Skip to main content
Log in

Catalytic Activity of CO2-Derived Transition Metal–Carbon Catalysts in Methane Pyrolysis

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study examined the catalytic activity and stability of transition metal@C (carbon) catalysts in methane pyrolysis for hydrogen and solid carbon production. The carbon support for the catalysts was sustainably synthesized using CO2 as the carbon source. X-ray diffraction analysis was used to confirm the presence of metallic phases in the as-calcined catalysts without requiring an additional H2 reduction step. The apparent activation energies of the catalysts were determined using Arrhenius plots, with Ni@C having the lowest value (71 kJ∙mol−1), followed by Co@C (89 kJ∙mol−1), Fe@C (100 kJ∙mol−1), and Cu@C (122 kJ∙mol−1). The carbon support exhibited an apparent activation energy of 150 kJ∙mol−1, indicating its superior catalytic performance compared with traditional carbon-based catalysts. The reaction order demonstrated first-order reactions, indicating that the rate-determining step is associated with the first C–H bond cleavage in methane. The Ni@C and Co@C catalysts demonstrated promising catalytic activity and stability for methane pyrolysis, with the formation of crystalline carbon and metal particle fragmentation playing crucial roles in enhancing their performance. However, the formation of carbide species contributed to the deactivation of Fe@C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Crippa, D. Guizzardi, M. Banja, E. Solazzo, M. Muntean, E. Schaaf, F. Pagani, F. Monforti-Ferrario, J.G.J. Olivier, R. Quadrelli, CO2 emissions of all world countries. JRC Sci. for Policy Report, European Commission, EUR. (2022). https://doi.org/10.2760/07904

    Article  Google Scholar 

  2. C. Le Quéré, G.P. Peters, P. Friedlingstein, R.M. Andrew, J.G. Canadell, S.J. Davis, R.B. Jackson, M.W. Jones, Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 11, 197–199 (2021). https://doi.org/10.1038/s41558-021-01001-0

    Article  CAS  Google Scholar 

  3. A. Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, P.H. Borse, Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 3, 319–327 (2020). https://doi.org/10.1016/j.mset.2019.12.002

    Article  CAS  Google Scholar 

  4. M.J. Chae, J.H. Kim, B. Moon, S. Park, Y.S. Lee, The present condition and outlook for hydrogen-natural gas blending technology. Korean J. Chem. Eng. 39, 251–262 (2022). https://doi.org/10.1007/s11814-021-0960-8

    Article  CAS  Google Scholar 

  5. W.S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. and Sustainable Energy Rev. 147, 111254 (2021). https://doi.org/10.1016/j.rser.2021.111254

    Article  CAS  Google Scholar 

  6. S. Park, Y. Shin, E. Jeong, M. Han, Techno-economic analysis of green and blue hybrid processes for ammonia production. Korean J. Chem. Eng. (2023). https://doi.org/10.1007/s11814-023-1520-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. T.A. Le, Q.C. Do, Y. Kim, T.-W. Kim, H.-J. Chae, A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean J. Chem. Eng. 38, 1087–1103 (2021). https://doi.org/10.1007/s11814-021-0767-7

    Article  CAS  Google Scholar 

  8. M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U. Rahman Farooqi, C. Lee, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 47, 33112–33134 (2022). https://doi.org/10.1016/j.ijhydene.2022.07.172

    Article  CAS  Google Scholar 

  9. R.S. El-Emam, H. Özcan, Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J. Clean. Prod. 220, 593–609 (2019). https://doi.org/10.1016/j.jclepro.2019.01.309

    Article  CAS  Google Scholar 

  10. M. Hermesmann, T.E. Müller, Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 90, 100996 (2022). https://doi.org/10.1016/j.pecs.2022.100996

    Article  Google Scholar 

  11. R.W. Howarth, M.Z. Jacobson, How green is blue hydrogen? Energy Sci. Eng. 9, 1676–1687 (2021). https://doi.org/10.1002/ese3.956

    Article  CAS  Google Scholar 

  12. M. Yu, K. Wang, H. Vredenburg, Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 46, 21261–21273 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.016

    Article  CAS  Google Scholar 

  13. B. Parkinson, P. Balcombe, J.F. Speirs, A.D. Hawkes, K. Hellgardt, Levelized cost of CO 2 mitigation from hydrogen production routes. Energy Environ. Sci. (2019). https://doi.org/10.1039/c8ee02079e

    Article  Google Scholar 

  14. L. Alves, V. Pereira, T. Lagarteira, A. Mendes, Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements. Renew. and Sustainable Energy Rev. 137, 110465 (2021). https://doi.org/10.1016/j.rser.2020.110465

    Article  CAS  Google Scholar 

  15. B. Parkinson, M. Tabatabaei, D.C. Upham, B. Ballinger, C. Greig, S. Smart, E. McFarland, Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals. Int. J. Hydrogen Energy 43, 2540–2555 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.081

