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Abstract
A three-dimensional mathematical hydrodynamic model associated with surface wave radiation by a floating rectangular box-type structure due 
to heave, sway, and roll motions in finite water depth is investigated based on small amplitude water wave theory and linear structural response. 
The analytical expressions for the radiation potentials, wave forces, and hydrodynamic coefficients are presented based on matched 
eigenfunction expansion method (MEFEM). The correctness of the analytical results of wave forces is compared with the construction of a 
numerical model using the open-source boundary element method code NEMOH. In addition, the present result is compared with the existing 
published experimental results available in the literature. The effects of the different design parameters on the floating box-type rectangular 
structure are studied by analyzing the vertical wave force, horizontal wave force, torque, added mass, and damping coefficients due to the 
heave, sway, and roll motions, and the comparison analysis between the forces is also analyzed in detail. Further, the effect of reflection and 
transmission coefficients by varying the structural width and drafts are analyzed.
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1  Introduction

In the last half-century, floating structures of various 
configurations are being studied due to their significant im‐
portance in the field of ocean and coastal engineering. Dif‐
ferent types of rigid floating structures are constructed 
near the coastal region, which is aimed at ocean space utili‐
zation for various human activities, marine activities, and 
coastal zone management such as sea walls, jetties, piers, 

breakwaters, floating platforms for oil exploration and 
ship navigation, wave energy devices, etc. One of the most 
interesting floating breakwater types is the box type which 
is effective in moderate conditions (McCartney, 1985; 
Bhattacharjee and Guedes Soares, 2011; Gadelho et al., 
2018; Islam et al., 2019). When the floating structures are 
constructed in a coastal region/nearshore, it is important to 
develop a three-dimensional body for application in engi‐
neering practice. Therefore, the three-dimensional mathe‐
matical modeling of hydrodynamic analysis based on the 
analytical study of floating structures and comparative 
analysis is of recent interest to coastal researchers and en‐
gineers to design an effective floating breakwater.

The study of the radiation problem on floating rectangu‐
lar structures can provide fundamental information on the 
hydrodynamic characteristics of wave forces, added mass, 
and radiation damping of the floating structure. Under the 
excitation of waves, a rigid floating body will exhibit six 
degrees of freedom (DOF), namely three translations and 
three rotational motions. Translation motions are referred 
to as heave, sway, and surge, and rotational motions are re‐
ferred to as pitch, yaw, and roll. Physically, vertical 
(heave), horizontal (sway), rotational (roll) motions, reflec‐
tion coefficients, and transmission coefficients are of pri‐
mary importance to analyze the hydrodynamic interaction 
of ocean waves with floating rectangular structures in 
three-dimension wave incidence.
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In this class of problems, the mathematical difficulty is 
the non-homogeneous boundary condition at the structure 
surface which can be handled with the help of the partial 
differential solution method. Therefore, the analytical solu‐
tions shown in the literature have generally been obtained 
using boundary matching techniques to solve the problem 
under linearized water wave theory for predicting the hy‐
drodynamic characteristics of floating structures to set the 
benchmark. The MEFEM has been used in the study of the 
hydrodynamic interaction of floating rectangular struc‐
tures due to its considerable accuracy and less use of com‐
puter memory and as well as processing time in three di‐
mensions (Mohapatra and Guedes Soares, 2021; 2022). 
Further, the series solutions using the eigenfunction expan‐
sion attend the convergence for the wave forces and hydro‐
dynamic coefficients of a floating structure in two-dimen‐
sions and oblique wave cases (Bhattacharjee and Guedes 
Soares, 2011; Guo et al., 2018; Islam et al., 2019).

Previously, many papers have been involved in the hy‐
drodynamic analysis of floating rectangular structures to 
obtain hydrodynamic coefficients, wave forces, reflection 
coefficients, and transmission coefficients based on analyt‐
ical/semi-analytical methods. Drimer et al. (1992) devel‐
oped a simplified model associated with a fully linearized 
hydrodynamic problem to study the performance of a two-
dimensional box-type floating breakwater in finite water 
depth. Lee (1995) presented an analytical solution for the 
heave radiation of a floating rectangular structure to ana‐
lyze the hydrodynamic effects of the submergence and 
width of the structure. Zheng et al. (2004) used the 
MEFEM to analyze the radiation and diffraction of linear 
water waves by a rectangular buoy in the water of finite 
depth in two dimensions. Zheng et al. (2006) used an eigen‐
function expansion method to investigate the oblique wave 
radiation by a floating rectangular structure in finite water 
depth over a flat seabed. Cho (2016) analyzed the effects of 
porosity and protruding depth of the vertical side plates on 
the transmission coefficients and motion response of a float‐
ing rectangular breakwater based on matched eigenfunction 
expansion method. Elchahal et al. (2009) developed a dif‐
fraction-radiation boundary value problem (BVP) to study 
the hydrodynamic performance of the moored floating rect‐
angular breakwater by considering the effect of the side 
wall, structural parameters, mooring stiffness, angle of inci‐
dence on the transmission coefficients and dynamic motion 
of the floating breakwater. Recently, Guo et al. (2018) ana‐
lyzed the oblique wave diffraction by a long rectangular rigid 
floating structure over flat bottom based on linearized water 
wave theory. Gadelho et al. (2018) studied the CFD analysis 
of fixed floating box-type structures and compared it with 
linearized Boussinesq analytical solution and experimental 
data by analyzing the wave elevations before and after the 
floating box-type structure and wave forces on the box over 
the flat bottom. Islam et al. (2019) studied the comparison 

of CFD, linearized analytical of the oblique wave, and ex‐
perimental data results of a heaving box-type floating struc‐
ture. Bhattacharjee and Guedes Soares (2011) studied the 
effect of the oblique angle and bottom on wave diffraction 
by a floating rectangular structure over stepped bottom with 
a rigid wall. Islam et al. (2019) studied the wave radiation 
by a floating box-type structure over the flat bottom in two 
dimensions. All the investigations discussed above are as‐
sumed to be in two-dimensional and oblique wave incident 
wave analysis.

