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Abstract. In logical geometry, Aristotelian diagrams are studied in a pre-
cise and systematic way. Although there has recently been a good amount
of progress in logical geometry, it is still unknown which underlying math-
ematical framework is best suited for formalizing the study of these dia-
grams. Hence, in this paper, the main aim is to formulate such a frame-
work, using the powerful language of category theory. We build multiple
categories, which all have Aristotelian diagrams as their objects, while
having different kinds of morphisms between these diagrams. The cate-
gories developed here are assessed according to their ability to generalize
previous work from logical geometry as well as their interesting category-
theoretical properties. According to these evaluations, the most promising
category has as its morphisms those functions on fragments that increase
in informativity on both the opposition and implication relations. Focus-
ing on this category can significantly increase the effectiveness of further
research in logical geometry.
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1. Introduction

Aristotelian diagrams have a rich history in philosophy and logic. The so-called
square of opposition for Aristotle’s syllogistics is undoubtedly the oldest and
best-known example [19], but there exist many other, more complex types of
Aristotelian diagrams as well (e.g., various types of hexagons and octagons of
opposition).1 In the last decade, these diagrams have begun to be studied in a
more systematic fashion, under the heading of logical geometry. This research
shows that despite their ancient origins, Aristotelian diagrams have natural

1See the introduction of [12] for bibliographic references to various historical (and contem-
porary) applications of Aristotelian diagrams.
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links with various areas of contemporary discrete mathematics, e.g., combina-
torics, Boolean algebra and order theory [6,11–13]. A particularly promising
line of research was initiated by Vignero [22], who showed that Aristotelian
diagrams can be studied using the tools of category theory [1,18]. In particular,
Vignero [22] defined a specific notion of morphism between diagrams, and then
proved that the resulting category has binary products and coproducts.2

The present paper fits within this research line of categorifying logical ge-
ometry. However, we will not be concerned with studying Vignero’s category
of Aristotelian diagrams in more detail, exploring further category-theoretical
constructions, etc. Rather, our aim is to take a step back and reflect on the
fundamental building blocks that are required for this categorification project.
After all, a category is not just determined by its objects (in casu: Aristotelian
diagrams), but also by the arrows between those objects. Vignero [22] pro-
posed one specific notion of morphism between Aristotelian diagrams (which
will also be studied here), but there also exist many others. At this point, it is
not obvious whether one of these qualifies as the uniquely ‘correct’ or canoni-
cal notion of morphism between Aristotelian diagrams. In this paper, we will
therefore study these various kinds of morphisms and their corresponding cat-
egories, while keeping two theoretical desiderata in mind. On the one hand,
we want to obtain a category that is richly structured and well-behaved from
a categorical point of view. On the other hand, we want to achieve a conserva-
tive generalization of previous work in logical geometry (so that this previous
work does not need to be revised, but can rather be seen as a special case of
the newly developed categorical picture).

Pertaining to the latter of these two desiderata, we should highlight two
specific notions that have been used before in logical geometry, namely Aris-
totelian isomorphisms and Boolean isomorphisms [12]. Informally, there exists
an Aristotelian isomorphism between two Aristotelian diagrams whenever they
have ‘the same Aristotelian structure’ (i.e., the same constellation of contradic-
tion, (sub)contrariety and subalternation relations). Equally informally, there
exists a Boolean isomorphism between two Aristotelian diagrams whenever
they have ‘the same underlying Boolean structure’. However, a single category
only gives rise to a single notion of isomorphism. In this paper, we focus on the
Aristotelian structure of diagrams, and thus we only consider categories that
give rise to Aristotelian isomorphisms, like Vignero’s category [22]. In other
ongoing research, we focus on the Boolean structure of diagrams, and thus
search for a category that gives rise to Boolean isomorphisms [3].

The paper is organized as follows. Section 2 briefly recapitulates some
key notions from logical geometry. Section 3 proposes several different types of
morphisms between Aristotelian diagrams, shows that each of them gives rise
to a distinct category, and discusses some elementary results in category theory
for each of them. Section 4 investigates which of these categories generalize

2Recently, Kiouvrekis et al. [16,17] have also used category theory (more specifically, in-
stitution theory) to study Aristotelian diagrams. However, their work goes in a completely
different direction than what we will do in this paper.
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previous work in logical geometry (by giving rise to Aristotelian isomorphisms),
and which ones do not. Section 5 focuses exclusively on the former categories,
and studies how they are related to each other. Section 6 wraps things up, and
mentions some avenues for further research.

2. Background from Logical Geometry

Logical geometry studies (the properties of) Aristotelian diagrams, which can
be formulated at different levels of generality [8]. The most general of these
definitions characterizes such a diagram as a subset of a Boolean algebra.3

In philosophy, it might seem more natural to define these diagrams as sets of
statements in some logical system S, and the relations holding between them.
However, this is a special case (using the Lindenbaum–Tarski algebra of S,
cf. Example 2 below) of the more general Boolean algebra definition, to which
we turn now.

Definition 1 (Aristotelian diagram). An Aristotelian diagram D is a pair (F , B),
where B is a Boolean algebra4 (B,∧B ,∨B ,¬B , 1B , 0B) and F is a fragment
of B, i.e., F ⊆ B. When the Boolean algebra B is clear from context, it is
usually omitted as a subscript to ∧, ∨, etc.

Before we give some examples of Aristotelian diagrams, we should first
mention some of the relations that can hold between two elements in a Boolean
algebra. Historically, logicians and philosophers have been interested in the
four so-called Aristotelian relations, which can straightforwardly be character-
ized in terms of Boolean algebras [8]. These four relations are often used in
visualizations of Aristotelian diagrams.

Definition 2 (Aristotelian relations). Given a Boolean algebra B, we say that
x, y ∈ B are:

• B-contradictory (CDB) iff x ∧B y = 0B and x ∨B y = 1B , i.e. x = ¬By,
• B-contrary (CB) iff x ∧B y = 0B and x ∨B y �= 1B ,
• B-subcontrary (SCB) iff x ∧B y �= 0B and x ∨B y = 1B ,
• in B-subalternation (SAB) iff ¬Bx ∨B y = 1B and x ∨B ¬By �= 1B .

These four relations are called the Aristotelian relations for B; we also write
ARB := {CDB , CB ,SCB ,SAB}.5 When the Boolean algebra B is clear from
context, it is usually omitted as a prefix and subscript.

Figure 1 shows two basic examples of Aristotelian diagrams: (F , {0, 1}3)
and (F ′, {0, 1}4), where F := {100, 110, 001, 011} and F ′ := {1000, 1100, 0000}.
The way in which the four relations are visualized here will be used consistently

3See [15] for an introduction to Boolean algebra.
4Following a common convention in mathematics, we tacitly identify a Boolean algebra with
its underlying set in this paper.
5It is well-known that all Aristotelian relations can be characterized in terms of contradiction
together with one of contrariety, subcontrariety and subalternation [21]. The set AR is thus
redundant, and can be trimmed down to just two relations. However, for reasons of historical
continuity, we prefer to work with all four Aristotelian relations.
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Figure 1. Two basic examples of Aristotelian diagrams. Full,
dashed and dotted lines visualize contradiction, contrariety
and subcontrariety, respectively; arrows visualize subalterna-
tions (cf. Definition 2)

throughout this paper. The diagram (F , {0, 1}3) is usually called a (classical)
square of opposition, whereas the diagram (F ′, {0, 1}4) does not have a canon-
ical name. The smallest Boolean algebra, B∗, has just a single element, which
is equal to both 0B∗ and 1B∗ . It allows for two Aristotelian diagrams, which
we state in a separate example for further reference.

Example 1. Let B∗ be the Boolean algebra with a single element (namely ∗),
which we call the degenerate Boolean algebra.6 Since fragments are simply
subsets of their ambient Boolean algebra, it is clear that we can make two
Aristotelian diagrams in this context, namely (∅, B∗) and ({∗}, B∗). We denote
the latter diagram by D∗.

As we mentioned before, philosophers and logicians are mainly interested
in special kinds of Aristotelian diagrams in which the fragments are collections
of statements in some logic S. Using the Lindenbaum–Tarski algebra, such
kinds of diagrams naturally fit in with Definition 1, as the following example
shows.

Example 2. For any logical system S that has Boolean connectives ∧,∨ and
¬, there exists a Boolean algebra B(S) whose underlying set is B(S) := {[ϕ] |
ϕ is a sentence in S}. Here, the notation [ϕ] stands for the equivalence class of
ϕ with respect to the relation ≡S of logical equivalence. Conjunction ∧B(S) is
given by [ϕ]∧B(S) [ψ] := [ϕ∧ψ]. In a similar way, disjunction and negation can
be defined. Finally, we define 0B(S) := [⊥] and 1B(S) := [�]. It is not hard to
check that all of this gives rise to a well-defined Boolean algebra. This algebra
is usually called the Lindenbaum–Tarski algebra of S. In the remainder of the
paper, we tacitly identify any logic S with its Lindenbaum–Tarski algebra B(S).