    Article  CAS  Google Scholar 

  16. J. Boo, E.H. Ko, N.K. Park, C. Ryu, Y.H. Kim, J. Park, D. Kang, Methane pyrolysis in molten potassium chloride: An experimental and economic analysis. Energies (Basel) (2021). https://doi.org/10.3390/en14238182

    Article  Google Scholar 

  17. D. Kang, N. Rahimi, M.J. Gordon, H. Metiu, E.W. McFarland, Catalytic methane pyrolysis in molten MnCl2-KCl. Appl. Catal. B 254, 659–666 (2019). https://doi.org/10.1016/j.apcatb.2019.05.026

    Article  CAS  Google Scholar 

  18. H.F. Abbas, W.M.A. Wan Daud, Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 35, 1160–1190 (2010). https://doi.org/10.1016/j.ijhydene.2009.11.036

    Article  CAS  Google Scholar 

  19. Y. Li, D. Li, G. Wang, Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catal. Today 162, 1–48 (2011). https://doi.org/10.1016/j.cattod.2010.12.042

    Article  CAS  Google Scholar 

  20. Z. Fan, W. Weng, J. Zhou, D. Gu, W. Xiao, Catalytic decomposition of methane to produce hydrogen: A review. J. Energy Chem. 58, 415–430 (2021)

    Article  CAS  Google Scholar 

  21. D. Kang, C. Palmer, D. Mannini, N. Rahimi, M.J. Gordon, H. Metiu, E.W. McFarland, Catalytic methane pyrolysis in molten alkali chloride salts containing iron. ACS Catal. 10, 7032–7042 (2020). https://doi.org/10.1021/acscatal.0c01262

    Article  CAS  Google Scholar 

  22. C. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46, 2275–2285 (2013). https://doi.org/10.1021/ar300118v

    Article  CAS  PubMed  Google Scholar 

  23. N. Muradov, F. SmithT-Raissi, A, Catalytic activity of carbons for methane decomposition reaction. Catal. Today (2005). https://doi.org/10.1016/j.cattod.2005.02.018

    Article  Google Scholar 

  24. K. Otsuka, H. Ogihara, S. Takenaka, Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons. Carbon N Y. 41, 223–233 (2003). https://doi.org/10.1016/S0008-6223(02)00308-1

    Article  CAS  Google Scholar 

  25. Z. Bai, H. Chen, B. Li, W. Li, Methane decomposition over Ni loaded activated carbon for hydrogen production and the formation of filamentous carbon. Int. J. Hydrogen Energy 32, 32–37 (2007). https://doi.org/10.1016/j.ijhydene.2006.06.030

    Article  CAS  Google Scholar 

  26. M. Szymańska, A. Malaika, P. Rechnia, A. Miklaszewska, M. Kozłowski, Metal/activated carbon systems as catalysts of methane decomposition reaction. Catal. Today 249, 94–102 (2015). https://doi.org/10.1016/j.cattod.2014.11.025

    Article  CAS  Google Scholar 

  27. J. Zhang, W. Xie, X. Li, Q. Hao, H. Chen, X. Ma, Methane decomposition over Ni/carbon catalysts prepared by selective gasification of coal char. Energy Convers. Manag. 177, 330–338 (2018). https://doi.org/10.1016/j.enconman.2018.09.075

    Article  CAS  Google Scholar 

  28. Y. Wang, Y. Zhang, S. Zhao, J. Zhu, L. Jin, H. Hu, Preparation of bimetallic catalysts Ni-Co and Ni-Fe supported on activated carbon for methane decomposition. Carbon Resources Conversion 3, 190–197 (2020). https://doi.org/10.1016/j.crcon.2020.12.002

    Article  CAS  Google Scholar 

  29. X. Yang, E. Yang, B. Hu, J. Yan, F. Shangguan, Q. Hao, H. Chen, J. Zhang, X. Ma, Nanofabrication of Ni-incorporated three-dimensional ordered mesoporous carbon for catalytic methane decomposition. J. Environ. Chem. Eng. 10, 107451 (2022). https://doi.org/10.1016/j.jece.2022.107451

    Article  CAS  Google Scholar 

  30. D. Kang, J.W. Lee, Enhanced methane decomposition over nickel–carbon–B2O3 core–shell catalysts derived from carbon dioxide. Appl. Catal. B 186, 41–55 (2016). https://doi.org/10.1016/j.apcatb.2015.12.045

    Article  CAS  Google Scholar 

  31. J. Zhang, J.W. Lee, Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure. Carbon N Y 53, 216–221 (2013). https://doi.org/10.1016/j.carbon.2012.10.051

    Article  CAS  Google Scholar 

  32. B. Fubini, M. Ghiazza, I. Fenoglio, Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4, 347–363 (2010). https://doi.org/10.3109/17435390.2010.509519

    Article  CAS  PubMed  Google Scholar 

  33. M. Pumera, A. Ambrosi, E.L.K. Chng, Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chem. Sci. 3, 3347–3355 (2012). https://doi.org/10.1039/C2SC21374E

    Article  CAS  Google Scholar 

  34. W. Kiciński, S. Dyjak, Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects. Carbon N Y 168, 748–845 (2020). https://doi.org/10.1016/j.carbon.2020.06.004

