Skip to main content
Log in

Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Y. Loke and M. P. Menguc, Journal of the Optical Society of America a-Optics Image Science and Vision 27, 2293 (2010).

    Article  ADS  Google Scholar 

  2. T. W. H. Oates and A. Mucklich, Nanotechnology 16, 2606 (2005).

    Article  ADS  Google Scholar 

  3. K. A. Willets and R. P. Van Duyne, Annual Review of Physical Chemistry 58, 267 (2007).

    Article  ADS  Google Scholar 

  4. S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez and R. Quidant, Acs Nano 3, 1231 (2009).

    Article  Google Scholar 

  5. A. Bansal and S. S. Verma, Aip Advances 4, 14 (2014).

    Article  Google Scholar 

  6. V. Amendola, R. Pilot, M. Frasconi, O. M. Marago and M. A. Iati, Journal of Physics-Condensed Matter 29, 48 (2017).

    Article  Google Scholar 

  7. J. H. Yoon, F. Selbach, L. Langolf and S. Schlucker, Small 14, 5 (2018).

    Google Scholar 

  8. H.-y. Zhang, S.-g. Yu and M.-j. Bian, Optoelectronics Letters 14, 241 (2018).

    Article  ADS  Google Scholar 

  9. I. D. Mayergoyz, Physica B-Condensed Matter 407, 1307 (2012).

    Article  ADS  Google Scholar 

  10. J. F. L. Santos, M. J. L. Santos, A. Thesing, F. Tavares, J. Griep and M. R. F. Rodrigues, Quimica Nova 39, 1098 (2016).

    Google Scholar 

  11. V. Amendola, Physical Chemistry Chemical Physics 18, 2230 (2016).

    Article  Google Scholar 

  12. J.-j. Wang and Z.-h. Jia, Optoelectronics Letters 15, 439 (2019).

    Article  ADS  Google Scholar 

  13. T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich and I. Rubinstein, Advanced Materials 20, 3893 (2008).

    Article  Google Scholar 

  14. K. A. Willets, A. J. Wilson, V. Sundaresan and P. B. Joshi, Chemical Reviews 117, 7538 (2017).

    Article  Google Scholar 

  15. J. A. Scholl, A. Garcia-Etxarri, A. L. Koh and J. A. Dionne, Nano Letters 13, 564 (2013).

    Article  ADS  Google Scholar 

  16. S. Kadkhodazadeh, J. R. de Lasson, M. Beleggia, H. Kneipp, J. B. Wagner and K. Kneipp, Journal of Physical Chemistry C 118, 5478 (2014).

    Article  Google Scholar 

  17. S. Lerch and B. M. Reinhard, Nature Communications 9, 1608 (2018).

    Article  ADS  Google Scholar 

  18. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, Nano Letters 3, 1087 (2003).

    Article  ADS  Google Scholar 

  19. E. R. Encina and E. A. Coronado, Journal of Physical Chemistry C 114, 3918 (2010).

    Article  Google Scholar 

  20. Y. Ruan, K. Li, Q. Lin and T. Zhang, Chinese Physics Letters 35, 4 (2018).

    Article  Google Scholar 

  21. B. T. Draine and P. J. Flatau, Journal of the Optical Society of America a-Optics Image Science and Vision 11, 1491 (1994).

    Article  ADS  Google Scholar 

  22. M. A. Yurkin and A. G. Hoekstra, Journal of Quantitative Spectroscopy & Radiative Transfer 106, 558 (2007).

    Article  ADS  Google Scholar 

  23. M. A. Yurkin and A. G. Hoekstra, Journal of Quantitative Spectroscopy & Radiative Transfer 112, 2234 (2011).

    Article  ADS  Google Scholar 

  24. O. A. Yeshchenko and A. O. Pinchuk, Reviews in Plasmonics 2017, C. D. Geddes, ed., Springer International Publishing, Cham, 285 (2019).

  25. B. T. Draine and J. Goodman, Astrophysical Journal 405, 685 (1993).

    Article  ADS  Google Scholar 

  26. D. W. Mackowski, Journal of the Optical Society of America a-Optics Image Science and Vision 19, 881 (2002).

    Article  ADS  Google Scholar 

  27. A. B. Evlyukhin, C. Reinhardt and B. N. Chichkov, Physical Review B 84, 8 (2011).

    Article  Google Scholar 

  28. B. J. Frey, D. B. Leviton, T. J. Madison, Q. Gong and M. Tecza, Cryogenic Optical Systems and Instruments Xii, J. B. Heaney and L. G. Burriesci, ed., Spie-Int Soc. Optical Engineering, Bellingham, 2007.

  29. W. Y. Rao, Q. Li, Y. Z. Wang, T. Li and L. J. Wu, Acs Nano 9, 2783 (2015).

    Article  Google Scholar 

  30. C. Jing, Z. Gu, Y. L. Ying, D. W. Li, L. Zhang and Y. T. Long, Analytical Chemistry 84, 4284 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ruan  (阮乂).

Additional information

This work has been supported by the Zhejiang Provincial Natural Science Foundation of China (No.LGF20C050001), and the National Nature Science Foundation of China (No.61805213).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Lin, Q., Ruan, Y. et al. Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method. Optoelectron. Lett. 17, 257–261 (2021). https://doi.org/10.1007/s11801-021-0064-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0064-z

Document code

Navigation