6Strictly speaking, there is an infinite number of degenerate Boolean algebras, since we can

name the single element however we want. However, just like in other familiar categories

like Set, they are all isomorphic to each other. Thus, for all intents and purposes, it is fine
to identify all these degenerate algebras, and thus speak of the degenerate Boolean algebra
B∗.
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Figure 2. A square of opposition (Fcat,SYL)

Now, consider syllogistics SYL.7 We can define the fragment Fcat in SYL
as

Fcat := {[∀x(Sx → Px)], [∃x(Sx∧Px)], [∀x(Sx → ¬Px)], [∃x(Sx∧¬Px)]}.

This fragment consists of (the equivalence classes of) the categorical statements
from syllogistics, hence the name Fcat. It is now clear from Definition 1 that
we have an Aristotelian diagram (Fcat,SYL), which is visualized in Fig. 2 (we
removed the equivalence class brackets for simplicity).

Note that Definition 1 allows 1B and 0B to occur in F . This is in line
with recent developments in logical geometry. For example, previous research
takes into account the top and bottom elements for the sake of analyzing
logic-sensitivity of Aristotelian diagrams [9]. Allowing the top and bottom
elements to occur in a diagram also makes algebraic sense, since they give rise
to terminal objects (cf. Example 8 below). However, we will have to be careful
when writing proofs, since elements can stand in several Aristotelian relations
at the same time when 1B and 0B are involved (cf. Fig. 1 above and Remark 1
below).

Furthermore, Definition 1 does not require Aristotelian diagrams to be
closed under complementation. However, most diagrams that are concretely
studied in logical geometry, such as classical squares of opposition, do enjoy
this property, so it makes sense to introduce a separate label for them.8

Definition 3 (σ-diagram). A σ-diagram D = (F , B) is an Aristotelian diagram
that is closed under complementation, i.e., for every x ∈ F , it holds that
¬Bx ∈ F as well.

Since they are closed under complementation, finite σ-diagrams (except
for D∗) always have an even number of elements. Consequently, in logical
geometry, a σ-diagram is usually not viewed as consisting of 2n elements, but
rather of n pairs of contradictory elements {x,¬x}, or PCDs for short [11].
For example, a square of opposition consists of two PCDs.

As can be seen from Definition 1, there is a clear difference between the
definitions of contradiction and (sub)contrariety on the one hand, and that of

7The system SYL has the same language as ordinary first-order logic (FOL), but is axiom-
atized by adding ∃xSx as an additional axiom to FOL. This logical system is naturally
interpreted on first-order models 〈D, I〉 (with domain D and interpretation function I) such
that I(S) �= ∅ [12]. It has also been called FOL∃, and shown to be intertranslatable with
QUARC [2,20].
8Visually speaking, such diagrams usually represent negation by means of central symmetry
[11,13], whence the term ‘σ-diagram’.
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subalternation on the other. These considerations constituted the motivation
to introduce and study a more extensive set of logical relations [14,21]. We
will rely heavily on this work, so we restate some of its elementary findings for
ease of reference.

Definition 4 (Opposition and implication relations). Given a Boolean algebra
B, we say that x, y ∈ B are:

• B-contradictory (CDB) iff x ∧B y = 0B and x ∨B y = 1B , i.e., x = ¬By,
• B-contrary (CB) iff x ∧B y = 0B and x ∨B y �= 1B , i.e., x <B ¬By,
• B-subcontrary (SCB) iff x ∧B y �= 0B and x ∨B y = 1B , i.e., x >B ¬By,
• B-non-contradictory (NCDB) iff x ∧B y �= 0B and x ∨B y �= 1B ,
• in B-bi-implication (BI B) iff x ≤B y and x ≥B y, i.e., x = y,
• in B-left-implication (LI B) iff x ≤B y and x �≥B y, i.e., x <B y,
• in B-right-implication (RI B) iff x �≤B y and x ≥B y, i.e., x >B y,
• in B-non-implication (NI B) iff x �≤B y and y �≥B x.

The first four relations are called the opposition relations for B, while the
last four are called the implication relations for B. We also write ORB :=
{CDB , CB ,SCB ,NCDB} and IRB := {BIB ,LIB ,RIB ,NIB}. When both
NCDB(x, y) and NIB(x, y), we also say that x and y are B-unconnected
(UN B). Once again, when the Boolean algebra B is clear from context, it
is usually omitted as a prefix and subscript. Note that SAB = LIB , and hence
ARB ⊆ ORB ∪ IRB .

Let us briefly explain the terminology used in Definition 4. In Aristotelian
diagrams consisting of (S-equivalence classes of) formulas in some logic S, the
opposition relations determine whether or not two formulas can be true/false
together (i.e., whether or not they are ‘opposed’ to each other). Furthermore,
in such diagrams, the implication relations determine for each pair of formulas
ϕ and ψ whether or not ϕ implies ψ and/or vice versa.

Based on various combinatorial and conceptual considerations, Smessaert
and Demey [21] have shown that there are natural orderings of informativity
on the opposition as well as the implication relations.

Definition 5 (The informativity orderings). Let B be a Boolean algebra. The
informativity ordering ≤ORB

on the opposition relations of B is the reflexive
relation on ORB for which NCDB ≤ORB

CB ,SCB ≤ORB
CDB . The informa-

tivity ordering ≤IRB
on the implication relations of B is the reflexive relation

on IRB for which NIB ≤IRB
LIB ,RIB ≤IRB

BIB . If no confusion is possible,
we replace the subscripts ORB and IRB by B. These orderings are visualized
in Fig. 3, where we leave out the subscripts altogether.

There is a natural way to combine both partial order relations of Defi-
nition 5 into a partial order relation on the Cartesian product ORB × IRB ,
which in categorical terms boils down to the product in the category of par-
tially ordered sets.

Definition 6 (The combined informativity ordering ≤ORB×IRB
). Let B be a

Boolean algebra. Let (R1, R2), (R′
1, R

′
2) be elements of ORB × IRB. Then,
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Figure 3. The informativity orderings on the opposition and
implication relations; cf. [21]

Figure 4. The combined informativity ordering; the bold
part corresponds to the only possible combinations for dia-
grams that do not contain 0 and 1

we say that (R1, R2) ≤ORB×IRB
(R′

1, R
′
2) if and only if R1 ≤ORB

R′
1 and

R2 ≤IRB
R′

2. Once again, if no confusion is possible, we replace the subscript
ORB × IRB by B. This ordering is visualized in Fig. 4, where we leave out
the subscripts altogether.9

Notice from Definition 4 that both ORB and IRB constitute a parti-
tion10 of the set B×B, i.e., they are jointly exhaustive and mutually exclusive.
In other words, every pair of elements (x, y) stands in exactly one opposition
relation and exactly one implication relation. On the other hand, this is not

9Notice that this order relation, together with the right involution, turns ORB × IRB into
a Boolean algebra isomorphic to {0, 1}4. Similarly, the order relations from Definition 5
turn ORB and IRB into Boolean algebras isomorphic to {0, 1}2. All of this holds except
when B is the degenerate Boolean algebra B∗, in which almost all of the opposition and
implication relations coincide with the empty relation, and thus with each other. In this
case, ORB∗ × IRB∗ is isomorphic to {0, 1}2, while ORB∗ and IRB∗ are isomorphic to

{0, 1}.
10Strictly speaking, this is only true when none of the relations are empty, which is always
the case unless B = B∗ is the degenerate Boolean algebra or B = {0, 1} is the two-element
Boolean algebra. When we use the word ‘partition’ in this paper, we actually mean a relaxed
version of this notion that is allowed to contain the empty set.
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the case for ARB [4]. As an example that these relations are not jointly ex-
haustive, think of the elements 1100 and 1010 in the Boolean algebra {0, 1}4,
which stand in no Aristotelian relation whatsoever. As an example that the
Aristotelian relations are not mutually exclusive either, think of the elements
0000 and 1100 in the same Boolean algebra, which are simultaneously contrary
and in subalternation, see Fig. 1. Note that the latter example uses 0000, the
bottom element of {0, 1}4. This is not a coincidence, as is explained in the
following remark.

Remark 1. Let B be any Boolean algebra. When 0B and 1B are in play, ele-
ments can be in several Aristotelian relations at once. For example, if B is not
degenerate (i.e., 1B �= 0B), we have that

CDB(0B , 1B) and LIB(0B , 1B);
CB(0B , 0B) and BIB(0B , 0B);

SCB(1B , 1B) and BIB(1B , 1B),

and for any x ∈ B− := B − {0B , 1B}, we have that

SCB(x, 1B) and LIB(x, 1B);
CB(0B , x) and LIB(0B , x).

