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Abstract
Due to complex mesoscopic and the distinct macroscopic evolution characteristics of ice, especially for its brittle-to-ductile transition in 
dynamic response, it is still a challenging task to build an accurate ice constitutive model to predict ice loads during ship-ice collision. To 
address this, we incorporate the conventional multi-yield-surface plasticity model with the state-based peridynamics to simulate the stress and 
crack formation of ice under impact. Additionally, we take into account of the effects of inhomogeneous temperature distribution, strain rate, 
and pressure sensitivity. By doing so, we can successfully predict material failure of isotropic freshwater ice,iceberg ice, and columnar saline 
ice. Particularly, the proposed ice constitutive model is validated through several benchmark tests, and proved its applicability to model ice 
fragmentation under impacts, including drop tower tests and ballistic problems. Our results show that the proposed approach provides good 
computational performance to simulate ship-ice collision.
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1  Introduction

Ice is formed under extreme polar weather conditions is 
the major threat to the arctic marine transportation as well 
as polar scientific research operations. Ship-ice collision 
affects the normal operation of navigation (Liu et al., 
2017), and even causes the ship to sink or capsize com‐
pletely, seriously endangering personnel safety. The predic‐
tion of ice load is critically important in marine structure 
design in cold regions (Palmer et al., 2009).

However, using the simple uniaxial strength of ice to 

calculate ice loads is inaccurate due to the complex defor‐
mation before ice causes marine structures to fail and rup‐
ture (Zhang et al., 2019). To study the ice load on naval 
architectural structures (Zhang et al., 2017; Jia et al., 
2019), most of the empirical design formulas or semi-em‐
pirical formulas that sum up from a large number of ten‐
sion or compression experimental test (Cui et al., 2018) 
data are used to construct ice constitutive model equa‐
tions (Snyder et al., 2016). Since they are based on many 
empirical assumptions, this approach has flaws in calcu‐
lating the strength of ice (Mellor and Cole, 1982). Cur‐
rent constitutive models (Sain and Narasimhan, 2011) are 
difficult to provide a unified multiple scale modeling, and 
it is difficult to simulate the mechanical behavior of tran‐
sition regions at high strain rates. Many numerical meth‐
ods have been developed to predict ice failure processes 
(shear, melting, splitting, and fracture), showing higher 
efficiency than the experimental tests (Schulson, 2001). 
Since ice is a multiscale material with complicated physi‐
cal properties, it is a challenging task to build an appropri‐
ate single scale constitutive model to facilitate accurate 
prediction on the ice fragmentation.

Pernas-Sanchez et al. (2015) used the Lagrangian fi‐
nite element method, arbitrary Lagrangian Eulerian 
(ALE) method (Schulson and Buck, 1995) and Smoothed 
Particle Hydrodynamics (SPH) method (Sun et al., 2021;  
2019; 2018) to model and simulate mechanical behavior 
of ice under high impacts (Kolsky, 1949), and they com‐
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pared the advantages and disadvantages of the three mod‐
eling methods. Their results show that the SPH method is 
the most efficient method among the three methods, en‐
abling the ice microcracks to reach a fluid-like state be‐
fore creeping (Schulson and Buck, 1995; Carney et al., 
2006). In addition to SPH method (Wang et al., 2006), 
the Discrete Element Method (DEM) also shows good 
performance in simulating ice loading and ice breaking 
properties from a macroscopic perspective, by taking in‐
to account cohesion and fragmentation effects (Gold et 
al., 1988; Jones, 1982; Jones, 1997). The above work, 
however, are within the framework of continuum me‐
chanics, encounter great difficulties in dealing with meso‐
scale discontinuities, i. e. micro cracks, which are exten‐
sively occurring in the natural ice. In nature, ice is a com‐
posite material, and it is mixture of salt, air, and water 
(Liu et al., 2021). There are irregular bubbles (Zhang et 
al., 2023) in the ice interior. The existence of bubbles in 
the ice interior is a universal phenomenon, which affects 
the physical and mechanical properties of ice. Moreover, 
the properties of its microstructure affect its macroscopic 
mechanical properties (Xie and Li, 2021a; 2021b; Xie et 
al., 2022a; 2022b) which are also affected by tempera‐
ture, salinity, porosity, and density, making it extra chal‐
lenge to study. Although many efforts have been made to 
simulate the mechanical behavior of ice (Vazic et al., 
2020), a suitable constitutive relation of ice has not been 
established for engineering (Han et al., 2022) applica‐
tions in wide scenarios. Existing numerical methods (Li 
et al., 2019) simplify ice, as an isotropic uniform materi‐
al, e. g. Wang et al. (2018), which ignore many key fac‐
tors affecting the failure process of ice (Lu et al., 2020). 
More efforts are still needed to build a realistic mac‐
roscale ice constitutive model.

