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Abstract
The sensitivity of moving particle semi-implicit (MPS) simulations to numerical parameters is investigated in this study. 
Although the verification and validation (V&V) are important to ensure accurate numerical results, the MPS has poor perfor-
mance in convergences with a time step size. Therefore, users of the MPS need to tune numerical parameters to fit results into 
benchmarks. However, such tuning parameters are not always valid for other simulations. We propose a practical numerical 
condition for the MPS simulation of a two-dimensional wedge slamming problem (i.e., an MPS-slamming condition). The 
MPS-slamming condition is represented by an MPS-slamming number, which provides the optimum time step size once 
the MPS-slamming number, slamming velocity, deadrise angle of the wedge, and particle size are decided. The simulation 
study shows that the MPS results can be characterized by the proposed MPS-slamming condition, and the use of the same 
MPS-slamming number provides a similar flow.

Keywords Wedge slamming · Moving particle semi-implicit · MPS-slamming condition · Numerical condition · Wagner’s 
theory · Computational fluid dynamics

1 Introduction

Computational fluid dynamics (CFD) has been devel-
oped and widely used for the last few decades. Recently, 
CFD solvers have been used to unravel natural phenom-
ena whose behaviors are not modeled by the conventional 
physical model (i.e., strongly nonlinear phenomena). Indus-
trial fields have also used CFD software for the analysis of 
their products. As for the wave dynamics field in the naval 

architecture, the CFD is often used to simulate an unsteady 
ship motion (e.g., Waskito et al. 2020) and slamming of a 
ship (e.g., Judge et al. 2020). Because the estimations of 
hydrodynamic forces are important for designing ships, the 
accurate estimation of these forces is highly demanded in 
academic and industrial societies.

Among these ship-related phenomena, the hull slamming, 
that is, the entry of a ship body onto the water surface, is of 
great concern because of impulsive loads with high pres-
sure on local components and induced global vibration of 
the body. The slamming problem is a strongly nonlinear 
phenomenon consisting of the nonlinearity of free surface 
conditions, splash of water, and involution of air and water. 
To understand slamming problems, mathematical solutions 
were developed in consideration of the following physical 
models: linear model using an equivalent plate (Wagner 
1932), nonlinear-free surface condition (Dobrovol’Skaya 
1969; Wang and Faltinsen 2017), splash of water (Watan-
abe 1986; Cointe and Armand 1987), higher-order term of 
the Bernoulli equation (Korobkin 2004), sea depth effect 
(Jalalisendi et al. 2017), and hydroelasticity of the body 
(Faltinsen 1999; Khabakhpasheva and Korobkin 2013). In 
addition, experiments on wedge slamming with constant 
speed (e.g., Chuang 1967; Tveitnes et al. 2008; Allen 2013; 
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Jain et al. 2020) and free-falling slamming (e.g., Yettou 
et al. 2006; Panciroli and Porfiri 2013; Vincent et al. 2018) 
were performed. These analytical and experimental stud-
ies have greatly contributed to unraveling the slamming 
phenomena. However, the approaches used are generally 
applied to simple cases. To consider the arbitrary shape of 
objects and multiple physical models, the development of 
numerical approaches has been demanded. Numerical solu-
tions were first studied using the boundary element method 
(BEM) based on the potential flow (Zhao and Faltinsen 
1993; Kihara 2004; Sun and Faltinsen 2007). Furthermore, 
CFD approaches have been developed to directly solve 
the Navier–Stokes equations. Multiphase Navier–Stokes 
equations around a wedge were solved by the constrained 
interpolation profile scheme (Tajima and Yabe 1999). The 
volume of fluid-based OpenFOAM was used for simulat-
ing the slamming of flexible wedges (Maki et al. 2011; Piro 
and Maki 2013). Free-falling slamming was validated using 
the open-source CFD model REEF3D (Kamath et al. 2017). 
Rigid wedge slamming was simulated by smoothed-particle 
hydrodynamics (SPH) (Oger et al. 2006). SPH was coupled 
with a finite element method (FEM) for solving the slam-
ming of a flexible body (Fourey et al. 2017; Hermange et al. 
2019). Although the FEM is a major approach for analyz-
ing structure dynamics, some fluid analyses were coupled 
with particle-based structure simulation methods. SPH–SPH 
(Oger et al. 2009) and incompressible SPH (ISPH)–SPH 
(Khayyer et al. 2018a) simulations were demonstrated. The 
moving particle semi-implicit (MPS) method was also used 
for fluid–structure interaction (FSI) problems with the cou-
pling with a Newtonian structure MPS or a Hamiltonian 
MPS (Khayyer et al. 2018b).

