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Abstract
The objective of this work is to provide an overview of the ultimate strength assessment of ageing and damaged ship structures in
the last decades. Particular attention is paid to the ultimate strength of plates, stiffened panels, box girders, and entire ship hull
structures subjected to corrosion degradation, fatigue cracking, and mechanical damage caused by accidental loading or impact.
A discussion on the effect of the cyclic load on the plate rigidity, re-yielding, and ultimate load capacity on the ship hull girder is
also part of the present study. Finally, some conclusions and discussions about potential future work are provided, identifying that
more studies about the impact of corrosion degradation on the structural behaviour of the stiffened panels and the overall hull
girders are needed. Studies related to the dynamic collapse behaviour of corroded and damaged ship structures under time-variant
load also requires additional attention.
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1 Introduction

Ship structures are most commonly made of steel, which ren-
ders them vulnerable to the corrosive environment leading to
thickness loss and/or pitting over the years. In addition to the
thickness loss due to the corrosion, the ship structures may
experience structural damages throughout the service life

ranging from the ship to ship collision or grounding related
damages (Liu et al. 2018a, b) to the ship motion-related cracks
or mishandled cargo operations. The ageing-related thickness
losses and structural damages may lead to the load capacity
reduction, structural integrity breaches, and the potential in-
crease in the working load acting on the ships.

There are several examples of ship structures that are
thought to be structurally deficient, which resulted in sinking
during heavy weather, causing environmental damages,
namely, the single-hulled oil tankers, M/V Erika in 1999,
and M/V Prestige in 2002 (Höfer 2003). The event of the
Prestige, in particular, took long-term damage to recover due
to the sheer size of the oil spill, 77 000 tons of heavy fuel oil
having a characteristic of high viscosity. These unfortunate
instances brought about new regulations to be enforced as
stipulated by the International Maritime Organization (IMO
2010) to better assess the residual ultimate load capacity of the
damaged ship structures.

As with the intact ship structures, the ageing or damaged
ship residual load capacity assessment has been a study of
interest for the past decades to quantify the residual structural
capacity and understand how the hull girders react to the ex-
ternal load exposure. These studies involve the stiffened plates
or unstiffened ones that constitute the hull girder cross-sec-
tion, the box girders, and the ship hull structures. The rele-
vance of this subject is reflected in the specialist committees
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created by the Ship and Offshore Structures Congress to deal
with these matters (Paik et al. 2006b; Wang et al. 2009a;
Guedes Soares et al. 2009a; Czujko et al. 2012; Czujko et al.
2015; Czujko et al. 2018).

It is interesting to note that the progressive collapse char-
acteristics of heavily corroded hulls are somewhat different
from those of uncorroded hulls; the heavily corroded hull
may reach the ultimate limit state by a buckling collapse of a
compressed part even before a tensioned part yields while the
intact hull usually reaches the ultimate limit state by tensile
yielding of a tensioned part after a buckling collapse of the
compressed part (Paik et al. 2003d).

The load carrying capacity of the hull girder is, in practice,
estimated based on the assumption that the structure is
allowed to follow a path under a pure-bending load with an
incrementally increasing curvature with the static structural
response. This assumption does not fully represent how the
hull girder collapse occurs because hull girders during the
seaway are under the alternate loading of the acting shear
forces and bending moments. One force may dominate the
other one in magnitude. Secondly, given the hostile sea envi-
ronment that results in the hull girder to respond in a dynamic
nature rather than a quasi-static one, the collapse pattern of the
hull girder might be somewhat different from the one that
collapses under the quasi-static load. Therefore, several stud-
ies are also reported here to understand the dynamic collapse
of the hull girders.

2 Corrosion Degradation

Before assessing the strength of corroded ships and compo-
nents, it is required to evaluate how corrosion progresses
with time to predict the expected dimensions of the struc-
tures after exposure to corrosion for extended periods. For a
long time, it was believed that corrosion had the sole effect
of reducing steel thickness until it was shown that some
mechanical properties also change with time, as described
in the following sections.

2.1 Modelling Corrosion Thickness Wastage

Corrosion degradation of structures is one of the most severe
problems in metal structures (see Figure 1). There are several
environmental factors (Guedes Soares et al. 2009b; Guedes
Soares et al. 2013) that cause the external steel plates to cor-
rode, namely, the salty seawater, seawater temperature, pH
and dissolved oxygen influence, sea flow, or ship routes. As
for the internal plates, the degradation may be governed by the
time in ballast, frequency of tank cleaning, temperature pro-
files, use of heating coils, humidity conditions, water and
sludge accumulations, or microbial contaminations (Paik
et al. 2003b).

The initial attempts to model the thickness reduction due to
corrosion used a linear model of time, which would cover long
periods of many years (Hart et al. 1986; Guedes Soares 1988;
Shi 1993; Guedes Soares and Garbatov 1996a; Wirsching
et al. 1998). As the importance of the phenomena increased,
more data was collected, allowing more accurate models to be
developed. On the one hand, experimental data on the corro-
sion of steel immersed in water was analysed and summarized
by Melchers (2003a), concentrating on the details of the var-
ious mechanisms that were developed in the first 2 to 5 years
of corrosion development. The other effort was made by clas-
sification societies analysing the large number of thickness
measurements obtained in successive surveys (Yamamoto
and Ikegami (1998); Wang et al. 2003). These efforts clarified
that the thickness wastage was not developing linearly in par-
ticular in the initial years of their life. The difficulty of deter-
mining the characteristics of this early phase of corrosion de-
velopment in ships was enhanced by the protective effect of
coatings, which delay the initiation of corrosion and whose
spatial pattern does not expose the full plates to the effect of
corrosion in the initial phases. Despite this difficulty, the non-
linear character of corrosion development in the initial phases
was established (Yamamoto and Ikegami 1998).

Several probabilistic corrosion wastage models containing
the non-linear dependence on time have been proposed by
Guedes Soares and Garbatov (1998a); Yamamoto and
Ikegami (1998); Guedes Soares and Garbatov (1999b); Qin

Figure 1 Spatial distribution of corrosion thickness wastage on bulk carrier decks, 19th year (Garbatov and Guedes Soares, 2008)
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and Cui (2002); Ivanov et al. (2003); and Melchers (2003b);
andmodels for specific ship types were proposed by Paik et al.
(1998) and Paik et al. (2003a).

Guedes Soares and Garbatov (1998a, 1999b) developed a
corrosion model to represent the non-linear time dependent
corrosion wastage that is considered to be a good representa-
tion of the corrosion field based on the actual measured data as
reported in TSCF (Tanker Structure Co-operative Forum
1992). The corrosion model includes a random initial time
of no corrosion while the protection is active. After the failure
of the protective coating, a non-linear time-dependent wastage
increases up to a steady-state value. Cleaning the surface, or
an involuntary action that removes that surface material orig-
inates the new start of the non-linear corrosion growth
process.

The generic model of Guedes Soares and Garbatov (1998a,
1999b) has been validated with different data sets of corroded
plate thickness measurements from various sources for tankers
in (Garbatov et al. 2007; ABS 2002) and bulk carriers
in (Garbatov and Guedes Soares 2008). This model has been
compared with others, including the one proposed by
Melchers (2003b), and was found that even in the early phases
of corrosion development, the mean trend could be well
reflected (Jiang and Guedes Soares 2008). Several studies
have also been performed using the corrosion model fitted to
the data of tankers and of bulk carriers as reported in Garbatov
and Guedes Soares (2009a, 2010). Lampe and Hamann
(2018) have proposed a method of Bayesian updating of a
model by new measurements and demonstrated how it could
be used by updating the model of Guedes Soares and
Garbatov (1998a, 1999b) with new inspection data.

