Skip to main content
Log in

Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A silicon/porous multi-walled carbon nanotubes composite was synthesized using a simple method. A mixture comprising silicon nanoparticles and multi-walled carbon nanotubes was prepared by a mini ball milling method followed by annealing at low temperature. The low-temperature annealing treatment allows the aggregation of silicon nanoparticles and propels them to adhere to the outer walls of carbon nanotubes without the formation of a SiOx layer on Si nanoparticles. Mild oxidation occurring on the carbon tube walls provides additional surface defects. The obtained composite, which was studied as an anode for Li-ion batteries, exhibited excellent cyclability and superior rate capability compared with pristine silicon nanoparticles. The improved electrochemical performance of the composite can be attributed to the electrically conductive carbon tubes, easy access of the electrolyte ions into the porous nanotube walls, and mechanical support provided by the carbon matrix. As a result, the proposed composite can sustain high discharge capacities of 1,685 mAh g−1 at 1C rate after 80 cycles and 913 mAh g−1 at 5C rate after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Scrosati, Nature, 373, 557 (1995).

    Article  CAS  Google Scholar 

  2. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).

    Article  CAS  Google Scholar 

  3. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett., 7, A93 (2004).

    Article  CAS  Google Scholar 

  4. M. Armand and J. M. Tarascon, Nature, 451, 7179 (2008).

    Article  CAS  Google Scholar 

  5. N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater Today, 18, 252 (2015).

    Article  CAS  Google Scholar 

  6. Y. P. Wu, E. Rahm and R. Holze, J. Power Sources, 114, 2 (2003).

    Article  CAS  Google Scholar 

  7. D. H. Liu, H. Y. Lu, X. L. Wu, J. Wang, X. Yan, J. P. Zhang, H. Geng Y. Zhang and Q. Yan, Nanoscale Horiz., 1, 6 (2016).

    Google Scholar 

  8. H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang, Electrochem. Solid-State Lett., 2, 11 (1999).

    Google Scholar 

  9. H. Ma, F. Cheng, J. Chen, J. Zhao, C. Li, Z. Tao and J. Liang, Adv. Mater., 19, 22 (2007).

    Google Scholar 

  10. J. R. Szczech and S. Jin, Energy Environ. Sci., 4, 1 (2011).

    Article  Google Scholar 

  11. T. Song, J. Xia, J. H. Lee, D. H. Lee, M. S. Kwon, J. M. Choi, J. Wu, S. K. Doo, H. Chang W. I. Park, D. S. Zang, H. Kim, Y. Huang K. C. Hwang, J. A. Rogers and U. Paik, Nano Lett., 10, 5 (2010).

    Google Scholar 

  12. J. Xiao, W. Xu, D. Wang, D. Choi, W. Wang, X. Li, G. L. Graff, J. Liu and J. G. Zhanget, J. Electrochem. Soc., 157, 10 (2010).

    Google Scholar 

  13. J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao and T. Zhu, Nano Lett., 13, 2 (2013).

    Article  CAS  Google Scholar 

  14. Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. VanAken and J. Maier, Adv. Mater., 22, 20 (2010).

    Article  CAS  Google Scholar 

  15. Y. Zhang, Y. Zhu, L. Fu, J. Meng, N. Yu, J. Wang and Y. Wu, Chin. J. Chem., 35, 1 (2017).

    Article  CAS  Google Scholar 

  16. Z. S. Wen, J. Yang, B. F. Wang, K. Wang and Y. Liu, Electrochem. Commun., 5, 2 (2003).

    Article  CAS  Google Scholar 

  17. L. Fagiolari and F. Bella, Energy Environ. Sci., 12, 3437 (2019).

    Article  CAS  Google Scholar 

  18. L. L. Perreault, F. Colò, G. Meligrana K. Kim, S. Fiorilli, F. Bella J. R. Nair, C. V. Brovarone, J. Florek, F. Kleitz and C. Gerbaldi, Adv. Energy Mater., 8, 1802438 (2018).

    Article  CAS  Google Scholar 

  19. H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang and X. Duan, Nat. Rev. Mat., 4, 45 (2019).

    Article  Google Scholar 

  20. J. H. Jeong, D. W. Jung, B. S. Kong, C. M. Shin and E. S. Oh, Korean J. Chem. Eng., 28, 2202 (2011).

    Article  CAS  Google Scholar 

  21. N. Venugopal, W. S. Kim and T. Yu, Korean J. Chem. Eng., 33, 1500 (2016).

    Article  CAS  Google Scholar 

  22. O. M. Vovk, B. K. Na, B. W. Cho and J. K. Lee, Korean J. Chem. Eng., 26, 1034 (2009).

    Article  CAS  Google Scholar 

  23. N. Venugopal and W. S. Kim, Korean J. Chem. Eng., 32, 1918 (2015).

    Article  CAS  Google Scholar 

  24. A. Pedico, A. Lamberti, A. Gigot, M. Fontana, F. Bella, P. Rivolo, M. Cocuzza and C. F. Pirri, ACS Appl. Energy Mater., 1, 4440 (2018).

    Article  CAS  Google Scholar 

  25. J. Liu, D. Li, Y. Wang, S. Zhang, Z. Kang, H. Xie and L. Sun, J. Energy Chem., 47, 66 (2020).

    Article  Google Scholar 

  26. Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren, X. Dai, Z. Yao, Y. Zhou, L. Xiang, H. Du, H. He, N. Wang, K. Jiang, H. Lin, H. Zhang and Z. Guo, Adv. Funct. Mater., 28, 1706777 (2018).

