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Abstract
This paper investigated the resistance performance of a submersible surface ship (SSS) in different working cases and
scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for
engineering applications. First, a hydrostatic resistance performance test of the SSS was carried out in a towing tank.
Second, the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed. The
differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.
Finally, the advantages of genetic algorithm (GA) and neural network were combined to predict the resistance of SSS.
Back propagation neural network (BPNN) and GA-BPNN were utilized to predict the SSS resistance. We also studied
neural network parameter optimization, including connection weights and thresholds, using K-fold cross-validation. The
results showed that when a SSS sails at low and medium speeds, the influence of various underwater cases on resistance is
not obvious, while at high speeds, the resistance of water surface cases increases sharply with an increase in speed. After
improving the weights and thresholds through K-fold cross-validation and GA, the prediction results of BPNN have high
consistency with the actual values. The research results can provide a theoretical reference for the optimal design of the
resistance of SSS in practical applications.
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1 Introduction

Due to their autonomous navigation capability, unmanned
ships can replace humans in performing dangerous tasks

and thus have become a hot spot in marine research (Zhou
et al. 2009). Since the birth of the first surface unmanned
ship, its development has lasted more than 20 years (Man‐
ley 2008). With scientific and technological development,
research on unmanned ships has further developed, pro‐
gressing from surface conditions to underwater conditions.
Unmanned ships include fully autonomous, remote-con‐
trolled, and semi-autonomous ships (Chen et al. 2013). Ac‐
cording to ship type, they can be divided into semi-sub‐
mersible, conventional planning, hydrofoil, etc. Among
these, semi-submersible ships are widely favored for their
excellent radar stealth performance, long-term endurance,
and high adaptability to different sea conditions (Watkins
2011). In recent years, researchers have studied hydrody‐
namic, control, and self-propelled performances of various
forms of semi-submersible ships (Li et al. 2018; Alleman
et al. 2012). These ships have enormous application poten‐
tial in scientific research, the military, and other fields. As
a special semi-submersible ship, a submersible surface un‐
manned ship has the abilities of semi-submersible conceal‐
ment and high-speed sailing on the surface, which can in‐
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spire new ideas for designing multi-navigation vehicles in
the water (Huo and Dong 2016).

To avoid interference from wind and waves on the sailing
of SSS under high sea conditions and to minimize the influ‐
ence of waves during high-speed sailing. Hirayama et al.
(2005b) proposed a new design concept for an SSS. The
SSS has a hull different from conventional ships, and wings
and ailerons are located in the middle and stern of the ship.
It also has a cross-domain “surface-underwater” sailing
function. It can sail on calm water, similar to ordinary sur‐
face ships. When waves are violent or severe caused by
high-speed sailing, they can dive to a certain depth below
the water’s surface to continue sailing. Since the SSS can
sail on water, frictional resistance caused by a large wetted
surface at full depth is reduced. It can also actively dive into
the water according to surface conditions. By “dodging
waves”, the degree of interference of waves on sailing is
significantly reduced. Therefore, whether it is in calm or
rough sea conditions, the ship can select its sailing state in a
targeted manner and maintain excellent performance.

The initial hull scheme of the SSS is a conventional con‐
tainer ship. Hirayama et al. (2005b) conducted a multi-con‐
dition experimental study and found that the performance
during underwater navigation was not optimal. The bul‐
bous bow was removed, and the profile at the upper deck
was treated as a smooth retraction. This improved the hy‐
drodynamic performance of the submarine state by mak‐
ing the main hull shape more holistic (Hirayama et al.
2005a). Ueno theoretically deduced hydrodynamic deriva‐
tives of SSS based on wing and rudder parameters for its
maneuverability. The motion responses of straightness,
submergence, and rotation with different wing or rudder
angles were simulated (Ueno 2010; Ueno et al. 2011). Many
factors, such as wetted surface area, surface waves, and un‐
derwater turbulence, will significantly impact the rapid
performance of this type of ship under different sailing
conditions, such as water surface and multiple submarine
depths. As a result, it is necessary to investigate the multi-
depth cases of these ships.

There is a wealth of domestic and international research
on the hydrodynamic performance of the surface and under‐
water ships. The existing research on submarines primarily
focuses on the Suboff submarine model in the United States
and on rotating and non-rotating models of different shapes.
Zhou (2008) investigated the CFD numerical simulation of
the Suboff-S full appendage submarine model using an
RSM turbulence model using ANSYS’commercial compu‐
tational fluid dynamics (CFD) software. Liu et al. (2009) es‐
tablished up to 15 different computational domain grids for
the Suboff. Four types of turbulence models were used to
calculate the submarine model’s flow field morphology and
resistance performance. The influence of grid division and
turbulence model selection on the calculation of the subma‐
rine flow field was studied. Sarkar et al. (2015) believed
that a significant number of ship-type test analyses were