    Article  CAS  Google Scholar 

  35. J. Zhang, A. Byeon, J.W. Lee, Boron-doped carbon–iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide. Chem. Commun. 50, 6349–6352 (2014). https://doi.org/10.1039/C4CC01903B

    Article  CAS  Google Scholar 

  36. J.C. Goak, C.J. Lim, Y. Hyun, E. Cho, Y. Seo, N. Lee, Efficient gas-phase purification using chloroform for metal-free multi-walled carbon nanotubes. Carbon N Y 148, 258–266 (2019). https://doi.org/10.1016/j.carbon.2019.03.077

    Article  CAS  Google Scholar 

  37. J.S. Stefano, D.P. Rocha, R.M. Dornellas, L.C.D. Narciso, S.R. Krzyzaniak, P.A. Mello, E. Nossol, E.M. Richter, R.A.A. Munoz, Highly sensitive amperometric detection of drugs and antioxidants on non-functionalized multi-walled carbon nanotubes: Effect of metallic impurities? Electrochim. Acta 240, 80–89 (2017). https://doi.org/10.1016/j.electacta.2017.04.050

    Article  CAS  Google Scholar 

  38. G.M. Kim, S. Baik, J.W. Lee, Enhanced oxygen reduction from the insertion of cobalt into nitrogen-doped porous carbons. RSC Adv. 5, 87971–87980 (2015). https://doi.org/10.1039/C5RA15635A

    Article  CAS  Google Scholar 

  39. M.H. Kim, E.K. Lee, J.H. Jun, S.J. Kong, G.Y. Han, B.K. Lee, T.-J. Lee, K.J. Yoon, Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study. Int. J. Hydrogen Energy 29, 187–193 (2004). https://doi.org/10.1016/S0360-3199(03)00111-3

    Article  CAS  Google Scholar 

  40. H. Nishii, D. Miyamoto, Y. Umeda, H. Hamaguchi, M. Suzuki, T. Tanimoto, T. Harigai, H. Takikawa, Y. Suda, Catalytic activity of several carbons with different structures for methane decomposition and by-produced carbons. Appl. Surf. Sci. 473, 291–297 (2019). https://doi.org/10.1016/j.apsusc.2018.12.073

    Article  CAS  Google Scholar 

  41. S.H. Sharif Zein, A.R. Mohamed, P.S. Talpa Sai, Kinetic studies on catalytic decomposition of methane to hydrogen and carbon over Ni/TiO2 catalyst. Ind. Eng. Chem. Res. 43, 4864–4870 (2004). https://doi.org/10.1021/ie034208f

    Article  CAS  Google Scholar 

  42. D. Bae, Y. Kim, E.H. Ko, S. Ju Han, J.W. Lee, M. Kim, D. Kang, Methane pyrolysis and carbon formation mechanisms in molten manganese chloride mixtures. Appl. Energy 336, 120810 (2023). https://doi.org/10.1016/j.apenergy.2023.120810

    Article  CAS  Google Scholar 

  43. Z. Bai, H. Chen, B. Li, W. Li, Catalytic decomposition of methane over activated carbon. J. Anal. Appl. Pyrolysis 73, 335–341 (2005). https://doi.org/10.1016/j.jaap.2005.03.004

    Article  CAS  Google Scholar 

  44. Z. Bai, H. Chen, W. Li, B. Li, Hydrogen production by methane decomposition over coal char. Int. J. Hydrogen Energy 31, 899–905 (2006). https://doi.org/10.1016/j.ijhydene.2005.08.001

    Article  CAS  Google Scholar 

  45. C.H. Bartholomew, Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 212, 17–60 (2001). https://doi.org/10.1016/S0926-860X(00)00843-7

    Article  CAS  Google Scholar 

  46. U.P.M. Ashik, W.M.A.W. Daud, Probing the differential methane decomposition behaviors of n-Ni/SiO2, n-Fe/SiO2 and n-Co/SiO2 catalysts prepared by co-precipitation cum modified Stöber method. RSC Adv. 5, 67227–67241 (2015). https://doi.org/10.1039/C5RA10997C

    Article  CAS  Google Scholar 

  47. J.L. Pinilla, R. Utrilla, M.J. Lázaro, R. Moliner, I. Suelves, A.B. García, Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel Process. Technol. 92, 1480–1488 (2011). https://doi.org/10.1016/j.fuproc.2011.03.009

    Article  CAS  Google Scholar 

  48. L. Zhou, Y. Guo, K. Hideo, Unsupported nickel catalysts for methane catalytic decomposition into pure hydrogen. AIChE J. 60, 2907–2917 (2014). https://doi.org/10.1002/aic.14487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Seoul National University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae W. Lee or Dohyung Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Lyu, J., Lee, J.W. et al. Catalytic Activity of CO2-Derived Transition Metal–Carbon Catalysts in Methane Pyrolysis. Korean J. Chem. Eng. 41, 1479–1490 (2024). https://doi.org/10.1007/s11814-024-00097-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00097-2

Keywords

Navigation