From the above literature, it is confirmed that there is no 
analysis of the wave-induced forces based on the three-di‐
mensional mathematical model solution and comparison 
with BEM code NEMOH to date to the authors’ knowledge.

Therefore, in the present study, the main and new contri‐
butions compared with Guo et al. (2018) and Islam et al. 
(2019) are the 1) mathematical formulation associated 
with wave radiation by a three-dimensional floating rectan‐
gular box and the analytical expression for the radiational 
potentials (by adding finite structural width), 2) analytical 
expressions for the hydrodynamic coefficients, added 
mass, damping coefficients, and wave forces for the heave, 
sway and roll motions, 3) comparison between the present 
and the independent numerical BEM code based NEMOH 
simulations, 4) analysis of the wave forces and hydrody‐
namic coefficients on heave, sway, and roll motions for 
modes of oscillations, structural width, and comparison 
among them from the analytical solutions. Further, the re‐
sults for the reflection and transmission coefficients for dif‐
ferent values of structural width and drafts are presented 
and also analyzed. Finally, some significant concluding re‐
marks from the present analysis are discussed.

2  Mathematical formulation of floating 
rectangular box model in 3D

The mathematical model of the BVP is considered in a 
three-dimensional Cartesian coordinate system ( x, y, z ) 
with x − z being in the horizontal plane that coincides with 
undisturbed water surface and the y-axis being in the verti‐
cal downward positive direction. The wave radiation is 
due to the heave, sway, and roll motions of a rectangular 
box-type structure floating on the free surface of length 
2l, width b, and draft d. The origin o is assumed to be the 
middle point of the box (as in Figure 1). Hence, the whole 
fluid domain is divided into three regions as defined by: 
(l<x<∞, 0<y<h, 0≤z≤b), ( − l<x<l, d<y<h, 0≤z≤b) and 
(− l<x<−∞, 0<y<h, 0≤z≤b) are referred to as R1, R2, and 
R3, respectively.

The water is assumed to be inviscid, and incompressible 
and the flow is irrotational and simple harmonic in time 
with angular frequency ω. Thus, there exists a velocity po‐
tential Φ ( x, y, z, t ) = Re { ϕ ( x, y, z ) exp ( − iωt ) }, where 
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Re denotes the real part of the complex expression and 
ϕ ( x, y, z ) denotes the spatial velocity potential which satis‐
fies the three-dimensional Laplace equation as given by

∇2
xyz ϕ = 0 in the fluid domain (1)

where ∇2
xyz = ∂2 ∂x2 + ∂2 ∂y2 + ∂2 ∂z2.

The velocity potential ϕ ( x, y, z ) is decomposed into the 
incident wave potential, the diffracted potential (due to the 
stationarity of the structure), and the radiation potential 
(due to the heave, sway, and roll motions of the floating 
structure) are denoted by ϕI, ϕD, and ϕR respectively. So 
the total potential ϕ ( x, y, z ) can be expressed as

ϕ = ϕI + ϕD + ∑
S = 1

3

ϕ(S )
R (2)

where S = 1, 2 and 3 stand for heave, sway, and roll mo‐
tions, respectively.

The incident wave potential of linear waves propagating 
to the negative x- and z-direction is given by

ϕI ( x, y, z ) = ∑
m = 1

∞ igIm0

ω
cosh k0 (h − y )

cosh k0h
cos γm ze− ipm0 x (3)

where γm = mπ/b for m = 1, 2, 3, ..., are referred to as pri‐
mary, secondary, tertiary, and other higher modes, respec‐
tively with p2

m0 = (k 2
0 − (γm )2 ) > 0 to ensure that progres‐

sive wave solution exists (as in Mohapatra and Guedes 
Soares, 2019), g signifies the gravitational constant, Im0 is 
the incident wave amplitude with the dimension of unit 
length, and wavenumber k0 associated with the incident 
wave which satisfies the gravity wave dispersion relation 
as ω2 = gk0 tanh (k0h ).

Small motions of the floating three-dimensional rectan‐
gular box shown in Figure 1 are assumed. If the amplitude 
of the motion of the rectangular box is assumed as I (S )

R , the 
radiation potential ϕ(S )

R ( x, y, z ) in three-dimensions

ϕ(S )
R ( x, y, z ) = Re[ − iωI (S )

R φ(S )
R ( x, y, z ) ] (4)

where φ(S )
R ( x, y, z ) is the spatial velocity potential satisfy‐

ing the three-dimensional Laplace equation as

∂2φ(S )
R∂x2

+
∂2φ(S )

R∂y2
+

∂2φ(S )
R∂z2

= 0 (5)

Combining the kinematic and dynamic boundary condi‐
tions, the linearized boundary condition at the mean free 
surface is obtained as