Furthermore, if B is degenerate (i.e., B = B∗), then

CDB∗(0B∗ , 1B∗) and BIB∗(0B∗ , 1B∗).

Because of the preceding remark, fragments of Aristotelian diagrams are
often assumed not to contain 0B and 1B . Under this assumption, it can be
proven that every pair of elements stands in exactly one of the following seven
pairs of opposition and implication relations [21]:

(CD,NI), (C,NI), (SC,NI), (NCD,NI), (NCD,LI), (NCD,RI), (NCD,BI).

Consequently, we can restrict ourselves to the bold part of Fig. 4. This shows
that the set (ORB×{NIB})∪({NCDB}×IRB) constitutes a partition of B−×
B−, if we restrict all of the relations to B− × B−. In particular, two elements
x, y ∈ B− can be in at most one Aristotelian relation. They are in exactly one
Aristotelian relation or they are unconnected iff x �= y (thereby eliminating
BI(x, y)). Indeed, the only other option is (NCD,RI), but then RI(x, y), and
thus LI(y, x). Following this perspective, the Aristotelian relations together
with unconnectedness can be viewed as being jointly exhaustive and mutually
exclusive on the set of unordered pairs {x, y} of non-identical elements of B−.
Unconnectedness is pictured in Aristotelian diagrams by not connecting x and
y in any way.

The following useful lemma indicates that the opposition and implica-
tion relations are closely interrelated through negation. We state it here for
completeness, and to be able to use it when proving theorems later in the
paper.

Lemma 1 (Lemmas 2 and 3 from [21]). For all Boolean algebras B and ele-
ments x, y ∈ B, we have:
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1a) CD(x, y) iff CD(¬x,¬y), 1b) BI(x, y) iff BI(¬x,¬y),
2a) C(x, y) iff SC(¬x,¬y), 2b) LI(x, y) iff RI(¬x,¬y),
3a) SC(x, y) iff C(¬x,¬y), 3b) RI(x, y) iff LI(¬x,¬y),
4a) NCD(x, y) iff NCD(¬x,¬y), 4b) NI(x, y) iff NI(¬x,¬y),
5a) CD(x, y) iff BI(x,¬y), 5b) BI(x, y) iff CD(x,¬y),
6a) C(x, y) iff LI(x,¬y), 6b) LI(x, y) iff C(x,¬y),
7a) SC(x, y) iff RI(x,¬y), 7b) RI(x, y) iff SC(x,¬y),
8a) NCD(x, y) iff NI(x,¬y), 8b) NI(x, y) iff NCD(x,¬y),
9a) CD(x, y) iff BI(¬x, y), 9b) BI(x, y) iff CD(¬x, y),

10a) C(x, y) iff RI(¬x, y), 10b) LI(x, y) iff SC(¬x, y),
11a) SC(x, y) iff LI(¬x, y), 11b) RI(x, y) iff C(¬x, y),
12a) NCD(x, y) iff NI(¬x, y), 12b) NI(x, y) iff NCD(¬x, y).

3. Maps Between Aristotelian Diagrams

Now that we have covered a sufficiently broad portion of the framework of
logical geometry, we can turn to category theory [1,18]. More precisely, we
consider various ways to define a category that has as its objects all Aristotelian
diagrams. We do this by defining several different classes of possible morphisms
in the current section. Then, in the following sections, we investigate how the
categories created by these classes are interrelated.

3.1. Aristotelian Morphisms

In the category of groups, the morphisms are usually taken to be group mor-
phisms, i.e., set functions that preserve the group structure. A similar observa-
tion also holds for the categories of abelian groups, rings, vector spaces over a
fixed field, etc. If the given class of objects consists of all sets with some specific
added structure, we can turn it into a category by defining our morphisms to
be those set functions that preserve the added structure. This suggests an ob-
vious notion of Aristotelian morphism: they are set functions that preserve the
Aristotelian relations. To formally define this, it is nice to have the following
auxiliary definition, which allows us to discuss the same relations in different
Boolean algebras at the same time.

Definition 7 (Relabel functions11). Let B and B′ be Boolean algebras. We
define the relabel function ıB

′
B : (ORB − {∅}) � (IRB − {∅}) → ORB′ � IRB′

from B to B′ as

ıB
′

B (CDB) := CDB′ ; ıB
′

B (BIB) := BIB′ ;
ıB

′
B (CB) := CB′ ; ıB

′
B (LIB) := LIB′ ;

ıB
′

B (SCB) := SCB′ ; ıB
′

B (RIB) := RIB′ ;
ıB

′
B (NCDB) := NCDB′ ; ıB

′
B (NIB) := NIB′ .

11In terms of category theory, the relabel functions are isomorphisms in the category of

partially ordered sets. The restrictions of these relabel functions to either the opposition

or the implication relations are even isomorphisms in the category of Boolean algebras.

It is clear that these functions also give rise to a similar relabeling of the sets ARB and
ORB × IRB .
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Definition 8 (Aristotelian morphisms). Let D = (F , B) and D′ = (F ′, B′) be
Aristotelian diagrams. We say that f : F → F ′ is an Aristotelian morphism
from D to D′ iff it preserves all Aristotelian relations, i.e., for all Aristotelian
relations RB ∈ ARB and x, y ∈ F , we have

RB(x, y) ⇒ ıB
′

B (RB)(f(x), f(y)).

In terms of category theory, f is a morphism with domain D and codomain
D′. This is usually denoted as f : D → D′, even though as a set function, f is
a function from F to F ′. Let us consider some first examples of Aristotelian
morphisms,12 after which we prove that these morphisms really turn the Aris-
totelian diagrams into a category.

Example 3. We consider the categorical fragment Fcat from Example 2 in two
Boolean algebras: the Lindenbaum–Tarski algebras of first-order logic (FOL)
and syllogistics (SYL). The Aristotelian diagrams (Fcat,FOL) and (Fcat,SYL)
are shown in Fig. 5. The following is clearly an Aristotelian morphism13

ϕ : (Fcat,FOL) → (Fcat,SYL) : [ψ] �→ [ψ].

Indeed, all Aristotelian relations in the original diagram are preserved by
ϕ. Note that while ϕ is a morphism from (Fcat,FOL) to (Fcat,SYL), there
does not exist a morphism from (Fcat,SYL) back to (Fcat,FOL),14 and thus
a fortiori there is no isomorphism between these two diagrams either. To
summarize: we are dealing here with two distinct, non-isomorphic diagrams
(Fcat,FOL) and (Fcat,SYL), which are nevertheless based on one and the
same fragment Fcat (but recall Footnote 13). This observation lies at the ba-
sis of the well-known phenomenon of logic-sensitivity of Aristotelian diagrams
[5,9,10].

Example 4. Let us consider an example that does not only involve σ-diagrams.
Consider the fragments F := {∀xPx,∀x¬Px,∀xQx,∀x¬Qx} and F ′ := {∀x
(Px ∧ Qx),∀x(¬Px ∧ ¬Qx)}, both with (the Lindenbaum-Tarski algebra of)
FOL as their ambient algebra. The Aristotelian diagrams (F ,FOL) and (F ′,FOL)
are shown in Fig. 6. The map

12We lift the first example from Vignero [22]. Note, however, that he considered it in the
context of infomorphisms instead of Aristotelian morphisms.
13Since we identify logics with their Lindenbaum–Tarski algebras, the fragment Fcat is
strictly speaking not identical in the diagrams (Fcat,FOL) and (Fcat, SYL). After all, the
elements of Fcat in (Fcat,FOL) are equivalence classes [ψ]FOL, whereas in (Fcat, SYL) they
are equivalence classes [ψ]SYL. However, since FOL is weaker than SYL, the function ϕ is
still well defined. In other, less algebraically oriented approaches to logical geometry, we
work with the actual formulas instead of their equivalence classes, in which case two distinct
diagrams really can be based on the same fragment after all.
14For example, any morphism from (Fcat,SYL) to (Fcat,FOL) would have to preserve
CSYL(∀x(Sx → Px), ∀x(Sx → ¬Px)), which is impossible since there are no formulas
α, β ∈ Fcat such that CFOL(α, β).
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Figure 5. Two Aristotelian diagrams for the same fragment
Fcat

Figure 6. Two Aristotelian diagrams

θ : (F ,FOL) → (F ′,FOL) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀xPx �→ ∀x(Px ∧ Qx)
∀xQx �→ ∀x(Px ∧ Qx)
∀x¬Px �→ ∀x(¬Px ∧ ¬Qx)
∀x¬Qx �→ ∀x(¬Px ∧ ¬Qx)

is clearly an Aristotelian morphism.

Proposition 1. The Aristotelian diagrams equipped with Aristotelian morphisms
constitute a category. We will denote this category by DAR.