Among several CFD approaches, particle-based simula-
tion methods (i.e., SPH and MPS) are expected as suitable 
schemes for simulating slamming problems (Seddon and 
Moatamedi 2006) due to their mesh-free and Lagrangian 
characteristics. These characteristics enable us to easily 
simulate water splashes caused by the slamming and large 
deformation of a free surface and a flexible body. Moreo-
ver, particle-based simulation methods might be suitable to 
solve complicated phenomena, such as slamming with an 
ice floe (Yokoyama and Iida 2021). In this study, we focus 
on the MPS method for the simulation tool of the slamming 
problem. The MPS is widely used for simulations of the free 
surface flow. Several enhanced schemes have been proposed 
from various aspects: pressure gradient (Iribe and Nakaza 
2011; Khayyer and Gotoh 2011), source term of a pressure 
Poisson equation (PPE) (Khayyer and Gotoh 2009; Tanaka 
and Masunaga 2010; Khayyer and Gotoh 2011), boundary 
conditions (Marrone et al. 2010; Tsuruta et al. 2015; Duan 
et al. 2021), particle regularization (Tsuruta et al. 2013), 

time marching method (Matsunaga and Koshizuka 2021), 
multiphase flow (Khayyer and Gotoh 2016; Wang and Zhang 
2019), and FSI coupling (Hwang et al. 2016; Khayyer et al. 
2019). These schemes have improved the reliability of MPS 
simulations.

In general, using the CFD is easier than using conven-
tional physical-based simulation models. Furthermore, the 
results of the CFD are sensitive to the numerical and tun-
ing parameters (e.g., time step size, mesh/particle size, and 
stabilized parameters), and the accuracy of results depends 
on these settings. Therefore, CFD users need appropri-
ate knowledge and know-how to obtain robust simulation 
results. To overcome the uncertainty of errors due to the 
modeling and tuning parameters, verification and validation 
analysis is a primary necessity (Oberkampf and Trucano 
2002). However, the MPS does not show a good convergence 
with respect to the numerical parameters (Matsunaga and 
Koshizuka 2021) because results do not converge to a defini-
tive value even if the numerical parameter becomes smaller. 
This fact yields difficulties in the verification of MPS simu-
lations. As a result, MPS users have no choice but to tune 
numerical conditions for obtaining good results.

In this study, we investigated the sensitivity of simula-
tion results to numerical parameters using the MPS method. 
We also attempted to make a practical numerical condition 
for an MPS simulation of a slamming problem, namely, an 
MPS-slamming condition, which provides us with suitable 
numerical parameters. Because the MPS has poor conver-
gence with numerical parameters, the MPS-slamming condi-
tion could not be made by only using a numerical context; it 
may need knowledge based on a physical model. Based on 
this condition, an MPS-slamming condition was made using 
numerical and physical conditions. Because of its wide use 
in many studies, the two-dimensional (2D) wedge slamming 
problem was considered here. In particular, the Wagner 
solution (Wagner 1932) was referred to characterize a flow 
around the wedge slamming and make an MPS-slamming 
condition that connects physical and numerical parameters 
using a defined MPS-slamming number. An MPS solver was 
developed on the basis of tuning-less schemes (e.g., Mar-
rone et al. 2010; Khayyer and Gotoh 2011). The results were 
compared with the simulation results using OpenFOAM 
(Chen et al. 2019). The sensitivity of the MPS simulation to 
numerical and physical parameters was investigated using 
the proposed MPS-slamming condition. The results show 
that the MPS results can be characterized using the MPS-
slamming condition, and a similar flow can be obtained 
using the same MPS-slamming number. This finding indi-
cates that the optimum time step size can be provided once 
the MPS-slamming number, slamming velocity, deadrise 
angle of the wedge, and particle size are decided.
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2  Theory of Particle‑Based Simulations

