

Fig. 2

Similar content being viewed by others

Abbreviations

CA:

Caffeic acid

CQAs:

Caffeoylquinic acid derivatives

CCDs:

Carotenoid cleavage dioxygenases

CHY-β:

β-Carotene hydroxylase

DHAR:

Dehydroascorbate reductase

IbOr:

Sweetpotato orange

LCY-β:

Lycopene beta cyclase

LCY-ε:

Lycopene epsilon cyclase

LMWA:

Low-molecular-weight antioxidant

PsbP:

Oxygen-evolving enhancer protein 2–1

PSY:

Phytoene synthase

ROS:

Reactive oxygen species

TC:

Tocopherol cyclase

References

  • Asensi-Fabado MA, Munne-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    CAS  PubMed  Google Scholar 

  • Bovell-Benjamin AC (2007) Sweetpotato: a review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52:1–59

    CAS  PubMed  Google Scholar 

  • Center for Science in the Public Interest (2016) 10 Best foods. Retrieved from https://www.nutritionaction.com/get-download/download/?dtd=16511&n=1

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    CAS  Google Scholar 

  • Chen PN, Chu SC, Chiou HL, Chiang CL, Yang SF, Hsieh YS (2005) Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr Cancer 53:232–243

    CAS  PubMed  Google Scholar 

  • Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Transgenic Res 15:655–665

    CAS  PubMed  Google Scholar 

  • Chen W, He S, Liu D, Patil GB, Zhai H, Wang F, Stephenson TJ, Wang Y, Wang B, Valliyodan B et al (2015) A sweetpotato geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoids content and enhances osmotic stress tolerance in Arabidopsis thaliana. PLoS ONE 10:e0137623

    PubMed  PubMed Central  Google Scholar 

  • Cho KS, Han EH, Kwak SS, Cho JH, Im JS, Hong SY, Sohn HB, Kim YH, Lee SW (2016) Expressing the sweetpotato orange gene in transgenic potato improves drought tolerance and marketable tuber production. C R Biol 339:207–213

    PubMed  Google Scholar 

  • Christie P, Alfenito M, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    CAS  Google Scholar 

  • Chu HS, Jeong JC, Kim WJ, Jang DM, Jeon HK, Ahn YO, Kim SH, Lee HS, Kwak SS, Kim CY (2013) Expression of the sweetpotato R2R3-type IbMYB1a gene induced anthocyanin accumulation in Arabidopsis. Physiol Plantarum 148:189–199

    CAS  Google Scholar 

  • Cone KC, Cocciolone SM, Burr FA, Burr B (1993) Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5:1795–1805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoids biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    CAS  PubMed  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    CAS  PubMed  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    CAS  PubMed  Google Scholar 

  • Donado-Pestana C, Salgado J, Oliveira Rios A, Santos P, Jablonski A (2012) Stability of carotenoids, total phenolics and in vitro antioxidant capacity in the thermal processing of orange-fleshed sweet potato (Ipomoea batatas Lam.) cultivars grown in Brazil. Plant Foods for Hum Nutr 67:262–270

    CAS  Google Scholar 

  • Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    PubMed  PubMed Central  Google Scholar 

  • Ellong EN, Billard C, Adenet S (2014) Comparison of physicochemical, organoleptic and nutritional abilities of eight sweet potato (Ipomoea batatas) varieties. Food Nutr Sci 5:196–211

    Google Scholar 

  • Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C et al (2013) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J 11:408–419

    CAS  PubMed  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56:650–651

    CAS  PubMed  Google Scholar 

  • FAO (2018) The future of food and agriculture—alternative pathways to 2050. FAO, Rome

    Google Scholar 

  • FAO (2018b) FAOSTAT, https://faostat.fao.org/

  • Francis D, Finer JJ, Groteworld E (2017) Challenges and opportunities for improving food quality and nutrition through plant biotechnology. Curr Opin Biotechnol 44:124–129

    CAS  PubMed  Google Scholar 

  • Fenech M, Amaya I, Valpuesta V, Botella MA (2019) Vitamin C content in fruits: biosynthesis and regulation. Fron Plant Sci 9:2006