needed to obtain reliable test data, and it was expensive and
time-consuming to complete these tasks. The authors calcu‐
lated four different types of ships. Through an efficient ship
form design, the propulsion power of propeller and hull effi‐
ciency were generally improved after optimizing ship hull,
and the use of fuel was significantly reduced. Nan Zhang
used four different turbulence models to solve the Reynolds-
averaged Navier–Stokes (RANS) equation using the Suboff
as a research object and found that the turbulence model
greatly influenced numerical simulation results (Zhang et
al. 2005; 2007). Zeng (2006) used the volume of fluid
(VOF) method and the RNG k− ε turbulence model to nu‐
merically simulate the motion of the ellipsoid near the free
surface. The results show that when diving depth is three
times greater than the diameter of the rotary body, the influ‐
ence of the free surface can be ignored in simulated work‐
ing conditions. Nematollahi et al. (2015) studied hydrody‐
namic characteristics of a rotary body named Afterbody-1
near a free surface. The study used CFX combined with
standard k−ε and VOF methods to calculate the influence of
model domain size and grid number on calculation results
at a specific speed point. The research on cross-domain
“surface-underwater” ships is insufficiently deep. Thus, this
research performed numerical simulations on surface and
underwater navigation conditions and analyzed the hydrody‐
namic performance of a cross-domain SSS under various
conditions.

CFD is a popular method for predicting ship resistance
performance. On this basis, ship form optimization is car‐
ried out, and the best scheme is selected and applied to re‐
al ships. However, the CFD method takes too long to cal‐
culate ship resistance by viscous flow. Many factors, such
as grid division, turbulence model, and so on, affect the
calculation of the CFD method, requiring a high degree of
user experience. In recent years, computer software and
hardware technology has developed rapidly. Machine learn‐
ing algorithms are gradually forming a trend in ship engi‐
neering that has high engineering application value and
scientific research significance. Khan et al. (2005) com‐
bined neural network, fuzzy logic, and data fusion technol‐
ogy to develop engineering applications for very short-
term forecasts of ship motion. Xing and Mccue (2010) ap‐
plied the neural network method to the ship rolling model
and the fitting of test data. Two multivariable nonlinear
models are used to describe the forced nonlinear rolling
motion of ships at sea, and experimental data verify the
neural network method. Ling et al. (2016) applied deep
neural network structure to a RANS turbulence model.
Gurgen et al. (2018) used an artificial neural network to
predict the length, width, and draft of the ship with maxi‐
mum deadweight and a design speed of the ship as input.
These results show that neural networks can predict the pa‐
rameters of the ship well. Miyanawala and Jaiman (2017)
used a convolutional neural network to predict the main
flow field parameters of unsteady flow around rigid bod‐
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ies. Liu et al. (2021) established a multi-step direct-map‐
ping ship motion very short-term forecast model based on
a long short-term memory network and used filtered ship
motion data to carry out forecast analysis under different
working conditions. For this paper, sample training of a
BPNN was carried out, and this neural network was used
to predict the resistance performance of an SSS, providing
data for future research on the fast performance.

To sum up, in this research, resistance tests of the SSS
model were carried out first. Then, hydrodynamic perfor‐
mance of different scale SSS under different cases was an‐
alyzed by STAR-CCM+ . Finally, a digital model of SSS
resistance prediction based on a BPNN was established.

2 Model towing test

2.1 Test ship model parameters

In this study, only the sailing resistance of the main hull
is considered, ignoring the influence of appendages such
as wings and rudders on the resistance. Figure 1 depicts
the SSS model involved in the test, and the body line is
shown in Figure 2.

A bulbous bow, similar to water droplets, can be seen in
the bow of the hull. The shape of the stern is similar to that
of a cruiser stern in a conventional ship, and there is room
for thrusters and rudders. The side top, which has an arc-
shaped top side with a large radius of curvature to transi‐
tion smoothly and tangentially to the deck, is the most sig‐
nificant difference from conventional surface ships. The
overall shape is also well-integrated.

Table 1 presents the main dimensions and related over‐

all parameters of the SSS model.

2.2 Test scheme

The scale of the ship model towing tank of the Dalian
University of Technology is 160.0 m × 7.0 m × 3.7 m
(length × width × water depth). Pool trailer speeds range
from 0.010 m/s to 8.000 m/s with a speed accuracy of 0.1%.

Model resistance at different diving depths was tested.
The resistance at 0.4 m/s, 0.6 m/s, 0.8 m/s, 1.0 m/s, 1.1 m/s,
1.2 m/s, 1.3 m/s, 1.4 m/s, 1.5 m/s, 1.6 m/s, and 1.7 m/s
was tested under each diving depth. Accordingly, the range
of Froude number (Fr) is 0.101 0–0.429 1, and the range
of Reynolds number (Re) is 0.528 4 × 106–2.245 9 × 106. A
total of six cases (#0–#5) were tested, and the correspond‐
ing diving depths were respectively 0 m, 0.054 m, 0.32 m,
0.48 m, 0.64 m, and 0.96 m, all based on the designed wa‐
terline. Table 2 shows the test setup, and Figure 3 depicts
the resistance test site.