∂φ(S )
R∂y

+ Kφ(S )
R = 0 on y = 0, 0 ≤ z ≤ b for R1 and R3 (6)

where K = ω2 g. The no-flow conditions at the rigid bot‐

tom boundary are given by

∂φ(S )
R∂y

= 0 on y = h for R1, R2 and R3, 0 ≤ z ≤ b (7)

∂φ(S )
R∂x

= 0 on x ∈ ( − l, l ), y = d, 0 ≤ z ≤ b (8)

The non-homogeneous boundary condition due to the 
heave, sway, and roll motions of the floating structure is 
given by

∂φ(S )
R∂y

= δ1, S − ( x − x0 )δ3, S  on  − l ≤ x ≤ l, y = d, 0 ≤ z ≤ b

(9)

Further, the conditions on the rigid structural boundary 
are described as

∂φ(S )
R∂x

= δ2, S + ( y − y0 )δ3, S,  at  x = ±l, 0 < y < d, 0 ≤ z ≤ b

(10)

where ( x0, y0 ) is the centre of rotation for roll motion and 
δ is Kronecker delta function as defined by

δj, S =
ì
í
î

0  for   j ≠ S

1  for   j = S
(11)

Since the structure is not moving, the no-flow condition 
at z = 0, b yield

∂φ(S )
R∂z

= 0  at  z = 0, b,  0 < y < d (12)

Finally, the radiation condition is assumed to take the form

lim
G → ∓∞

é

ë
êêêê

∂φ(S )
R∂G

± ipφ(S )
R

ù

û
úúúú = 0 for G = x, z (13)

The next Section will obtain the analytical expressions 
for radiated potentials in each region and their solutions by 
satisfying the governing equations along with the relevant 
boundary conditions.

Figure 1　Nomenclature of the problem
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3  Analytical solution based on the MEFEM

The analytical solutions for the radiation potentials are 
obtained using the MEFEM of the discussed BVP. The radi‐
ation potentials in R1, R2 and R3 are denoted by φ(S )

R1 , φ(S )
R2  

and φ(S )
R3 , respectively. The expressions for the radiation po‐

tentials in each region are obtained by applying the method 
of separation of variables and the unknown coefficients as‐
sociated with the radiation potentials are then determined 
by invoking the continuity condition of velocity and pres‐
sure at the structural boundary x = ±l and 0 ≤ z ≤ b.

3.1  Analytical expressions for the radiation 
potentials in each region

Using the Fourier expansion formulae in three regions 
R1, R2 and R3, the radiation potentials φ(S )

R1 ( x, y, z ), 

φ(S )
R2 ( x, y, z ) and φ(S )

R3 ( x, y, z ) respectively satisfying the 

three-dimensional Laplace Equation (5) along with the rel‐
evant boundary conditions (7)‒(13) are expanded as

φ(S )
R1 =

∑
m = 1

∞ ì
í
î

ü
ý
þ

A(S )
1m0eipm0 ( x − l )um0 ( y, z ) + ∑

n = 1

∞

A(S )
1mnepmn ( x − l )umn ( y, z )

(14)

φ(S )
R2 = ∑

m = 1

∞ ì
í
î

− coshαm0 (h − y )
αm0 sinhαm0 (h − d )

cos γm z { δ1, S − ( x − x0 )δ3, S }

ü
ý
þ

+∑
n = 0

∞

[ ]A(S )
2mne− αmn ( x − l ) + B(S )

2mneαmn ( x + l ) vmn ( y, z )

(15)

φ(S )
R3 =

∑
m = 1

∞ ì
í
î

ü
ý
þ

A(S )
3m0e− ipm0 ( x + l )um0 ( y, z ) + ∑

n = 1

∞

A(S )
3mnepmn ( x + l )umn ( y, z )

(16)

where, the first part in Equation (15) is the particular solu‐
tion of the radiation potential φ(S )

R2 , p2
mn = k 2

n − (γm )2 and 

α2
mn = β 2

n − (γm )2 with α2
m0 = β 2

0 − (γm )2 > 0 and the eigen‐

values k0 is same as defined in Equation (3) and kn = ikn, 
βns are satisfy the following dispersion relations

ω2 =− gkn tan (knh ) (17)

βn =
nπ

(h − d )
 for n = 0, 1, 2, ... (18)

Further, the eigenfunctions umn ( y, z ) and vmn ( y, z ) asso‐

ciated with Equations (14)‒(16) are given by

ì

í

î

ï
ïï
ï

ï
ïï
ï

um0 ( y, z ) =
cosh k0 (h − y )

cosh k0h
cos γm z

umn ( y, z ) =
cos kn (h − y )

cos knh
cos γm z

(19)

vmn ( y, z ) = cos βn (h − y ) cos γm z (20)

are orthogonal concerning their intervals as defined by

umn, ujl = ∫
0

b∫
0

h

umn ( y, z ) ujl ( y, z )dydz =
b
2
δmjδnlUn (21)

vmn, vjl = ∫
0

b∫
d

h

vmn ( y, z ) vjl ( y, z )dydz =
b
2
δmjδnlVn (22)

where

Un =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

1
2 cosh2knh ( )h +

sinh 2knh
2kn

,     for   n = 0

1
2 cos2knh ( )h +

sin 2knh
2kn

,          for   n = 1, 2, ...

Vn =
ì
í
î

ïï

ïïïï

(h − d ),     n = 0

1
2 ( )h − d , n = 1, 2, 3, ...