2.1  Particle Interaction Model

In this study, the particle-based simulation method was 
developed based on the MPS (Koshizuka and Oka 1996). 
Fluid was discretized as a number of particles, and the 
densities were estimated by the weighted interaction with 
neighboring particles. The particle number density ni is 
defined as follows:

where w(r) is the kernel function and rij is a distance between 
particles i and j . The Wendland kernel (Wendland 1995; 
Ikari et al. 2015) is used for the kernel function as follows:

where re is a radius of influence. The derivative and second 
derivative of the Wendland kernel are continuous at r = re.

2.2  Fluid Simulation Model

Recently, several enhanced MPS schemes have become 
available. However, some of them need tuning parameters 
and relaxation coefficients, such as free surface condi-
tion (Koshizuka and Oka 1996) and source term of a PPE 
(Tanaka and Masunaga 2010), although these schemes 
are widely used (e.g., Duan et al. 2021). These schemes 
dramatically stabilize results, but parameter studies are 
required, and resultant parameters are not always valid 
for other problems. The present MPS solver is developed 
based on tuning-less schemes (e.g., Marrone et al. 2010; 
Khayyer and Gotoh 2011) that eliminate arbitrary tuning 
parameters as able as possible. Fluid dynamics is governed 
by the continuity equation and Navier–Stokes equations 
as follows:

where � is the fluid density, u is the velocity vector, P is the 
pressure, � is the kinematic viscosity, and g is the gravita-
tional acceleration. We considered the 2D incompressible 
flow with the vertical x − y plane where the y-axis is posi-
tive vertically upward. The projection method was applied 
to guarantee the incompressibility of fluid, and a resultant 
equation became the PPE as follows:

(1)ni ≡
∑

j≠iw
����rij

���
�
=
∑

j≠iwij

(2)w(r) =

{(
1 −

r

r
e

)4(
1 + 4

r

r
e

)
(r < r

e
)

0 (r < r
e
)

(3)D�

Dt
+ �∇ ⋅ u = 0

(4)
Du

Dt
= −

1

�
∇P + �∇2u + g

where Δt denotes the discretized time step size, n0 is the ini-
tial particle number density, k represents the computational 
time step number, ∗ is a temporal time at a predictor step, 
and ⟨⟩ indicates the discretized model. The term ΛECS is an 
additional term used to reduce the numerical errors based 
on the concept of the error compensating source (ECS) 
(Khayyer and Gotoh 2011) described as follows:

The ECS corrects the numerical error without an arbitrary 
tuning of relaxation coefficients. For the computation of the 
left-hand side of (5), the higher-order Laplacian (Khayyer 
and Gotoh 2010) is applied as follows:

where Dm = 2 is the number of space dimensions. Similarly, 
the higher-order source (Khayyer and Gotoh 2009) is uti-
lized for the main source term in (5) as follows:

Once the pressure field was obtained, the mid-time step 
velocity field was corrected to the true velocity field as 
follows:

where

Here, FDS
ij

 is a stabilizing force term (dynamic stabilizer 
(DS); Tsuruta et al. 2013) used to regularize the particle 
arrangement with minimum repulsive force, where lDS is the 
adjusting active range of the stabilizing force, e∗
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l0 is an initial distance of particles (particle size). The pres-
sure gradient is described by the higher-order gradient (HG) 
(Iribe and Nakaza 2011), also known as the gradient correc-
tion (GC) (Khayyer and Gotoh 2011), which is based on the 
first-order Taylor series expansion, as follows:

where:

Here, P̂i is the minimum pressure among the particle i and 
its neighboring particles. The matrix Bi sometimes does not 
have an inverse matrix. To prevent failure of the calculation, 
a zeroth-order gradient model (original gradient model) was 
employed when the determinant ||Bi

|| < 𝜀HG is satisfied or the 
number of neighboring particles is less than a threshold NHG.