    Google Scholar 

  • Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117

    CAS  PubMed  Google Scholar 

  • Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180

    CAS  PubMed  Google Scholar 

  • Giorio G, Yildirim A, Stigliani AL, D'Ambrosio C (2013) Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases. Metab Eng 20:167–176

    CAS  PubMed  Google Scholar 

  • Goo YM, Han EH, Jeong JC, Kwak SS, Yu J, Kim YH, Ahn MJ, Lee SW (2015) Overexpression of the sweetpotato IbOr gene results in the increased accumulation of carotenoids and confers tolerance to environmental stresses in transgenic potato. C R Biol 338:12–20

    PubMed  Google Scholar 

  • Götz T, Sandmann G, Römer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50:129–142

    PubMed  Google Scholar 

  • Guo JY, Zhou W, Lu ZL, Li H, Li HH, Gao F (2015) Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweetpotato. Plant Mol Biol Rep 33:1451–1463

    CAS  Google Scholar 

  • Hayase F, Kato H (1984) Antioxidant components of sweet potatoes. J Nutr Sci Vitaminol 30:37–46

    CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014) Role of tocopherol (vitamin E) in plants: abiotic stress tolerance and beyond. In: Ahamd P, Rasool S (eds) Emerging technologies and management of crop stress tolerance, 2nd edn. Academic Press, San Diego, pp 267–290

    Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14:1697–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotz C, Loechl C, Lubowa A, Tumwine JK, Ndeezl G, Nandutu MA, Baingana R, Carriquiry A, de Brauw MJV et al (2012) Introduction of beta-carotene-rich orange sweetpotato in rural Uganda resulted in increased vitamin a intakes among chidren and woman and improved vitamin a status among children. J Nutr 142:1871–1880

    CAS  PubMed  Google Scholar 

  • Howitt CA, Pogson BJ (2006) Carotenoids accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445

    CAS  PubMed  Google Scholar 

  • Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Ôba K, Hirai M (1998) L-Galactono-7-lactone Dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    CAS  PubMed  Google Scholar 

  • Isabirye MG, Ruysschaert L, Van-Linden JP, Maguada MK, Deckers J (2007) Soil losses due to cassava and sweet potatoes harvesting: a case study from low input traditional agriculture. Soil Till Res 92:96–103

    Google Scholar 

  • Ishida H, Suzuno H, Sugiyama N, Innami S, Tadokoro T, Maekawa A (2000) Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem 68:359–367

    CAS  Google Scholar 

  • Islam S (2006) Sweetpotato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. J Food Sci 71:R13–R21

    CAS  Google Scholar 

  • Jang Y, Koh E (2019) Antioxidant content and activity in leaves and petioles of six sweetpotato (Ipomoea batatas L.) and antioxidant properties of blanced leaves. Food Sci Biotechnol 28:337–345

    CAS  PubMed  Google Scholar 

  • Ji CY, Kim YH, Kim HS, Ke Q, Kim GW, Park SC, Lee HS, Jeong JC, Kwak SS (2016) Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco. Plant Physiol Bioch 106:118–128

    CAS  Google Scholar 

  • Jiang YC, Huang CY, Wen L, Lin CT (2008) Dehydroascorbate reductase cDNA from sweet potato (Ipomoea batatas [L.] Lam): expression, enzyme properties, and kinetic studies. J Agric Food Chem 56:3623–3627

    CAS  PubMed  Google Scholar 

  • Jyothi AN, Moorthy SN, Eswariamma CS (2005) Anthocyanins in sweet potato leaves-varietal screening, growth phase studies and stability in a model phases in a model system. Int J Food Prop 8:221–232

    CAS  Google Scholar 

  • Kang C, He S, Zhai H, Li R, Zhao N, Liu Q (2018a) A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Front Plant Sci 9:1307

    PubMed  PubMed Central  Google Scholar 

  • Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q (2018b) A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci 272:243–254

    CAS  PubMed  Google Scholar 

  • Kang L, Ji CY, Kim SH, Ke Q, Kim HS, Lee HY, Lee JS, Ahn MJ, Lee HS, Kwak SS (2017a) Suppression of β-carotene hydroxylase gene increases β-carotene contents and tolerance to abiotic stress in transgenic sweetpotato plants. Plant Physiol Bioch 117:24–33