Recently, peridynamics method has been used to model 
ice destruction due to its advantages stemming from its in‐
trinsic nonlocal formulation in dealing with discontinui‐
ties. The integral formulation of the nonlocal peridynamic 
theory (Silling, 2000) avoids the mathematical difficulties 
in evaluation of spatial derivation of the discontinuous dis‐
placement field (Madenci and Oterkus, 2014), so that it 
can more accurately simulate crack growth of the ice sheet 
in its damage state. Moreover, the state-based peridynam‐
ics can incorporate material constitutive models into meso‐
scale peridynamics formulation through the “force state” 
in the equations of motion (Silling, 2007), so that it pro‐
vides a useful platform for building multiscale material 
constitutive models (Fan and Li, 2017a; 2017b; Fan et al., 
2015; 2016).

In this work, we adopt the constitutive modeling theory 
of the state-based peridynamics (Hu et al., 2020), and in‐
corporated the material constitutive model (Drucker and 
Prager, 1952; Johnson and Holmquist, 1994) into the inte‐
gral equation form of the “force state”, so as to establish a 

suitable and accurate mechanical model to capture ice me‐
chanical properties over a range of multiscale. Different 
from the previous work, suitable ice constitutive model 
has been implemented into the peridynamic state equa‐
tion, which can capture the multiscale mechanical re‐
sponses of ice. For the microscale, peridynamics has ad‐
vantages in capturing microscopic cracks in brittle materi‐
als, and it has been successfully applied in the simulation 
of many brittle materials such as glass (Lai et al., 2018). 
For the macroscale, the constitutive model used is the 
modified multi-surface criterion model proposed by Der‐
radji-Aouat, the brittle failure of ice at high strain rates 
can be well reproduced and has many successful applica‐
tions, such as ship-iceberg collisions, ship-ice interaction, 
and ice impact problems. The Derradji-Aouat ice constitu‐
tive model have been used to simulate the ship-iceberg col‐
lisions successfully, the proposed plastic material model 
yields good simulation results, both of the mesh conver‐
gence and the computational time is stable. By comparing 
the different inelastic constitutive models, elastic-plastic 
model, elastic-brittle model and the Derradji-Aouat multi-
surface cohesive model, the advantages and disadvantages 
between the three different ice constitutive models was 
analyzed by using the MSC.DYTRAN, and the results in‐
dicated that the multi-surface failure criterion is the most 
suitable one in simulation of ship-ice interaction owning 
to its consideration of the effects of strain rate, tempera‐
ture, and hydrostatic pressure. As one of the highlights 
in the present peridynamic model, the influence of the 
added mass by water is ignored when simulating the 
ship-ice interaction, and the ship motion is not consid‐
ered. Such issues required to be taken into account in 
the future work.

2  Ice constitutive model

In this section, we first briefly introduce how to incorpo‐
rate ice constitutive model which is called multi-surface 
theory developed by Derradji-Aouat into the state-based 
peridynamics formulation. Then, we discuss the cohesive 
law used in corresponding peridynamics to determine the 
failure criterion for ice. Finally, a peridynamic numerical 
algorithm considering strain rate effect and the pressure 
sensitivity for simulating fresh water isotropic ice, iceberg 
ice and columnar saline ice is presented.

2.1 Multi-yield surface constitutive model for ice

Ice undergoes nonlinear elasto-plastic behavior at low 
strain rate (<10−3 s−1), and linear elasto-brittle failure at 
high strain rate (>10−3 s−1). There is a transition zone at the 
strain rate (≈10−3 s−1), the failure mode of ice is from duc‐
tile to brittle. Thus, it is an essential task to establish a suit‐
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able ice constitutive model to show the complex physical 
evolution during the interactions of ice with structures. To 
address this issue, Derradji-Aouat (2003) modified the tra‐
ditional yield surface criteria by using the multi-surface 
theory, considerating the effects of the strain rate and the 
temperature of ice. It should be mentioned that this “multi-
surface constitutive model” has the ability to deal with not 
only the isotropic fresh water ice and iceberg, but also the 
anisotropic sea ice, which is columnar structure, as is 
shown in Figure 1.

To well address this, Derradji-Aouat developed a failure 
criterion based on the previous data for three types of ice 
as is shown in Table 1, developed an elliptical yield envel‐
op is given as the following formation:

( q − η
qmax ) 2

+ ( P − λ
Pmax ) 2

= 1 (1)

where η, λ are the coordinates of the center point of the el‐
lipse, P is the hydrostatic pressure, and Pmax is the major 
axes of the ellipse, respectively. q represents the octahe‐
dral shear stress, qmax is the apex of the ellipse, Derradji-
Aouat (2003) provided the qmax by the following equations:

qmax = é
ë
êêêê
ε̇
ξ
ù
û
úúúú

1 n

(2)

where n=4, ξ=5×10−6exp 
é
ë
êêêê −10.5 × 103( 1

T
− 1

273 )ùûúúúú.