2.3 Towing test results and analysis

After each group of towing experiments, the multi-
speed test results of various cases were obtained. Since the
sensor is subjected to resistance due to water flow during
measurement, SSS’s resistance is equal to the difference
between the resistance measured with the sensor and the
resistance of the single sensor. Table 3 depicts the resis‐
tance of SSS by analyzing test data.

Figure 4 presents the curve of the abovementioned Vm−Rtm

measurement results.
As shown in Table 2 and Figure 5, the resistance perfor‐

mance of SSS is analyzed as follows according to the rela‐

Figure 1 Schematic diagram of the naked hull of the SSS test model

Figure 2 Body line of the SSS model

Table 1 Values of overall elements of test ship model

Parameter

Total length Loa (m)

Length between perpendiculars LPP (m)

Beam B (m)

Moulded depth D (m)

Draft T (m)

Freeboard F (m)

Wetted surface Aw (m2)

Surface Ao (m2)

Numerical value

1.645 2

1.600 0

0.232 2

0.140 8

0.086 8

0.054 0

0.445 1

0.830 3

Table 2 Test setup range

Parameter

Ship velocity Vm (m/s)

Diving depth D* (m)

Froude number Fr

Reynolds number Re

Range

0.4–1.7

0–0.96

0.101–0.429 1

0.528 4 × 106–2.245 9 × 106
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tive position of the ship and water and speed changes in
various cases:

1) When Vm is 0.4–0.8 m/s, the difference in resistance of
each case is not significant. Therefore, the ship’s resistance
for surface navigation and submerged navigation are simi‐
lar, and the trend of resistance increases with the increase in
speed is not obvious. The resistance of Case #0 is slightly
lower than in other cases, and the resistance of Cases #2–#5
has no obvious change in direct proportion to depth.

2) When Vm is 1.0 – 1.3 m/s, Case #0 and Case #1 (in
which the upper surface of SSS coincides with the water
surface) are significantly smaller than Cases #2–#5. Howev‐
er, the difference in resistance of each underwater case is
not obvious. This shows that no violent wave-making oc‐
curs when sailing on the water surface at this speed. Most
resistance components are friction resistance, which strong‐
ly correlates with wetted surface area. The particularity of
Case #1 is that the upper surface of the hull and water sur‐
face theoretically coincide, but a wetted surface does not
completely cover the hull due to fluctuation of the water
surface during sailing. Specifically, the upper deck and sur‐
face close to the wetted surface area have no obvious wet
effect, and their friction resistance is thus reduced.

3) When Vm is 1.4 – 1.7 m/s, Fr reaches 0.35 or more,
which is categorized as high-speed sailing. At this time, the
wave effect of SSS tends to be significant, so the resistance
of Case #0 and Case #1 has an obvious positive trend with
speed. Because increasing wave-making effect with increas‐
ing speed changes the resistance component of the hull, fric‐
tional resistance is gradually replaced by wave-making re‐
sistance as the main component of resistance at high speed.
When speed is 1.7 m/s, due to violent wave-making and the

Figure 3 Towing test site photos

Table 3 Towing resistance results of SSS

Vm(m/s)

0.4

0.6

0.8

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Vm(kn)

0.78

1.17

1.56

1.94

2.14

2.33

2.52

2.72

2.92

3.11

3.30

Fr

0.101

0.152

0.202

0.253

0.278

0.303

0.328

0.353

0.379

0.404

0.430

Re (×106)

0.528

0.793

1.057

1.321

1.453

1.585

1.717

1.850

1.982

2.114

2.246

Rtm (N)

#0

0.29

0.54

0.84

1.22

1.47

1.78

2.10

2.72

3.90

5.70

7.61

#1

0.27

0.54

0.99

1.42

1.68

2.37

2.79

4.30

7.02

10.54

14.39

#2

0.39

0.72

1.22

1.95

2.22

2.67

3.21

3.86

4.72

5.83

6.96

#3

0.37

0.71

1.25

1.89

2.28

2.69

3.15

3.71

4.31

5.00

5.82

#4

0.28

0.62

1.15

1.79

2.23

2.62

3.07

3.54

4.13

4.71

5.37

#5

0.33

0.70

1.22

1.87

2.23

2.68

3.17

3.60

4.06

4.66

5.23
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Figure 4 The Vm−Rtm curve of SSS
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flapping of irregular water surface on the upper surface of
the hull, the increase in wave resistance with speed goes
with V 5. Simultaneously, according to the Smith effect,
wave characteristics of fluid particles below the water sur‐
face decay exponentially. As a result, the resistance of vari‐
ous underwater cases also decreases with increased depth,
and this trend becomes more significant with increased
speed. The resistance difference between Case #4 and Case
#5 is insignificant in this entire speed range, indicating that
the influence of fluid particles by surface wave fluctuation
in this diving depth range has nearly disappeared.