While the models described above deal with corrosion in
plates a significant step forward was made when various types
of corrosion were explicitly defined, and the areas where they
apply were identified. As described in Zayed et al. (2007b,
2007a), different areas can be identified in ships, where dif-
ferent types of corrosion are developed, such as atmospheric
corrosion (A in Figure 2), immersion corrosion (C in
Figure 2), alternating immersion and atmospheric (B in
Figure 2), or inside tanks (D in Figure 2). These types of
corrosion have different characteristics and different depen-
dence on environmental parameters.

The corrosion model of Guedes Soares and Garbatov
(1999b) has been extended to represent the various types of
corrosion by representing the relevant environmental factors
by the different environmental variables that affect each type
of corrosion. It was found that there were different corrosion
rates’ initiation times for plates of ballast and cargo tanks and
that the corrosion rates were different as well as the rate by
which the corrosion rates decreased with time as described in
the model for corrosion in tanks described in Guedes Soares
et al. (2008a). For the corrosion in the marine atmosphere, it
was found that it was influenced by various environmental

factors (Southwell et al. 1979), including salinity, tempera-
ture, dissolved oxygen, pH, and flow velocity, which were
modelled by Guedes Soares et al. (2005). The influence of
environmental parameters on corrosion under immersion con-
ditions is modelled by Guedes Soares et al. (2013). It is im-
portant to realize that often ship plates are exposed to different
environments in both faces (e.g. tanks and air or tanks and
immersed in water) being exposed to two types of corrosion
simultaneously and the total corrosion rate needs to account
for both effects as described in Zayed et al. (2018).

These models can be used to determine the long-term effect
of corrosion when ships are navigating and are exposed to
different environmental conditions such as temperature, salin-
ity, and liquid cargo inside the tanks, accounting for a fraction
of time in each situation. The long-term effects are easier to
model and to control if there are monitoring systems on-board
that record the time spent in the various relevant conditions as
discussed by Panayotova et al. (2004b, 2004a, 2008a, 2008b).

Gardiner andMelchers (2002) have pointed out that in bulk
carriers, the plating that is in contact with coal will be subject-
ed to rates of corrosion that are dependent on the type of coal.
Hua and Cheng (2013) conducted a monitoring program by
leaving steel test specimens within different types of coal,
which allowed the understanding of the effect of different
types of coal and demonstrated the usefulness of corrosion
monitoring programs. Mohammadrahimi and Sayebani
(2019) have conducted an analysis of a data set of thickness
measurements in corroded areas of bulk carriers.

Finally, it must be pointed out that two main corrosion
mechanisms are generally present in steel plates. One is a
general wastage that is reflected in a generalized decrease of
plate thickness. Another mechanism is pitting, which consists
of very localized corrosion with very deep holes appearing in
the plate that may subsequently lead to fatigue cracking.

Microbial corrosion is a special type that is not covered by
the previous models as it induces very localized corrosion
sometimes with very high corrosion rates and tends to occur

Figure 2 Locations for different type of environment affection the
growth of corrosion (Zayed et al. 2007a)
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in ballast tanks or other areas of ship structures with enclosed
atmospheres and contact with water. A review of this type of
corrosion is provided by Heyer et al. (2013).

2.2 Mechanical Properties

Most studies about the behaviour and strength of corroded
structures have addressed the most visible effect of corrosion
and have recalculated the strength of the corroded structures
by considering a smaller thickness. However, changes in me-
chanical properties have been observed and quantified by sev-
eral authors.

Sumi and co-workers (Sumi et al. (2006); Sumi (2008);
Ahmmad and Sumi (2009); Islam and Sumi (2011)) have
studied the behaviour of test specimens with pitting
corrosion and concluded that both the ultimate strength and
the deformability of these specimen were reduced due to the
presence of pitting. Xu and Qiu (2013) showed changes in the
mechanical, microstructural, and corrosion properties of stain-
less steel 316L under repeated repair welding. The specimen
of the basemetal and different conditions of shieldedmetal arc
welding repairs were studied by looking in the microstructural
changes, the chemical composition of the phases, the grain
size (in the heat-affected zone), and the effect on the mechan-
ical and corrosion properties. For artificial pitting corrosion,
the tensile properties of steel material such as yield stress and
elongation are affected by the shape, depth, and density of
corrosion pits (Sheng and Xia, 2017). The results of tensile
tests performed by Xu et al. (2016) also showed that the sec-
tion loss due to pitting corrosion and uniform corrosion re-
duced the strength of the butt-welded joint specimens, while
pits in the HAZ led to a significant decrease of ductility com-
pared with the corroded base metal specimens with the same
conditions.

A different line of work has been developed by
Garbatov, Guedes Soares, and co-workers, who have
started a study on the effect of corrosion on the ultimate
strength of box girders and of stiffened panels by subjecting
medium-size models of box girders to accelerated corrosion
in seawater, as described in Domzalicki et al. (2009). After
corrosion, these box girders have been tested up to ultimate
strength as summarized in Saad-Eldeen et al. (2011a). The
analysis of the experimental results leads to the conclusion
that it was not enough to correct the thickness of the plates
with general corrosion, but that there were changes in me-
chanical properties with the progress of corrosion which
were influencing the results obtained in the experiments.

Several specimens have been cut from the box girders and
subjected to mechanical tests, which showed that there was an
important reduction of the mechanical properties as the mod-
ulus of elasticity and the yield and maximum tensile strength
(Garbatov et al. 2014b). A similar effect has been observed in
corroded specimens subjected to fatigue load (Garbatov et al.

2014a), where a significant reduction of fatigue strength from
FAT 100 to 65 MPa is identified, which was accompanied by
a crack propagation starting from corrosion pits (see Figure 3).

To determine the influence of the surface condition and
normal maintenance actions on ship hull, new test series have
been conducted on sandblasted and sandpaper cleaned speci-
mens (Garbatov et al. 2016a). An additional study was made
to look at the effect of high-pressure-fresh-water-cleaning and
corrosion cleaning by hammering on the mechanical proper-
ties of aged steel specimens (Garbatov et al. 2019).

Garbatov et al. (2019) analysed the mechanical properties
of five groups of corroded specimens, in addition to the ones
already analysed in the study reported in (Garbatov et al.
2016a), a total of 141 specimens, including non-cleaned,
sand-blasted, sand-paper cleaned, high-pressure-fresh-water-
c lean ing and cleaned by hammer ing spec imens
were experimentally analysed. The modulus of elasticity,
yield stress, tensile strength, total uniform elongation, and
their linear trend and associated uncertainties were analysed
as a function of the degree of corrosion degradation and
cleaning treatment procedure. It was observed a different de-
gree of reduction of the Young modulus, total uniform elon-
gation, and tensile strength and an enhancement in the case of
the stresses at 0.2.

The material property change may be caused by the corro-
sion degradation leading to surface roughness, stress concen-
tration as a result of local corrosion pits, and cleaning treat-
ment. The plate thickness and weight measurements for the
specimens B, C, H, and W were performed after cleaning the
corrosion layer. Specimen A, which is corroded and non
cleaned specimens, was subjected to corrosion degradation
and a less degree of erosion since the open seawater was
circulating the specimens involving some microorganisms,
shells, and sand. Additional to this environment, specimens
B and C were subjected to massive erosion during the blasting
and paper cleaning (Garbatov et al. 2014b, 2016a), and spec-
imen W were cleaned by high-pressure-fresh-water and spec-
imen H were hammered, which distinguishes this treatment
from others (see Figure 4).