2.3  Free Surface Detection

In the MPS, a free surface condition is satisfied by impos-
ing zero pressure on free surface particles. The original free 
surface detection uses a tunable threshold, and erroneous 
detections frequently happen. To ensure the robustness of 
the free surface detection without any tuning parameter, we 
utilized the combination of two schemes from geometrical 
and temporal viewpoints instead of the original one.

The first scheme is parachute detection (Marrone et al. 
2010). Particles are identified as free surface particles if any 
neighboring particle does not exist in the following scanning 
areas (parachute area composed of A1 and A2):

where rjg is a distance between particle j and the center point 
of the parachute area A1 , and:

where

This scheme judges free surfaces based on the geometri-
cal arrangement of particles. However, this method can-
not prevent all births of non-physical free surface particles 
inside the fluid if geometrical rarefaction is caused by a vio-
lent flow. To avoid this irregularity, we imposed an auxil-
iary condition, namely, the free surface assessment by time 
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tracing of free surface particles (FATT), on the basis of the 
temporal tracing of the free surface. Particles should satisfy 
the following criterion to be treated as a free surface:

where

is a flag that judges whether a particle i is a free surface 
particle at time k . This condition indicates that the particle 
i can be supplementarily identified as a free surface particle 
only if at least one particle, which is the free surface parti-
cle at the previous time k − 1 , is existing within the effec-
tive radius of the particle i . In other words, this criterion 
implies that the free surface does not suddenly occur inside 
the fluid. This scheme suppresses the birth of non-physical 
free surface particles inside the fluid regardless of the geo-
metrical rarefaction. Note that this assessment can be used 
when cavitation is not considered.

2.4  Wagner’s Theory

Wagner’s theory (Wagner 1932) is briefly reviewed here and 
described in detail in Faltinsen (1993). We consider the 2D 
water entry problem of the wedge with the constant speed 
V  . The origin of the coordinate system (x, y) is placed at the 
undisturbed free surface, and the y-axis is positive vertically 
upward. The incompressible and inviscid flow with irrota-
tional motion is assumed to be treated as the potential flow. 
According to Wagner’s theory, the wedge is replaced by a 
flat plate on the free surface. The half-width of the plate c is 
equivalent to the wetted half-width of the wedge; that is, the 
half-width c is variable with respect to time t . Focusing on a 
time instant, the boundary value problem can be formulated 
as follows:

where Φ is the velocity potential, [L] is the Laplace equa-
tion, [F] is the simplified free surface condition, and [H] is 
the body boundary condition. Here, the water depth is deep 
enough. The free surface elevation �(x) is then expressed as 
follows:

The geometry of this problem gives the following 
condition:
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This condition indicates that the surface elevation cor-
responds to the wedge shape xtan� at the intersection. Lin-
earized Bernoulli’s equation provides pressure on fluid as 
follows:

where i is an imaginary number. Therefore, the pressure 
acting on the body is as follows:

However, (23) has a singularity at point |x| = c , and the 
maximum pressure diverges to infinity due to the physi-
cally inconsistent boundary condition. In fact, the jet flow 
is found in the vicinity of this point, and the pressure is 
almost constant and close to atmospheric pressure. Accord-
ing to Wagner’s theory, the maximum pressure coefficient 
is replaced to:

The global force is obtained by integrating the pressure 
along the wetted surface. The vertical force of the wedge is 
given as follows:

where π�c2∕2 is the added mass (in vertical motion) of the 
flat plate for an infinite natural frequency.