3 Real-scale resistance prediction method

ITTC1978 ship model test extrapolation method (three-

dimensional method) has been widely used worldwide.
The resistance coefficient of the real-scale ship can be ex‐
pressed as

C ts = (k + 1)Cfs + Cr + ΔCf + CAA (1)

where k + 1 is the form factor; Cfs is the frictional resis‐
tance coefficient; Cr is the residual resistance coefficient;
ΔCf is the roughness coefficient; CAA is the air resistance
coefficient.

For the frictional resistance estimation of the real-
scale ship, the Grigson formula shows higher prediction
accuracy than the ITTC1957 formula, and its formula is
as follows:

Cf =

ì
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ï
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2 − 0.063 34 ⋅ ( )lg Re − 6.3
4 é

ë
ù
û0.075/ ( )lg Re − 2

2

( )1.5 × 106 ≤ Re ≤ 2 × 107 ,

{ }é
ë

ù
û1.032 + 0.028 16 ( )lg Re − 8 − 0.006 273 ⋅ ( )lg Re − 8

2 é
ë

ù
û0.075/ ( )lg Re − 2

2

( )1 × 108 ≤ Re ≤ 4 × 109 ;

Re = LppV/ν,

(2)

where Lpp is the length of the ship; V is the trailer speed; ν
is the kinematic viscosity coefficient.

The roughness coefficient becomes

ΔCf = é
ë
êêêê105(Ks /Lpp ) 1/3 − 0.64ù

û
úúúú × 10− 3 (3)

where the roughness performance Ks = 0.15 mm.

CAA = 0.001AT /S (4)

where AT is the projected area of the hull above the water‐

line on the middle cross section; S is the wet surface area.
In this study, the air resistance has little effect on the to‐

tal resistance, so the effect of air resistance is ignored.
According to the test results in the range of Fr = 0.1–0.2,

the form factor (1 + k) was determined.

C tm

Cfm

= (1 + k ) + y
Fr4

Cfm

(5)

In Eq. (5), Ctm, Cfm, and Fr can be obtained from the
ship model resistance test data. The Ctm/Cfm and Fr/Cfm are
plotted linearly. And the intercept of the line is then the
form factor 1 + k, as shown in Figure 5. Finally, the form
factor 1 + k is determined to be 1.34.

4 Numerical calculation method

This study was based on the RANS method. The SST k−ω
turbulence model was used to study the SSS resistance and
flow field characteristics at different scales. A VOF model
was used to capture the free surface.

4.1 Calculation of objects and case

The parameters of the model scale and real-scale SSS
are shown in Table 4, and the geometric model is shown in
Figure 7.

1.25

1.30

1.35

1.40

1+k

Fr4/C
fm

C
tm
/C

fm

0 0.2 0.4 0.6 0.8 1.0

Figure 5 Prohaska method to determine form factor
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4.2 Computational domain and mesh generation

During numerical simulation, SSS is in a state of uni‐
form linear motion on the water surface. A geodetic coordi‐
nate system was used to study the problem, with X-axis
pointing to the bow as positive, Y-axis pointing to the star‐
board side as positive, and Z-axis pointing up as positive.
The issue of SSS sailing at a constant speed can be trans‐
formed into a problem of water flowing around the subma‐
rine. The hull has strict symmetry; thus, 1/2 symmetry was
used to simulate the SSS model. The origin of coordinates
was defined as the intersection of the vertical line of the
stern and the design waterline, the distance from the bow
one time the length of the SSS as an entrance, and the dis‐
tance from the stern two times the length of the SSS as an
exit. The hull distance to the upper boundary of the calcu‐
lation domain was one time the length of the ship, and the
lower boundary of the distance calculation domain was
two times the length of the ship. To better present Kelvin
waves in their entirety, the shipboard distance from the
side boundary of the computational domain was two times
the length of the ship. The cutting body of software was
used to divide the mesh. The basic grid size is LPP/50, and
the number of boundary layers, boundary layer growth
rate, and Y+ settings of model scale and real-scale are
shown in Table 5. Mesh refinement was performed on bow
and stern, free surface, calculation domain, and obvious
wave-making areas to ensure accuracy of numerical simu‐
lation calculations. Figure 7 depicts the boundary condi‐
tions, whereas Figure 8 presents the meshing diagram at
the real scale and model scale.