In which shows the relationship between the absolute 
maximum octahedral shear stress qmax, the strain rate ε, and 
the temperature T. Eq. (2) combines the effects of strain 
rate and the temperature on the qmax of ice, which shows 
that the value of qmax increases with the increasing of the 
strain rate ε and the decreasing of the temperature; and de‐
creases with the decreasing of the strain rate ε and the in‐
creasing of the temperature. In above equation,

q =
1
2
[ ](σ11 − σ22 )2 + (σ22 − σ33 )2 + (σ33 − σ11 )2 (3)

P =
1
3

(σ11 + σ22 + σ33 ) (4)

Figure 3 shows the shape of the failure envelope pro‐
posed by Derradji-Aouat, and has been applied to model 
the ice materials for many years. The “Tsai-Wu” yield sur‐
face on the condition of η=0 for the isotropic material is 
usually written as the following form:

f ( p, J2 ) = J2 − (a0 + a1 P + a2 P2 ) = 0 (5)

In which, J2 is the second invariant for the deviatoric 
stress tensor, P is the Hydrostatic pressure. a0 , a1 , a2 are 
constants derived from the uniaxial tensile test data. The 
invariant of the second-order deviatoric stress tensor can 
be expressed in the following form:

J2 =
1
2

s:s, P =
1
3

s:s (6)

Figure 1　Loading condition for columnar ice

Table 1　Elliptical failure envelope parameters for three types of ice 
(Derradji-Aouat, 2003)

Types

Freshwater ice

Iceberg ice

Grown ice

η

0

0

0

λ

45.0

45.0

45.0

Pmax

55.0

55.0

45.0

Figure 2　The “state” in the non-ordinary state based peridynamics
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To describe the temperature dependent mechanical re‐
sponse, the corresponding change of the yield function for 
the ice with temperature-dependence expressed can be ex‐
pressed in the following expression,

f ( p, q) = J2 − (a0 (T ) + a1 (T ) P + a2 (T ) P2 ) = 0 (7)

in which, T is the temperature, and linear interpolation is 
used to describe the temperature change from the surface 
of the ship and core area.

Remark 2.1　 In this work, we have made several im‐
provements over the previously-used ice constitutive mod‐
el. For example, the relationship between the yield criteri‐
on and the hydrostatic pressure P is established in Eq. (5), 
and the relationship between the yield criterion and the ma‐
terial temperature T is established in Eq. (7). By doing so, 
the pressure sensitivity and temperature characteristics of 
ice are considered, which will affect the yield limit of the 
material.

2.2 Constitutive model in non-ordinary state 
based peridynamics

The multi-yield surface criterion for ice was successful‐
ly implemented in LS-DYNA software but not to its full 
advantage because it is difficult to deal with the discontin‐
ue problem in traditional continuum mechanics. Whereas, 
Peridynamics is a nonlocal mesh free method, especially 
for the state-based peridynamics providing a platform to 
integrate material constitutive model.

In the state-based peridynamics, a continuum domain Ω0 
is discretized by a set of material particle xi with associated 
mass density ρxi

 and volume Vi, where i=1,2,3,…,∞ is the 

particle index. Assume that a material particle is only influ‐
enced by forces from its neighboring particles xj, j=1,2,3,
… ,∞ within a local region, called as a horizon Hx (i ). The 
horizon is typically chosen to be a circle (in 2D) or a 
sphere (in 3D), with the radius δ called as the horizon 
size of particle xi. The relative position vector pointing 
from particle xi to xj in the reference configuration is 
called “bond”, which can be considered as a spring in the 

case of elastic interaction (as shown in Figure 3), and can 
be denoted as:

ξij = xj − xi (8)

Under certain motion or deformation χ, the continuum 
body deforms and the relative displacement vector in cur‐
rent configuration is denoted by

η ij = u ( xj, t ) − u ( xi, t ) (9)

Then, the current relative position between these two 
particles can be represented by the deformation state func‐
tion Y(ξij), which maps the undeformed bond to a de‐
formed bond:

Y (ξ ij ) = yj − yi = ( xj − xi ) + (uj − ui ) = ξ ij + ηij (10)

The peridynamic governing equation of motion, for par‐
ticle xi at time t at a reference configuration are then can 
be expressed as:

ρ0ü ( xi, t ) = ∫
V

f (ηij, ξij ) dVxj
+ b ( xi, t ) (11)

where ρ0 is the mass density of the solid in the reference 
configuration, and f(ηij, ξij) is a pairwise function defined 
as the non-local integration of force vector that particle xj 
exerts on the particle xi as shown in Figure 3, and b(xi, t) 
is the external body force density vector, as shown in Eq. 
(11), such particle based non-local formulation gives the 
peridynamics to be effective to represent discontinuity 
everywhere.

In the Peridynamics theory, besides the deformation 
state -Y, another concern is the force state -T, with which 
the balance of the momentum is expressed as:

ρ0ü ( xi, t ) = ∫
Hxi

é
ë

ù
û-T ( xi, t ) xj − xi − -T ( xj, t ) xi − xj

dVxj
+ b ( xi, t )

(12)

In this work, the state-based Peridynamics theory takes 
strain-rate effects into account. The governing equation 
can be expressed as follows:

ρ0ü ( xi, t ) = ∫
Hxi

[ ]-T (ξ ij, -Y (ξ ij ) ) − -T (ξ ji, -Y (ξ ji ) )

dVxj
+ b ( xi, t )

(13)

We can obtain the relation between the force-vector 
state T and the first Piola-Kirchhoff stress tensor Pxi

 of 

classical continuum mechanics as:

-T (ξ ij,-Y (ξ ij ) ) = ω (ξ ij )Pxi
⋅ K − 1

xi
⋅ ξij (14)

Figure 3　 Illustration of stress return in the Tsai-Wu yield surface 
(Derradji-Aouat, 2003)
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where ω(ξij) is a positive scalar influence function de‐
fined on the bond length of each material bond ξij, which 
is the distance of the two particles, and Kxi

 is the refer‐

ence symmetric shape tensor of particle xi which can be 
defined as:

Kxi
= X (ξ ) × X (ξ ) ∫

Hxi

ω (ξ )ξ ⊗ ξdVxj

≈∑
j = 1

N

ω (ξ )ξ ⊗ ξΔVxj

(15)

If the horizon size of the particle xi is the same as that of 
the particle xj, assume that the deformations of all the 
bonds ξij within a horizon Hxi

 is uniform, we have Kxi
=Kxj

. 

Based on continuum mechanics, the relation between Pxi
 

and the Cauchy stress σxi
 is written by

Pxi
= det éëF xi

ù
û σxi

F −T
xi

(16)

where Fxi
 is the non-local deformation gradient at the parti‐

cle xi.
In order to obtain the first Piola-Kirchhoff stress Pxi

, we 

should first obtain the deformation gradient tensor Fxi
 and 

its time derivative Ḟxi
, the velocity tensor, L=ḞF −1, and the 

rate of deformation tensor D=
1
2

(L+LT). Then based the hy‐

po-elastic-plastic formulation that will be discussed in the 
next Section, we can find the Cauchy stress σ.

Here, we first discuss the construction of the nonlocal 
deformation gradient. The deformation gradient in a mate‐
rial point from the initial configuration to the current con‐
figuration is described by the deformation gradient. For 
quasi-uniform particle distributions, the corresponding de‐
formed bonds can be expressed as:

ξij = -Y (ξij ) = Fxi
⋅ ξ ij (17)

where Fxi
 is a second-order tensor and it can be viewed as 

the approximated deformation gradient at the particle xi. 
Then we can obtain,

Nxi
= Fxi

é

ë

ê
êê
ê∫

Hxi

ω (ξ ij )ξ ij ⊗ ξijdVxj

ù

û

ú
úú
ú

= Fxi
⋅ Kxi

(18)

Then the nonlocal deformation gradient Fxi
 defined at 

the particle xi in terms of shape tensors can be obtained as:

Fxi
= Nxi

⋅ Kxi

− 1 (19)

The spatial velocity gradient satisfies the following 
relationship:

L = ḞF− 1 (20)

in which, Ḟ is the time derivative of the deformation gradi‐
ent, defined as:

Ḟxi
= ∫

Hxi

ω (ξ ij ) -Y ( )ξij ⊗ ξijdVxj
K i

− 1

≈∑
j = 1

N
é
ë

ù
ûω (ξ ij ) -Y ( )ξij ⊗ ξijΔVxj

K i
− 1

(21)

The spatial velocity gradient L can be decomposed into 
a symmetric deformation rate tensor D and an asymmetric 
rotation tensor W:

D =
1
2
[ L + L− 1 ]　and　W =

1
2
[ L − L− 1 ] (22)

The material frame-indifference criterion imposes the 
objectivity condition, and the constitutive model must be 
invariant within a certain range. Therefore, only objective 
quantities can be used in the constitutive model.

In this work, we adopt the Hughes-Winget formula 
(Hughes and Winget, 1980; Rubinstein and Atluri, 1983) 
in the stress update under large deformation condition. 
First, the rate of deformation tensor d is calculated as,

d = RT
t DRt (23)

where Rt is an orthogonal rotation tensor, which is used to 
describe the rotation of the rigid body at time t, and it can 
be expressed by the following incremental formula:

R t =
é
ë
êêêêI +

sin ( )ΔtΩ
Ω

− cos ( )ΔtΩ
Ω2

Ω2ù
û
úúúú Rt − Δt (24)

where Ω2=ωiωj and Ωij=eikjωk is the tensor sequence num‐
ber, eikj is the axial vector can be expressed as:

ω = w + [ Itr (Vt ) − Vt ]
− 1

z (25)

in which, the vorticity w= − 1
2

eijkWjkei, z=eikj DjmVmkei, the 

left stretch tensor can be expressed as:

V t = Vt − Δt + ΔṫV̇Δt (26)

where V̇Δt=LV̇ t−V̇ tΩ is the left stretch rate tensor at each 
time step, which can be used to V and R.

After the rate of deformation tensor d is being calculat‐
ed, the Cauchy stress, von-Mises stress, and plastic strain 
can be calculated subsequently. Therefore, the Cauchy 
stress of the material can be obtained from the following 
formula:

σ = RtτR
T
t (27)
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Then we can calculate the first Piola-Kirchhoff stress 
tensor as follows,

Pxi
= ( Jσ ) F −T

xi
(28)

where J=detFxi
.

Remark 2.2　In this work, we incorporated Eq. (28) in‐
to the state-based peridynamics to find the bond force 
states, after we find the Cauchy stress that is determined 
by the ice constitutive model. Thus, the ice constitutive 
model can be incorporated through Eq. (28) into the frame‐
work of the state-based peridynamics.