It may be noted that the gravity wave dispersion rela‐
tions as in Equation (17) have one positive real root and in‐
finitely many roots contribute to the velocity potentials as 
in Equations (14) and (16), where, the positive real root 
corresponds to the progressive wave mode and infinitely 
many roots corresponds to evanescent modes.

The unknown coefficients A(S )
1mn, A

(S )
2mn, A

(S )
3mn and B(S )

2mn’s for 
n = 0, 1, 2, ... and m = 1, 2, ... associated with the radiation 
velocity potentials in Equations (14)‒(16) are determined 
by using the condition of continuity of velocity and pres‐
sure at x = ±l along 0 ≤ z ≤ b.

Continuity of velocity at the vertical interface x = l as

∂φ(S )
R1∂x

=
ì

í

î

ïïïï

ïïïï

δ2, S + ( y − y0 )δ3, S   for  0 < y < d, 0 ≤ z ≤ b

∂φ(S )
R2∂x

                            for  d < y < h, 0 ≤ z ≤ b

(23a)

Continuity of velocity at the vertical interface x =− l as

∂φ(S )
R3∂x

=
ì

í

î

ïïïï

ïïïï

δ2,S + ( y − y0 )δ3,S  for  0 < y < d, 0 ≤ z ≤ b

∂φ(S )
R2∂x

                          for  d < y < h, 0 ≤ z ≤ b
(23b)

Further, the continuity of pressure at the vertical inter‐
faces x = ±l is given by

φ(S )
R1 = φ(S )

R2   at  x = l, for d < y < h, 0 ≤ z ≤ b (24a)
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φ(S )
R2 = φ(S )

R3   at  x =− l for d < y < h, 0 ≤ z ≤ b (24b)

Substituting the velocity potentials from Equations (14) 
and (15) into the continuity of velocity condition (23a), 

multiplying both sides by the eigenfunction umj ( y, z ) and 
then integrating with their respective intervals and keeping 
in mind the orthogonal relation umj for j = 0, 1, 2, ..., m =
1, 2, ... in Equation (23), yields

− b
2

pm0 A(S )
1m0U0 − b

2 ∑
n = 0

N

αmn( − A(S )
2mn + B(S )

2mne2αmnl ) ∫
d

h

u0 ( y )vn ( y )dy

=
b
2 ∫

0

d
é

ë
êêêê{ δ2, S + ( y − y0 )δ3, S } + δ3, S

cosh αm0 (h − y )
αm0 sinh αm0 (h − d )

ù

û
úúúú u0 ( y )dy for n = 0 (25a)

− b
2

pmn A(S )
1mnUn − b

2 ∑
n = 0

N

αmn( − A(S )
2mn + B(S )

2mne2αmnl ) ∫
d

h

un ( y )vn ( y )dy

=
b
2 ∫

0

d
é

ë
êêêê{ δ2, S + ( y − y0 )δ3, S } + δ3, S

cosh αm0 (h − y )
αm0 sinh αm0 (h − d )

ù

û
úúúú un ( y )dy for n = 1, 2, ..., N (25b)

where, the infinite series is truncated after N-terms and 
as the variable is a dummy j is replaced by n. Proceed‐
ing as in Equations (25a) and (25b) and using Equations 

(15) ‒ (16) into the velocity continuity condition (23b), 
and applying the orthogonal relation (21), result in

− b
2

ipm0 A(S )
3m0W0 − b

2 ∑
n = 0

N

αmn( − A(S )
2mne2αmnl + B(S )

2mn ) ∫
0

h

u0 ( y )vn ( y )dy

=
b
2

é

ë

ê
êê
ê
ê
ê∫

0

d

{ δ2, S + ( y − y0 )δ3, S } +
ù

û

ú
úú
ú
ú
úδ3, S

αm0 sinh αm0 (h − d ) ∫
d

h

cosh [ αm0 (h − y ) ] u0 ( y, z )dy for n = 0 (26a)

b
2

pmn A(S )
3mnUn − b

2 ∑
n = 0

N

αmn( − A(S )
2mne2αmnl + B(S )

2mn ) ∫
0

h

un ( y )vn ( y )dy

=
b
2

é

ë

ê
êê
ê
ê
ê∫

0

d

{ δ2, S + ( y − y0 )δ3, S }
ù

û

ú
úú
ú
ú
ú

+
δ3, S

αm0 sinh αm0 (h − d ) ∫
d

h

cosh [ αm0 (h − y ) ] un ( y )dy  n = 1, 2,..., N

(26b)

Further, substituting Equations (14)‒(15) into the pres‐
sure continuity condition (24a), and applying the orthogo‐
nal relation (22), obtained as

b
2 ∑

n = 0

N

A(S )
1mn∫

0

b∫
d

h

un ( y )vj ( y ) dy − b
2 (A(S )

2mj + B(S )
2mje

2αmjl )Vj

=
b
2

{ δ1, S − (l − x0 )δ3, S } ∫
d

h − cosh αm0 (h − y )
αm0 sinhαm0 (h − d )

vj ( y )dy

for   j = 0, 1, 2, ..., N

(27)

Similarly, by substituting Equations (15) ‒ (16) into the 
pressure continuity condition (24b), and using the orthogo‐
nal relation (21), one can be obtained as

b
2 ∑

n = 0

N

A(S )
3mn∫

d

h

un ( y )vj ( y )dy − b
2 (A(S )