2.5  MPS‑Slamming Condition

In this section, we discuss the numerical condition of the 
MPS method. Because the CFD is based on the discrete sys-
tem, finite sizes of the time step Δt and mesh Δx (or particle 
size l0 ) should be used. In the simulations of the discrete 
system, the Courant condition (or Courant Friedrichs Lewy 
condition) is imposed as CCFL ≥ umaxΔt∕Δx , where umax is 
the maximum velocity of the fluid. The Courant condition 
is a necessary condition in the numerical simulation that 
restricts fluid movements at a one-time step to be less than 
the mesh size. In the MPS, the mesh size is replaced to the 
particle size l0 , and CCFL = 0.2 is often recommended for 
obtaining stable results (Koshizuka and Oka 1996). This 
condition provides the guideline of the coarsest mesh con-
dition. Generally, the results of the CFD converge to a defini-
tive value as time step size becomes smaller. However, the 
typical MPS simulation does not show such a convergence 
(Matsunaga and Koshizuka 2021), and the use of a small 
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time step size does not indicate a better simulation result. 
As a result, MPS users need to search the numerical condi-
tions using trial and error. In other words, the results of the 
MPS might be tuned to fit the referred data using arbitrary 
numerical parameters (e.g., relaxation coefficients).

To obtain reliable simulation results, deliberate tuning 
must be removed. Accordingly, we investigated the sensi-
tivity of MPS simulation results to numerical parameters 
(particularly the time step size) and proposed a practical 
numerical condition. Because the MPS suffers from a poor 
convergence with numerical parameters, the numerical con-
dition could not be made only by the numerical context. 
Therefore, the knowledge of the physical model was inte-
grated to make the practical numerical condition. According 
to Wagner’s theory presented in Sect. 3, the flow around 
the wedge slamming can be characterized by the slamming 
velocity V  and deadrise angle � , as denoted in (21). Hence, 
the maximum velocity of fluid umax in the Courant condi-
tion was replaced as umax → V∕tan� , and we defined a new 
numerical condition, namely, an MPS-slamming condition, 
as follows:

where Cslm is an MPS-slamming number. The MPS-slam-
ming condition indicates that the optimum time step size 
is decided once the MPS-slamming number, slamming 
velocity, deadrise angle of the wedge, and particle size are 
decided. We investigated whether the MPS results are char-
acterized by the MPS-slamming condition and how results 
change with the values of the MPS-slamming number. In 
addition, the optimum MPS-slamming number was deter-
mined for obtaining reasonable results without further delib-
erate tuning of numerical conditions.

3  Numerical Results

3.1  Physical and Numerical Settings

2D wedge slamming was simulated by the MPS. A gen-
eral description of the computational situation is shown in 
Figure 1, where W  and D are the width and depth of the 
numerical rectangular water tank, respectively; B , d , and � 
are the width, thickness, and deadrise angle of the wedge, 
respectively; and V is the forced slamming velocity (constant 
value). For the boundary condition of the wall, we imposed 
the Neumann boundary condition, where the flux is zero 
at the wall (Koshizuka and Oka 1996). In this study, the 
wedge width was fixed as B = 0.8m , and the thickness was 
set as d = 4l0 . The rectangular tank with width W = 2.4m 
and water level D = 1.2m was used. Note that the tank 
size was set to ignore wave reflections from the wall and 

(26)C
slm

≡ VΔt

l
0
tan�
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guarantee convergence of numerical results. The physical 
parameters were set as follows: gravitational acceleration 
g = 9.81m∕s2 , fluid density � = 1000kg∕m3 , and kinematic 
viscosity � = 1.0 × 10−6m2∕s.

For the validation of the MPS simulations, the numerical 
results simulated by OpenFOAM (Chen et al. 2019) were 
used as the reference. Their results were verified by a grid 

refinement study and validated by using the simulation data 
of the BEM (Zhao and Faltinsen 1993). The sensitivity of 
MPS simulation results to physical and numerical parame-
ters (i.e., slamming velocity V , deadrise angle � , particle size 
l0 , time step size Δt , and MPS-slamming number Cslm ) were 
investigated using the MPS-slamming condition in (26).