Proof. First, let us define for each diagram D = (F , B) the identity morphism
IdD as IdD : F → F : x �→ x, i.e., the identity function on the underlying
fragment F .15 Next, we define composition ◦ of morphisms between diagrams
as the usual composition of the set functions on the underlying fragments. We
need to prove three things: (1) the composition of two Aristotelian morphisms
is again an Aristotelian morphism, (2) for every Aristotelian morphism f :
D → D′, we have that f◦IdD = f = IdD′◦f , and (3) composition is associative.

1. Let f : D → D′ and g : D′ → D′′ be Aristotelian morphisms. We
need to show that for all RB ∈ ARB and all x, y ∈ D the follow-
ing holds: RB(x, y) ⇒ ıB

′′
B (RB)(gf(x), gf(y)). Suppose RB(x, y), then

ıB
′

B (RB)(f(x), f(y)) because f is an Aristotelian morphism. Since g is

15Note that the identity morphism IdD involves the ‘entire’ diagram D = (F , B), i.e.,
not just its fragment F , but also its ambient Boolean algebra B. Consequently, an iden-
tity function F → F can only be considered an identity morphism in DAR from (F , B)
to (F , B′) if B = B′. For example, consider the fragment F := {{a}, {b}}. The identity
function IdF does not constitute an identity morphism between the diagrams (F , ℘({a, b}))
and (F , ℘({a, b, c})) — actually, it is not even an Aristotelian morphism between these two

diagrams to begin with, since CD℘({a,b})({a}, {b}) but C℘({a,b,c})({a}, {b}). These observa-

tions are closely related to the issue of logic-sensitivity of Aristotelian diagrams (also recall
Footnote 13).
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an Aristotelian morphism and since ıB
′′

B′ ◦ ıB
′

B = ıB
′′

B , it now follows that
ıB

′′
B (RB)(gf(x), gf(y)).

2. These equalities follow immediately by definition of the identity mor-
phism and the composition of morphisms.

3. Associativity follows directly from the associativity of functions.
�

We now consider some elementary properties of this category. One of the
most simple questions one can ask about a category is whether or not it has
initial and terminal objects. We check this in the following example.

Example 5. Let us consider (∅, B), where B is an arbitrary Boolean algebra.
For any other Aristotelian diagram (F ′, B′), it is clear that we have exactly
one Aristotelian morphism (∅, B) → (F ′, B′), namely the empty set function.
What this example shows in categorical terms is that the diagram (∅, B) is
an initial object of the category DAR. Now, for terminal objects, consider any
diagram D �= D∗. Since ∗ is the only possible element (across any Boolean
algebra) for which CD(∗, ∗), it is clear that we do not have an Aristotelian
morphism D∗ → D. Thus, D is not a terminal object. Also, D∗ itself is clearly
not a terminal object, since there are no elements in the fragment {∗} of D∗
that are in any of the C,SC, or LI relations. In summary, DAR has initial, but
no terminal objects.

It is easy to see that the σ-diagrams equipped with Aristotelian mor-
phisms form a full subcategory of DAR; we denote it with D

σ
AR. It will turn

out that the inclusion functor from D
σ
AR to DAR has a left adjoint, or, in

other words, Dσ
AR is a reflective subcategory [18, p. 91] of DAR. First we prove

a handy proposition.

Proposition 2. Let D = (F , B) and D′ = (F ′, B′) be σ-diagrams, and let
f : D → D′ be an Aristotelian morphism. Let Q be a set containing at least
one element from each PCD in D. Then f is uniquely determined by its image
on Q. Equivalently, defining an Aristotelian morphism amounts to defining it
on a set Q that contains at least one element from each of its PCDs.

Proof. The proof draws directly upon the work of Smessaert and Demey [21].
Let fQ : Q → F ′ be a function that is a restriction of f . We can then extend
fQ to a function f¬ : F → F ′ as follows:

f¬ : F → F ′ : x �→ f¬(x) :=

{
fQ(x), if x ∈ Q

¬fQ(¬x), if x ∈ F − Q.

The function f¬ is well-defined since both D and D′ are σ-diagrams, and thus
closed under complementation. We now need to show that f¬ really is an
Aristotelian morphism. Let R ∈ ARB and x, y ∈ F such that R(x, y). We
need to show that ıB

′
B (R)(f¬(x), f¬(y)). There are four cases to consider:

1. x, y ∈ Q. In this case we are done, since fQ preserves Aristotelian rela-
tions. Indeed, fQ is just the restriction of f to Q.
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2. x ∈ Q and y ∈ F − Q. Lemma 1 will do the heavy lifting. We use a case
distinction.

• If CD(x, y), then BI(x,¬y) by Lemma 1, or in other words, x = ¬y.
Therefore, we have that BI(fQ(x), fQ(¬y)), and applying Lemma 1 again
yields CD(fQ(x),¬fQ(¬y)), as required.

• If C(x, y), then LI(x,¬y) by Lemma 1. Now, since fQ is an Aristotelian
morphism, we have that LI(fQ(x), fQ(¬y)), and applying Lemma 1 again
yields C(fQ(x),¬fQ(¬y)), as required.

• If LI(x, y), we can repeat the previous case with all the occurrences of C
and LI switched.

• If SC(x, y), then RI(x,¬y) by Lemma 1. Thus LI(¬y, x) by Definition 4.
Now, since fQ is an Aristotelian morphism, we have thatLI(fQ(¬y),fQ(x)),
and applying Definition 4 again yields RI(fQ(x), fQ(¬y)). Now Lemma
1 yields SC(fQ(x),¬fQ(¬y)), as required.

3. x ∈ F − Q and y ∈ Q. Analogous to the previous case.
4. x, y ∈ F −Q. Suppose first that R is either CD, C or SC. Lemma 1 states

that there exists an Aristotelian relation R′ such that R(x, y) is equiva-
lent to R′(¬x,¬y). Since fQ is an Aristotelian morphism, it follows that
R′(fQ(¬x),fQ(¬y)). Applying Lemma 1again yieldsR(¬fQ(¬x),¬fQ(¬y)),
which is the required result. Now, suppose that R = LI. Then, Lemma 1
states that RI(¬x,¬y), which is equivalent to LI(¬y,¬x) by Definition 4.
Since fQ is an Aristotelian morphism, it follows that LI(fQ(¬y), fQ(¬x)),
which by Definition 4 is the same as RI(fQ(¬x), fQ(¬y)). A final appli-
cation of Lemma 1 then gives the desired result: LI(¬fQ(¬x),¬fQ(¬y)).

If one now looks at the proof, one sees that f¬ is not just well-defined: it is (by
construction) the unique extension of fQ to F . Indeed, since CD is preserved,
for all x ∈ Q, we must have that ¬x gets mapped to ¬fQ(x). Therefore, f and
f¬ are equal and the statement is proven. �
Definition 9 (Negation closure). Let (F , B) be an Aristotelian diagram. The
set F ∪ {¬Bx ∈ B | x ∈ F} is called the negation closure of F in B, and is
denoted by ClB¬ (F).

For example, the negation closure of the fragment {100, 110} in the
Boolean algebra {0, 1}3 is given by {100, 110, 011, 001}. It is clear that ev-
ery diagram (F , B) defines a σ-diagram of the form (ClB¬ (F), B). Given an
Aristotelian morphism f : (F , B) → (F ′, B′), Proposition 2 provides us with
a unique extension to a morphism between the σ-diagrams (ClB¬ (F), B) and
(ClB

′
¬ (F ′), B′). We call this extension f¬. We now have all the machinery avail-

able to create our first functor: the negation closure functor. It is this functor
that will allow us to prove that D

σ
AR is a reflective subcategory of DAR. This

result justifies the longstanding practice in logical geometry of working on a
fragment that contains only one element from each PCD of a given σ-diagram.

Proposition 3. We have a functor Cl¬ from DAR to D
σ
AR, which is defined on

objects as

Cl¬(F , B) := (ClB¬ (F), B),
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and on morphisms as

Cl¬(f) := f¬.

Proof. Definition 9 shows that Cl¬ is well-defined on objects. Proposition 2
shows how it behaves on arrows. We only need to check functoriality. It is
trivially true that Cl¬(IdD) = IdCl¬(D) for any diagram D = (F , B), since
Cl¬(IdD)(x) = (IdD)¬(x) = ¬IdD(¬x) = ¬¬x = x for all x ∈ ClB¬ (F) − F .
Now we show that Cl¬ respects composition. Let g : (F , B) → (F ′, B′) and
f : (F ′, B′) → (F ′′, B′′) and let x ∈ F . We then have:

Cl¬(f ◦ g)(x) = (f ◦ g)(x)

= f(g(x))

= Cl¬(f)(Cl¬(g)(x))

= (Cl¬(f) ◦ Cl¬(g))(x).

Since Cl¬(f ◦ g) and Cl¬(f) ◦ Cl¬(g) coincide on F , Proposition 2 guarantees
that they are identical. �

Theorem 1. The inclusion functor U : Dσ
AR → DAR has a left adjoint, which

is given by the negation closure functor, Cl¬ : DAR → D
σ
AR. Put succinctly:

Cl¬ � U.