    CAS  Google Scholar 

  • Kang L, Kim HS, Kwon YS, Ke Q, Ji CY, Park SC, Lee HS, Deng X, Kwak SS (2017b) IbOr regulates photosynthesis under heat stress by stabilizing IbPsbP in sweetpotato. Front Plant Sci 8:989

    PubMed  PubMed Central  Google Scholar 

  • Kang L, Park SC, Ji CY, Kim HS, Lee HS, Kwak SS (2017c) Metabolic engineering of carotenoids in transgenic sweetpotato. Breed Sci 67:27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition and oxidative stress. Plant Physiol 137:713–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke Q, Kang L, Kim HS, Xie T, Liu C, Ji CY, Kim SH, Park WS, Ahn MJ, Wang S et al (2019) Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. Plant Sci 281:52–60

    CAS  PubMed  Google Scholar 

  • Kim CY, Ahn YO, Kim SH, Kim YH, Lee HS, Catanach AS, Jacobs JME, Conner AJ, Kwak SS (2010) The sweet potato IbMYB1 gene as a potential visible marker for sweetpotato intragenic vector system. Physiol Plantarum 139:229–240

    CAS  Google Scholar 

  • Kim HS, Ji CY, Lee CJ, Kim SE, Park SC, Kwak SS (2018a) Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. J Exp Bot 69:3393–3400

    CAS  PubMed  Google Scholar 

  • Kim HS, Lee CJ, Kim SE, Ji CY, Kim ST, Kim JS, Kim S, Kwak SS (2018b) Current status on global sweetpotato cultivation and its prior tasks of mass production. J Plant Biotechnol 45:190–195

    Google Scholar 

  • Kim KY, Kwon SY, Lee HS, Hur YK, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831–838

    CAS  PubMed  Google Scholar 

  • Kim SE, Kim HS, Wang Z, Ke Q, Lee CJ, Park SU, Lim YH, Park WS, Ahn MJ, Kwak SS (2019a) A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation. Plant Cell Rep 38:1393–1402

    CAS  PubMed  Google Scholar 

  • Kim SE, Lee CJ, Ji CY, Kim HS, Park SU, Lim YH, Park WS, Ahn MJ, Kwak SS (2019b) Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. Plant Physiol Biochem 144:436–444

    CAS  PubMed  Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013a) Cloning and characterization of an Orange gene that increases carotenoids accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Bioch 70:445–454

    CAS  Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Lee HS, Kwak SS (2012) Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry 74:69–78

    CAS  PubMed  Google Scholar 

  • Kim SH, Jeong JC, Park S, Bae JY, Ahn MJ, Lee HS, Kwak SS (2014) Down-regulation of sweetpotato lycopene β-cyclase gene enhances tolerance to abiotic stress in transgenic calli. Mol Biol Rep 41:8137–8148

    CAS  PubMed  Google Scholar 

  • Kim SH, Kim YH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013b) Downregulation of the lycopene ϵ-cyclase gene increases carotenoids synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiol Plantarum 147:432–442

    CAS  Google Scholar 

  • Kim YH, Kim HS, Park SC, Ji CY, Yang JW, Lee HU, Kwak SS (2020) Overexpression of swpa4 peroxidase enhances tolerance to hydrogen peroxide and high salinity-mediated oxidative stress in transgenic sweetpotato plants. Plant Biotechnol Rep. https://doi.org/10.1007/s11816-020-00602-z

    Article  Google Scholar 

  • Kim YH, Yun BW, Kwak SS (2019c) Expression of the sweet potato peroxidase gene swpa4 in Arabidopsis activates defense genes mediated by reactive oxygen species and nitric oxide. Plant Biotechnol Rep 13:329–336

    Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    CAS  PubMed  Google Scholar 

  • Kwak SS (2018) Agroforestry biotechnology for sustainable agriculture on marginal lands. Sci J Region Prbl 21:51–53

    Google Scholar 

  • Kwak SS (2019) Biotechnology of the sweetpotato: ensuring global food and nutrition security in the face of climate change. Plant Cell Rep 38:1361–1363

    CAS  PubMed  Google Scholar 

  • Kwak SS, Kim SK, Lee MS, Jung KH, Park IH, Liu JR (1995) Three acidic peroxidases from suspension-cultures of sweet potato. Phytochemistry 39:981–984