Although the present MPS is composed of tuning-
less schemes, it is necessary to decide a few numerical 
parameters: radius of influence r

e
= 2.4l0 , Courant num-

ber CCFL = 0.2 (used in (10), and thresholds of the HG 
�HG = 0.05 and NHG = 3 . These parameters are invariant 
for following all computations.

3.2  Numerical Results and Discussion

We investigated the sensitivity of the simulation results to 
physical and numerical parameters using the MPS. First, the 
time histories of vertical forces acting on wedges are shown 
in Figure 2. The vertical force Fy and time t are normalized 
by the fluid density � , wedge width B , slamming velocity V  , 
and deadrise angle � . The results were compared with those 
by Chen et al. (2019). Here, the slamming velocity was fixed 
as V = 2.0m∕s . Twelve figures are plotted with respect to the 
deadrise angle �(= 10◦, 20◦, 30◦) and MPS-slamming num-
ber Cslm(= 0.05, 0.1, 0.2, 0.3) . The results of three different 

Figure 1  General description of wedge slamming

Figure 2  Vertical force versus 
deadrise angle � and MPS-slam-
ming number Cslm . Results are 
compared with the numerical 
results by Chen et al. (2019). 
The slamming velocity is con-
stant as V = 2.0m∕s
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particle size l
0
(= 0.008, 0.01, 0.02m) are shown in each 

figure. Once the velocity, deadrise angle, particle size, and 
MPS-slamming number are decided, the time step size is 
calculated by the MPS-slamming condition (26). The use 
of a smaller deadrise angle, particle size, or MPS-slamming 
number indicates the use of a smaller time step size. In either 
case, the vertical force converges to Chen’s result after the 
peak. Therefore, the tank size is adequately selected. Focus-
ing on one figure, the result of l

0
= 0.008m converges to that 

of l
0
= 0.01m despite the different time step sizes. Mean-

while, the result of l
0
= 0.02m shows a discrepancy. Gener-

ally, the results become similar flows if the slamming veloc-
ity, deadrise angle, and MPS-slamming number are the same 
and the particle size is small enough. Comparing different 
MPS-slamming numbers (e.g., cases of � = 10◦ ), we find a 
huge discrepancy in the slope and maximum value of verti-
cal forces among four figures (e.g., Cslm = 0.05, 0.1, 0.2, 0.3 
in � = 10◦ ). When the MPS-slamming number Cslm = 0.3 
is used, the maximum force is underestimated compared to 
that of Chen et al.’s result. As the MPS-slamming number 
is smaller (i.e., the time step size is smaller), the estimated 
vertical force is bigger. The result of Cslm = 0.1 is close to 
Chen et al.’s result. However, the results are not converged to 
Chen et al.’s result when using small time steps. In fact, the 
result of Cslm = 0.05 shows an overestimation of the vertical 
force. This fact indicates that the MPS suffers from bad con-
vergence with the time step size. In addition, the disturbance 
of the force becomes bigger with the use of a smaller time 
step size. The above tendencies are found in different dead-
rise angles (i.e., � = 20◦, 30◦ ). Moreover, the flow around 
the wedge is well characterized by deadrise angles as the 
MPS-slamming number is defined.

To quantitatively evaluate the convergence of the MPS 
results with respect to the time step size Δt and particle size 
l0 , a mean square error (MSE) between the MPS result and 
Chen et al.’s result was calculated, as shown in Figure 3. 
The MSE is defined among 0 ≤ tV∕(0.5Btan�) ≤ 0.8 , and 
the value is normalized by Chen et al.’s maximum verti-
cal force. Three figures correspond to deadrise angles 
� = 10◦, 20◦, 30◦ . In each figure, the normalized MSE versus 
the MPS-slamming numbers is plotted with three different 
particle sizes l