2mje
2αmjl + B(S )

2mj )Vj

=
b
2

{ δ1, S + (l + x0 )δ3, S } ∫
d

h − cosh αm0 (h − y )
αm0 sinhαm0 (h − d )

vj ( y )dy

for   j = 0, 1, 2, ..., N

(28)

To solve the system of linear equations through numeri‐
cal methods, the infinite series sums are truncated after the 
finite number of N-terms present in Equations (26)‒ (28). 
Thus, a linear system of equations 4 ( N + 1) is obtained to 
solve for 4 ( N + 1) number of unknown coefficients A(S )

1mn’s, 
A(S )

2mn’s, A(S )
3mn’s and B(S )

2mn’s for motion mode S that are associ‐
ated with the eigenvalues kn and βn present in the expres‐
sions (14)‒(16). Once the unknown coefficients are deter‐
mined, then the full solution will be obtained in terms of 
radiation potentials.

3.2  Analytical expressions for wave forces and 
hydrodynamic coefficients

The wave forces in the frequency domain can be ob‐
tained by use of the known incident and the radiation po‐
tentials via the application of the Haskind theorem. The 
radiation force due to the heave, sway, and roll motions 
of the floating rectangular structure can be calculated 
from the radiation potentials in which the hydrodynamic 
coefficients such as added mass and damping coefficients 
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are involved.
The wave forces in terms of incident and radiation po‐

tentials can be expressed as

Fej = iρω
é

ë

ê
êê
ê
ê
ê∫

Sb

ϕI ( x, y, z ) njdsdz − ∫
Sb

ϕj
R ( x, y, z )

∂ϕI∂n
dsdz

ù

û

ú
úú
ú
ú
ú

(29)

where j=1, 2, Sb denotes the wetted surface in xyz-plane 
and nj is the inward normal to the floating structure. Now, 
substituting Equations (3), (14), and (16) into Equation 
(29), which yields

Fej = (F j
I + F j

D ) (30)

where F j
I and F j

D denote the forces due to the incident 
wave and because of the diffracted wave, respectively, 
with Fe1, Fe2 and Fe3 are refer to the vertical, horizontal, 
and torque acting on the floating structure. FI and FD de‐
note the forces due to the incident wave and caused by the 
diffracted wave, respectively, and these expressions are

FI =
− ρgIm0 cosh [ ]k0 (h − d )

cosh (k0h )
2sin ( lp )

p
(31a)

FD = C1

ì
í
î
CP + ∑

n = 0

N

[ ]A2nCG1 (n ) + B2nCG2 (n )
ü
ý
þ

+

C2

ì
í
î
(A30eilp − A10e− ilp ) I1 (0) + ∑

n = 1

N

(A3neilp − A1ne− ilp ) I1 (n)
ü
ý
þ

(31b)

where

CP =
2sin ( lp )

p
CF (d ), CF (d ) =− coth [ ]α0 (h − d )

α0

,

C1 =
− ρgk0 Im0 sinh [ ]k0 (h − d )

cosh (k0h )
, C2 =

− iρgpIm0

cosh (k0h )
,

CG1 (n ) = ( e2αnl + ilp − e− ilp

ip + αn )cos βn (h − d ),

CG2 (n ) = ( eilp − e2αnl − ilp

ip − αn )cos βn (h − d ),

I1 (0 ) =
1

cosh (k0h ) ∫
0

d

cosh2[ ]k0 (h − y ) dy,

I1 (n ) =
1

cos (knh ) ∫
0

d

cos[ ]kn (h − y ) cosh [ k0 (h − y ) ]dy.

3.3  Hydrodynamic coefficients such as added 
mass and radiation damping coefficients

Here, the radiation force is the force due to the motion 
of the floating structure which can be calculated from the 
radiation potentials. Now, the expression for the radiation 
force acting on and along the width of the structure is

F j
R = ∫

Sb

iρωϕ(S )
R e− iωtnjds

= ρω2 I (S )
R e− iωt∫

Sb

ϕ(S )
R njds

= I (S )
R e− iωt∑

S = 1

3 ( )ω2MS,  j I
(S )
R e− iωt + iωI (S )

R e− iωt NS,  j (32)

where MS,  j and NS,  j are the added mass and damping coef‐
ficients of the floating structure due to the motion mode S 
in jth direction, respectively and which expressions are 
given by

MS,  j = Re ( ρfS,  j ) (33)

NS,  j = Im ( ρωfS,  j ) (34)

with Re and Im denote to the real and imaginary parts of a 
complex expression, respectively with fS,  j are given by

fS, 1 = ∫
0

b ∫
− 1

l

ϕ(S )
R2 dxdz (35)

fS, 2 = ∫
0

b ∫
0

d

( − ϕ(S )
R1 | x = l + ϕ(S )

R3 | x =− l )dydz (36)

fS, 3 = ∫
0

b é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú∫

0

d ( )ϕ(S )
R3

|
|
||||

x =− l
− ϕ(S )

R1
|
|
||||

x = l
( y − y0 )dy + ∫

− l

l

ϕ(S )
R2

|
|
||||

y = d
( x − x0 )dx dz (37)

The non-dimensional added mass, damping coefficients, 
wave forces, and phase angle of wave forces of heave, 
sway, and roll motions are defined by

Caj =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Mj, j

(2ρld )
      for  j = 1, 2

Mj, j

(2ρl3d )
    for  j = 3

(38)
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Cdj =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Nj, j

(2ρωld )
     for  j = 1, 2

Nj, j

(2ρωl3d )
   for  j = 3

(39)

Fj =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

|| Fej

(2ρglIm0 )
      for  j = 1, 2

|| Fej

(2ρglIm0 )
    for  j = 3

(40)

where Im0 is the same as in Equation (3). The next subse‐
quent sections will check the computational accuracy of 
the solutions and several numerical results on hydrody‐
namic coefficients and wave forces of the heave, sway, 
and roll motions of the floating structure will be analyzed 
in different cases

4  Numerical model formulation and 
description

The description of the detailed numerical model princi‐
ple is deferred here as it is the open-source BEM code 
NEMOH software (see for detail Babarit and Delhom‐
meau, 2015).