In other words, Dσ
AR is a reflective subcategory of DAR.

Proof. We will work with the Hom-set definition of adjoints:

ϕD,D′ : HomD
σ
AR(Cl¬D,D′) ∼= HomDAR(D,UD′).

We write ϕ instead of ϕD,D′ for ease of notation, and define it as follows:

f �→ ϕ(f) := f |F ,

where f |F is the restriction of f to F . For any g ∈ HomDAR(D,UD′), it is
immediately clear that ϕ−1(g) is the unique extension g¬ of g to ClB¬ (F), so
ϕ really is bijective.

We now have to show that ϕ is natural in both D and D′. Let us first
consider an Aristotelian diagram D′′ and a morphism h : D′′ → D in DAR;
we need to check if the following diagram commutes:

Hom(Cl¬D,D′) Hom(D,UD′)

Hom(Cl¬D′′,D′) Hom(D′′, UD′).

ϕ

Hom(Cl¬h,D′) Hom(h,UD′)

ϕ

Take any f ∈ Hom(Cl¬D,D′). The following chain of equalities yields the
required result:

(ϕ ◦ Hom(Cl¬h,D′))(f) = ϕ(f ◦ Cl¬h)

= (f ◦ Cl¬h)|F ′′

= f ◦ (Cl¬h)|F ′′

= f |F ◦ h
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= ϕ(f) ◦ h

= (Hom(h,UD′) ◦ ϕ)(f).

Let us now consider a σ-diagram D′′′ and a morphism h′ : D′ → D′′′ in D
σ
AR.

We show the following diagram commutes:

Hom(Cl¬D,D′) Hom(D,UD′)

Hom(Cl¬D,D′′′) Hom(D,UD′′′)

ϕ

Hom(Cl¬D,h′) Hom(D,Uh′)

ϕ

Take any f ∈ Hom(Cl¬D,D′). The result again follows from simple algebraic
manipulation:

(ϕ ◦ Hom(Cl¬D,h′))(f) = ϕ(h′ ◦ f)

= (h′ ◦ f)|F
= Uh′ ◦ f |F
= Uh′ ◦ ϕ(f)

= (Hom(D,Uh′) ◦ ϕ)(f).

We have thus shown that Cl¬ � U . �

3.2. The OR, IR and OR × IR Morphisms

Remember from Definition 4 that the Aristotelian relations are naturally part
of two other sets of relations. Therefore, it could be interesting to look at
morphisms that preserve those relations, rather than the Aristotelian relations
themselves. This leads to the following three kinds of morphisms.

Definition 10. (OR, IR and OR × IR morphisms) Let D = (F , B) and
D′ = (F ′, B′) be Aristotelian diagrams. Let f : F → F ′ be a function between
fragments. We say that f is an OR resp. IR resp. OR × IR morphism from
D to D′ iff for all RB ∈ ORB resp. IRB resp. ORB �IRB , and all x, y ∈ F :

RB(x, y) ⇒ ıB
′

B (RB)(f(x), f(y)).

Observe that every OR × IR morphism is by definition also an OR
morphism and an IR morphism. Conversely, every function that is both an OR
morphism and an IR morphism is also an OR×IR morphism. Furthermore,
notice that Definition 10 is virtually the same as Definition 8, but with AR
replaced by either OR, IR or OR � IR. Let us consider some easy examples
of these new kinds of morphisms.

Example 6. Given D = ({100, 110}, {0, 1}3), it is easy to check that f : D →
D, defined by f(100) := 110 and f(110) := 100, is an OR morphism, but
not an IR morphism (and thus not an OR × IR morphism either) — in
particular, we have LI(100, 110) yet RI(110, 100), i.e., RI(f(100), f(110)). Sec-
ondly, the map g : ({100, 001}, {0, 1}3) → ({110, 011}, {0, 1}3), defined by
g(100) := 110 and g(001) := 011, is an IR morphism, but not an OR mor-
phism (and thus not an OR × IR morphism either) — in particular, we
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have C(100, 001) yet SC(110, 011), i.e., SC(g(100), g(001)). Thirdly, the em-
bedding h : ({10, 01}, {0, 1}2) → ({0, 1}3, {0, 1}3), defined by h(10) = 100 and
h(01) = 011, is both an OR morphism and an IR morphism, and thus also
an OR × IR morphism.

These newly introduced kinds of morphisms are quite strong. In particu-
lar, since ORB is a partition of B × B, one can show that if the map f is an
OR morphism, then its inverse f−1 (if it exists) is an OR morphism as well.
(Analogous remarks apply to IR and OR × IR morphisms.) This is made
precise in Proposition 4. Furthermore, and more importantly, we still need
to check that the new morphisms also give rise to categories; this is done in
Proposition 5.

Proposition 4. Consider Aristotelian diagrams D = (F , B) and D′ = (F ′, B′)
and a bijective set function f : F → F ′. If f : D → D′ is an OR resp. IR
resp. OR×IR morphism, then f−1 : D′ → D is an OR resp. IR resp. OR×
IR morphism as well.

Proof. Suppose that f : D → D′ is an OR morphism and consider arbitrary
x, y ∈ F ′. Suppose, for example, that SCB′(x, y). Since the relations in ORB

are mutually exclusive, it follows that not CDB′(x, y) and not CB′(x, y) and not
NCDB′(x, y). Now, if CDB(f−1(x), f−1(y)), then our assumption that f is an
OR morphism would entail that CDB′(f(f−1(x)), f(f−1(y))), i.e., CDB′(x, y),
after all. We thus conclude that not CDB(f−1(x), f−1(y)). In the same way, we
also find that not CB(f−1(x), f−1(y)) and not NCDB(f−1(x), f−1(y)). Since
the relations in ORB are jointly exhaustive, it follows that SCB(f−1(x), f−1(y)).
This shows that if SCB′(x, y), then ıBB′(SCB′)(f−1(x), f−1(y)). Exactly the
same can be shown for CDB′ , CB′ and NCDB′ . Taken together, this means
that f−1 : D′ → D is an OR morphism. In exactly the same way, we show
that if f is an IR morphism, then f−1 is an IR morphism as well, and that
if f is an OR × IR morphism, then f−1 is an OR × IR morphism as well.
�
Proposition 5. The Aristotelian diagrams equipped with OR resp. IR resp.
OR×IR morphisms all give rise to categories. We will denote these categories
by DOR resp. DIR resp. DOR×IR.

Proof. Completely analogous to Proposition 1. �
Using Proposition 5, the observation made immediately after Defini-

tion 10 can now be expressed as follows: HomDOR×IR(D,D′) = HomDOR
(D,D′)∩HomDIR(D,D′) for any two Aristotelian diagrams D and D′. Again,
we can ask ourselves whether or not these categories have initial and/or ter-
minal objects. It is not hard to see that the situation is exactly the same as
in DAR. Completely analogously to Example 5, we have that DOR, DIR and
DOR×IR have all diagrams of the form (∅, B) as initial objects, but they have
no terminal objects.

As was the case for DAR, the category of σ-diagrams equipped with
OR × IR morphisms (denoted by D

σ
OR×IR) forms a reflective subcategory of

DOR×IR. We proceed in the same way as in Sect. 3.1.
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Proposition 6. Let D = (F , B) and D′ = (F ′, B′) be σ-diagrams, and let
f : D → D′ be an OR × IR morphism. Let Q be a set containing at least one
element from each PCD in D. Then f is uniquely determined by its image on
Q. Equivalently, defining an OR × IR morphism amounts to defining it on a
set Q that contains at least one element from each of its PCDs.

Proof. Entirely analogous to the proof of Proposition 2, making extensive use
of Lemma 1. �

Given an OR × IR morphism f : (F , B) → (F ′, B′), Proposition 6
provides us with a unique extension to an OR × IR morphism between the
σ-diagrams (ClB¬ (F), B) and (ClB

′
¬ (F ′), B′). We call this extension f¬. Note

that this is not an abuse of notation: if a map f is both an Aristotelian and
an OR × IR morphism, then the map f¬ defined here coincides with the
one from Sect. 3.1. Notice also that analogous propositions for OR or IR
morphisms do not exist. Indeed, consider for instance the OR morphism f
from Example 6. If we want to extend f to an OR morphism on the negation
closure of F in B, we need to map the contrary pair (100, 001) to some contrary
pair in D. However, since f maps 100 to 110 it is clear that this is impossible.
An analogous argument using g from Example 6 provides us with a similar
problem in the IR case.

Proposition 7. We have a functor Cl¬ from DOR×IR to D
σ
OR×IR, which is

defined on objects as

Cl¬(F , B) := (ClB¬ (F), B),

and on morphisms as

Cl¬(f) := f¬.