0
= 0.008, 0.01, 0.02m . In all cases, the results 

of l
0
= 0.02m shows bigger MSE; the results of l

0
= 0.01m 

and l
0
= 0.008m are in good agreement. Therefore, the MPS 

has convergence with respect to the particle size under the 
same MPS-slamming number, slamming velocity, and 
deadrise angle. As for the deadrise angles � = 10◦, 20◦ , 
the results of the MPS-slamming number Cslm = 0.1 show 
the smallest MSE although the results of Cslm = 0.2 have 
a similar MSE value. As shown in Figure 2, the results of 
Cslm = 0.1 show a seemingly better agreement with Chen 
et al.’s result than those of Cslm = 0.2 . However, the MSE 
results show almost the same errors, which may be because 
the results of Cslm = 0.1 have a bigger disturbing oscilla-
tion than those of Cslm = 0.2 . Conversely, in the case of 
� = 30◦ , the results show the smallest MSE when Cslm = 0.3 . 
Although the maximum force becomes bigger with smaller 
time step sizes, this influence is smaller than that of the 
disturbance of the force in this case. Nevertheless, the use 
of Cslm = 0.1 to 0.3 in � = 30◦ is acceptable. Overall, the 
present MPS can give reasonable results using the MPS-
slamming number Cslm = 0.1 to 0.2 except for the existence 
of a high disturbing oscillation. To suppress this noise, the 
bigger Cslm should be used (i.e., the smaller time step size 
Δt should not be used).

Figures 2 and 3 are simulated by fixing the slamming 
velocity as V = 2.0m∕s . Then, we investigated the sensitivity 
of the vertical force to the slamming velocity. The particle 
size l

0
= 0.01m and MPS-slamming number Cslm = 0.1 were 

selected, and the results using different slamming veloci-
ties V = 1.0, 2.0, 3.0m∕s were compared with Chen et al.’s 
results, as shown in Figure 4. In the figure of � = 10◦ around 
t = 0 , vertical forces by the MPS do not start from zero. 
When the deadrise angle is small, the fluid particles on 
the surface are very close to the wedge. This geometrical 
arrangement induces the fuzzy free surface detection even 
though the wedge has not actually touched the water sur-
face yet. This condition results in the non-zero value of the 
vertical force even at t = 0 . For the results of � = 30◦ and 
V = 1.0m∕s , the converged force after the peak is differ-
ent from the other results. Because the velocity V = 1.0m∕s 
is small, the dimensional value of the force is also small. 
Therefore, the order of the dynamic slamming force is 
almost balanced with the order of the hydrostatic force, and 
the force is converged to the static force (i.e., buoyancy). 
Except for these cases, the MPS results show a good agree-
ment with Chen et al.’s results. Hence, we can conclude that 
the proposed MPS-slamming condition can characterize the 

Figure 3  Mean square errors 
between the vertical force simu-
lated by Chen et al. (2019) and 
that by the present MPS. Mean 
square errors are calculated 
among 0 ≤ tV∕(0.5Btan�) ≤ 0.8 
and normalized by the maxi-
mum vertical force
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MPS results well, and similar flows are obtained using the 
same Cslm . Essentially, the use of Cslm = 0.1 to 0.2 provides 
reasonable results for the present MPS simulations. The 
MPS-slamming condition here is 0.1 ≤ VΔt∕(l

0
tan�) ≤ 0.2 . 

This value might depend on the used schemes, so an ade-
quate value of Cslm should be investigated. Because the rela-
tion between physical and numerical parameters is charac-
terized by the MPS-slamming number, a quasi-verification 
of the MPS could be performed using the proposed MPS-
slamming condition.