The mathematical model adopted in this numerical im‐
plementation is similar to the one presented by Bispo et al. 
(2022a,b), bearing in mind that the numerical model pre‐
sented here is designed as a rigid single module structure 
with no articulations. Based on the linear theory of waves, 
the total velocity potential with time-dependent can be writ‐
ten as Φ = ϕe− iωt, where ϕ is the total time-independent ve‐
locity potential, ω is the wave frequency rad/sec and t is the 
time. Then, one can describe the fluid with the velocity po‐
tential that can be decomposed into three parts ϕI, ϕD, and ϕR, 
respectively, based on the assumption of an ideal fluid and 
linearity and the velocity potential can be expressed as in 
Equation (2), satisfying the following boundary conditions:

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

∇2ϕ = 0,                                    in  Ω

− ω2ϕ + g
∂ϕ
∂z

= 0,                on Sf

∂ϕ
∂n

= VSb
·n,                               on  Sb

∂ϕ
∂z

= 0,                                      on SB

lim
r → ∞

r
é

ë
êêêê

ù

û
úúúú

∂ϕ
∂r

− iω2

g
ϕ = 0,   on S∞

(41)

where g is the gravitational constant and r is the radial dis‐
tance from the origin.

In this numerical BVP, the fluid domain is represented 
by Ω, Sf is the free surface, SB is the bottom surface, S∞ rep‐
resents the boundary at infinity, and the wetted surface of 
the body is given by Sb, n is the unit vector normal to the 
wetted surface, pointing outwards, and VSb

 is the fluid ve‐

locity on the wet surface of the floating structure, as can 
be seen in Figure 2.

Once the velocity potential, ϕ, is obtained, the added 
mass and the radiation damping can be computed. On the 
other hand, the excitation forces, FWj 

, can be related to the 

incident and diffraction potentials for the jth degree of 
freedom by:

Fwj
= ρiω∬-

Sb

(ϕI + ϕD )·ndSb (42)

in which ρ is the fluid density, ω is the wave frequency, 
-
Sb 

is the mean wet surface of the body, and i is the complex 
unit.

The generalized added mass and radiation damping are 
given by:

a +
i
ω

b = ρ∬-
Sb

ϕR·ndSb (43)

where a = Ajk and b = Bjk are the added mass and radiation-
damping coefficients of the jth mode induced by kth mode. 
For six degrees of freedom, the equation of motion of the 
free-floating body is presented in the frequency domain, 
and for unitary wave amplitude as (see Newman, 1977)

( M + A (ω ) ) Ẍ + B (ω ) Ẋ + KX = FW (ω ) (44)

where M is a matrix of mass and inertias, matrix K is the 
hydrostatic stiffness matrix and it is defined similarly to 
the mass matrix, for 6 DOF. The added mass and radiation 
damping matrices, respectively represented by A (ω ) and 
B (ω ), are matrices of 6×6 size. The vector X represents 
the displacement, from which follows that Ẋ and Ẍ are its 
first- and second-time derivatives, respectively. Lastly, 
FW (ω ) is the vector of wave excitation forces.

Figure 2　 Schematic diagram of the floating body and the 
computational domain
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5  Results and discussions

To make sure the correctness of the present analytical 
solution, the analytical results of wave forces are com‐
pared with numerical BEM code NEMOH simulations. 
Hereafter, all computations are executed throughout the pa‐
per by considering gravitational constant g=9.8  m/s2 and 
water density ρ=1 025 kg/m3 unless mentioned otherwise.

5.1  Comparison of analytical and numerical BEM 
code NEMOH simulations

Figures 3(a)‒(c) show the comparison of present and nu‐
merical BEM code NEMOH of vertical wave force (heave 
motion) result with m=1, and versus non-dimensional 
wavenumber k0h. It is seen that the results of the vertical 
wave forces from the analytical solution are a similar trend 
and have a good agreement with the results from numeri‐
cal BEM code NEMOH.

On the other hand, Figure 3(d) compares the result of 
vertical wave force acting on the floating structure be‐
tween present (analytical) and experimental data available 
in Rodriguez and Spinneken (2016) versus non-dimension‐
al wavenumber k0b. It is observed that the non-dimension‐
al vertical force is well agreed for intermediate values of 
k0b and the trend is similar between the present analytical 
and existing published experimental data. To quantify the 

comparison, the analytical result in Figure 3(d) represents 
90% of the predicted value of the vertical force and this 
simple approximation can be considered a good fit for 
0.5≤k0b≤0.9, whereas the discrepancy is less than 10% in 
the ranges k0b<0.4 and k0b>1.0.