2.3 Plastic response for ice in the framework of 
peridynamics

According to the plastic flow law, under ideal condi‐
tions, the surface of the plastic region and the yield surface 
coincide. Therefore, the plastic potential function based on 
the Derradji-Aouat (DA) constitutive model can be ex‐
pressed as follows,

Φ =  s − (a0 + a1 p + a2 p2 ) = 0 (29)

where  s  denotes the scalar of deviator stress tensor; a0 
a1, a2 are the experimental constant.

The hydrostatic pressure can be expressed as:

p =− 1
3
σ:I (30)

where I is the unit second order tensor. The deviatoric 
stress tensor can be obtained by the following formula,

s = σ + pI (31)

in which, σ is the stress tensor.
In order to describe the material deformation. The defor‐

mation rate tensor is decomposed into the elastic part, the 
plastic part and the temperature part, respectively, and can 
be denoted as:

d = d e + d p + d T (32)

The relationship between the elastic deformation rate 
tensor and elastic stress in the above formula satisfies:

σ∇ = C e:d e (33)

in which, σ∇ is the true objective stress rate tensor, Ce is 
the elasticity coefficient tensor. In order to facilitate the 
subsequent derivation, the elastic coefficient tensor can be 
expressed as:

C e = 2Gδ ikδjl + (K − 2
3

G ) δijδkl (34)

where K is the yield modulus of the material, G is the 
shear modulus of the material. Generally, the value of the 
true equivalent stress can be obtained from the following 
formula:

σ̄ =
3
2

s:s (35)

The true plastic strain rate can be obtained from the fol‐
lowing equation:

ε̄
· p

=
2
3

d p:d p (36)

Substituting Eq. (35) into Eq. (31):

σ =
2
3
σ̄·n − p ⋅ I (37)

where n is the direction vector of deviator stress tensor,
and I is the second-order unit tensor:

n =
3
2
⋅ s
σ̄

(38)

I = δ ijei ⊗ ej (39)

Therefore, according to the plastic flow law, the plastic 
part of the deformation rate d p in Eq. (32) can be ex‐
pressed as the product of the plastic consistency parame‐
ter term γ and the derivative of the plastic potential func‐

tion 
∂Φ
∂σ  as follows:

Figure 4　Fracture surface with normal opening Δ
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d p = λ
∂Φ
∂σ = γ ( ∂Φ∂s n − 1

3
∂Φ
∂p I )

= γ ( ∂s∂σ − a1

∂p
∂σ − 2a2 p

∂p
∂σ )

= γ (n − 1
3

(a1 + 2a2 p ) I ) (40)

where s=‖s‖.
Under the condition that the material is deformed by ro‐

tation, the regression mapping format is used for process‐
ing. Figure 2 shows a schematic diagram of the regression 
mapping method. In the process of spatial integration, the 
integral increment of the constitutive model can be regard‐
ed as a kind of “strain-driven” process, and all the strain 
tensor increments at the orthogonal point will update the 
stress at time t. The Newton-Raphson algorithm is used to 
solve the nonlinear equations. Because a fully implicit 
solver consumes computational time, we used a semi-im‐
plicit integration format to solve the integral equations. In 
computations, at time step n+1, the envelope of inelastic 
flow can be estimated by the yield function and the plastic 
potential function, and the corresponding updated stress is 
given as:

σn + 1 = σ trial
n + 1 + Δσ re (41)

In the formula, the test stress can be calculated by the 
following formula:

σ trial
n + 1 = σn + C e:Δd (42)

where σn is the stress at time step n, Δd is the total defor‐
mation increment.

The return increment of stress Δσre can be expressed as:

Δσ re =−C e:Δd p =− C e:Δγ é
ë
êêêê ù

û
úúúún − 1

3 ( )a1 + 2a2 p I (43)

= Δγ [ K (a1 + 2a2 p) I − 2Gn] (44)

where Δγ is the plastic consistency parameter increment. 
Therefore, the test stress is updated to the following ex‐
pression:

σ trial
n + 1 = σn + Δt (C e:d e ) = σn + Δt [C e:(d − d p ) ] (45)

= [σn + Δt (C e:d ) ] − Δt (C e:d p ) (46)

= σ e + Δt [ Kγn + 1(a1 + 2a2 p) I − 2Gγn + 1n] (47)

The stress is updated to the following expression:

σn + 1 = σ trial
n + 1 + Δσ re (48)

= σ trial
n + 1 + Δγ [ K (a1 + 2a2 p) I − 2Gn] (49)

In the process of the iterative solution, the deformation 
of the material first undergoes an elastic phase, and then 
plastic deformation occurs after the elastic phase. The elas‐
tic and plastic phases are judged by the yield equation. 
The material reaches the yield condition at the Gauss inte‐
gration point. The yield equation at the n+1 time step is 
written as follows:

f trial
n + 1 =  str − [a0 + a1 ( ptrial

n + 1 ) + a2 ( ptrial
n + 1 )2 ] (50)