Finally, the pressure propagation process is shown in 
Figure 5 to visualize the flow around the slamming of the 
wedge. To validate the MPS results, the pressure field was 
also calculated using Wagner’s theory, i.e., (22) to (24). The 
left-hand side of the wedge at each figure is the pressure field 
calculated by Wagner’s theory, and that on the right-hand 
side is the simulation result by the MPS (pressure fields are 
the dimensional value PPa ). The left-hand figures are plot-
ted using dummy particles whose positions and pressures 

are given by Wagner’s theory. For the MPS simulation, 
the MPS-slamming number Cslm = 0.1 , slamming velocity 
V = 2.0m∕s , and particle size l

0
= 0.01m were used. Three 

time steps t = Δt, 81Δt, 161Δt s are plotted. The actual time 
step sizes are different among different deadrise angles, 
which are calculated by the MPS-slamming condition. The 
overall pressure propagation processes are in good agree-
ment. Looking at a snapshot of � = 10◦ and t = Δt , the MPS 
result shows a dynamic pressure under the wedge, although 
the Wagner result does not have. This result is attributed to 
the crude detection of the free surface through parachute 
detection, as explained in the discussion of Figure 4. Gener-
ally, Wagner’s theory overestimates the pressure and vertical 
force, especially when the deadrise angle is small due to the 
use of the simplified boundary condition (Dobrovol’Skaya 
1969) and linear Bernoulli’s equation (Korobkin 2004) and 
the lack of consideration of the air trapping phenomenon 
(Tajima and Yabe 1999). (Further reasons for the overes-
timation of Wagner’s theory are reviewed by Wang and 

Figure 4  Vertical force versus 
deadrise angle � and slamming 
velocity V  . Results are com-
pared with the numerical result 
by Chen et al. (2019). MPS-
slamming number Cslm = 0.1 
and particle size l

0
= 0.01m are 

used

Figure  5  Snapshots of the pressure propagation process. Left side: 
pressure PPa solved by Wagner’s theory. Right side: pressure PPa 
simulated by MPS. For the MPS simulation, MPS-slamming num-

ber Cslm = 0.1 , slamming velocity V = 2.0m∕s , and particle size 
l
0
= 0.01m are used. Three different times t = Δt, 81Δt, 161Δt s are 

shown
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Guedes Soares (2017).) Such a tendency is found in our 
comparisons; the pressure fields by the MPS are smaller than 
those by Wagner’s theory, especially in the case of � = 10◦ . 
This difference is excessive around the pileup of the free 
surface. The current single-phase MPS might not be effec-
tive to solve the slamming with small deadrise angles (e.g., 
� ∼ 0◦ ) because the air trapping effect is important. For such 
cases, the multiphase flow should be considered. Khayyer 
and Gotoh (2016) showed that the multiphase MPS can 
reproduce the air–water interaction and simulate the slam-
ming of a flat plate.

4  Conclusions

Because the MPS is poor at convergences with a time step 
size, this study investigates the sensitivity of the MPS simu-
lation to numerical parameters. In particular, a 2D wedge 
slamming problem is considered. To eliminate the arbitrary 
tuning of the numerical parameters of the MPS, a practi-
cal numerical condition for the MPS simulation of the 2D 
wedge slamming (i.e., an MPS-slamming condition) is 
proposed. The MPS-slamming condition is made based on 
Wagner’s theory. The relation between the physical param-
eters (slamming velocity and deadrise angle) and numerical 
parameters (time step size and particle size) is connected by 
an MPS-slamming number. This finding indicates that the 
time step size is provided once the parameters are decided. 
The sensitivity of a vertical force to the parameters is also 
studied using different deadrise angles, slamming velocities, 
particle sizes, and MPS-slamming numbers. The simulation 
results are compared with those of OpenFOAM by Chen 
et al. (2019). This study shows that the estimated force is 
bigger and unphysical disturbance (noise) is harder as the 
time step size is smaller; the convergence with the time 
step size is not observed in the MPS simulation. Moreover, 
the MPS results become similar flows using the proposed 
MPS-slamming condition with the same MPS-slamming 
number. When the present MPS schemes are used, the use 
of Cslm = 0.1 to 0.2 gives reasonable results for ranges of 
slamming velocities and deadrise angles. We believe that 
this MPS-slamming condition helps MPS users to verify and 
decide the numerical parameters without deliberate tuning.
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