4.3 Numerical calculation result comparison

In order to confirm the correctness of the mesh topology
used in this study, the mesh independence analysis was

carried out on the model scale ship and the real-scale ship
with Fr = 0.202. The mesh-independent validation was
carried out based on the Richardson extrapolation. Three
sets of meshes with different numbers were generated, the
time step of the model scale was taken as 0.005 Lpp/V ac‐
cording to the recommendations of ITTC regulations, and
the time step of real-scale calculation was taken as 0.002 5
Lpp/V.

Tables 6–8 depict the results of resistance deviation and
independence analysis, where Ct is the resistance coeffi‐
cient of the model scale as the test result of the SSS mod‐
el; the resistance coefficient of the real-scale ship is the ex‐
trapolated resistance value based on the SSS model test;
RG is the mesh convergence rate; UG is uncertainty; D0 is

Figure 8 Meshing diagram

Table 4 Ship parameters

Parameters

Case
Lpp (m)

B (m)

T (m)

▽ (m3)

Aw (m2)

λ

1

#0
1.6

0.232 2

0.086 8

0.018 3

0.445 1

20

#0
32

4.644 0

1.736 0

146.40

178.04

Z

Y

X

U

O

Figure 6 Geometric model

Table 5 Boundary settings

Scales

Model scale

Real scale

Boundary
layers

5

15

Boundary layer
growth rate

1.2

1.5

Y+

60

150

y/L
pp −2 −1 x/L

pp

2
0

1

1

0
z/L

pp

Symp

−2

2
1

0

Air

Water

Pressure
    out Velocity

   inlet Velocity
   inlet

Velocity
   inlet

Figure 7 Boundary condition display diagram
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the corresponding test (extrapolation) result; PG is the ac‐
curacy order.

Table 8 shows that the resistance calculation results of
the three sets of mesh at the model scale have high accura‐
cy, and the deviation is within 7%. The mesh convergence
rate RG of the two scales is less than 1, indicating that the
mesh converges monotonically. The numerical uncertainty
UG of model scale and real-scale resistance is 0.176%D0

and 0.742%D0 (less than 1%D0), indicating a high level of
numerical simulation verification. In general, this mesh to‐
pology has good convergence and can be used to study the
scale effect of ship resistance. The subsequent two-scale
calculations are based on the coarse mesh, and the time
cost can be reduced.

5 Results and analysis

5.1 Ship resistance

The comparison of the resistance calculation results of
the CFD model scale, experimental model scale, CFD real
scale, and real-scale extrapolation is shown in Figure 9. It
can be seen from Figure 9 that the CFD real-scale results
and the extrapolation results are in good agreement, and
the average difference is 5.27. It shows that the extrapola‐
tion results can be used to replace the numerical simula‐

tion results to a certain extent, and the time cost can be re‐
duced. By comparing the results of the CFD real scale and
CFD model scale, it is not difficult to find that under the
same Fr, the total resistance has an obvious scale effect.

5.2 Scale effect of the surrounding flow field

Scale effects arise due to dissimilarities in force ratios
between model and real-scale ships (Terziev et al. 2020).
Therefore, studying the scale effect when solving the real-
scale hydrodynamic performance is necessary.

Figure 11 shows the distribution of the hydrodynamic
pressure coefficient (CP) on the hull of the model scale and
real scale for Fr = 0.404.

Cp = 2 (P − ρgh) / ( ρV0
2 ) (6)

where P is the total pressure, ρ the density of water, g the
acceleration of gravity, h the water depth, and V0 the speed.

Figure 10 shows that the hydrodynamic pressure distri‐
bution of the hull under the model scale and the real scale
has a high similarity, but there are certain differences in
the bow and stern. The hydrodynamic pressure of the bow
at the real scale is slightly larger, reflecting that the wave-
making at the bow has a specific scale effect. The pressure
coefficient at the stern is smaller at the real scale, mainly
due to the smaller viscous force. The difference in the dis‐
tribution of pressure coefficients at the model scale and re‐
alscale explains the reason for the scale effect of the form
factor.

Figure 11 shows the model scale and real-scale free sur‐
face waveforms when Fr = 0.404. Moreover, the wave‐
form at the two scales has a high similarity, as presented in
Figure 11. However, the amplitudes of the bow and stern
waves at the model scale are significantly lower, resulting
in a weakened prediction of the wave-making resistance at
the model scale.