Figure 3 Corroded coupon (a), photogrammetry pit identification (b),
and thickness visualization (c) (Garbatov et al. 2014a)
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Garbatov et al. (2019) recognized that the existence of a
high degree of uncertainties in the measurement is due to
corrosion degradation, erosion, heating, and induced residual
stresses due to cleaning processes unavoidably also leads to
uncertainties in the mechanical properties, estimated thickness
and reference net-section used for the stress calculation and
structural analysis. The breaking net section location of cor-
roded specimens is not correlated with the locations of the
minimum thickness, which leads to the conclusion that the
minimum thickness is not the only parameter that governs
the specimen failure and the distribution of the pits, shapes,
how deep they are and the consequence singularities are very
important in this respect.

Other independent studies have confirmed the degrada-
tion of mechanical properties of steel with increased corro-
sion levels. Qin et al. (2016) studied the degradation of
mechanical properties of steel tensile test specimens sub-
jected to neutral salt spray accelerated corrosion for differ-
ent durations and then subjected to tensile tests. The level of
corrosion was characterized by real surface topography,
which identified the level of pitting corrosion. They con-
cluded that after a certain threshold of corrosion, the yield
strength, ultimate strength, and fracture strength would de-
crease significantly, and they developed equations to model
that behaviour using modelling techniques described by Hu
et al. (2015). Yang et al. (2016) have studied the corrosion
of immersed steel plate elements in laboratory conditions,
subject to a level of imposed stresses. They concluded that
the different stress levels that the specimen are subjected to
will change the time variation of corrosion as predicted by
available models such as the one of Guedes Soares and
Garbatov (1998a, 1999b).

Zhao et al. (2020) studied the tensile strength of Q345 steel
with random pitting corrosion based on finite element (FE)
analysis. They modelled the corrosion pits as a semi-ellipsoid,
semi-sphere, cone, or cylinder shape, which were then

randomly distributed on the surface of the FE model of the
specimen, and the accuracy of the FE model was validated by
experimental results. They concluded that the tensile strength
of steel with random pitting corrosion is closely related to
corrosion depth and mass loss ratio.

The effect of pitting damage on the overall deformability
and local ductile fracture initiation in tension test specimens of
butt-welded joints, subjected to neutral salt spray corrosion,
was investigated by Wang et al. (2018). The results showed
that the total elongation of corroded welded joints shows a
more significant linear decline trend than the ultimate
strength.

Ma et al. (2019) studied the mechanical properties of high-
strength steel under the action of pitting damage, and they
observed that the yield strength and ultimate strength of the
steel degrade as the pitting volume loss rate increases. They
also concluded that cyclic loading can strengthen the cyclic
stress and strain of the steel, but pitting damage leads to
degradation of the cyclic stress and strain of the steel. Jia
et al. (2019) studied the same steel. They concluded that
“the influence of corrosion damage on the mechanical prop-
erties of steel is complex and cannot be characterized by sec-
tion reduction alone. Both generalized elastic modulus and
generalized yield strength decrease with corrosion damage.
The cumulative fatigue damage makes the steel skeleton
curves under cyclic loading and monotonic curves different.
Cyclic loading increases the ultimate stress of steel at the
expense of ultimate deformation ability”.

Sheng and Xia (2017) have simulated corrosion pits
mechanically in tension test specimens by mechanical dril-
ling and milling conical blind holes. The effects of the
shape, depth, and distribution of corrosion pits on the ten-
sile properties of steel have been systematically investigat-
ed. Pit shape, depth, and distribution impacted little on the
ultimate load of tensile samples; the ultimate strength al-
most correlated only with the maximum cross-sectional
area. Yao et al. (2018) made experiments and numerical
simulations to determine the material properties of the test
specimen with pitting corrosion mechanically generated.
They concluded that the modulus of elasticity, the yield
and ultimate strengths, and the peak tensile strain would
decrease approximately linearly with the degree of pitting
(DOP). Yang et al. (2020) studied the behaviour of test
specimens of high strength steel with one single mechani-
cally generated pit. They concluded that there was a small
effect of mechanically induced pits on the generalized elas-
tic modulus of steel, but pitting had a substantial influence
on the generalized yield strength and ultimate strength,
which was very much correlated with the volume of mate-
rial lost. So while corroded specimen exhibit changes that
cannot be correlated only to changes of cross-sectional area
or volume of material, the corroded steel specimen exhibit
changes beyond those.

Figure 4 Stress-strain relationship of specimens A, B, C, H, and W
(Garbatov et al. 2019)
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3 Ultimate Strength of Corroded Structures

The ultimate strength of corroded plates has considered the
main types of situation: plates with spread pit corrosion, with
localized corrosion in some areas of the plate, eventually
resulting from coalescing pits and generalized corrosion in
the whole plate. A useful review has been published by
Wang et al. (2014).

3.1 Plates

Generalized corrosion degradation on plates leads to both
plane stiffness and load carrying capacity reduction (Guedes
Soares 1988). Therefore, its influence has been studied over
the years accounting for uniaxial load, edge shear and com-
bined loading conditions, and tension loads accounting for
general or localized corrosion states. These studies support
the decision-making in the case of steel plating renewals,
and, for example, similar guidance has been provided to eval-
uate the residual strength of the ship platings suffering from
the localized pitting corrosion as reported by Daidola et al.
(1997).

Numerous studies have been directed to quantify the load
carrying capacity of locally corroded plates. For instance,
Slater et al. (1999) studied the elastic buckling of plates with
localized corrosion, accounting for the edge boundary condi-
tions, corrosion locations, and corrosion pattern. They found
that the corrosion leads to significant buckling strength loss in
the plate. The spatial location of the corrosion patch has a
significant effect on the buckling strength, and the localized
corrosion in the middle of the plate and the corners leads to
lower buckling strength than the one with a uniformly corrod-
ed plate due to the local plate buckling.

Sadovský and Drdácký (2001) also emphasized the influ-
ence on the plate buckling strength of localized corrosion.
They concluded that localized corrosion might give rise to a
greater scatter of buckling loads and that the corrosion effect
in thin-walled structures is of importance and deserves
attention.

Saad-Eldeen and Guedes Soares (2009) performed a series
of non-linear finite element analysis to investigate the influ-
ence of the pitting corrosion on the load carrying capacity of
rectangular plates by changing the plate geometry and pitting
density distribution and proposed formulae based on the re-
gression analysis to estimate load carrying capacity of the
plates with pitting-related corrosion.

Pitted plates under biaxial loading were studied by Huang
et al. (2010), who presented an empirical equation relating the
ultimate strength reduction to the volume loss of material due
to the pits. Jiang and Guedes Soares (2012) studied the influ-
ence of the partial depth pits under uniaxial loads accounting
for the depth, location, and radius of the pits on plates of
several slenderness using the finite element analysis. In the

case of the pits on one side of the plate, it leads to a more
pessimistic load capacity than the one that has pit corrosion on
both sides. They concluded that the volume loss dominates the
compressive capacity of pitted mild steel plates, while the
plate slenderness ratio primarily governs the collapse behav-
iour of the plate itself. An empirical formula is also proposed
to predict the ultimate load capacity of the plates under uniax-
ial load as a function of volume loss and plate slenderness
(Jiang and Guedes Soares 2011). A closed-form formula
was also presented to estimate the ultimate load carrying ca-
pacity of pitted mild steel plates under biaxial compression by
Jiang and Guedes Soares (2012).

Silva et al. (2013) investigated the effect of pitted plates
with random localized corrosion pits in rectangular plates un-
der uniaxial loads. They considered two types of corrosion
models, the non-uniform hexahedron corrosion and elliptical
one drawing the attention to the shape of the corrosion state
which is vital to the load carrying capacity assessment that
may lead to local buckling or plasticity failure which is more
influential than general thickness reduction. The corrosion
model adopted was reported in Guedes Soares and Garbatov
(1999b). They concluded that the proposed method with the
Monte Carlo simulation for the indented localized corrosion
wastage is an aggressive idealization that may provide an in-
telligent design life for the thin-walled structures and it is
suitable for an extensive range of the corrosion type degrada-
tions. They also proposed an empirical formula to predict the
strength reduction that accounts for the shape of the corroded
surface, which shows a good agreement and accuracy.

