Skip to main content
Log in

Effect of preheating and annealing temperature on the microstructure and optoelectronic properties of CZTS films prepared by sol-gel method

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The effects of different preheating and annealing temperatures on the surface morphology, microstructure, and optical properties of Cu2ZnSnS4 (CZTS) thin films are investigated by controlling the preheating and annealing temperatures. The prepared thin films were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and ultra-violet-visible (UV-Vis) spectroscopy techniques. XRD and Raman spectroscopy showed that a Kesterite structure with a selective orientation along the (112) peak was generated, and the thin films produced at a preheating temperature of 300 °C and annealing temperature of 570 °C had fewer secondary phases, which was beneficial for improving the performance of the solar cells. SEM confirms that the crystallite size increases and then decreases as the temperature increases, and the largest and most uniform crystallite size with the smoothest surface is generated at the above preheating and annealing temperatures. UV-Vis measurements show that the thin films generated at the above temperature have the lowest transmittance and the lowest optical band gap value of 1.46 eV, which is close to the optimal band gap value for solar cells and is suitable as an absorber layer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI G, SHITTU S, MA X, et al. Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric[J]. Energy, 2019, 171: 599–610.

    Article  Google Scholar 

  2. FERNANDES P A, SALOMÉ P M P, DA CUNHA A F. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films[J]. Thin solid films, 2009, 517(7): 2519–2523.

    Article  ADS  Google Scholar 

  3. REN S, WANG H, LI Y, et al. Rapid thermal annealing on ZnMgO window layer for improved performance of CdTe solar cells[J]. Solar energy materials and solar cells, 2018, 187: 97–103.

    Article  Google Scholar 

  4. BOUKORTT N E I, PATANÈ S, ABDULRAHEEM Y M. Numerical investigation of CIGS thin-film solar cells[J]. Solar energy, 2020, 204: 440–447.

    Article  ADS  Google Scholar 

  5. WOO K, KIM Y, YANG W, et al. Band-gap-graded Cu2ZnSn(S1−x,Sex)4 solar cells fabricated by an ethanol-based, particulate precursor ink route[J]. Scientific reports, 2013, 3(1): 1–7.

    Article  Google Scholar 

  6. DRIDI S, EL FIDHA G, BITRI N, et al. Synthesis of chemical spray pyrolyzed Cu2FeSnS4 thin films for solar cells[J]. Indian journal of physics, 2020, 94(7): 1097–1102.

    Article  ADS  Google Scholar 

  7. AZMI S, MOUJIB A, LAYACHI O A, et al. Towards phase pure kesterite Cu2ZnSnS4 absorber layers growth via single step free sulfurization electrodeposition under a fix applied potential on Mo substrate[J]. Journal of alloys and compounds, 2020, 842: 155821.

    Article  Google Scholar 

  8. LI W, TAN J M R, LEOW S W, et al. Recent progress in solution-processed copper-chalcogenide thin-film solar cells[J]. Energy technology, 2018, 6(1): 46–59.

    Article  Google Scholar 

  9. KATAGIRI H. Cu2ZnSnS4 thin film solar cells[J]. Thin solid films, 2005, 480: 426–432.

    Article  ADS  Google Scholar 

  10. CHALAPATHI U, SCARPULLA M A, PARK S H, et al. Improving the grain size of Cu2ZnSnS4 thin films by annealing thermally evaporated Cu−ZnS−Sn−S precursors[J]. Journal of materials science: materials in electro-nics, 2019, 30(5): 4931–4935.

    Google Scholar 

  11. MORIYA K, TANAKA K, UCHIKI H. Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition[J]. Japanese journal of applied physics, 2007, 46(9A): 5780–5781.

    Article  ADS  Google Scholar 

  12. PAL K, SINGH P, BHADURI A, et al. Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: a review[J]. Solar energy materials and solar cells, 2019, 196: 138–156.

    Article  Google Scholar 

  13. AHMOUM H, CHELVANATHAN P, SU’AIT M S, et al. Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating[J]. Superlattices and microstructures, 2020, 140: 106452.

    Article  Google Scholar 

  14. AHMAD A A, MIGDADI A B, ALSAAD A M, et al. Computational and experimental characterizations of annealed Cu2ZnSnS4 thin films[J]. Heliyon, 2022, 8(1): e08683.

    Article  Google Scholar 

  15. JACOB J, ALI H T, ALI A, et al. Improvement of thermoelectric properties of sol gel grown Cu2Zn1−xSnS4 thin films with the incorporation of Cd atoms[J]. Materials science in semiconductor processing, 2021, 123: 105587.

    Article  Google Scholar 

  16. QIU L, XU J, CAI W, et al. Fabrication of Cu2ZnSnS4 thin films by microwave assisted sol-gel method[J]. Superlattices and microstructures, 2019, 126: 83–88.