    Article  CAS  Google Scholar 

  27. H. J. Shih, J. Y. Chang, C. S. Cho and C. C. Li, Carbon, 159, 401 (2020).

    Article  CAS  Google Scholar 

  28. F. Bella, D. Pugliese, L. Zolin and C. Gerbaldi, Electrochim. Acta, 237, 87 (2017).

    Article  CAS  Google Scholar 

  29. L. Zolin, J. R. Nair, D. Beneventi, F. Bella, M. Destro, P. Jagdale, I. Cannavaro, A. Tagliaferro, D. Chaussy, F. Geobaldo and C. Gerbaldi, Carbon, 107, 811 (2016).

    Article  CAS  Google Scholar 

  30. Y. Zhang, Y. Zhu, L. Fu, J. Meng, N. Yu, J. Wang and Y. Wu, Chin J. Chem., 35, 1 (2017).

    Article  CAS  Google Scholar 

  31. Z. S. Wen, J. Yang, B. F. Wang, K. Wang and Y. Liu, Electrochem. Commun., 5, 2 (2003).

    Article  CAS  Google Scholar 

  32. Q. Si, M. Kawakubo, M. Matsui, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki and N. Imanishi, J. Power Sources, 248, 1275 (2014).

    Article  CAS  Google Scholar 

  33. Y. M. Chiang, Science, 330, 6010 (2010).

    Article  CAS  Google Scholar 

  34. K. Saeed and I. Khan, Carbon Lett., 14, 3 (2013).

    Google Scholar 

  35. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  36. K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang and S. Fan, Adv. Funct. Mater., 23, 7 (2013).

    CAS  Google Scholar 

  37. A. Gohier, B. Laïk, K. H. Kim, J. L. Maurice, J. P. P. Ramos, C. S. Cojocaru and P. T. Van, Adv. Mater., 24, 19 (2012).

    Article  CAS  Google Scholar 

  38. W. Wang, R. Epur and P. N. Kumta, Electrochem. Commun., 13, 5 (2011).

    Article  CAS  Google Scholar 

  39. K. S. Park, K. M. Min, S. D. Seo, G. H. Lee, H. W. Shim and D. W. Kim, Mater. Res. Bull., 48, 4 (2013).

    Google Scholar 

  40. G. Hatipoglu, M. Alaf and H. Akbulut, J. Mater. Sci.: Mater. Electron., 3, 2067 (2019).

    Google Scholar 

  41. W. Wang and P. N. Kumta, ACS Nano, 4, 4 (2010).

    Google Scholar 

  42. L. Ji and X. Zhang, Carbon, 47, 14 (2009).

    Google Scholar 

  43. A. K. Arora, M. Rajalakshmi, T. R. Ravindran and V. Sivasubramanian, J. Raman Spectrosc., 38, 6 (2007).

    Article  CAS  Google Scholar 

  44. J. Cebik, J. K. McDonough, F. Peerally, R. Medrano, I. Neitzel, Y. Gogotsi and S. Osswald, Nanotechnology, 24, 20 (2013).

    Article  CAS  Google Scholar 

  45. H. F. Arani, A. R. Mirhabibi, S. Collins, R. Daroughegi, A. K. Soltani, R. Aghizadeh, N. R. Noori, R. Aghababazadeh and A. Westwood, RSC Adv., 7, 9 (2017).

    Article  Google Scholar 

  46. X. Shen, D. Mu, S. Chen, B. Xu, B. Wu and F. Wu, J. Alloy Compd., 552, 60 (2013).

    Article  CAS  Google Scholar 

  47. R. Epur, M. Ramanathan, M. K. Datta, D. H. Hong, P. H. Jampani, B. Gattu and P. N. Kumt, Nanoscale, 7, 8 (2015).

    Article  CAS  Google Scholar 

  48. N. Arunakumari, N. Venugopal and K. Y. Sohn, Sci. Adv. Mater., 12, 337 (2020).

    Article  CAS  Google Scholar 

  49. L. F. Cui, Y. Yang, C. M. Hsu and Y. Cui, Nano Lett., 9, 9 (2009).

    Google Scholar 

  50. X. Yang, Z. Wen, X. Xu, B. Lin and Z. Lin, J. Electrochem. Soc, 153, 7 (2006).

    Google Scholar 

  51. L. F. Cui, L. Hu, J. W. Choi and Y. Cui, ACS Nano, 4, 7 (2007).

    Google Scholar 

  52. P. Gao, Y. Nuli, Y. S. He, J. Wang, A. I. Minett, J. Yang and J. Chen, Chem. Commun., 46, 48 (2010).

    Google Scholar 

  53. J. Y. Eom and H. S. Kwon, ACS Appl. Mater. Interfaces, 3, 4 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly funded by grants (NRF-2015R1D1A1 A01059983 and NRF-2018R1D1A1B07044026) from the Basic Science Research Program through the National Research Foundation of Korea (NRF) which is funded by the Ministry of Education. We thank them for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Yong Sohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nulu, A., Nulu, V. & Sohn, K.Y. Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries. Korean J. Chem. Eng. 37, 1795–1802 (2020). https://doi.org/10.1007/s11814-020-0559-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0559-5

Keywords

Navigation