Proof. Entirely analogous to the proof of Proposition 3. �

Theorem 2. The inclusion functor U : Dσ
OR×IR → DOR×IR has a left adjoint,

which is given by the negation closure functor, Cl¬ : DOR×IR → D
σ
OR×IR.

Put succinctly:

Cl¬ � U.

In other words, Dσ
OR×IR is a reflective subcategory of DOR×IR.

Proof. Entirely analogous to the proof of Theorem 1. �

We have just studied the category D
σ
OR×IR of σ-diagrams equipped with

OR × IR morphisms. In principle, we could also equip σ-diagrams with OR
morphisms (yielding the category D

σ
OR) or with IR morphisms (yielding D

σ
IR).

However, Lemma 2 below states that if we restrict ourselves to σ-diagrams,
then every OR morphism is an IR morphism as well, and thus also an OR ×
IR morphism. Consequently, Dσ

OR is the same category as D
σ
OR×IR.

Lemma 2. Let D = (F , B) and D′ = (F ′, B′) be Aristotelian diagrams, and
let f : D → D′ be an OR morphism. If D is a σ-diagram, then f is also an
IR morphism.
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Proof. Consider arbitrary x, y ∈ F and suppose that LIB(x, y); we shall prove
that ıB

′
B (LIB)(f(x), f(y)) as well. (The proofs for BI, RI and NI are completely

analogous.) First of all, note that since y ∈ F and D is a σ-diagram, we have
¬y ∈ F as well. Since CDB(y,¬y) and f is an OR morphism, it follows that
ıB

′
B (CDB)(f(y), f(¬y)), and hence ¬f(y) = f(¬y). By Lemma 1 it follows
from LIB(x, y) that CB(x,¬y). Since f is an OR morphism, it follows that
ıB

′
B (CB)(f(x), f(¬y)), and thus also ıB

′
B (CB)(f(x),¬f(y)). Another application

of Lemma 1 yields ıB
′

B (LIB)(f(x), f(y)). �
The inverse of Lemma 2 does not hold: an IR morphism f : D →

D′ need not be an OR morphism, even if D and D′ are both σ-diagrams.
For a concrete counterexample, consider D := ({10, 01}, {0, 1}2) and D′ :=
({100, 001, 110, 011}, {0, 1}3), and f : D → D′ defined by f(10) := 100 and
f(01) := 001. It is easy to check that D and D′ are σ-diagrams and that f is an
IR morphism, but not an OR morphism — in particular, we have CD(10, 01)
yet C(100, 001), i.e., C(f(10), f(01)). Because of examples like this, Dσ

IR is not
the same category as D

σ
OR×IR. However, we will see in Sect. 4 that there are

good reasons for not studying this category in depth anyway. To summarize:
we will not discuss Dσ

OR as such, because it is identical with D
σ
OR×IR, and we

will not discuss D
σ
IR for reasons that will become clear later.

If we zoom out from the σ-diagrams to the entire class of Aristotelian
diagrams, it is interesting to see how the morphisms defined in this subsection
relate to the notion of Aristotelian morphism defined in Sect. 3.1. It follows
trivially from Definitions 8 and 10 that every OR × IR morphism is an Aris-
totelian morphism, since AR ⊆ OR ∪ IR. However, not every Aristotelian
morphism is necessarily an IR morphism or an OR morphism. A counterex-
ample is given by θ from Example 4. Indeed, we have NIFOL(∀xPx,∀xQx) but
BIFOL(∀x(Px ∧ Qx),∀x(Px ∧ Qx)), i.e., BIFOL(θ(∀xPx), θ(∀xQx)), and thus θ
is not an IR morphism. Furthermore, we have NCDFOL(∀xQx,∀x¬Px), but
CFOL(∀x(Px ∧ Qx),∀x(¬Px ∧ ¬Qx)), i.e., CFOL(θ(∀xQx), θ(∀x¬Px)), which
shows that θ is not an OR morphism either.

Note that, for any Aristotelian morphism f , apart from the Aristotelian
relations, it also preserves BI and RI. The former is true because if BI(x, y),
then x = y, which in turn implies f(x) = f(y), i.e., BI(f(x), f(y)) (in fact,
this also proves that OR morphisms preserve BI as well). The latter is true
because if RI(x, y) then LI(y, x), which in turn implies LI(f(y), f(x)), i.e.,
RI(f(x), f(y)). It is not true that Aristotelian morphisms preserve NCD and/or
NI: a counterexample is given by θ from Example 4, as already described above.
The entire situation is summarized in Table 1.

It should be noted that the four notions of morphisms we have considered
thus far are for some purposes too restrictive, with few examples to work
with.16 For example, bitstring maps that delete or add bit positions occur

16Although, interestingly, if we restrict ourselves even further and use as morphisms all the
bijective OR × IR morphisms, we find something peculiar. Namely, the resulting category
is a groupoid with as vertex groups the automorphism groups of the Aristotelian diagrams.
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Table 1. Which kinds of morphisms preserve which kinds of relations?

CD C SC NCD BI LI RI NI

AR � � � � � �
OR � � � � �
IR � � � �
OR × IR � � � � � � � �

quite naturally in application contexts [7], but will generally not be morphisms
in any of the above categories (cf. Examples 7, 9 and 10 below). Furthermore,
none of the categories considered thus far have terminal objects.

3.3. Increasing Infomorphisms

In this section, we use an interesting new idea to create morphisms, which
was first explored by Vignero [22]. Notice what happens when we apply an
Aristotelian morphism f : (F , B) → (F ′, B′) to a pair of non-contradictory
elements NCD(x, y): depending on the concrete definition of f , we might have
that R(f(x), f(y)), for any of the four opposition relations R. Looking at Def-
inition 5, this can be reformulated as follows: NCD(x, y) ⇒ R(f(x), f(y)),
for some R ∈ ORB′ such that NCD ≤B′ R. Similar remarks apply to NI and
IRB′ . We can now extend these observations to all opposition and/or implica-
tion relations and thus create morphisms that do not necessarily preserve the
Aristotelian structure, but only behave well with respect to the informativity
orderings from Definitions 5 and 6. This clearly leads to less restrictive notions
of morphisms. First, there are Vignero’s [22] infomorphisms. He characterizes
an infomorphism f : (F , B) → (F ′, B′) as a map that identifies a part of F ′

embedded in B′ that is at least as informative as the fragment F embedded in
B. Maps of this type will henceforth be called increasing infomorphisms, and
will be studied in the present subsection. Completely analogously, we will also
consider maps that identify a part of F ′ embedded in B′ that is at most as
informative as F embedded in B. Maps of this type will be called decreasing
infomorphisms, and will be studied in Sect. 3.4.

We begin by formally introducing the increasing infomorphisms. Similar
to Definition 10, we have three different kinds of increasing infomorphisms,
corresponding to the three informativity orderings from Definitions 5 and 6.

Definition 11 (Increasing information OR, IR, and OR × IR morphisms).
Let D = (F , B) and D′ = (F ′, B′) be Aristotelian diagrams. Let f : F → F ′

be a function between fragments. We say that f is an increasing information
OR resp. IR resp. OR × IR morphism from D to D′ iff for all RB ∈ ORB

resp. IRB resp. ORB �IRB , and all x, y ∈ F , there exists some R′
B′ ∈ ORB′

Footnote 16 continued
Studying this category is a possibility for further research for someone who is interested in
these automorphism groups.
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resp. IRB′ resp. ORB′ � IRB′ , such that

RB(x, y) ⇒ R′
B′(f(x), f(y)),

and ıB
′

B (RB) ≤B′ R′
B′ . These three kinds of morphisms will also be referred to

as increasing infomorphisms.

Observe that every increasing information OR × IR morphism is by
definition also an increasing information OR morphism and an increasing in-
formation IR morphism. Conversely, every function that is both an increasing
information OR morphism and an increasing information IR morphism is also
an increasing information OR × IR morphism. Notice that both Aristotelian
morphisms ϕ and θ from Examples 3 and 4 are in fact increasing information
OR × IR (and thus also OR and IR) morphisms as well. This will turn out
to be an instance of a more general fact (cf. Theorem 13 from Sect. 5). A more
interesting example is given by bit deletion.

Example 7. Given F3 := {100, 010, 101} and F2 := {10, 01}, the map d3 : F3 →
F2 : xyz �→ xy, which deletes a bitstring’s third bit position, is an increasing in-
formation OR×IR (and thus also OR and IR) morphism from (F3, {0, 1}3)
to (F2, {0, 1}2). However, d3 is not an Aristotelian, OR, IR or OR × IR
morphism. For example, we have C{0,1}3(100, 010) and LI{0,1}3(100, 101), but
CD{0,1}2(10, 01) and BI{0,1}2(10, 10); note that CD and BI are more informa-
tive than, but not identical to, resp. C and LI.