If f trial
n + 1<0, the material enters the elastic phase; if f trial

n + 1≥
0, the material enters the plastic phase. As a result, the ex‐
pression of the plastic consistency parameter increment Δγ 
used to solve the return value increment of the stress in 
Eq. (43) can be obtained:

Δγ =
f trial

n + 1

2G + K ( )a1 + 2a2 ptrial
n + 1

(51)

The return increment value of the true equivalent stress 
can be solved by the increment of the plastic consistency 

Figure 5　Fracture surface with tangential opening Δ
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parameter as:

Δσ̄ re = ΔγG (52)

The return increment value of the pressure is solved by 
the plastic consistency parameter increment, which can be 
expressed as follows:

Δpre =− Δσ re:I
3

= ΔγK (a1 + 2a2 ptrial
n + 1 ) (53)

From Eq. (48) to Eq. (49), the expression of the enve‐
lope {p, σ̄}of the two-dimensional space can be obtained:

K re =
Δσ̄ re

Δpre
=

G

K ( )a1 + 2a2 ptrial
n + 1

(54)

Finally, the updated equivalent plastic strain is obtained 
by using the plastic consistency parameter increment to 
solve the expression:

ε̇̄p
n + 1 =

2
3

d p
n + 1:d

p
n + 1 = γn + 1 I + ( )a1 + 2a2 ptrial

n + 1

2

=
Δγ
Δt

I + ( )a1 + 2a2 ptrial
n + 1

2
(55)

The hydrostatic pressure can be expressed as follows:

pt =
1
3

tr ( τ tr
t ) + Δpt (56)

Therefore, the unrotated Cauchy stress including devia‐
toric stress and hydrostatic pressure is expressed by the 
formula in Eq. (28). The unrotated Cauchy stress needs to 
be the rotating Cauchy stress. Finally, the unrotated Cau‐
chy stress tensor of the material can be calculated by the 
following equation:

τt = S + Ipt (57)

Then the real Von-Mises stress at time t is updated as:

σ t = Rtτ t R
T
t (58)

Remark 2.3　One of the main features of the proposed 
peridynamics model is that the updated multi-yield surface 
criterion shown in Eq. (50) is used to calculate inelastic 
stress of the ice. Ice will be under plastic deformation 
when f trial

n + 1≥0, as is shown in Figure 3, and the plastic re‐
sponse can be calculated by Eq. (58).

2.4 Damage model for ice

In peridynamics, the key component used to describe 

the break bond is the “bond stretch” as follows:

s =
|| ξij + ηij − || ξij

|| ξij

(59)

The “bond stretch” is the bridge to relate peridynamics 
to the fracture toughness Gc, which is a key classical frac‐
ture parameters can be measured for ice. We define the 
work requred to break the bond across the fracture surface 
is Gc:

Gc = ∫
0

δ

 ∫
0

2π

 ∫
z

δ

 ∫
0

cos-1 z/ξ

 (
cs2

0ξ
2

) ξ 2sinϕdϕdξdz (60)

The critical “bond stretch” is given as,

s0 =
5πG0

18Eδ
(61)

G0 is used to determine by the fracture toughness KI :

G0 =
K 2

I

E
(62)

From Figure 4, we can get s and ξ as follows:

- -----
AC = ξn

2 + Δn
2 + 2ξnΔcosϕ (63)

ξn =
Δn( )(cosϕ ) + cos2ϕ + 2sn + sn

2

sn (2 + sn )
(64)

sn = 1 + 2 ( )Δn

ξn

cosϕ + ( )Δn

ξn

2

− 1 (65)

From Figure 5, we can get s and ξ as follows:

- -----
AC = ξ't

2 + Δ t
2 + 2ξtΔ tsinϕsinθ (66)

ξt =
Δ t( )(sinϕsinθ ) + sin2ϕsin2θ + 2st + st

2

st (2 + st )
(67)

st = 1 + 2 ( )Δ t

ξt

sinϕsinθ + ( )Δ t

ξt

2

− 1 (68)

The damage will occur when the length exceed ξ, which 
is depending on s and Δ.

Remark 2.4　We note that in the proposed peridynam‐
ics model, both normal and tangential deformation as well 
as fracture are considered to predict the quasi-brittle fail‐
ure of ice by using the above established equations.
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2.5 Constitutive update

The computational algorithm of the constitutive update 
or the stress calculation for the ice constitutive model is 
given as follows:

1. Start to search all material points and initialization pa‐
rameters;

2. Calculate shape tensor K and inverse;
3. Calculate the approximate deformation gradient Ḟ 

and its time derivative;
4. Calculate the spatial velocity gradient L, the deforma‐

tion rate tensor D, and the asymmetric rotation tensor W;
5. Update the left stretch tensor V and rotate tensor R;
6. Calculate the non-rotational deformation rate tensor d;
7. Select the material constitutive model, and calculate 

and update the non-rotational Cauchy stress, the von-Mis‐
es stress and plastic strain;

(a) Calculate the non-rotational Cauchy stress σ trial
n + 1 of 

the elastic test;
(b) Calculate the yield function, f trial

n + 1, and execute the 
judgment statement: If f trial

n + 1<0, enter the elastic deforma‐
tion calculation; If f trial

n + 1≥0, enter the plastic deformation 
calculation;

(c) Calculate the plastic consistency variable increment 
Δγ;

(d) Calculate the Cauchy stress;
(e) Update the true equivalent plastic strain;
(f) Output displacement, velocity, acceleration;
8. Calculate the rotational Cauchy stress (true stress), σ;
9. Calculate the first-order Runge-Kutta stress tensor, P;
10. Cycle all material points xi within the particle neigh‐

borhood δ;
11. Calculate the “force state”, -T;

12. End loop.
The flowchart of the entire computation of the peridyn‐

amics model and the constitutive update for the proposed 
ice constitutive model are shown in Figure 6.