Numerous studies have also been directed to quantify the
load carrying capacity of locally corroded plates as reported
by Ok et al. (2007); Khedmati et al. (2011); Zhang et al.
(2017b), and Abdussamie et al. (2018).

Some have also been reported to evaluate the residual
strength of the locally corroded plates under combined load-
ing conditions. For instance, the load carrying capacity of the
plate structural components with pit corrosion, modelled as
circular cylinders, has been documented under uniaxial trust
and edge shear by Paik et al. (2003b) and Paik et al. (2004),
respectively. The nature of the corrosion is considered both
uniformly and non-uniformly distributed. Interesting findings
have demonstrated that the plate load capacity with pit corro-
sion is sensitive to the loading conditions where the smallest
sectional area governs the mechanism in the case of the uni-
axial trust. In contrast, it is governed by the degree of pitting in
the case of the edge shear. They also proposed design formu-
las to estimate the extra strength of the plates with pit corro-
sion accounting for the uniaxial and edge shear loading con-
ditions, which are suitable for both uniformly or non-
uniformly distributed corrosion cases. They concluded that
the load capacity of the plate with a pit or general corrosion
leads to a significant reduction. A similar study has also been
reported to quantify the residual capacity of the plates with
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pitting corrosion under combined loading conditions as re-
ported by Islam and Sumi (2011) and Zhang et al. (2016).

Nakai et al. (2006) investigated the ultimate strength of the
hold frames of aged bulk carriers with pitting corrosion. Nakai
et al. (2006) analysed the ultimate strength of plates under
combined in-plane compression and bending. In this study,
the nature of corrosion is considered uniformly distributed.
A general conclusion was drawn that the ultimate load carry-
ing capacity of the plate is lower when considering the corro-
sion as evenly distributed with conical shape pits than those of
uniformly corroded plates with average plate thickness loss of
the whole plate. The reduction in the ultimate load capacity of
the plate due to the pitting corrosion is almost independent of
the stress gradients. They also drew the attention to find out
which failure mode would be the most detrimentally affected
by pitting corrosion; namely, tension load due to the bending
and shear with the initiation of the crack in determining the
load carrying capacity of the transverse frame webs.

Nakai et al. (2007) demonstrated a visual of pitting corro-
sion of hold frames of bulk carriers. They found that the nature
of the corrosion is non-uniform and its shape is similar to the
conical shape after observing from the surface and through the
plate thickness. Based on these findings, they have performed
a series of non-linear FE analysis to estimate the load carrying
capacity of the plate element under combined loading condi-
tions, namely, uniaxial thrust, biaxial thrust, and edge shear.

Due to the complexity in measurements of different struc-
tural imperfections, including corrosion degradation and ini-
tial distortions, the random field modelling (Teixeira and
Guedes Soares (2008), Garbatov and Guedes Soares (2019),
Woloszyk and Garbatov (2020)) provides a good way of sto-
chastic modelling of corroded and deformed plate surfaces
(see Figure 5).

The non-uniform spatial type of corrosion studies has also
been reported, for instance, Teixeira and Guedes Soares
(2008) studied the collapse strength of the steel plates account-
ing for the spatial distribution of corroded plate thickness
representing the random fields which are defined based on
the model proposed by Guedes Soares and Garbatov

(1999b). They demonstrated that the strength of the plate with
a spatial distribution of corroded thickness represented by a
random field is usually lower than the one obtained for uni-
form corrosion. Similar findings have also been reported by
Mateus and Witz (1998).

Silva et al. (2013) performed a series of 570 non-linear
finite element calculations to evaluate the load capacity of
the non-uniformly corroded plates under uniaxial compressive
load using the Monte Carlo simulations for the surface model-
ling allowing an adequate representation of the real corroded
surface accounting for the random origin of the location and
the form of the corrosion depths. The non-linear corrosion
model as proposed by Guedes Soares and Garbatov (1999b)
has been used, and the parameters defining this model has
been documented by Garbatov et al. (2007) and Garbatov
and Guedes Soares (2008). They concluded that for 30 years
of service life without replacement of plate, the ultimate
strength has been reduced from 0.69 to 0.44 representing a
37% reduction.

Rahbar-Ranji (2012) adopted the approach of describing
the surface of corroded plates by random fields and then cal-
culated the ultimate strength by a non-linear, large deflection
finite element analysis.

Khedmati et al. (2015) developed an analytical method to
determine the ultimate strength of plates randomly corroded in
both sides by adopting an equivalent thickness of the corroded
plate. Finite element calculations were also conducted using a
distribution of random plate thickness to represent pitting in a
way similar to the one of Silva et al. (2013, 2014), and they
obtained good agreement between numerical and analytical
approaches.

Another study on the effect of pitting corrosion is due to
Wang et al. (2014). Piscopo and Scamardella (2018) conduct-
ed a parametric study to determine the effect of pitting corro-
sion on the ultimate strength of plates with different boundary
conditions and welding-induced initial imperfections, com-
paring the results with existing design equations.

Feng et al. (2020) have conducted an experimental test
program with plates with mechanical pits subjected to in-
plane compressive loads. A high density of pits was used with
round and square shape and with different depth. The plates
were of 145x80x1.5 mm, thus with a/b = 1.8, which is smaller
than the typical value of 3 often found in ship structures. FE
calculations were made for plates with a degree of pitting
(DOP) ranging from 4 to 23%, and the depth of pits ranged
from 0.25 of the initial thickness to full thickness, obtaining
good correlation with experiments. They concluded that the
decrease of strength varies about linearly with the DOP, being
more intense for low slenderness plates.

A less common type of structures is the web-core sandwich
metal beams and plates, whose strength reduction due to cor-
rosion has been studied by Jelovica et al. (2013), Jelovica et al.
(2014).

Figure 5 Corroded plate surface (Garbatov and Guedes Soares, 2019). a
3D view, b 2D view
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3.2 Stiffened Panels

Corrosion influence on the structural load capacity of the
stiffened panel is similar to unstiffened plates. The stiffen-
er plays an essential role in supporting the ship plating to
withstand the external hull girder load. The corrosion-
related damages may lead to in-plane rigidity and load
carrying capacity reduction of the stiffened panel compo-
nents, stiffener detachment due to the grooving type of
corrosion degradation around the welding beads and col-
lapse behaviour changes, stiffener tripping due to low tor-
sional rigidity having a significant impact on the overall
hull girder load carrying capacity. Therefore, several stud-
ies have been performed in this regard.

Dunbar et al. (2004) studied the localized corrosion on the
stiffened panel load capacity, accounting for the welding-
induced stresses where the corrosion is only considered on
the plating. They demonstrated the importance of the corro-
sion location on the plating in terms of the load carrying ca-
pacity of the stiffened panel, indicating that the middle span
corrosion is the most influential one.

Amlashi andMoan (2005) investigated the load capacity of
the stiffened plates with localized pitting corrosion under bi-
axial compressive loading. Several conclusion was drawn that
the pitting corrosion may lead to significant load carrying
capacity reduction. The loading capacity under the biaxial
load is effected by both the level of degree of pitting and also
by the smallest sectional area.

Wang et al. (2015b) have studied the strength of stiffened
panels with corrosion grooving damage along the welds of the
stiffeners, and they concluded that the grooving depth has a
more significant influence on ultimate strength degradation
than corrosion width with the same volume loss. Additional
studies on stiffened plates have been done by Sultana et al.
(2015) and Zhang et al. (2017b).

