Skip to main content
Log in

Four-state reference-frame-independent quantum key distribution using heralded pair-coherent sources with source flaws

  • Optoelectronics Letters
  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We propose a four-state reference-frame-independent quantum key distribution (RFI-QKD) protocol with the heralded pair-coherent source (HPCS). We investigate the performance of the proposed protocol and simulation results show that our protocol can achieve a high key generation rate in long-distance transmission, taking source flaws and statistical fluctuations into consideration. Although fewer states are used, this protocol not only has a higher key generation rate at the same transmission distance but also a longer transmission distance with the same secure communication compared with the original six-state RFI-QKD protocol using the weak coherent source (WCS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. H. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, IEEE International Conference on Computers, Systems and Signal Processing, 175 (1984).

  2. Y. Y. Zhou, X. J. Zhou and B. B. Su, Optoelectronics Letters 12, 148 (2016).

    Article  ADS  Google Scholar 

  3. H. B. Xu, Y. Y. Zhou, X. J. Zhou and L. Wang, Optoelectronics Letters 14, 216 (2018).

    Article  ADS  Google Scholar 

  4. Y. Y. Zhou, X. J. Zhou, H. B. Xu and K. Cheng, Optoelectronics Letters 12, 469 (2016).

    Article  ADS  Google Scholar 

  5. Z. H. Li, H. W. Liu, J. P. Wang, S. Y. Yang, T. Q. Dou, W. X. Qu, F. Zhou, Y. Q. Huang, Z. Q. Sun, Y. X. Han, G. X. Miao and H. Q. Ma, Optics Letters 45, 6334 (2020).

    Article  ADS  Google Scholar 

  6. F. Zhou, W. X. Qu, J. P. Wang, T. Q. Dou, Z. H. Li, S. Y. Yang, Z. Q. Sun, G. X. Miao and H. Q. Ma, The European Physical Journal D 74, 185 (2020).

    Article  ADS  Google Scholar 

  7. C. Wang, S. H. Sun, X. C. Ma, G. Z. Tang and L. M. Liang, Physical Review A 92, 042319 (2015).

    Article  ADS  Google Scholar 

  8. J. P. Wang, H. W. Liu, H. Q. Ma and S. H. Sun, Physical Review A 99, 032309 (2019).

    Article  ADS  Google Scholar 

  9. P. W. Shor, J. Preskill, Physical Review Letters 85, 441 (2000).

    Article  ADS  Google Scholar 

  10. D. Mayers, Journal of the ACM 48, 351 (2001).

    Article  MathSciNet  Google Scholar 

  11. N. Lütkenhaus, Physical Review A 61, 052304 (2000).

    Article  ADS  Google Scholar 

  12. G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, Physical Review Letters 85, 1330 (2000).

    Article  ADS  Google Scholar 

  13. W. Y. Hwang, Physical Review Letters 91, 057901 (2003).

    Article  ADS  Google Scholar 

  14. H. K. Lo, X. F. Ma and K. Chen, Physical Review Letters 94, 230504 (2005).

    Article  ADS  Google Scholar 

  15. X. B. Wang, Physical Review Letters 94, 230503 (2005).

    Article  ADS  Google Scholar 

  16. X. F. Ma, B. Qi, Y. Zhao and H. K. Lo, Physical Review A 72, 012326 (2005).

    Article  ADS  Google Scholar 

  17. C. Zhou, W. S. Bao and X. Q. Fu, Science China Information Sciences 53, 2485 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. L. Zhang, X. B. Zou, C. F. Li and G. C. Guo, Chinese Science Bulletin 54, 1863 (2009).

    Google Scholar 

  19. A. Laing, V. Scarani, J. G. Rarity and J. L. O’Brien, Physical Review A 82, 012304 (2010).

    Article  ADS  Google Scholar 

  20. X. Li, C. C. Mao, J. R. Zhu, C. M. Zhang and Q. Wang, The European Physical Journal D 73, 86 (2019).

    Article  ADS  Google Scholar 

  21. K. Tamaki, M. Curty, G. Kato, H. K. Lo and K. Azuma, Physical Review A 90, 052314 (2014).

    Article  ADS  Google Scholar 

  22. C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu and H. Zbinden, Physical Review A 89, 022307 (2014).

    Article  ADS  Google Scholar 

  23. W. Hoeffding, Journal of the American Statistical Association 58, 301 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqiang Ma  (马海强).

Additional information

This work has been supported by the Technology and Application of End-to-End Security Protection System for Power Internet of Things (No.5700-201916465a-0-0-00), and the Technology and Application of Quantum Cryptography and Communication (No.5246mi180004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Zhao, Z., Yang, S. et al. Four-state reference-frame-independent quantum key distribution using heralded pair-coherent sources with source flaws. Optoelectron. Lett. 17, 636–640 (2021). https://doi.org/10.1007/s11801-021-0197-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0197-0

Document code

Navigation