3  Results and discussions

3.1 Drop tower test

In order to verify the validity and applicability of the 
proposed ice constitutive model, an ice cylinder is simulat‐
ed to hit a steel plate at a given impact velocity. The geo‐
metrical model size is as shown in Figure 7. The material 
1 is chosen to be ice material, and the material 2 is defined 
as rigid body. There are 74 225 particles and 66 436 cells 
discrete in total. The mesh size is Δx=1.5 mm, and the ho‐
rizon size is δ=3.15Δx. Assuming that the cylindrical ice 
moves at a constant speed, the rigid body does not deform 
during the collision with the ice body, and the given cylin‐
drical ice provides the conversion of kinetic energy at a 
certain speed. The calculated material parameters are 
shown in Table 2.

The damage counter of the destruction process of the cy‐
lindrical ice with a collision velocity of 152 m/s is shown 
in Figure 8. The damage factor in the figure is in the range 
of 0.05−0.95. It can be seen from Figure 8 that the initial 
damage occurs at the position where the cylindrical ice 
contacts the cylindrical rigid body, and the ice damage 
gradually expands upward. Pernas et al. (2012) used three 
numerical methods: SPH method, ALE method and Lar‐
grange method. The predictions of these methods are fo‐
cused on the deformation of the ice body, and there is no 

Figure 6　Flowchart of the multi-yield surface plastic peridynamics implementation and computation Flowchart of the entire computation 
procedure Flowchart of constitutive update
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good reflection of the damage and cracks of the ice body. 

From the calculation results in this paper, it can be seen 

that the prediction effect of the cylindrical ice damage is 

that the cracks grow upward from the contact with the rig‐

id body. From 8, the crack propagation and damage pro‐
cess of the cylindrical ice can be clearly shown.

Figure 9 illustrates the curve of the collision force be‐
tween cylindrical ice and rigid body over time. The simu‐
lated results are compared with the experimental results 
of Carney et al. (2006) and the numerical results of (Per‐
nas-Sánchez et al., 2012). The initial speed conditions of 
152 m/s and 213 m/s were selected respectively. It can 
be seen from Figure 9 that the current results is consis‐
tent with the experimental results within the time range 
of 0 ms to 0.1 ms at the initial time (the collision velocity 
is 152 m/s). The predicted collision force is larger than 
the experimental one. Before reaching the peak of the col‐
lision force, there is a certain forward effect. No elastic 
deformation occurs when contact occurs, so the calcula‐
tion result is too large. The collision force reaches its 
peak at about 0.15 ms, and then gradually decreases as the 
energy is dissipated. Under the condition of the collision 
velocity of 213 m/s adopted in Figure 9(b), the calculation 
results are basically consistent with the experimental re‐
sults, and the error is smaller than the calculation result of 
the collision velocity of 152 m/s adopted in Figure 9(a). To 

Table 2　Input parameter

Methods

Derradji-Aouat (2000)

Kierkegaard

Riska and Frederking (1987) data 1

Riska and Frederking (1987) data 2

T (℃)

−1

―

−2

−10

ε (s−1)

4×10−3

―

2×10−3

2×10−3

a0

22.93

2.588

1.60

3.1

a1

2.06

8.63

4.26

9.20

a2

−0.002 3

−0.163

−0.62

−0.83

Figure 7　Discretized Peridynamic model (Carney et al., 2006)

Figure 8　Different stages of damage contours of ice at a velocity of 152 m/s
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a certain extent, the calculation method in this paper is 
more suitable for high-speed collision conditions, thus 
verifying the feasibility of the non-ordinary state-based 
peridynamics constitutive equation used in the calcula‐
tion of torsional deformation of brittle ice structures. It 
can be seen from the calculation results of the numerical 
simulation methods SPH method, ALE method and Lar‐
grange method adopted by Pernas that the Peridynamics 
calculation method used in this paper has certain advan‐
tages over other numerical simulation methods.

3.2 Ballistic problem

To investigate the propagation characteristics of ice 
cracks from the mesoscale perspective, the size of the 
plate model established here is selected as 0.02 m×0.02 m×
0.001 m thin ice plate, the diameter of the steel ball is 
0.001 5 m. A total of 62 203 particles and 50 864 elements 
are discretized. The rigid ball is assumed to be a rigid 
body moving at a constant speed, which will not deform 

during the collision with the ice body. The given rigid ball 
provides the conversion of kinetic energy at a certain 
speed. The calculation model is shown in Figure 10. The 
damage process of ice at a velocity of 150 m/s is shown in 
Figure 11. The comparison result of the calculated damage 
contour is shown in Figure 12.