5.2  Wave forces, hydrodynamic coefficients, and 
their comparison analysis for different design 
parameters

To understand the effect of design parameters associated 
with the BVP, this subsection will present several numeri‐
cal results on the vertical wave force, horizontal wave 
force, and torque on the floating rectangular box-type 
structure by analyzing the effect of mode of oscillation, 
non-dimensional length, width, and draft due to the heave, 
sway, and roll motions in different cases.

Figure 4 represents the effect of modes of oscillation m 
on the non-dimensional vertical wave force F1, horizontal 
wave force F2, torque F3, comparison between F1, F2, and 
F3 of heave, sway, and roll motions with b/h=0.6, l/h = 0.5 
and d/h=0.6 versus non-dimensional wavenumber k0h. It is 
observed that the non-dimensional horizontal force, vertical 
wave force, and torques increase with an increase in modes 
of oscillation m. This is attributed to the fact that a group of 
small amplitude waves is generated at the edges of the float‐
ing box which reach a certain amount of incident wave en‐

(a) l=12 m, d=3.6 m, b/h=0.35

(c) l=9 m, d=6 m, b/h=0.25

(b) l=9 m, d=4.8 m, b/h=0.25

(d) Comparison: Analytical and Experimental datasets

Figure 3　Comparisons of vertical wave force F1 among analytical, numerical BEM code NEMOH and experimental datasets
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ergy that makes higher loads on the box. Further, it is also 
found that the vertical force values are the least among the 
horizontal wave force and torque that is F1 < F3 < F2. In 
addition, in Figure 4(d), the vertical wave force is 0.3 m, 
while the torque is 0.1 m which is 20% larger.

In Figure 5, the effects of non-dimensional structural 
length l/h on the non-dimensional vertical wave force F1, 
horizontal wave force F2, torque F3, and comparison of F1, 
F2, F3 for d/h = 0.5, b/h = 0.8, and m = 1 versus k0h are 
plotted. It is observed that the vertical and horizontal wave 
forces become higher for longer structures whilst, this ef‐
fect is the opposite trend in the case of torque to that of 
vertical and horizontal wave forces. In Figure 5(d), the 
comparison of wave forces indicated that the horizontal 
wave force is 4.2 m, while the vertical load is 3.6 m which 
is 60% larger. Further, in Figures 5(b)‒(d), it is seen that 
the wave forces attained minimum values for a certain 
wavenumber k0h, which is due to phase change of incident 
and reflected waves leading to constructive/destructive in‐
terference of the waves at the edges of the floating box.

Figure 6 plots the effect of non-dimensional structural 
width b/h on the non-dimensional vertical wave force F1, 
horizontal wave force F2, torque F3, and their comparison 
with m = 1, d/h = 0.5 and l/h = 0.8 versus k0h. In general, 
it is observed that for larger structural widths, the vertical 
and horizontal wave forces and torques decrease with oc‐
curring significant effect for smaller values k0h. Also, the 

vertical wave force values are the least among the hori‐
zontal wave force and torque that is F1 < F3 < F2. From 
Figures 5 ‒ 6, it is concluded that the size of the floating 
box is important, especially when considering the wave 
forces as the horizontal force to the vertical force may 
change significantly depending on the length and width of 
the structure.

In Figure 7, the effects of the draft d/h on the non-
dimensional vertical wave force F1, horizontal wave force 
F2, torque F3, and comparison of F1, F2, and F3 with 
m = 1, l/h = 0.8, and b/h = 0.8 versus k0h are plotted. It is 
observed that the vertical wave forces become higher with 
a smaller draft whilst, the horizontal force increases with 
an increase in the values of d/h. However, the pattern of 
vertical force is opposite in trend to that of horizontal 
force. This is due to the deeper drafts leads smaller force 
in vertical and more horizontal wave force on the floating 
box. Further, the observations in Figure 7(d) are similar to 
Figure 6(d).

Figure 8 presents the effect of non-dimensional width 
b/h on the non-dimensional added mass Caj for the heave, 
sway, and roll motions of the structure with m = 1, d/h =
0.5 and l/h = 0.8 versus k0h. From Figures 8(a)‒ (c), it is 
seen that the added mass of heave, sway, and roll becomes 
higher for wider structure whilst, in the case of sway mo‐
tion, the variations for different values of width become neg‐
ligible for higher values of non-dimensional wavenumber. 

(a) Influence of m on F1

(c) Influence of m on F3

(b) Influence of m on F2

(d) Comparison: F1, F2 and F3

Figure 4　Effect of modes of oscillation on the non-dimensional wave forces F1, F2, F3 versus k0h and comparison among them
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(a) Influence of l/h on F1

(c) Influence of l/h on F3

(b) Influence of l/h on F2

(d) Comparison: F1, F2 and F3

Figure 5　Effect of structural length on F1, F2, F3, and comparison among them for m=1

(a) Variation of F1 on b/h

(c) Variation of F3 on b/h

(b) Variation of F2 on b/h

(d) Comparison: F1, F2 and F3

Figure 6　Effect of the structural width on the F1, F2, F3, and their comparison for m=1
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This is because the mass of the structure increases which 
leads to the more added mass.