    CAS  Google Scholar 

  • Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YB, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    CAS  PubMed  Google Scholar 

  • Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweetpotato (Ipomoea batatas (L.) Lam.) is involved in the accumulation of anthocyanin. Mol Genet Genom 275:44–54

    CAS  Google Scholar 

  • Lebot V (2010) Sweet potato. In: Root and tuber crops: handbook of plant breeding. London: Springer, pp 97–125

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio E, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    CAS  PubMed  Google Scholar 

  • Li M, Jang GY, Lee SH, Kim MY, Hwang SG, Sin HM, Kim HS, Lee J, Jeong HS (2017a) Comparison of functional components in various sweet potato leaves and stalks. Food Sci Biotechnol 26:97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Kang C, Song X, Yu L, Liu D, He S, Zhai H, Liu Q (2017b) A ζ-carotene desaturase gene, IbZDS increases β-carotene and lutein contents and enhances salt tolerance in transgenic sweetpotato. Plant Sci 262:39–51

    CAS  PubMed  Google Scholar 

  • Liu XQ, Chen M, Li MY, Yang CX, Fu YF, Zhang QT, Zeng LJ, Liao ZH (2010) The anthocyanidin synthase gene from sweetpotato (Ipomoea batatas (L.) Lam.): cloning, characterization and tissue expression analysis. Afr J Biotechnol 9:3748–3752

    CAS  Google Scholar 

  • Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J, Li L (2008) Effect of the cauliflower Or transgene on carotenoids accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213–223

    CAS  PubMed  Google Scholar 

  • Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50(7):778–785

    CAS  PubMed  Google Scholar 

  • Lu L, Zhai H, Chen W, He SZ, Liu QC (2013) Cloning and functional analysis of lycopene ε-cyclase (IbLCYε) gene from sweetpotato, Ipomoea batatas (L.) Lam. J Integ Plant Biol 12:773–780

    Google Scholar 

  • Macknight RC, Laing WA, Bully SM, Broad RC, Johnson AA, Hellens RP (2017) Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr Opin Biotechnol 44:153–160

    CAS  PubMed  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menelaou E, Kachatryan A, Losso J (2006) Lutein content in sweetpotato leaves. HortScience 41:1269–1271

    CAS  Google Scholar 

  • Mene-Saffrane L, Pellaud S (2017) Current strategies for vitamin E biofortification of crops. Curr Opin Biotechnol 44:189–197

    CAS  PubMed  Google Scholar 

  • Montilla EC, Hillebrand S, Winterhalter P (2011) Anthocyanins in purple sweet potato (Ipomoea batatas L.) varieties. Fruit, Vegetable and Cereal Science and Biotechnology, Global Science Books pp. 19–24

  • Mosha TC, Pace RD, Adeyeye S, Laswai HS, Mtebe K (1997) Effect of traditional processing practices on the content of total carotenoid, β-carotene, α-carotene and vitamin A activity of selected Tanzanian vegetables. Plant Foods Hum Nutr 50(3):189–201

    CAS  PubMed  Google Scholar 

  • Munne-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    CAS  PubMed  Google Scholar 

  • Ôba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of L-Galactono- γ-Lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    PubMed  Google Scholar 

  • Ouyang SQ, He SJ, Liu P, Zhang WK, Zhang JS, Chen SY (2011) The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci China Life Sci 54:181–188

    CAS  PubMed  Google Scholar 

  • Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z, Jeong JC, Lee HS, Lee SY, Kwak SS (2016) Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep 6:33563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SC, Kim SH, Park SY, Lee HU, Lee JS, Bae JY, Ahn MJ, Kim YH, Jeong JC, Lee HS et al (2015a) Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiol Bioch 86:82–90

    CAS  Google Scholar 

  • Park SC, Kim YH, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae JY, Ahn MJ, Jeong JC, Lee HS et al (2015b) Overexpression of the IbMYB1 gene in an orange-fleshed sweetpotato cultivar produces a dual-pigmented transgenic sweetpotato with improved antioxidant activity. Physiol Plantarum 153:525–537