The proposed constitutive has the same effectiveness 
in processing torsional deformation of ice material. The 
yield curve equation of the multi-yield surface constitu‐
tive model is determined by the parameter constants ob‐
tained on the basis of a large number of experiments. It 
can simulate the plastic deformation of anisotropic mate‐
rials, and it can simulate the ice failure in the brittle re‐
gime as well. Due to the complexity of the structure and 
composition of the ice material itself, and the different 
growth and formation processes of the ice, the crystal ar‐
rangement is also diverse, so the crack shape of the ice 
material under high strain rate also presents different 
manifestations, and has a larger the randomness. This pa‐
per selects several experimentally photographed crack 
shapes during ice breakage from the literature, and com‐
pares them with the numerical results in this paper, as 
shown in Figure 12. In Figure 12, the red area indicates 
the broken ice body, and the yellow area indicates the ice 
material in the elasto-plastic stage. Compare with the ex‐
perimental result, the numerical model can better simu‐
late the crack shape. The crack appears to be broken 
from the impact center of the ice plate, and the debris ar‐
ea around the center area is approximately circular and 
runs along the center point, striped cracks radiated all 
around. The result shows the multi-yield ice constitutive 
model can better simulate the characteristics of the diver‐
sity of ice cracks.

Figure 9　The impact force-times curves

Figure 10　Sketch for the ball-ice model
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3.3 Ship-ice interaction

In order to verify the applicability of the proposed ice 
constitutive model in simulating ship-ice interaction, the 
ice-breaker is used. Assume that the ship is a rigid body and 
sails through ice at a certain speed. The ship dimensions are 
chosen in Table 3. The numerical model is built by Abaqus 
software, and there are 184 225 particles and 126 436 cells 
discrete in total, as is shown in Figure 13. The mesh size is 
Δx=1 m, and the horizon size is δ=3.15Δx. Assuming that 
the icebreaker moves at a constant speed at 5 m/s, the rigid 
body does not deform during the collision with the ice 
sheet, and the given ice sheet provides the conversion of 
kinetic energy at a certain speed. The calculated ice materi‐
al parameters are the same as Table 2.

It can be seen from Figures 14‒18 that the proposed meth‐
od can well capture the dynamic response of the ice, and 
shows good performance to simulate ship-ice interaction.

Figure 11　Damage process of ice at a velocity of 150 m/s

Figure 12　Ice fragmentation mode from experiment compared with 
our numerical result at large view

Table 3　Dimension of the ice-breaker (m)

Length L

84

Width B

22

Depth D

11

Design draft T

6

Lwl

78

Figure 13　Numerical model (Ice breaker)
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Figure 14　Ship-ice interaction process (S11 stress)

Figure 15　Ship-ice interaction process (Von-Mises stress )

Figure 16　Ship-ice interaction process (Damage)
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4  Conclusions

In this paper, we developed a state-based cohesive peri‐

dynamics model that incorporates a coupled multi-yield 
surface elastoplasticity model to simulate the stress and 
crack formation of ice under impact. Compared with the 

Figure 17　Snapshots of a sequence of ship-ice interaction process

Figure 18　Comparison between the peridynamics simulation results and experimental data (Xu et al., 2020)

408



Y. Song, et al.: A Multi-Yield-Surface Plasticity State-Based Peridynamics Model and its Applications to Simulations of Ice-Structure Interactions

traditional ice constitutive model, the main advantages of 
the proposed method are:

1) We incorporate the multi yield-surface elastoplastici‐
ty model for ice (Derradji, 2002) into the state-based peri‐
dynamics formulation, which is then successfully being 
used to simulate and predict failure of fresh water isotro‐
pic ice, iceberg ice, and columnar saline ice.

2) The simulated drop tower test demonstrates that the 
proposed peridynamics model can better simulate the ice 
fragmentation under impact loads accurately, and it cap‐
tures the elastic-plastic quasi-brittle failure behavior in ice, 
and

3) The proposed method can well capture the ice com‐
pressive and tension behaviors in the high strain rate re‐
gime, and it shows good performance in simulating ship-
ice collision in ocean engineering applications.

Despite of these advantages, there are still some limita‐
tions in the present approach. For example, the influence 
of the added mass by water is ignored in the present peri‐
dynamics model when simulating the ship-ice interaction, 
and moreover, the ship motion and the subsequent fluid-
structure interaction are not considered. Such issues will 
be addressed in future work.

Nomenclature
ξij

ηij

-Y<⋅>
Hxi

-T (ξij,-Y (ξij ))
Kxi

Pxi

Fxi

L

D

W

d

Rt

f

Bond vector in reference configuration

The relative displacement vector in current 
configuration

State function

The horizon of particle xi

The force-vector state

The reference symmetric shape tensor of particle xi

The first Piola-Kirchhoff stress

The nonlocal deformation gradient

The spatial velocity gradient

Symmetric deformation rate tensor

Asymmetric rotation tensor

The non-rotational deformation rate tensor

Orthogonal rotation tensor

The yield function
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