Rahbar-Ranji (2015) demonstrated that when the column
buckling is dominant in the intact stiffened panel, the influ-
ence of the corrosion on the buckling strength is not notice-
able. However, when plate-web torsional buckling is a dom-
inant mode, the reduction of the buckling strength is signifi-
cant. A fascinating insight is given that corrosion concentrates
at full length in mid-bay. The reduction of the elastic buckling
is more pronounced than when corrosion occurs at the whole
region of the plate and stiffener together showing the impor-
tance of the localized corrosion effect. Additional results can
be found in Rahbar-Ranji (2015). The stiffened panel failure
mode changes due to the non-uniform pitting are also ob-
served in the study reported by Wang et al. (2018).

Shi et al. (2016) have conducted a finite element study of
stiffened panels with pitting, which were used to define the
experimental study conducted by Zhang et al. (2017a), while
Shi et al. (2018) have compared the experimental results with
numerical calculations, which showed good correlation.

Garbatov et al. (2016b) performed a series of experimental
collapse tests on the severely corroded stiffened panels which
were initially cut from a box girder that was corroded in real
sea conditions and compared with a numerical solution in
terms of the load carrying capacity demonstrating the fact that
the corrosion degradation has a significant influence on the
ultimate capacity reduction (see Figure 6). The numerical and
experimental predictions show a good agreement. They con-
cluded that the strength reduction might be affected by several
reasons, namely, the degree of the degradation, pit density,
boundary and initial imperfection states, type of the failure
modes, and material property changes.

Woloszyk et al. (2018) performed a series of non-linear
finite element analysis to estimate the load carrying capacity
of the severely corroded stiffened panels, which were experi-
mentally tested and reported by Garbatov et al. (2016b) and
compared with the design formulas provided by the standard
structural rules showing a good agreement. The corrosion in
the numerical solution has been modelled with the equivalent
thickness enabling a fast solution.

3.3 Box Structures

There is limited literature on the collapse behaviour of the
corroded box girders. Several studies have been performed
in (Saad-Eldeen et al. 2011a, b, 2012, 2013b, 2013a, Saad-

Figure 6 Post-collapse deformed stiffened plate (a) and thickness
distribution (b) (Garbatov et al. 2016b)
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Eldeen et al. 2013c, Saad-Eldeen et al. 2014) where the impact
of the corrosion on several parameters, namely, the bending
rigidity reduction, ultimate load capacity reduction, failure
modes of the corroded stiffened panels was analysed and in-
teresting fact has been discovered that the corrosion may lead
to the material property changes.

Saad-Eldeen et al. (2010) conducted an experimental test
on a box girder that represents the midship section to obtain
the behaviour, modes of failure, and load carrying capacity
under a pure-bending moment. They conducted three loading
cycles, where the first two were used to release the welding-
induced residual stresses, and the third one to estimate the
ultimate strength where the energy dissipations are 36.16%
and 17.25% for the first and second cycles, respectively, indi-
cating the discharge of the welding-induced residual stresses
(see Figure 7). Several failure modes were observed, such as
tension field yielding, tripping of longitudinal stiffeners, and
out-of-plane deformations of the plates. They compared the
ultimate load capacity of the box girder obtained in the test
with the empirical formulae showing a good agreement.

3.4 Ship Structures

The corrosion is of paramount importance for the ship struc-
tures because it leads to decrease in both the local and global
load capacity of hull girder and to increase the working load
acting on the hull girder and jeopardizes the structural integ-
rity of the hull girder. According to IMO, the longitudinal
strength of the ageing ship should not be less than 90% of
the new build ship hull (Paik et al. 2003d).

Yamamoto and Yao (2001) studied the hull girder collapse
strength under longitudinal bending, accounting for the corro-
sion degradation. They have confirmed that the transverse
section modulus and ultimate load capacity reduce determin-
istically even if there is a random scatter in each structural
component that a similar observation has also been made by
Saad-Eldeen et al. (2013b).

The progressive collapse characteristics of heavily corrod-
ed hulls are somewhat different from those of uncorroded
hulls; the heavily corroded hull may reach the ultimate limit
state by buckling collapse of a compressed part even before a
tensioned part yields, while the intact hull usually reaches the
ultimate limit state by tensile yielding of a tensioned part after
buckling collapse of the compressed part (Paik et al. 2003d).
They concluded that the hull girder is moderately reduced by
the corrosion effects when the average corrosion rate is con-
sidered. In contrast, the ultimate strength is decreased signif-
icantly with severe corrosion rates.

Several corrosion-related studies to estimate the hull girder
collapse capacity have also been presented by Hu et al. (2004)
and Kim et al. (2014), analysing different ship types.

4 Ultimate Strength of Damaged Structures

4.1 Damaged Plates

Steel structures can usually suffer various types of damages
while in service. Some types of damages, such as corrosion
and fatigue cracking, are related to age. Still, others are more
likely to be mechanical damage caused by accidental loading
or impact (Paik et al. 2003c). Several studies have been direct-
ed in this regard to understand the residual structural capacity
of the damaged plates better to help in the decision-making in
terms of the steel renewal. Several causes that may lead to
plate collapse are the mechanical damages or unexpected
events during the cargo loading and unloading operations,
ship collisions or ice loads, fatigue cracks that may lead to
plate in-plane stiffness and load capacity reduction.

Figure 7 Experimental set-up (a) and force displacement (b) (Saad-
Eldeen et al. 2013c)
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4.1.1 Influence of Dent-Related Damages

Paik et al. (2003c) performed a series of non-linear finite
element analysis to evaluate the loading capacity of the
dented steel plates under uniaxial compressive loading ac-
counting for the shape of the dent. They showed that the
residual strength of the dented plate is not significant if the
dent diameter is small regardless of the dent depth.
However, the diameter of the dent damage is highly influ-
ential on the loading capacity along with its depth. The
dent location is more influential when it approaches the
unloaded edges than in the centre of the plate where they
demonstrated that the reduction might lead to 20% in com-
parison with the dent in the centre of the plate. They pro-
posed a closed-form formula to estimate the load carrying
capacity of the dented plates based on the insights
collected.

Luis et al. (2008) studied the influence of the dimple infec-
tions that may occur during the local accidents on the load
carrying capacity of the plates accounting for the position of
the dimple that the effect of the dimple imperfection is more
significant when it gets closer to the unloaded edge. It was
shown that when the global imperfection is asymmetrical, the
dimple influence is more significant. They concluded that the
plate slenderness and imperfection amplitude is an influential
factor.

Considering the effect of dent shape, size (depth, diameter),
and location, Paik et al. (2003c) performed an ultimate
strength analysis of simply supported steel plates under axial
compression, leading to the derivation of a closed-form for-
mula. Rectangular plates with dents were studied by Guedes
Soares et al. (2008b) and Luis et al. (2008), considering dif-
ferent configurations of plates and different locations of the
dents. Still, they were smaller than the ones studied in this
paper, and therefore they had a smaller impact on the plate
ultimate load. For thin square plates under uniaxial
compression, Raviprakash et al. (2012) reported that the var-
iation of the size and angle of the orientation for longer dents
reduces drastically the ultimate strength. Also, the effect of
dent parameters on ultimate strength is magnified with in-
creasing the plate thickness.

In-service damages are also accumulated throughout a
ship’s life due to overloading or accidents and may change
or even “shakedown” the production-related imperfections.
One-sided residual deflections characterize these damages
over adjacent panels accompanied by residual stresses (Paik
et al. 2006a). Paik et al. (2009) reported several studies regard-
ing the strength of dented plates and the residual stress pattern
resulting from the damage, as the work is done in Nikolov
(2007, 2008) who concluded that the anti-symmetric damage
of adjacent plates is the most unfavourable shape of damage in
terms of the ultimate strength and the amplitude of local dam-
age is not as important to the plate’s strength.