0.09 0.12 0.15 0.18 0.21 0.24 0.27

5

3

2

4

6

7

8

9

 Full-scale extrapolation
 CFD full-scale
 Experimental model scale
 CFD model scale

Fr

C
t (

1
0
−3

)

Figure 9 Comparison of resistance at different scales

Table 6 Model scale resistance results

Parameter

SSS test value

Fine mesh

Medium mesh

Coarse mesh

Number of
meshes (104)

-

242

105

53

Ct (10−3)

5.915

5.841

5.794

5.535

Deviation (%)

-

1.25

2.05

6.42

Table 7 Real-scale resistance results

Parameter

SSS extrapolation
value

Fine mesh

Medium mesh

Coarse mesh

Number of
meshes (104)

-

615

275

112

Ct (10−3)

3.524

3.568

3.589

3.692

Deviation (%)

-

1.24

1.76

4.77

Table 8 Mesh verification analysis Ct

λ

1

20

RG

0.181

0.204

PG

4.926

4.590

(UG /D0)%

0.176

0.742
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6 Neural network prediction model

6.1 Sample data acquisition

According to the previous SSS resistance test data
(Table 3), 55 sets of sample data were obtained (due to the
special case of working condition 1, the data of working
condition 1 were discarded). V and D* of the SSS were
used as the network input, and the sailing resistance was
used as the output of the prediction network model.

6.2 K-fold cross-validation

The flowchart in Figure 12 shows that first, the data are
randomly divided into K groups, and then, for each group,
the following operations are performed:
• One training fold was chosen as the test dataset.
• The remaining K−1 is used as the training set.
• The selected training dataset is used to train the model,

and the test dataset is used to evaluate it.
In the small sample dataset of this work, K was set to 5.

Neural network simulation results in low bias and moder‐
ate variance results were directly utilized. Therefore, in

this simulation, the comprehensive data set was randomly
divided, 44 groups were selected as the training set, and
the remaining 11 groups were used as the test set. The 44
sets of samples were then divided into five training folds.
Furthermore, each time, a different test fold from D1 to D5

is chosen as the validation set. Then these five sets of data
are input into the back propagation neural network
(BPNN) model. The inaccuracy of model evaluation caused
by accidental segmentation of the sample dataset can be
ruled out with five cross-validations.

6.3 BPNN and genetic algorithm

Based on the advantages of BPNN, such as nonlinear
mapping ability, self-learning adaptive ability, generaliza‐
tion ability, and fault tolerance ability, the applicability of
BPNN in predicting the SSS resistance is discussed.

The activity level of neuron j in layer L is:

vj
( l ) (n ) =∑

i = 0

p

wji
( l ) (n ) yi

l − 1 (n ) (7)

The tansig activation function is:

yj
( l ) (n )=(1+exp ( −2vj

( l ) (n ) ) )−1−1 (8)

Neural network weights:

wji
( l ) (n + 1) = wji

( l ) ( x ) + α[ϖ ji
( l ) (n − 1) ]

+ηδ j
l (n )·yj

( l − 1) (n )
(9)

In the formula, the “δ” of the output layer and the hid‐
den layer are respectively:

δ j
( l ) (n ) = ej

( l ) (n ) ⋅ oj (n ) [1 − oj
(n ) ] (10)

δ j
( l ) (n ) = yj

( l ) (n ) [1 − yj
( l ) (n ) ]∑

k

δk
( l + 1) (n )ϖkj

l + 1 (n )

(11)

Figure 11 Free surface waveforms
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The empirical value of “α” is selected between 0 and 1,
and the learning rate η=0.01.

In the BPNN, the neural network has a nonlinear map‐
ping ability and is suitable for solving problems with com‐
plex mechanisms, so the neural network can predict the
output of nonlinear functions. It can get random weights
and thresholds from the split samples and start training the
model. Regarding the genetic algorithm (GA) part, the
steps of calculating fitness value, crossover, mutation, etc.,
select the optimal group until it is close to the optimal solu‐
tion (Ferreira 2001). In general, GA adopts binary coding
and divides the program into four parts: input and hidden
layer link weights, hidden layer weights, hidden layer and
output layer weights, and output layer weights. Each
weight and threshold is coded with m-bit binary, and then
the optimized weight and threshold are input to the BPNN.

6.4 Model parameter settings

In this study, 55 sets of data were selected as training
and testing samples for development. The sum of the abso‐
lute values of the prediction errors of the training data is
used as the fitness value of the individual. The smaller the
fitness value of the individual is, the better the individual
is.

To achieve the optimal simulation of the BPNN model,
the number of neurons in the hidden layer needs to be
changed according to the learning rate, number of neurons,
learning algorithm, etc., and is determined after many ex‐
periments (Nguyeo 2019). In addition, it is assumed that
the number of hidden layer neurons is 2−12. In addition,
the simulation results of BPNN are used to test the optimal
number of neurons (the predicted results are shown in
Figure 13). The main purpose of this study is to improve
the predictive model through a K-fold cross-validation ap‐
proach. During this process, when the number of neurons
in the hidden layer changes, it is difficult to determine
whether the prediction results are changed by the K-fold
cross-validation method. Therefore, controlling the num‐
ber of neurons in the hidden layer can provide a more intu‐
itive view for this method. Figure 14 shows the final net‐
work structure of the neural network used in this study for
SSS resistance prediction.