    CAS  Google Scholar 

  • Park SY, Ryu SH, Jang IC, Kwon SY, Kim JG, Kwak SS (2004) Molecular cloning of a cytosolic ascorbate peroxi-dase cDNA from cell cultures of sweet potato and its expression in response to stress. Mol Genet Genom 271:339–346

    CAS  Google Scholar 

  • Prabawardani S, Suparno A (2015) Water use efficiency and yield of sweetpotato as affected by nitrogen and potassium application. J Agr Sci 5:128–137

    Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    CAS  PubMed  Google Scholar 

  • Ren W, Zhao L, Wang Y, Cui L, Tang Y, Sun X, Tang K (2011) Overexpression of homogentisate phytyltransferase in lettuce results in increased content of vitamin E. AJB 10:14046–14051

    CAS  Google Scholar 

  • Shi Y, Wang R, Luo Z, Jin L, Liu P, Chen Q, Li Z, Li F, Wei C, Wu M et al (2014) Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and tts expression pattern in Nicotiana tabacum. Int J Mol Sci 15:14766–14785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 8:661–669

    Google Scholar 

  • Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. RussJ Plant Physiol 50:168–172

    Google Scholar 

  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361

    CAS  PubMed  Google Scholar 

  • Sun T, Zhou F, Huang X-Q, Chen W-C, Kong M-J, Zhou C-F, Zhuang Z, Li L, Lu S (2019) ORANGE represses chloroplast biogenesis in etiolated arabidopsis cotyledons via interaction with TCP14. Plant Cell 31(12):2996–3014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Ishiguro K, Oki T, Okuno S (2017) Functional components in sweetpotato and their genentic improvement. Breed Sci 67:52–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Takahata Y, Kurata R, Nakayama H, Yoshinaga M (2012) Structural and functional chracterization of IbMYB1 genes in recent Japanese purple-fleshed sweetpotato cultivars. Mol Breed 29:565–574

    CAS  Google Scholar 

  • Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC (2007) Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem 103:829–838

    CAS  Google Scholar 

  • Tomlins K, Owori C, Bechoff A, Menya G, Westby A (2011) Relationship among the carotenoid content, dry matter content and sensory attributes of sweet potato. Food Chem 121:14–21

    Google Scholar 

  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920

    CAS  Google Scholar 

  • Tzuri G, Zhou X, Chayut N, Yuan H, Portny V, Meir A, Saar U, Baumkoler F, Mazourek M, Lewinsohn E et al (2015) A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279

    CAS  PubMed  Google Scholar 

  • USDA Database (2018) National Nutrient Database for Standard Reference Legacy Release https://ndb.nal.usda.gov/ndb/foods/show/301764?fgcd=&manu=&lfacet=&format=&count=&max=25&offset=&sort=default&order=asc&qlookup=raw+Van. Accessed 23 Apr 2018

  • USDA (2019) https://fdc.nal.usda.gov/fdc-app.html#/food-details/168482/nutrients

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    CAS  PubMed  Google Scholar 

  • Wang A, Nie S, Zhu F (2016a) Chemical consituents and health effects of sweet potato. Food Res Int 89:90–116

    CAS  PubMed  Google Scholar 

  • Wang F (2007) Clone of full-length cDNA of phytoene desaturase (gene pds) gene in sweet potato (Ipomoea Batatas L.). J Anhui Univ Sci Technol 27:55–58 (in Chinese)

    Google Scholar 

  • Wang HX, Fan WJ, Li H, Yang J, Huang JR, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweetpotato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS ONE 8:e78484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wang WB, Qiu X, Kim HS, Yang Y, Hou D, Liang X, Kwak SS (2020) Molecular cloning and functional characterization of a sweetpotato chloroplast IbDHAR3 gene in response to abiotic stress. Plant Biotechnol Rep 14:9–20

    CAS  Google Scholar 

  • Wang Z, Ke Q, Kim MD, Kim SH, Ji CY, Jeong JC, Lee HS, Park WS, Ahn MJ, Li H et al (2015) Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance. PLoS ONE 10:e0126050

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Nie S, Zhu F (2016b) Chemical constituents and health effects of sweet potato. Food Res Int 89:90–116