Paik et al. (2003c) studied the effects of shape, size (depth,
diameter), and location of the dent on the ultimate strength of
simply supported steel plates under axial thrust. It was con-
cluded that the change of localized dent location in the longi-
tudinal direction of the plate affects the ultimate strength. As
the dent location becomes closer to the unloaded edges, the
ultimate strength decreased by 20%, compared with the cen-
tral dent.

Luis et al. (2008) studied the ultimate strength of long
plates with localized dents, while Guedes Soares et al.
(2008b) have studied the effect of dent locations on the
ultimate strength. They found that the effect of local im-
perfections depends on the shape and amplitude of the
damage. They also found that the effect of the localized
imperfection location is related to the size of the damaged
area.

Raviprakash et al. (2012) explored the influence of various
dent parameters (length, width, depth, and orientation) on the
ultimate strength of thin square plates under uniaxial compres-
sive loading. It was found that the longer dents with a variety
of sizes and angles of orientation drastically reduce the ulti-
mate strength. The effect of dent parameters magnifies with an
increase in the plate thickness.

Saad-Eldeen et al. (2015a) compared the stress-strain be-
haviour of rectangular steel plates accounting for the presence
of an opening or a dent when a uniaxial compressive load is
applied. Extensive non-linear finite element analyses were
performed, where the effect of several governing parameters
of the stress-strain relationship was analysed. The similarity in
the structural response of a plate with a dent or an opening is
identified. The pre- and post-buckling behaviour, stress-strain
relationship, ultimate strength, and lateral deformation were
investigated (see Figure 8).

Saad-Eldeen et al. (2015b) performed a series of finite
element analysing damaged steel plates with a local dent.
Several parameters were considered (plate thickness, dent
orientation, dent direction and dent size). It was concluded
that the occurrence of dent damage in the opposite direc-
tion to the initial imperfection reduces the effect of a dent
on the ultimate strength as the plate thickness increases. An
inflexion point of the plate slenderness with and without
dent was observed, at which the behaviour of the plate
changed. A certain dent breadth to plate breadth ratio is
established, revealing the different plate structural re-
sponse. Based on the performed analyses, a generalized
expression of the ultimate strength reduction factor due to
dent damage was developed.

Several experimental studies have been reported for perfo-
rated plates subjected to compressive load by Kim et al.
(2009) and Saad-Eldeen et al. (2019) and for the perforated
plates with locked cracks by Saad-Eldeen et al. (2016)
analysing the residual collapse behaviour of plates under uni-
axial load (see Figure 9).
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4.1.2 Impact of Crack-Related Damages

The presence of the crack may also lead to a structural capac-
ity reduction in ship plating; therefore, several studies have
been oriented in this regard. Some studies have been presented
to understand the behaviour of the elastic buckling strength
and post-buckling strength of the cracked plate as reported by

Shaw and Huang (1990); Riks et al. (1992); Vafai et al.
(2002); Brighenti (2005); Alinia et al. (2007a); Alinia et al.
(2007b), and Khedmati et al. (2009).

Paik et al. (2005) studied the influence of the transverse
locked crack presence on the plates under uniaxial compres-
sive and tension load on the load carrying capacity experimen-
tally and numerically where it was demonstrated that the fa-
tigue cracking damage reduces the ultimate strength of a steel
plate significantly. It was shown that when the crack ap-
proaches the unloaded edges, it leads to a significant capacity
reduction in the plate. It was shown that as the crack size
increases, it gives rise to load capacity reduction. The longi-
tudinal crack influence on the plate strength under uniaxial
compressive load has also been reported in Paik (2008).

Wang et al. (2009a) investigated the influence of the mul-
tiple cracks on the ultimate load carrying capacity of the struc-
tural members where they concluded that the existence of the
small disturbing cracks reduces the load capacity compared to
a single cracked plate.

Bayatfar et al. (2011) studied the influence of the transverse
cracks on the ultimate strength of a steel plate under uniaxial
compression, accounting for the crack length and locations.
They concluded that the most prominent crack location is the
ones in the unloaded edges of the plates. The influence of the
crack damage on the plate load carrying capacity accounting for
its length, direction, and inclination has been presented in Cui
et al. (2016).

4.2 Damaged Stiffened Panels

In the case of stiffened panels, Witkowska and Guedes Soares
(2008) investigated numerically the structural behaviour and
ultimate strength of damaged stiffened panels by a dent that
could be caused by a fall or strike of an object. It has been
found that stiffened panels present quite good performance
while subjected to the local damage; however, depending on
geometrical characteristics, the stiffener deformations may
significantly reduce the ultimate strength. A follow-up work
was reported by Witkowska and Guedes Soares (2015).

The effect of local damage in a stiffener, modelled as local
imperfection, on the ultimate strength of stiffened plates has
been studied by Witkowska and Guedes Soares (2009).
Several parameters related to the dent location, size and num-
ber of dents were considered. It has been found that the local
damage on the stiffener can change the collapse mode of the
plate and decrease its ultimate strength. The strength reduction
depends on the location of the dent as well as the initial global
deflection. For more than one damage location, the collapse of
the plate follows the pattern induced by the damage in a more
dominant position, and the other damage only decreases the
value of strength. The dent-related damages have also been
studied byXu and Guedes Soares (2013, 2015) for narrow and
wide stiffened panels under uniaxial compression.

Figure 9 Post-collapse deformed shapes of specimen WP2-1 (a) and
WP3-1 (b) (Saad-Eldeen et al. 2019)

Figure 8 Stresses distribution, plate with central dent (Saad-Eldeen et al.
2015b)
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Experimental work on very small scale specimens were used
to study the effect of dents in stiffened plates located in the plate
fields (Amante et al. 2015) or damaging the stiffeners (Chujutalli
et al. 2020). The experimental work agreed very well with finite
element calculations, which proved once more to be a reliable
method to predict the ultimate strength of these damaged
structures.

For cracked stiffened panels, Paik and Kumar (2006b) in-
vestigated numerically the ultimate strength of a longitudinal-
ly stiffened panel with cracks subjected to axial compressive
or tensile loads. It was concluded that the crack significantly
reduces the ultimate strength of the stiffened panel as the out-
of-plane deformation increases.

Regarding the ultimate strength of cracked stiffened plates,
Margaritis and Toulios (2012) concluded that if the crack
faces came into contact, and depending on the aspect ratio
and crack length, the structural stiffness may slow down, or
even temporarily reverse the rate of collapse, or results in a
small increase of the ultimate strength. Also, the failure mode
may depend on the crack length.

Bayatfar et al. (2014) analysed the influence of crack lengths
and locations on the ultimate compressive strength of imperfect
unstiffened and stiffened plate elements. It was observed that the
effect of crack on reducing the ultimate strength is increasing as
the crack is located near the crest of the initial imperfection, rather
than the location with zero imperfection.

Xu et al. (2014) analysed the ultimate residual strength of
stiffened panels numerically with locked cracks under axial
compressive loading. The influence of various geometrical
characteristics of cracks and panels was investigated. It was
concluded that the effect of the crack length on the ultimate
residual strength depends on the crack orientation, where a
slight effect occurs for longitudinally oriented crack and a
significant one for the transversely oriented crack.

Some studies have been directed to the impact of the
existing cracks on the ultimate load carrying capacity of the
plates accounting for the edge shear loading as reported in
Wang et al. (2015a, b), drawing the attention to the shear
strength of the damaged structural components and the other
studies accounting for the uniaxial compressive load as
presented by Xu et al. (2014) where the influence of the stress
field created by the crack and its size and orientation influence
on the ultimate strength capacity reduction and collapse shape
has been emphasized (see Figure 10).