In the BPNN, the number of samples was randomly di‐
vided into two groups, the first group of 44 samples was
used for training, and the remaining 11 samples were used
as test samples. This can better illustrate the authenticity
of the simulation results. In the GA-BPNN, the number of
samples is also divided, but the weights and thresholds
vary with the best gene individuals selected. The GA pa‐
rameters were set as follows: the total population size of
the genetic algorithm was 20, the maximum number of it‐
erations was 30, the crossover rate was 0.8, and the muta‐
tion probability was 0.1.

6.5 Evaluation indicators

This paper used five statistical evaluation indicators to
evaluate the performance of different models. They are
mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), coefficient of determina‐
tion (R2), and mean absolute percentage error (MAPE).

These metrics are calculated as follows:

MAE =
1
n∑i = 1

n || yi − yi (12)

MSE =
1
n∑i = 1

n (yi − yi ) 2
(13)

RMSE =
1
n∑i = 1

n ( )yi − yi

2
(14)

R2 =
∑i = 1

n ( )yi − -
y

2

∑i = 1

n ( )yi − -
y

2
(15)

MAPE =
100%

n ∑i = 1

n
|

|
|
||
||

|
|
||
| ŷi − yi

yi

(16)

In Eqs. (12)−(16), n is the number of data sets, y is the
average value of the test resistance of the SSS, ŷ is the pre‐
dicted resistance value, and yi is the test resistance.

MSE, MAE, and RMSE are measures of mean error and
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are used to assess the degree of variability in the data. Al‐
so, RMSE has a smooth loss function. Furthermore, R2 is
used to characterize the fit by the variation of the data. Its
normal range is [0, 1], and the closer it is to 1, the better
the variable y in the equation explains, and the better the
model fits the data. Additionally, MAPE can determine
how well different models evaluate the same data; the low‐
er the value, the better the prediction.

6.6 Model prediction performance comparison

The K-fold cross-validation method is used to sequen‐
tially select training samples as input data, and then BP
and GA-BP neural networks are used to predict the resis‐
tance of the SSS. Table 9 shows the results, which presents
the K-fold cross-validation results for five different datas‐
ets. This step selects the model with the best predictive
performance by comparing the evaluation metrics. Al‐
though some test groups had high correlation values close
to 1, they performed poorly on the RMSE and MSE mea‐
sures.

After K-fold cross-validation, Table 9 shows that the
best model should be group 5, and the MAE, MSE, and
RMSE values in group 5 are lower than in other models.
In Table 9, evaluation metrics can be used to evaluate the
predictive performance of each group of models. The
smaller values of MAE, RMSE, and MAPE improve the
generalization ability of the prediction model. Also, R2 is
informative, and the value of a perfect model should be
closer to 1. Therefore, when the MAE exceeds 0.1, groups
2, 3, and 4 should be discarded. Moreover, the R2 evalua‐
tion metric also provided a reason to exclude the first
group because the R2 value corresponding to group 1
(0.994) was smaller than that of group 5 (0.998). There‐
fore, group 5 was selected comprehensively. Then, the
weights and thresholds were recorded and fed into the
BPNN model for comparison with the test set. After the
initial weights and thresholds were changed, the prediction
model of the BPNN was also improved.

Figure 15 shows that GA and K-fold cross-validation
work well to improve the prediction accuracy of BPNN,
including the error ranges for different models. Figure 4
depicts that the maximum error of the neural network mod‐

el using K-fold is reduced from 0.25 to 0.1. Similarly, the
maximum error of the GA-BPNN model is reduced from
0.25 to 0.07. Furthermore, most of the 11 test data errors
of GA-BPNN are closer to 0 (Figure 15), showing that for
this study, GA is better than K-fold cross-validation in re‐
ducing error.

The predicted value of the BPNN model has a higher er‐
ror value than that of the GA-BPNN. In particular, the pre‐
diction errors of groups 1–5 of the BPNN are larger. This
result is because fewer data are selected for training, and
the threshold and weight derivation of BPNN are limited.
After optimizing the thresholds and weights by GA, the
BPNN also performed well (Figure 16). And both models
achieved good results in the last five test data. However,
the 5th group error of the neural network model using K-
fold is too large (as shown in Figure 18). Overall, the pre‐
diction results of the GA-BPNN are in good agreement
with the actual values.

BPNN generally performs poorly without parameter op‐
timization due to the random generation of thresholds and
weights. A GA can find the optimal weights and thresh‐

Table 9 5-fold cross-validation results of BPNN

Evaluation
indicators

MAE

MSE

RMSE

MAPE

R2

1

0.093

0.016

0.125

0.030

0.994

2

0.116

0.031

0.177

0.070

0.996

3

0.353

0.236

0.485

0.169

0.945

4

0.103

0.025

0.158

0.080

0.995

5

0.082

0.016

0.125

0.050

0.998
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olds. Also, by entering the weights and thresholds filtered
by K-fold cross-validation, the network can be improved.

