Skip to main content
Log in

Coherent passive optical network for 5G and beyond transport

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Building low-latency and high-capacity optical networks is vital for new high-speed cellular technologies. Coherent wavelength division multiplexing passive optical networks (WDM-PONs) are expected to play a key role in these applications. In this article, an overview of PON technologies for the 5th generation (5G) transport systems has been given. Moreover, a modified scheme based on coherent WDM-PON has been investigated using a dual polarization quadrature phase shift keying (DP-QPSK) transceiver. The aim of the scheme is to build a 1 600 Gbit/s network that will be used in the construction of the transport architecture of 5G and beyond cellular networks either in mobile front haul (MFH) or mobile back haul (MBH). The results indicate that the proposed scheme offers a promising solution for future 5G transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ericsson, Ericsson Mobility Report, EAB-19:003442 Uen, Revision A, 2019.

  2. Jun Shane Wey and Junwen Zhang, IEEE Journal of Lightwave Technology 37, 2830 (2019).

    Article  Google Scholar 

  3. Curtis Knittle, Proc. OFC, Th11.6 (2016).

  4. Naoki Suzuki, Journal of Lightwave Technology 36, 1485 (2018).

    Article  ADS  Google Scholar 

  5. Chi-Wai Chow and Chien-Hung Yeh, IEEE Photon. J. 5, 7900407 (2013).

    Article  ADS  Google Scholar 

  6. Chien-Hung Yeh, Opt. Exp. 16, 18857 (2008).

    Article  ADS  Google Scholar 

  7. Tien-Thang Pham, Xianbin Yu, Timothy Gibbon, Lars Dittmann and Idelfonso Monroy, IEEE Photon. J. 3, 13 (2011).

    Article  ADS  Google Scholar 

  8. Lap Chan, Chun-kit Chan, D. T. K. Tong, Fanglu Tong and Lian-Kuan Chen, Electron. Lett. 38, 43 (2002).

    Article  ADS  Google Scholar 

  9. Gee-Kung Chang, IEEE/OSA J. Opt. Comm. Net. 1, C35 (2009).

    Article  Google Scholar 

  10. Wen-Yi Lin, Ching-Hung Chang, Peng-Chun Peng, Hai-Han Lu and Ching-Hsiu Huang, Opt. Exp. 18, 10.301 (2010).

    Article  Google Scholar 

  11. Chi-Wai Chow, Opt. Exp. 16, 12096 (2008).

    Article  ADS  Google Scholar 

  12. Peter Vetter, Proc. of ECOC 2012, Tu.3.G (2012).

  13. Fady I. El-Nahal and Norbert Hanik, IET Optoelectronics 14, 53 (2020).

    Article  Google Scholar 

  14. Xiang Liu and Frank Effenberger, Journal of Optical Communication Networks 8, B70 (2016).

    Article  Google Scholar 

  15. Recommendation ITU-T G.989.2, 2019.

  16. Daisuke Umeda and Dekun Liu, IEEE 802.3ca Meeting, umeda_3ca_1b_0318, 2018.

  17. Junwen Zhang, Jun Shan Wey and Xingang Huang, IEEE 802.3ca meeting, 2017.

  18. Vincent Houtsma and Doutje van Veen, Journal of Lightwave Technol. 36, 122 (2018).

    Google Scholar 

  19. Junwen Zhang, Jun Shan Wey, Jianjun Yu, Zhijuan Tu, Bo Yang, Wei Yang, Yong Guo, Xingang Huang and Zhuang Ma, Optical Fiber Communications Conference, M1B.4 (2018).

  20. Minghui Tao, Lei Zhou, Huaiyu Zeng, Shengping Li and Xiang Liu, Optical Fiber Communications Conference, 2017.

  21. Saki Hatta, Nobuyuki Tanaka and Takeshi Sakamoto, IEICE Communications Express, DOI: https://doi.org/10.1587/comex.2016XBL0143, 2016.