Shi et al. (2017) have reported an experimental study on the
ultimate strength of stiffened panels with a crack with different
orientations relative to the loading. The degrading effects of the
crack on the strength were discussed, and Shi et al. (2019) have
conducted finite element calculations that were validatedwith the
experiments and are thus available to study different other cases.

Cui and Wang (2020) have studied the strength of pitted
stiffened plate with a circular opening. They performed exper-
iments on a three-bay stiffened panel with a circular hole

covering a large part of the width of the central plate.
Mechanically generated pits perforating the plate were consid-
ered in all plate elements in different number and location.
They concluded that even for the same volume of corrosion,
the ultimate strength may deviate significantly depending on
the corrosion level and the extend of the opening.

4.3 Damaged Box Structures

Box girders are built to represent, in a way the behaviour of
the hull girder in terms of the load carrying capacity. The
collision or grounding-related damages or fatigue-related
cracks may lead to consider the load carrying capacity of the
hull girder. Therefore, some studies have been presented in
this field.

Lee et al. (2008) performed ultimate and residual strength
tests on five box girder models, four of which have ellipse-
shaped damage, which represents the shape of the bulbous
bow of colliding ships.

Figure 10 Stress distributions at ultimate limit state for cracked panel (a)
and local crack stress distribution (b) (Xu et al. 2014)
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For large scale structural components as box girders, Shi
and Wang (2012) explored the ultimate strength of an intact
open box girder with cracks, subjected to different loading
conditions, as a function of crack length and locations. It
was concluded that the box girders with a crack located at
the edge show the biggest reduction of the ultimate strength
in torsion, compression, and bending loads.

The fatigue-related crack influence under torsional loading
has been reported in Shi and Wang (2012) where they dem-
onstrated that the size of the crack has a significant influence
on the load carrying capacity of the box girder and the edge
crack is the most influential one in terms of the load carrying
capacity. Collison or grounding-related box girder damage
case study has been reported in Benson et al. (2013) by draw-
ing the attention to the damage-related residual stress, which
increases the damage by 10%.

Yamada and Takami (2015) presented an experimental col-
lapse test on a damaged box girder assuming a ship-to-ship
collision to understand the collapse behaviour of damaged
hull girders under quasi-static load. The numerical and analyt-
ical solutions have validated the results. During the experi-
ment, three collapse behaviours, namely, panel buckling, stiff-
ener tripping, and the overall collapse of the stiffened panel,
have been registered. Due to the asymmetry, which leads to
the neutral axis rotation, one side of the damaged side shell
was observed under only a compressive load. The load capac-
ity of the numerical solution is in good agreement with the
experiment.

4.4 Damaged Ship Structures

Ship structural integrity is of great importance at sea. One of
the main concerns of ship designers, shipbuilders, and ship
owners is the safety of the ship at sea. The structural damage
studies, apart from the corrosion-related one, are concentrated
on either fatigue-related cracks due to the ship cyclic motions
or ship collisions and grounding damages.

Ship collisions and grounding may also lead to catastrophic
ship and environmental damages. The strength analysis needs
to account for the ultimate capacity of the hull girder, includ-
ing permanent deformation and post-buckling behaviour. Real
foreseeable scenarios shall be investigated in this regard as far
as is reasonably practicable (IMO 2010).

When the ship collision or grounding-related damage oc-
curs, possible consequences from a structural strength point of
view includes reductions in stiffness and strength of shell and
deck panels under subsequent lateral loads or in-plane loads,
namely, the longitudinal bending, which results in the de-
crease in the ultimate hull girder bending strength (Smith
and Dow 1981).

Gordo and Guedes Soares (2000) predicted several damaged
hull girder residual capacities using the Smith method, a progres-
sive collapse method. They concluded that in the case of the

grounding, the ship hogging bending moment is more affected
by the bottom damage. They suggested that in the case of the
ship grounding, it is better to keep the ship in sagging condition.
They draw attention to the significant damage reduction in the
design stage when it comes to container ships.

Some authors drew attention to the residual prediction
methods of the simplified methods. For example, Mansour
et al. (2003) investigated the residual strength of a single hull
tanker after grounding. The ultimate load capacity assessment
was carried out using the assumed bending stress distribution
method as proposed by Paik and Mansour (1995) and the one
as suggested by Rutherford and Caldwell (1990). The residual
strength index, as defined based on the sectional modulus and
based on the ultimate strength capacity, was compared. They
concluded that the residual strength index definition based on
the ultimate strength is a better representation of the residual
capacity of the hull girder. Guedes Soares et al. (2008b) re-
ported the results of a benchmark study in which several ap-
proximate methods were used to predict the ultimate strength
of a damaged ship hull, demonstrating the usefulness of this
type of methods.

Wang et al. (2009b) demonstrated that in the case of the
grounding, the initial yield or linear sectional modulus
methods predict the upper (sagging bending moment) and
lower (Hogging bending moment) bound of the residual
strength concerning the ones predicted by the progressive col-
lapse analysis. In the case of the collision, sectional modulus
methods predict the upper (hogging bending moment) and
lower (sagging bending moment) bound of the residual
strength to the ones predicted by the progressive collapse
analysis. Therefore, if one would like to have a conservative
prediction in the case of the ship grounding, the proper choice
would be the residual hogging bending moment with the sec-
tional modulus method. In the case of the ship collision, the
appropriate option might be the residual sagging bending mo-
ment with the sectional modulus method.

Several structural reliability-based studies have also been re-
ported in analysing the residual strength of damaged ship hull
girders using the Smith’s method (Jia and Moan 2008; Hussein
and Guedes Soares 2009; Luis et al. 2009).

Reliability-based studies have also been published consid-
ering the effect of corrosion or corrosion and fatigue on the
ultimate hull strength (Guedes Soares and Garbatov (1996b,
1997, 1998b, 1999a); Akpan et al. (2002); Hu et al. (2004);
Sun and Guedes Soares (2006); Guo et al. (2008); Wang et al.
(2008); Garbatov and Guedes Soares (2009b, 2011); Guo
et al. (2012); Parunov et al. (2013); Zayed et al. (2013);
Huang et al. (2014); Dong and Frangopol (2015);
Campanile et al. (2016); Garbatov (2016); Garbatov and
Guedes Soares (2016, 2017); Corak and Parunov (2019);
Woloszyk and Garbatov (2019)).

When the structural damages occur in the ship, the princi-
ple plane changes. Therefore, the external load will not only
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be reported on the horizontal principle bending plane but also
on the vertical principle bending plane due to the asymmetry
created by the damage. In this case, the Smith method needs to
be updated to include the progressively changing of the neu-
tral axis rotations.

Fujikubo et al. (2012b) studied the influence of the neutral
axis rotations on the damaged hull girders using the Smith’s
method, where they showed that the neutral axis rotations have
a significant impact on the residual strength of asymmetrically
damaged hulls which may reach as far as 8%. Joonmo et al.
(2012) adopted a different approach to deal with the translation
and rotation of the neutral axis.

Makouei et al. (2015) have implemented the method of rota-
tion of the neutral axis proposed by Fujikubo et al. (2012a) and
validated it with the experiments of Lee et al. (2008) before
studying the damaged hull of an Aframax. As the method is
computationally inexpensive, it was used to perform calculations
for a large set of damages building a response surface of the
results. Li et al. (2018) also addressed the changes in the neutral
axis during the progressive damage process in a Smith type of
approach.