    CAS  PubMed  Google Scholar 

  • Wang Z, Xu WH, Kang JY, Li M, Huang J, Ke Q, Kim HS, Xu BC, Kwak SS (2018) Overexpression of alfalfa Orange gene in tobacco enhances carotenoid accumulation and tolerance to multiple abiotic stresses. Plant Physiol Bioch 130:613–622

    CAS  Google Scholar 

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife 13:4

    Google Scholar 

  • Wheeler GL, Jones MA, Smirnof N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    CAS  PubMed  Google Scholar 

  • Williams R, Soares F, Pereira L, Belo B, Soares A, Setiawan A, Browne M, Nesbitt H, Erskine W (2013) Sweet potato can contribute to both nutritional and food security in Timor-Leste. Field Crop Res 146:38–43

    Google Scholar 

  • Woo HJ, Sohn SI, Shin KS, Kim JK, Kim BG, Lim MH (2014) Expression of tobacco tocopherol cyclase in rice regulates antioxidative defense and drought tolerance. Plant cell 117:257–267

    Google Scholar 

  • Wu J, Ji J, Wang G, Wu G, Diao J, Li Z, Chen X, Chen Y, Luo L (2015) Ectopic expression of the Lycium barbarum β-carotene hydroxylase gene (chyb) enhances drought and salt stress resistance by increasing xanthophyll cycle pool in tobacco. Plant Cell Tiss Org Cult 121:559–569

    CAS  Google Scholar 

  • Xi L, Mu T, Sun H (2015) Prepartaive purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chem 172:166–174

    CAS  PubMed  Google Scholar 

  • Xu J, Su X, Lim S, Griffin J, Carey E, Katz B, Tomich J, Scott Smith J, Wang W (2015) Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chem 186:90–96

    CAS  PubMed  Google Scholar 

  • Ye X, Al-Babilli S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A (2008) Enhancing the carotenoids content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573–585

    CAS  PubMed  Google Scholar 

  • Yu Q, Beyer P (2012) Reaction specificities of the ε-ionone-forming lycopene cyclase from rice (Oryza sativa) elucidated in vitro. FEBS Lett 586:3415–3420

    CAS  PubMed  Google Scholar 

  • Yuan H, Owsiany K, Sheeja TE, Zhou X, Rodriguez C, Li Y, Welsch R, Chayut N, Yang Y, Thannhauser TW et al (2015) A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis. Plant Physiol 169:421–431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ytterberg AJ, Peltier JB, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Qiang W, Liu XQ, Yang CX, Fu YF, Chen M, Zeng LJ, Wang WQ, Liao ZH (2011) Molecular cloning and characterization of the chalcone isomerase gene from sweet potato. Afr J Biotechnol 10:14443–14449

    CAS  Google Scholar 

  • Zhou W, Huang CT, Gong YF, Feng QL, Gao F (2010) Molecular cloning and expression analysis of an ANS gene encoding anthocyanidin synthase from purple-fleshed sweetpotato (Ipomoea batatas (L.) Lam.). Plant Mol Biol Rep 28:112–121

    CAS  Google Scholar 

  • Zhou X, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H, Fish T, Liu J, Thannhauser TW, Li L (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci USA 112:3558–3563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Runion GB, Tomecek M, Prior SA, Torbe HA, Sicher R (2009) An evaluation of cassava, sweetpotato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenerg 33:1503–1508

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Systems & Synthetic Agrobiotech Center (PJ01318401 and PJ01318402), the Biogreen 21 Project for the Next Generation, Rural Development Administration, Korea, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A2C1004560), the Basic Research Program of Shanxi Province of China (201801D121204), National Natural Science Foundation of China (31901588) and the KRIBB initiative program.

Author information

Authors and Affiliations

Authors

Contributions

HSK, WBW, LK, and SSK organized the manuscript. HSK and SSK wrote the manuscript, with critical input from other co-authors. HSK and WBW prepared the figures, with support from SSK.

Corresponding authors

Correspondence to Mi-Jeong Ahn or Sang-Soo Kwak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Wang, W., Kang, L. et al. Metabolic engineering of low-molecular-weight antioxidants in sweetpotato. Plant Biotechnol Rep 14, 193–205 (2020). https://doi.org/10.1007/s11816-020-00621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00621-w

Keywords

Navigation