  22. Saki Hatta, Nobuyuki Tanaka and Takeshi Sakamoto, Optical Fiber Communications Conference, M3I.2 (2017).

  23. Jun Li, Weiqiang Sun, Hongyang Yang and Weisheng Hu, Journal of Optical Communication Networks 6, 943 (2014).

    Article  Google Scholar 

  24. Yang Bo, ZTE Technology Magazine 19, 30 (2017).

    Google Scholar 

  25. Xu Zhou and Ning Deng, European Conference on Optical Communication, DOI: https://doi.org/10.1109/ECOC.2015.7341998, 2015.

  26. Kazuaki Honda, Hirotaka Nakamura, Kazutaka Hara, Kyosuke Sone, Goji Nakagawa, Yoshio Hirose, Takeshi Hoshida, Jun Terada and Akihiro Otaka, Optical Fiber Communications Conference, 2018.

  27. Vicent Sales, Josep Segarra, Víctor Polo, J. Camilo Velásquez and Josep Prat, Journal of Optical Comm. and Netw. 8, 582 (2016).

    Article  Google Scholar 

  28. Harald Rohde, J. Lightwave Technol. 32, 2041 (2014).

    Article  ADS  Google Scholar 

  29. Ali Shahpari, J. Lightwave Technol. 35, 1050 (2017).

    Article  ADS  Google Scholar 

  30. Jesper Bevensee Jensen, J. Lightwave Technol. 32, 1423 (2014).

    Article  ADS  Google Scholar 

  31. Bernhard Schrenk and Fotini Karinou, Proc. of OFC 2018, Paper Th1A.4 (2018).

  32. Hisao Nakashima, Optical Fiber Communication Conf., Los Angeles, CA, USA, W1G.5 (2017).

  33. Kazuro Kikuchi, J. Lightwave Technol. 34, 157 (2016).

    Article  ADS  Google Scholar 

  34. David S. Millar, Toshiaki Koike-Akino, Sercan Ö. Arık, Keisuke Kojima, Kieran Parsons, Tsuyoshi Yoshida and Takashi Sugihara, Opt. Express 22, 8798 (2014).

    Article  ADS  Google Scholar 

  35. Fady I. El-Nahal, Optoelectronics Letters 14, 372 (2018).

    Article  ADS  Google Scholar 

  36. Fady I. El-Nahal, Photonics Letters of Poland 10, 57 (2018).

    Article  Google Scholar 

  37. Olga Vassilieva, Inwoong Kim and Tadashi Ikeuchi, J. Lightwave Technol. 37, 50 (2019).

    Article  ADS  Google Scholar 

  38. Govind Agrawal, Nonlinear Fiber Optics, Fifth Edition, Rochester, New York, 2013.

  39. Marco Secondini, Erik Agrell, Enrico Forestieri, Domenico Marsella and Menelaos Ralli Camara, J. Lightwave Technol. 37, 2270 (2019).

    Article  ADS  Google Scholar 

  40. Stefano Straullu, Proc. Eur. Conf. Opt. Commun., Cannes, France, P7.10 (2014).

  41. Robert Maher, David S. Millar, Seb J. Savory and Benn C. Thomsen, IEEE J. Lightwave Technol. 30, 3924 (2012).

    Article  ADS  Google Scholar 

  42. Ryo Koma, Masamichi Fujiwara, Jun-ichi Kani, Ken-Ichi Suzuki and Akihiro Otaka, Proc. 2016 Opt. Fiber Commun. Conf. Exhib., Anaheim, CA, M3C.6 (2016).

  43. Waseem Shbair and Fady I. El-Nahal, the 7th IEEE PICECE 2019, DOI:https://doi.org/10.1109/PICECE.2019.8747183, 2019.

  44. Huan Chen, Tao Yang, Liqian Wang, Xue Chen and Yueying Zhan, Optics Communications 434, 218 (2019).

    Article  ADS  Google Scholar 

  45. Optiwave, OptiSystem Software Tool to Simulate Optical Networks, Optiwave Systems Inc, Ottawa, Canada, https://optiwave.com/, 2020.

Download references

Acknowledgement

The authors would like to acknowledge the Alexander von Humboldt Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem W. Shbair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shbair, W.W., El-Nahal, F.I. Coherent passive optical network for 5G and beyond transport. Optoelectron. Lett. 17, 546–551 (2021). https://doi.org/10.1007/s11801-021-0178-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0178-3

Document code

Navigation