Tekgoz et al. (2018a) investigated the residual strength capac-
ity of a grounded container ship under asymmetrical bending
load using the Smith’s method and accounting for the progres-
sive neutral axis translations and rotations. They emphasized the
fact that in the case of the residual strength capacity assessment
of the hull girder, not only the size of the damage but also the
location of the damage matters as well. It was demonstrated that
as the damage centre moves away from the ship centre towards
to the side shell of the ship, it gives more rise to the ultimate
collapse capacity reductions due to the created asymmetry by the
damage presence under the pure vertical bending moment (see
Figure 11).

Numerous studies have also been presented performing fi-
nite element analyses to estimate the residual structural capacity
of the ship hull girders by Ehlers et al. (2013); Kim et al.
(2013); Yamada (2014); Tekgoz et al. (2015c, 2015a, 2015b);
Parunov et al. (2018); Tekgoz et al. (2018b), and Corak and
Parunov (2019).

5 Ultimate Strength of Structures Subjected
to Time-Varying Load

5.1 Plates and Stiffened Panels

Ship’s plating and its associated stiffener as a unit of the stiff-
ened panel are exposed to a variety of external loads through-
out the ship service life at sea. Hence, their structural behav-
iour and capacity resisting to different loads are to be well
understood in the first place to enhance ship safety and protect
the marine environment. Ships are predominantly subjected to

dynamic loads, which add to the complexity of the evaluation
of the load capacity of the hull girder.

For example, Yao and Nikolov (1990) performed a series
of elastic-plastic significant deflection analysis of plates sub-
jected to cyclic loading, accounting for the impact of the cyclic
load on the plate rigidity, re-yielding, and ultimate load capac-
ity reduction in the case a wide plate. Goto et al. (1995) stud-
ied the influence of the localization of the plastic buckling,
concluding that a significant reduction of the loading capacity
of the steel structure under the cyclic load may be seen.

Paik and Thayamballi (2003) carried out an experimental
investigation on a square plate subjected to various uniaxial
loads with varying speed. They found that the ultimate
strength capacity of the plate is correlated with the speed of
the loading. As the speed of the loading increases, the ultimate

Figure 11 Residual sagging bending moment-curvature relationship, 0
degrees of heeling (a) and damage case studied (b) (Tekgoz et al. 2018a)
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strength and in-plane stiffness increase. In addition to that,
they found that as the speed of the loading increases, the
post-collapse regime of the plate structure gets steeper.

Komoriyama et al. (2018) studied the influence of the cu-
mulative buckling under the cyclic load on the load capacity
of the stiffened panels. They showed that when the cyclic
compressive load is around the ultimate capacity of the struc-
ture, the cumulative buckling deformation is high. However,
its impact on the ultimate load carrying capacity is small.

Yang et al. (2018a) analysed the ultimate dynamic strength
of the ship plate structures under uniaxial compressive load.
An empirical formula for predicting the ultimate dynamic
compressive strength of ship plates, expressed in terms of
the geometric dimensions of plates and impact speeds, was
developed. Yang et al. (2018b) studied the influence of the
uniaxial dynamic load combined with a lateral sea pressure on
the ultimate strength of the outer double bottom stiffened
plates. They analysed the influence of the mode shapes, initial
imperfections, boundary conditions, and strain rates on the
ultimate strength of the stiffened plates. They concluded that
as the strain rate increases, which is correlated with the speed
of the loading, the ultimate strength capacity of the stiffened
plates increases. The dynamic ultimate load capacity of the
rectangular plates has also been presented in Yang et al.
(2019).

Tekgoz et al. (2019) and Tekgoz and Garbatov (2020b)
studied the influence of the dynamic uniaxial compressive
load on the ultimate load carrying capacity of a square plate
where they presented that as the speed of the load increases, it
gives rise to the load carrying capacity of the plate which
might be more pronounced in the case of the aged steel plate.
The cyclic behaviour of the rectangular plates has also been
reported in Tekgoz and Garbatov (2020a), where they dem-
onstrated the importance of the local plasticity effect on the
cyclic strength of the rectangular plates (see Figure 12).

5.2 Ship Structures

In practice, the load carrying capacity of the hull girder is
estimated based on the assumption that the structure is
allowed to follow a path under a pure-bending load with an
incrementally increasing curvature with a quasi-static structur-
al response. The failure is considered to occur between two
transverse frames enabling the problem to be treated in the 2D
domain. However, these assumptions may not precisely rep-
resent the real collapse of the ship hull girder given the facts
that the possibility of the exceedance of the structural capacity
at any section, cumulative weakening effect of the ship hull
girder with cyclic motions, the influence of the transverse load
on the collapse behaviour of the stiffened panel components
and the extent of the failure in combination with the sudden
external loading such as whipping. Therefore, several studies
have been reported on these issues.

The dynamic collapse behaviour of a ship’s hull gird-
er in waves has been addressed by Iijima et al. (2011).
They assumed that a plastic hinge would be formed
during the collapse of the hull girder, induced by a
dynamic wave load. This hinge was modelled as a
non-linear rotational, and model tests have been made.
Extensions of the study have been made by Iijima et al.
(2015).

Pei et al. (2015) used a total simulation system as reported
in Yao et al. (2009), which involves time-dependent pressure
distribution and inertial forces that were applied to the bulk

Figure 12 Ultimate capacity decrease as a function of cyclic load, plate
aspect ratio 3 (a) and plate aspect ratio 6 (b) (Tekgoz and Garbatov,
2020a)
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carrier to estimate the structural capacity in severe sea state
using static and dynamic finite element formulations. They
showed that the structural response predictions of the static
and dynamic formulations are similar up to the ultimate
strength.

Iijima et al. (2015) presented a scaledmodel test to predict the
post-ultimate collapse behaviour of a ship’s hull under whipping
loads. They concluded that for the same amplitude of the load,
the regular waves cause more considerable collapse extent com-
pared to the one of the impact load. For the test model, the
collapse behaviour under whipping load did not go into the
unstable stage, yet the load exceeded the ultimate load capacity.

Derbanne et al. (2016) studied the ultimate dynamic
strength of a ship’s hull subjected to the whipping
loads. They used a simple one degree of freedom model
to analyse the non-linear dynamic response of the ship.
They demonstrated that during the linear whipping re-
sponse higher than the structural capacity, it does not
necessarily lead to the hull girder collapse when a non-
linear structural model is used.

Yamada and Kameya (2018) investigated the ultimate
dynamic strength of a container ship under the hogging
bending moment accounting for the extent of the finite
element model, namely, three full models, a half hold
model, and one transverse model, and time duration.
The external load has been applied in the form of a
sinusoidal impulse load. Interesting findings have been
presented that when the load duration is close to the
natural period of the ship, and dynamic effects are ac-
tive, the failure occurs in two frame spacing. If the
duration is relatively longer, the failure took place in
one frame space. They demonstrated that the ultimate
dynamic strength of the ship is maximum when the load
duration is around the natural period of the ship. They
recommended that when the ultimate dynamic capacity
of the ship is investigated using the finite element so-
lution, a 1/2 hold model or full ship model is
recommended.

6 Conclusions

A review of advances in the ultimate strength assess-
ment of corroded and damaged ship hull structures has
been provided. The literature review showed that the
structural behaviour of steel plates, stiffened panels,
ship-shaped box girders, and ship hulls had been, to
some extent, studied under different loading conditions.
However, there should be more studies that may follow
additional investigation on the impact of corrosion deg-
radation on the structural behaviour of the stiffened
panels and the overall hull girders to better understand
the structural behaviour response accounting for

potential external loadings. Studies related to under-
standing the dynamic collapse behaviour of corroded
and damaged ship structures under time-variant load
need more attention. Therefore, more related studies
are required to increase the confidence level of the con-
ventional methods in terms of their load capacity pre-
diction accuracy, which are currently being used.
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