Skip to main content
Log in

Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Boron removal was investigated by chemical precipitation from aqueous solutions containing boron using calcium hydroxide. pH, initial boron concentration, amount of Ca(OH)2, stirring speed and solution temperature were selected as operational parameters in a batch system. The highest boron removal efficiency was reached at pH 1.0. Increasing initial boron concentration and amount of calcium hydroxide raised to boron removal efficiency. Boron removal efficiency was highest at a stirring speed of 150 rpm. The most important parameter affecting boron removal efficiency was solution temperature. Increasing solution temperature increased importantly boron removal. XRD analysis showed that CaB3O3(OH)5·4H2O, which is a borate mineral called inyoite, occurred between Ca(OH)2 and borate ions. As a result of the obtained experimental data, when the optimum operational conditions were selected, over 96% of boron removal efficiency was reached by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Boncukcuoğlu, M. M. Kocakerim, E. Kocada istan and M. T. Yilmaz, Resour. Conserv. Recycl., 37, 147 (2003).

    Article  Google Scholar 

  2. N. Öztürk and D. Kavak. J. Hazard. Mater. B, 127, 81 (2005).

    Article  Google Scholar 

  3. H. F. Seiler, Handbook on toxicity of inorganic compounds, Marcel Decker Inc., New York (1998).

    Google Scholar 

  4. A. E. Yılmaz, R. Boncukcuoğlu and M. M. Kocakerim, J. Hazard. Mater., 144, 101 (2007).

    Article  Google Scholar 

  5. W. T. Barranco, P. F. Hudak and C. D. Eckhert, Cancer Causes Control, 18, 71 (2007).

    Article  Google Scholar 

  6. X. Li, R. Liu, S. Wu, J. Liu, S. Cai and D. Chen, J. Colloid Interface Sci., 361(1), 232 (2011).

    Article  CAS  Google Scholar 

  7. M. Yurdako, Y. Seki, S. Karahan and K. Yurdako, J. Colloid Interface Sci., 286, 440 (2005).

    Article  Google Scholar 

  8. S. Karahan, M. Yurdako, Y. Seki and K. Yurdako, J. Colloid Interface Sci., 293, 36 (2006).

    Article  CAS  Google Scholar 

  9. D. Kavak, J. Hazard. Mater., 163, 308 (2009).

    Article  CAS  Google Scholar 

  10. R. Boncukcuoğlu, A. E. Yılmaz, M.M. Kocakerim and M. Copur, Desalination, 160, 159 (2004).

    Article  Google Scholar 

  11. A. E. Yılmaz, R. Boncukcuoglu, M. T. Yılmaz and M.M. Kocakerim, J. Hazard. Mater., 117, 221 (2005).

    Article  Google Scholar 

  12. C. Yan, W. Yi, P. Ma and X. Deng, J. Hazard. Mater., 154, 564 (2008).

    Article  CAS  Google Scholar 

  13. N. Kabay, I.Y. Ipek, I. Soroko and M. Makowski, Desalination, 241, 167 (2009).

    Article  CAS  Google Scholar 

  14. H. Koseoglu, B. I. Harman, N. O. Yigit and E. Guler, Desalination, 258 (2010).

  15. A. E. Yılmaz, R. Boncukcuoglu, M.M. Kocakerim and B. Keskinler, J. Hazard. Mater. B, 125, 160 (2005).

    Article  Google Scholar 

  16. Z. Yazicigil and Z. Oztekin, Desalination, 190, 71 (2006).

    Article  CAS  Google Scholar 

  17. J. Wolska and M. Bryjak, Desalination, 283, 193 (2011).

    Article  CAS  Google Scholar 

  18. T. Itakura, R. Sasai and H. Itoh, Water Res., 39, 2543 (2005).

    Article  CAS  Google Scholar 

  19. M. M. F. Garcia-Soto and E. M. Camacho, Sep. Purif. Technol., 48, 36 (2006).

    Article  Google Scholar 

  20. Franson, 21th Ed., M.A.H., APHA, AWWA and WPCF Press (2005).

  21. J. Ghosh, S.K. Chattopadhayay, A. K. Meikap and S. K. Chatterjee, J. Alloy. Compd., 453, 131 (2008).

    Article  CAS  Google Scholar 

  22. J.W. Na and K. J. Lee, Ann. Nucl. Energy, 20, 455 (1993).

    Article  CAS  Google Scholar 

  23. D. Hou, J. Wang, X. Sun and Z. Luan, J. Hazard. Mater., 177, 613 (2010).

    Article  CAS  Google Scholar 

  24. A. E. Yılmaz, R. Boncukcuoğlu, M.M. Kocakerim and E. Kocadağistan, Desalination, 230, 288 (2008).

    Article  Google Scholar 

  25. N. Öztürk, D. Kavak and T. E. Köse, Desalination, 223, 1 (2008).

    Article  Google Scholar 

  26. Y. Cengeloglu, G. Arslan, A. Tor and I. Kocak, Sep. Purif. Technol., 64, 141 (2008).

    Article  CAS  Google Scholar 

  27. O. P. Ferreira, S.G. Moraes, N. Durán and L. Cornejo, Chemosphere, 62, 80 (2006).

    Article  CAS  Google Scholar 

  28. P. Remy, H. Muhr, E. Plasari and I. Ouerdiane, Environ. Progress, 24, 1 (2005).

    Article  Google Scholar 

  29. T. Itakura, R. Sasai and H. Itoh, Bullet. Chem. Soc. Japan, 79, 1303 (2006).

    Article  CAS  Google Scholar 

  30. H. C. Tsai and S. L. Lo, J. Hazard. Mater., 186, 1431 (2011).

    Article  CAS  Google Scholar 

  31. C. Irawan, Y. L. Kuo and J. C. Liu, Desalination, 280,1–3, 280 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Erdem Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, A.E., Boncukcuoğlu, R., Bayar, S. et al. Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean J. Chem. Eng. 29, 1382–1387 (2012). https://doi.org/10.1007/s11814-012-0040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0040-1

Key words

Navigation