Figure 9 depicts the effect of non-dimensional width b/h 
on the non-dimensional damping coefficients Cdj for the 
heave, sway, and roll motions of the structure with m = 1, 
d/h = 0.5 and l/h = 0.8 versus k0h. It is observed that the 
damping coefficients of heave, sway, and roll decrease 
with an increase in non-dimensional structural width b/h 
whilst, the damping coefficients of roll increase with an in‐
crease in structural width k0h ≤ 2.5. This is attributed to 
the fact that as the structural width is increased while the 
draft and mode of oscillation (primary mode m=1) are kept 
fixed as a result the mass of the structure increases too 
which leads to less damping. The observations of the 
damping coefficients heave and sway is similar to those of 
Zheng et al. (2006).

5.3  Effect of design parameters on the reflection 
and transmission coefficients

Figure 10 plots the effect of non-dimensional width b/h 
on the reflection and transmission coefficients for m = 1, 
l/h = 0.8 and d/h = 0.5 versus k0h. It is observed that the 
influences of the width on the reflection and transmission 
coefficients are appreciable. The maximum reflection coef‐
ficient and the minimum transmission coefficients greatly 

increase and decrease respectively with increases in the 
values of structural width.

In Figure 11, the influences of the d/h on the reflection 
coefficient Kr and the transmission coefficient Kt with 
m = 1, l/h = 0.8, and b/h = 0.5 versus k0h are plotted. 
From Figure 11, it is seen that the effects of the width on 
the reflection and transmission coefficients are significant. 
The maximum reflection coefficient and the minimum 
transmission coefficients greatly increase and decrease, re‐
spectively with increases in the values of the structural 
draft. This is because less wave energy passes below the 
floating box as it expected wave reflection becomes more 
in the upstream region.

In Figure 12, the effects of the structural length l/h on 
the reflection coefficient Kr and transmission coefficient 
Kt with m = 1, l/h = 0.8, and b/h = 0.5 versus k0h are plot‐
ted. For a smaller value of k0h, the variations and effects 
of the structural length on the Kr and Kt are significant 
whilst, for k0h ≥ 5, the values of the Kr becomes zero and 
Kt attends one which leads physically true. Further, 
k0h ≤ 5, the reflection coefficients increase whilst, the pat‐
tern of the transmission coefficients becomes reveres to 
that of Kr. This is because the structure with a longer 
length has a larger projected area, which results in a larger 
hydrodynamic force that leads to higher reflection and 
lower transmission.

(a) Effect of d/h on F1

(c) Effect of d/h on F3

(b) Effect of d/h on F2

(d) Comparison: F1, F2 and F3

Figure 7　Effect of the structural drafts on the F1, F2, F3, and comparison among them with m = 1
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(a) Effect of b/h on Ca1

(c) Effect of b/h on Ca3

(b) Effect of b/h on Ca2

(d) Comparison: Ca1, Ca2, Ca3

Figure 8　Effect of width on the added masses Caj and comparison among them with m = 1, l/h = 0.8 and d/h = 0.5

(a) Variation of Cd1 on b/h

(c) Variation of Cd3 on b/h

(b) Variation of Cd2 on b/h

(d) Comparison: Cd1, Cd2, Cd3

Figure 9　Effect of width on the damping coefficients Cdj and comparison among them for m = 1, l/h = 0.8 and d/h = 0.5
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6  Conclusions

The new contributions to the present compared with the 
previous research by Guo et al. (2018) (associated with dif‐
fraction) and Islam et al. (2019) (related with radiation) in 
oblique waves are the mathematical formulation on wave 
radiation by 3D floating box, analytical expressions for ra‐
diation potentials in three-dimensions and comparison with 
numerical BEM code based NEMOH simulations. Further, 

the results of wave forces and hydrodynamic coefficients 
such as added mass, damping coefficients, and wave quan‐
tities (reflection and transmission coefficients) for different 
design parameters are analyzed. From the present analysis, 
the following important conclusions are drawn.

1) In the verification of the analytical results, it is ob‐
served that the analytical results of vertical wave forces 
for different design parameters are well agreed with the nu‐
merical NEMOH and supported by the existing published 
experimental data sets.

2) It is observed that the vertical and horizontal forces 
and torques become higher for higher modes of oscillation 
m which because of the group of small amplitude waves 
generated at the edges of the floating box.

3) The comparisons for the different structural widths, 
lengths, drafts, and modes of oscillations on the wave forc‐
es for the heave, sway, and roll motions revealed that the 
wave forces among them hold the relation F1 < F3 < F2.

4) The comparison between the non-dimensional added 
masses of heave, sway, and roll motions indicated that 
Ca2 < Ca3 < Ca1, whilst the damping coefficients hold the 
relationship Cd2 < Cd3 < Cd1 irrespective of k0h.

5) It is observed that the reflection coefficients become 
higher for wider structures and this effect attends lower 
when the draft of the structure increases, whilst the trend 
of the transmission coefficient becomes reveres to that of 
reflection coefficients.

6) The above analysis indicated that the size of the float‐
ing box is important when considering the wave forces as 
the horizontal force to the vertical force may change signif‐
icantly depending on the modes of oscillations, structural 
length, and width.

7) The present analysis will be helpful to model a large 
floating breakwater by articulating several floating box 
modules over analytical and numerical approaches to ana‐
lyze the performance for the floating breakwater.
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Figure 10　 Effect of structural width on the reflection and 
transmission coefficients for m = 1, l/h = 0.8 and d/h = 0.5

Figure 11　 Effect of the structural draft on the reflection and 
transmission coefficients for m = 1, l/h = 0.8 and b/h = 0.5

Figure 12　Effect of l/h on the Kr and Kt for m = 1, l/h = 0.8 and 
b/h = 0.5
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