It is worthwhile to point out that Vignero [22] defined (increasing) info-
morphisms on yet another set of relations, namely {CD, C,SC,BI,LI,RI,UN}.
However, for all three of the relations NCD,NI and UN, the requirement of Def-
inition 11 is vacuously satisfied. Therefore, our increasing information OR×IR
morphisms conservatively extend Vignero’s infomorphisms.

Furthermore, observe that Definition 10 can be reformulated along the
lines of Definition 11, the only difference being that Definition 11 (increasing
infomorphism) requires ıB

′
B (RB) ≤B′ R′

B′ , whereas Definition 10 makes the
stronger requirement that ıB

′
B (RB) = R′

B′ . From the reflexivity of ≤B′ , we
thus have that every OR resp. IR resp. OR × IR morphism is an increasing
information OR resp. IR resp. OR × IR morphism.

Remember that both the opposition and the implication relations are
jointly exhaustive and mutually exclusive on B × B. Therefore, Definition 11
has the following equivalent characterization, which will be handy in proofs.

Proposition 8. Let D = (F , B) and D′ = (F ′, B′) be Aristotelian diagrams.
Let f : F → F ′ be a function between fragments. Then f is an increasing
information OR resp. IR resp. OR × IR morphism from D to D′ iff for all
x, y ∈ F , and for the unique RO, R′

O ∈ OR and RI , R
′
I ∈ IR such that

RO(x, y), RI(x, y), R′
O(f(x), f(y)) and R′

I(f(x), f(y)),

we have that

ıB
′

B (RO) ≤B′ R′
O resp. ıB

′
B (RI) ≤B′ R′

I resp. (ıB
′

B (RO), ıB
′

B (RI)) ≤B′ (R′
O, R′

I).

Here, ≤B′ is the relevant informativity ordering from Definition 5 or 6.
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Proof. Uniqueness and existence of the above relations is satisfied since ORB

and IRB are mutually exclusive and jointly exhaustive. Now, the statement
follows by the pointwise definition of the combined informativity ordering. �
Proposition 9. The Aristotelian diagrams, equipped with either kind of increas-
ing infomorphisms, give rise to a category. We will denote these categories by
D

Inc
OR, DInc

IR and D
Inc
OR×IR.

Proof. We prove the statement for D
Inc
OR. The other two cases are analogous.

Identity morphisms and composition are defined in the same way as with
Aristotelian, OR, IR and OR × IR morphisms. Most of the proof is simi-
lar to that of Proposition 1. Therefore, we only prove that, given increasing
information OR morphisms f : D → D′ and g : D′ → D′′, the composi-
tion g ◦ f is again an increasing information OR morphism. We use Propo-
sition 8 to do this. Consider arbitrary x, y ∈ D and let RO, R′

O and R′′
O

be the unique opposition relations such that RO(x, y), R′
O(f(x), f(y)) and

R′′
O((g ◦ f)(x), (g ◦ f)(y)). Since f is an increasing information OR morphism

and since the relabel functions preserve the informativity order, we have that
ıB

′′
B′ (ıB

′
B (RO)) ≤B′′ ıB

′′
B′ (R′

O). Now, since g is an increasing information OR
morphism, we have ıB

′′
B′ (ıB

′
B (RO)) ≤B′′ ıB

′′
B′ (R′

O) ≤B′′ R′′
O. By transitivity of

≤B′′ and the identity ıB
′′

B′ ◦ ıB
′

B = ıB
′′

B , we find that g ◦f is indeed an increasing
information OR morphism. �

Using this proposition, the observation made immediately after Defi-
nition 11 can now be expressed as follows: HomD

Inc
OR×IR

(D,D′) = HomD
Inc
OR

(D,D′)∩HomD
Inc
IR

(D,D′) for any two Aristotelian diagrams D and D′. Again,
we can look at initial and terminal objects. For initial objects, the situation is
the same as before: they are given by all diagrams of the form (∅, B). However,
in contrast to all four categories from the previous subsections, the categories
with increasing infomorphisms do have terminal objects, as Example 8 shows.

Example 8. Let us consider the diagram D∗ from Example 1. In this case,
we have BI(∗, ∗) and CD(∗, ∗). Let (F , B) be any Aristotelian diagram. Then
there always exists exactly one increasing information OR × IR morphism

!(F,B) : (F , B) → D∗ : x �→ ∗.

Let us show existence — uniqueness is trivial. If F = ∅, we are immediately
done. If F is non-empty, we can consider any x, y ∈ F . Let RO be the op-
position relation such that RO(x, y) and let RI be the implication relation
such that RI(x, y). Since CD(∗, ∗) and BI(∗, ∗), we automatically find that
ıB∗
B (RO) ≤ CD and ıB∗

B (RI) ≤ BI. This means that !(F,B) is well-defined as
an increasing information OR × IR morphism. What this example shows in
categorical terms is that D∗ is the terminal object in the category D

Inc
OR×IR.

The same proof also works for D
Inc
OR. The category D

Inc
IR also has D∗ as a ter-

minal object, but it is not the only one. In fact, a similar proof shows that any
diagram (F , B) with |F| = 1 is a terminal object in D

Inc
IR.

In the same way as for Aristotelian morphisms, we can show that the
subcategory of σ-diagrams with increasing information OR × IR morphisms
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(denoted by D
Inc,σ
OR×IR)17 is a reflective subcategory of D

Inc
OR×IR. Again, the

morphisms f and g from Example 6 show that this will not work in case we
restrict ourselves to either the OR or the IR side of the story.

Proposition 10. Let f : D → D′ be an increasing information OR × IR mor-
phism. Let Q be a set containing at least one element from each PCD in D.
Then f is uniquely determined by its image on Q. Equivalently, defining an
increasing information OR×IR morphism amounts to defining it on a set Q
that contains one element from each of its PCDs.

Proof. Let fQ be a function Q → F ′ that is a restriction of f . We can then
extend fQ to the function f¬ just like in Proposition 2, namely:

f¬ : F → F ′ : x �→ f¬(x) :=

{
fQ(x), if x ∈ Q

¬fQ(¬x), if x ∈ F − Q.

The function f¬ is well-defined since both D and D′ are σ-diagrams, and thus
closed under complementation. We now need to show that f¬ really is an
increasing information OR × IR morphism. The same case distinction as in
Proposition 2 is required.

1. x, y ∈ Q. In this case we are trivially done, since fQ is a restriction of an
increasing information OR × IR morphism.

2. x ∈ Q and y �∈ Q. Consider items 5–8 from Lemma 1. Depending on
which relations x and y are in, apply the correct item from this lemma.
Then apply fQ, which does not necessarily preserve opposition and im-
plication the relations between x and ¬y, but allows for some (at least
equally informative) options. However, considering all of these options
and applying the correct item from Lemma 1 again shows that f¬ is an
increasing information OR × IR morphism as well. As an example, sup-
pose that C(x, y). Then LI(x,¬y) by item 6a of Lemma 1. Since fQ is a
restriction of f , which is an increasing information OR × IR morphism,
it follows that LI(fQ(x), fQ(¬y)) or BI(fQ(x), fQ(¬y)). By items 5b and
6b of Lemma 1, we then have that C(f¬(x), f¬(y)) or CD(f¬(x), f¬(y)).
Notice that indeed C ≤B′ C,CD.

3. x �∈ Q and y ∈ Q. Analogous to the previous case, but now using items
9–12 from Lemma 1.

4. x, y �∈ Q. Also analogous, but now using items 1–4 from Lemma 1.
From the above, one sees that f¬ is not just well-defined: it is (by construction)
the unique extension of fQ to D. Indeed, since CD is preserved, for all x ∈ Q,

17Recall that if we restrict ourselves to σ-diagrams, every OR morphism is an IR morphism
as well, and thus also an OR × IR morphism (cf. Lemma 2). This result straightforwardly
generalizes to the increasing information morphisms studied here: if f : D → D′ is an
increasing information OR morphism and D is a σ-diagram, then f is an increasing infor-

mation IR morphism as well, and thus also an increasing information OR × IR morphism.
Consequently, when turning σ-diagrams into a category, it does not matter whether we
equip them with increasing OR morphisms or with increasing OR × IR morphisms, since
the resulting categories are identical to each other.
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we must have that ¬x gets mapped to ¬fQ(x). Therefore, f and f¬ are equal
and the statement is proven. �

Given an increasing information OR × IR morphism f : (F , B) →
(F ′, B′), Proposition 10 provides us with a unique extension to a morphism
between the σ-diagrams (ClB¬ (F), B) and (ClB

′
¬ (F ′), B′). We again call this

extension f¬.

Proposition 11. We have a functor Cl¬ from D
Inc
OR×IR to D

Inc,σ
OR×IR, which is

defined on objects as

Cl¬(F , B) := (ClB¬ (F), B),

and on morphisms as

Cl¬(f) := f¬.

Proof. Completely analogous to the proof of Proposition 3. �

Theorem 3. The inclusion functor U : DInc,σ
OR×IR → D

Inc
OR×IR has a left adjoint,

which is given by the negation closure functor, Cl¬ : DInc
OR×IR → D

Inc,σ
OR×IR.