The reciprocal of MAE, MSE, RMSE, MAPE, and R2

are plotted as a radar chart of model performance evalua‐
tion metrics, as shown in Figure 19. Through K-fold cross-
validation optimization, the fit of the model is improved,
R2 is improved from 0.895 to 0.998, but the MAPE is only
reduced by about 0.07. Furthermore, BPNN optimized by
GA has a better effect than BPNN. The values of MAE,
MSE, RMSE, and MAPE all decreased, and the correla‐
tion coefficient increased by 0.1. This result is better than
the neural network after K-fold cross-validation. Com‐
pared with the neural network after K-fold cross-valida‐
tion, the GA significantly impacts the optimization of the
neural network by setting better initial weights and thresh‐
olds. The simulation results show that although K-fold
cross-validation also has a specific optimization effect on
the neural network, the improvement is insufficient. How‐
ever, after optimization by GA, the RMSE, MSE, MAE,
and MAPE values of the neural network model are the

lowest (as shown in Table 10), and the optimization effect
is the best.

7 Conclusions

This study aims to investigate the performance of the
optimized BPNN in predicting the resistance of SSS. By
entering different V and D, the resistance performance of
the SSS in multiple sailing states is studied. The specific
conclusions are as follows:

1) By analyzing the results of the resistance test and nu‐
merical simulation, it can be found that when an SSS is
sailing at medium or low speed (Vm = 0.4–1.3 m/s), the ef‐
fect of different cases on the resistance performance is not
obvious. At high speeds (Vm = 1.4–1.7 m/s), the resistance
of the edge diving case (Case #1; that is, the upper surface
of the ship coincides with the water surface) and the sur‐
face case (Case #0) increases sharply with the increase in
speed.

2) In this study, the resistance performance of SSS in
various scales is solved based on the RANS method. The
hydrodynamic pressure of the bow at the real scale is
slightly larger, reflecting that the wave-making at the bow
has a specific scale effect. The wave amplitudes of the
bow wave system and the stern wave system at the model
scale are significantly lower, resulting in a weakened pre‐
diction of the wave-making resistance at the model scale.

3) In this paper, the original data are normalized to en‐
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Table 10 Calculation results of different models

Models

BPNN

BPNN-K-fold

GA-BPNN

MAE

0.399

0.082

0.073

MSE

0.253

0.016

0.008

RMSE

0.503

0.125

0.088

MAPE

0.121

0.050

0.027

R2

0.895

0.998

0.994
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sure that the dataset is easier to use. The 55 sets of experi‐
mental data come from the resistance test results done by
the author. The dataset is randomly divided into two
groups: the first group contains 44 sample data for model
training and validation; the remaining data are used to veri‐
fy the accuracy of the model. In this paper, BPNN is used,
and GA and K-fold cross-validation are used to optimize
the network parameters of the model. After K-fold cross-
validation models, the five groups of data, in turn, opti‐
mize the initial threshold and weight of BPNN. Converse‐
ly, the genetic algorithm finds the optimal thresholds and
weights in successive iterations. However, both methods
improve the accuracy of BPNN prediction results. But
based on the statistical results of MAE, MSE, RMSE,
MAPE, and R2, GA-BPNN is the best predictive model for
SSS resistance.

4) As a new type of ship, research on the fast perfor‐
mance of the SSS has potential application value in the en‐
gineering field. In the next step, we can combine the inno‐
vative design of ship form and introduce complex marine
environment elements such as waves and ice loads for
more in-depth research.

Nomenclature

Parameter

Total length

Length between prepenticulars

Beam

Molded depth

Draft

Freeboard

Watted surface

Total Surface

Reynolds number

Froude number

Diving depth

Ship model velocity

Frictional resistance coefficient

Residual resistance coefficient

Total resistance coefficient

Mesh convergence rate

Uncertainty

Corresponding test (extrapolation) result

Accuracy order

Form factor

Roughness coefficient

Air resistance coefficient

Kinematic viscosity coefficient

Abbreviation

Loa

Lpp

B

D

T

F

Aw

Ao

Re

Fr

D*

Vm

Cf

Cr

Ct

RG

UG

D0

PG

k+1

ΔCf

CAA

v

Unit

m

m

m

m

m

m

m2

m2

m

m/s

Roughness performance

Volume of displacement

Scale ratio

Total pressure

Density of water

Acceleration of gravity

Water depth

Mean absolute error

Mean square error

Rootmeansquare error

Coefficient of determination

Meanabsolute percentage error

Ks

▽
λ

P

ρ

g

h

MAE

MSE

RMSE

R2

MAPE

mm

m3

Pa

kg/m3

m/s2

m
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