    Article  ADS  Google Scholar 

  17. BENACHOUR M C, BENSAHA R, MORENO R. Annealing duration influence on dip-coated CZTS thin films properties obtained by sol-gel method[J]. Optik, 2019, 187: 1–8.

    Article  ADS  Google Scholar 

  18. AGAWANE G L, KAMBLE A S, VANALAKAR S A, et al. Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol-gel technique[J]. Materials letters, 2015, 158: 58–61.

    Article  Google Scholar 

  19. LI J, WANG H, LUO M, et al. 10% efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width[J]. Solar energy materials and solar cells, 2016, 149: 242–249.

    Article  Google Scholar 

  20. HARTMAN K, NEWMAN B K, JOHNSON J L, et al. Detection of ZnS phases in CZTS thin-films by EXAFS[C]//2011 37th IEEE Photovoltaic Specialists Conference, June 19–24, 2011, Seattle, USA. New York: IEEE, 2011: 002506–002509.

    Google Scholar 

  21. WANG J, WANG Y, LI H, et al. Influences of alkali incorporation and electrodeposited metal layer on formation of MoS2 in CZTS thin films[J]. Materials science in semiconductor processing, 2021, 134: 105943.

    Article  Google Scholar 

  22. TOURA H, KHATTAK Y H, BAIG F, et al. Back contact effect on electrodeposited CZTS kesterite thin films experimental and numerical investigation[J]. Solar energy, 2019, 194: 932–938.

    Article  ADS  Google Scholar 

  23. VANALAKAR S A, SHIN S W, AGAWANE G L, et al. Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films[J]. Ceramics international, 2014, 40(9): 15097–15103.

    Article  Google Scholar 

  24. ÖZDAL T, CHTOUKI T, KAVAK H, et al. Effect of annealing temperature on morphology and optoelectronics properties of spin-coated CZTS thin films[J]. Journal of inorganic and organometallic polymers and materials, 2021, 31(1): 89–99.

    Article  Google Scholar 

  25. SEMENENKO M O, BABICHUK I S, KYRIIENKO O, et al. RF electromagnetic field treatment of tetragonal kesterite CZTSSe light absorbers[J]. Nanoscale research letters, 2017, 12(1): 1–8.

    Article  Google Scholar 

  26. ASHFAQ A, JACOB J, BANO N, et al. A two step technique to remove the secondary phases in CZTS thin films grown by sol-gel method[J]. Ceramics international, 2019, 45(8): 10876–10881.

    Article  Google Scholar 

  27. ASHFAQ A, JACOB J, BANO N, et al. Tailoring the thermoelectric properties of sol-gel grown CZTS/ITO thin films by controlling the secondary phases[J]. Physica B: condensed matter, 2019, 558: 86–90.

    Article  ADS  Google Scholar 

  28. HENRY J, MOHANRAJ K, SIVAKUMAR G. Electrical and optical properties of CZTS thin films prepared by SILAR method[J]. Journal of Asian Ceramic Societies, 2016, 4(1): 81–84.

    Article  Google Scholar 

  29. AL-BATAINEH Q M, ALSAAD A M, AHMAD A A, et al. Structural, electronic and optical characterization of ZnO thin film-seeded platforms for ZnO nanostructures: sol-gel method versus ab initio calculations[J]. Journal of electronic materials, 2019, 48(8): 5028–5038.

    Article  ADS  Google Scholar 

  30. DAHNOUN M, ATTAF A, SAIDI H, et al. Structural, optical and electrical properties of zinc oxide thin films deposited by sol-gel spin coating technique[J]. Optik, 2017, 134: 53–59.

    Article  ADS  Google Scholar 

  31. KANNAN A G, MANJULAVALLI T E, CHANDRASEKARAN J. Influence of solvent on the properties of CZTS nanoparticles[J]. Procedia engineering, 2016, 141: 15–22.

    Article  Google Scholar 

  32. MKAWI E M, IBRAHIM K, ALI M K M, et al. Effect of complexing agents on the electrodeposition of Cu−Zn−Sn metal precursors and corresponding Cu2ZnSnS4-based solar cells[J]. Journal of electroanalytical chemistry, 2014, 735: 129–135.

    Article  Google Scholar 

  33. FAIZ H, SIRAJ K, RAFIQUE M S, et al. Effect of zinc induced compressive stresses on different properties of copper oxide thin films[J]. Indian journal of physics, 2015, 89(4): 353–360.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Xue.

Additional information

Conflicts of interest

The authors declare no conflict of interest.

This work has been supported by the Tianjin Municipal Education Commission (No.70304901).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xue, Y., Dai, H. et al. Effect of preheating and annealing temperature on the microstructure and optoelectronic properties of CZTS films prepared by sol-gel method. Optoelectron. Lett. 19, 410–415 (2023). https://doi.org/10.1007/s11801-023-2155-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-023-2155-5

Document code

Navigation