Skip to main content
Log in

Light emitting devices based on Si nanoclusters: the integration with a photonic crystal and electroluminescence properties

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We present the properties and potentialities of light emitting devices based on amorphous Si nanoclusters. Amorphous nanostructures may constitute an interesting alternative to Si nanocrystals for the monolithic integration of optical and electrical functions in Si technology. In fact, they exhibit an intense room temperature electroluminescence (EL). The EL properties of these devices have been studied as a function of current and of temperature. Moreover, to improve the extraction efficiency of the light, we have integrated the emitting system with a 2D photonic crystal structure opportunely fabricated by using conventional optical lithography to reduce the total internal reflection of the emitted light. The extraction efficiency in such devices increases by a factor of 4 at a resonance wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature 408, (2000) 440.

    Article  ADS  Google Scholar 

  2. G.G. Qin, A.P. Li, B.R. Zhang, and B.-C. Li, J. Appl. Phys., 78, (1995) 2006.

    Article  ADS  Google Scholar 

  3. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, and P.M. Fauchet, Nature 384, (1996) 338.

    Article  ADS  Google Scholar 

  4. L. Rebohle, J. von Borany, R.A. Yankov, W. Skorupa, I.E. Tyschenko, H. Frob, and K. Leo, Appl. Phys. Lett., 71, (1997) 2809.

    Article  ADS  Google Scholar 

  5. S. Fujita and N. Sugiyama, Appl. Phys. Lett., 74, (1999) 308.

    Article  ADS  Google Scholar 

  6. N. Lalic and J. Linnros, J. Lumin. 80, (1999) 263.

    Article  Google Scholar 

  7. P. Photopoulos and A.G. Nassiopoulou, Appl. Phys. Lett., 77, (2000) 1816.

    Article  ADS  Google Scholar 

  8. G. Franzò, A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, and F. Priolo, Appl. Phys. A: Mater. Sci. Process. 74, (2002) 1.

    Article  ADS  Google Scholar 

  9. A. Irrera, D. Pacifici, M. Miritello, G. Franzò, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, and P.G. Fallica, Appl. Phys. Lett., 81, (2002) 1866.

    Article  ADS  Google Scholar 

  10. R.J. Walters, G.I. Bourianoff, and H.A. Atwater, Nature Mater. 4, (2005) 143.

    Article  ADS  Google Scholar 

  11. J. Valenta, N. Lalic, and J. Linnros, Appl. Phys. Lett., 84, (2004) 1459.

    Article  ADS  Google Scholar 

  12. K.S. Cho, N.-M. Park, T.-Y. Kim, K.-H. Kim, G.Y. Sung, and J.H. Shin, Appl. Phys. Lett., 86, (2005) 071909.

    Google Scholar 

  13. H. Rinnert, M. Vergnat, and A. Burneau, J. Appl. Phys., 89, (2001) 237.

    Article  ADS  Google Scholar 

  14. G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett., 78, (1997) 3161.

    Article  ADS  Google Scholar 

  15. N.-M. Park, T.-S. Kim, and S.-J. Park, Appl. Phys. Lett., 78, (2001) 2575.

    Article  ADS  Google Scholar 

  16. O. Jambois, M. Molinari, H. Rinnert, and M. Vergnat, Opt. Mater. 27, (2005) 1074.

    Article  Google Scholar 

  17. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, J. Appl. Phys., 95, (2004) 3723.

    Article  ADS  Google Scholar 

  18. A. Irrera, F. Iacona, I. Crupi, C.D. Presti, G. Franzò, C. Bongiorno, D. Sanfilippo, G. Di Stefano, A. Piana, P.G. Fallica, A. Canino, and F. Priolo, Nanotechnology 17, (2006) 1428.

    Article  ADS  Google Scholar 

  19. P.D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane, and D. Brumhead, J. Phys. Condens., Matter 5, (1993) L91.

    Article  ADS  Google Scholar 

  20. K.S. Zhuravlev and A.Yu. Kobitski, Semiconductors 34, (2000) 1203.

    Article  ADS  Google Scholar 

  21. A.Yu. Kobitski, K.S. Zhuravlev, H.P. Wagner, and D.R.T. Zahn, Phys. Rev., B 63, (2001) 115423.

    Google Scholar 

  22. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys., 86, (1999) 6128.

    Article  ADS  Google Scholar 

  23. F. Priolo, G. Franzò, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera, J. Appl. Phys., 89, (2001) 264.

    Article  ADS  Google Scholar 

  24. C.D Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, D. Sanfilippo, G. Di Stefano, A. Piana, and P.G. Fallica, Appl. Phys. Lett., 88, (2006) 033501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Irrera.

Additional information

This work has been partially supported by MIUR through the projects FIRB and D.D.1105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irrera, A., Iacona, F., Franzò, G. et al. Light emitting devices based on Si nanoclusters: the integration with a photonic crystal and electroluminescence properties. Optoelectron. Lett. 3, 321–325 (2007). https://doi.org/10.1007/s11801-007-6163-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-007-6163-7

CLC numbers

Navigation