Put succinctly:

Cl¬ � U.

In other words, DInc,σ
OR×IR is a reflective subcategory of DInc

OR×IR.

Proof. Completely analogous to the proof of Theorem 1. �

3.4. Decreasing Infomorphisms

It is now time to consider one final kind of morphisms, which are in a sense dual
to the increasing infomorphisms. Instead of moving to relations that are at least
as informative, we now move to relations that are at most as informative. Here,
too, we have three different kinds of decreasing infomorphisms, corresponding
to the three informativity orderings from Definitions 5 and 6.

Definition 12 (Decreasing information OR, IR and OR × IR morphism).
Let D = (F , B) and D′ = (F ′, B′) be Aristotelian diagrams. Let f : F → F ′

be a function between fragments. We say that f is a decreasing information
OR resp. IR resp. OR × IR morphism from D to D′ iff for all RB ∈ ORB

resp. IRB resp. ORB �IRB , and all x, y ∈ F , there exists some R′
B′ ∈ ORB′

resp. IRB′ resp. ORB′ � IRB′ , such that

RB(x, y) ⇒ R′
B′(f(x), f(y)),

and ıB
′

B (RB) ≥B′ R′
B′ . These three kinds of morphisms will also be referred to

as decreasing infomorphisms.

Observe that every decreasing information OR × IR morphism is by
definition also a decreasing information OR morphism and a decreasing in-
formation IR morphism. Conversely, every function that is both a decreasing
information OR morphism and a decreasing information IR morphism is also
a decreasing information OR×IR morphism. The duality between increasing
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and decreasing infomorphisms can be immediately illustrated with the follow-
ing examples. They concern bit additions, which can be viewed as dual to bit
deletions, such as in Example 7.

Example 9. Given F2 := {10, 01} and F3 := {100, 010}, the map a2 : F2 →
F3 : xy �→ xy0, which adds a 0-bit at the end of a bitstring, is a decreasing
information OR×IR (and thus also OR and IR) morphism from (F2, {0, 1}2)
to (F3, {0, 1}3). However, it is not an Aristotelian, OR, or OR×IR morphism.
For example, we have CD{0,1}2(10, 01), but C{0,1}3(100, 010); note that C is
less informative than, but not identical to, CD.

Example 10. Given F3 := {100, 110} and F4 := {1001, 1100}, the map a3 :
F3 → F4 : xyz �→ xyzy, which adds the negation of a bitstring’s second bit
at the end of that bitstring, is a decreasing information OR × IR morphism
(and thus also OR and IR) from (F3, {0, 1}3) to (F4, {0, 1}4). However, it
is not an Aristotelian, IR or OR × IR morphism. For example, we have
LI{0,1}3(100, 110), but NI{0,1}4(1001, 1100); note that NI is less informative
than, but not identical to, LI.

Notice the similarities between Definitions 12 and 11: we have merely
replaced ≤B′ with ≥B′ . Consequently, we can observe that Definition 10 can,
once again, be reformulated along the lines of Definition 12, now with the
requirement that ıB

′
B (RB) ≥B′ R′

B′ strengthened to ıB
′

B (RB) = R′
B′ . From

the reflexivity of ≤B′ , we thus have that every OR resp. IR resp. OR × IR
morphism is a decreasing information OR resp. IR resp. OR×IR morphism.

Just as with increasing infomorphisms, we have an alternative character-
ization of decreasing infomorphisms that relies on the opposition and implica-
tion relations being jointly exhaustive and mutually exclusive.

Proposition 12. Let D = (F , B) and D′ = (F ′, B′) be Aristotelian diagrams.
Let f : F → F ′ be a function between fragments. Then f is a decreasing
information OR resp. IR resp. OR × IR morphism from D to D′ iff for all
x, y ∈ F , and for the unique RO, R′

O ∈ OR and RI , R
′
I ∈ IR such that

RO(x, y), RI(x, y), R′
O(f(x), f(y)) and R′

I(f(x), f(y)),

we have that

ıB
′

B (RO) ≥B′ R′
O resp. ıB

′
B (RI) ≥B′ R′

I resp. (ıB
′

B (RO), ıB
′

B (RI)) ≥B′ (R′
O, R′

I).

Here, ≤B′ is the relevant informativity ordering from Definition 5 or 6.

Proof. Uniqueness and existence of the above relations is satisfied since ORB

and IRB are jointly exhaustive and mutually exclusive. Now, the statement
follows by the pointwise definition of the combined informativity ordering. �

Proposition 13. The Aristotelian diagrams, equipped with either kind of de-
creasing infomorphisms, give rise to a category. We will denote these categories
by D

Dec
OR, DDec

IR and D
Dec
OR×IR.

Proof. Entirely analogous to the proof of Proposition 9. �
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Using this proposition, the observation made immediately after Defi-
nition 11 can now be expressed as follows: HomD

Dec
OR×IR

(D,D′) = HomD
Dec
OR

(D,D′)∩HomD
Dec
IR

(D,D′) for any two Aristotelian diagrams D and D′. Beware
that DDec

OR, DDec
IR and D

Dec
OR×IR are not simply the opposite categories of DInc

OR,
D

Inc
IR and D

Inc
OR×IR, respectively. To see this in the case of OR×IR (the other

two cases are analogous), notice that from D∗ to any diagram (F , B) there
exist exactly |F| decreasing information OR×IR morphisms, while there ex-
ists only one such morphism in the category (DInc

OR×IR)op. Thus, even though
the formulation of Definitions 11 and 12 is dual in terms of the informativity
ordering, it is not dual in terms of category theory. This becomes even more
apparent when we try to define initial and terminal objects in D

Dec
OR, DDec

IR and
D

Dec
OR×IR. The initial objects are the same as for all the previous categories

(see Example 5). However, in stark contrast to their increasing counterparts,
terminal objects do not exist in D

Dec
IR and D

Dec
OR×IR, as the following example

shows.

Example 11. Suppose that (F , B) is a terminal object in D
Dec
IR . Then there ex-

ists a unique decreasing information IR morphism f from ({1100, 1010},{0, 1}4)
to (F , B). Since NI(1100, 1010) and NI is the least informative relation of IR,
we have that NI(f(1100), f(1010)) as well. In particular, f(1100) and f(1010)
should be distinct elements in F . It is furthermore clear thatBI(f(1100),f(1100))
and BI(f(1010), f(1010)) since the same holds for 1100 and 1010. Putting this
information together, we can make the following picture:

f(1100) f(1010).NI

BI BI

However, the symmetry of this diagram clearly shows that we can define
another decreasing information IR morphism g from ({1100, 1010}, {0, 1}4)
to (F , B) as follows:

g(1100) := f(1010),

g(1010) := f(1100).

This contradicts (F , B) being a terminal object. Therefore, DDec
IR does not have

any terminal objects. Adding opposition relations to the story for a decreasing
information OR × IR morphism f alters the picture to

f(1100) f(1010).
(NCD,NI)

(NCD,BI) (NCD,BI)

Therefore, a similar argument shows that D
Dec
OR×IR does not have terminal

objects. This line of reasoning does not work for D
Dec
OR. In fact, it is not hard

to see that every diagram (F , B) such that F consists of exactly one element
x /∈ {0B , 1B} is a terminal object in this category, since we have NCD(x, x).
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Again, for the case of OR × IR, the category of σ-diagrams forms a
reflective subcategory of DDec

OR×IR.18 We proceed in the same way as before.
Here, too, the morphisms f and g from Example 6 show that this will not work
in case we restrict ourselves to either the OR or the IR side of the story.

Proposition 14. Let D = (F , B) and D′ = (F ′, B′) be σ-diagrams, and let
f : D → D′ be a decreasing information OR × IR morphism. Let Q be a
set containing at least one element from each PCD in D. Then f is uniquely
determined by its image on Q. Equivalently, defining a decreasing information
OR × IR morphism amounts to defining it on a set Q that contains at least
one element from each of its PCDs.

Proof. Entirely analogous to the proof of Proposition 10. �

Given a decreasing information OR×IR morphism f : (F , B) → (F ′, B′),
Proposition 14 provides us with a unique extension to a morphism between
the σ-diagrams (ClB¬ (F), B) and (ClB

′
¬ (F ′), B′). We call this extension f¬ once

again.

Proposition 15. We have a functor Cl¬ from D
Dec
OR×IR to D

Dec,σ
OR×IR, which is

defined on objects as

Cl¬(F , B) := (ClB¬ (F), B),

and on morphisms as

Cl¬(f) := f¬.

Proof. Entirely analogous to the proof of Proposition 11. �

Theorem 4. The inclusion functor U : DDec,σ
OR×IR → D

Dec
OR×IR has a left adjoint,

which is given by the negation closure functor, Cl¬ : DDec
OR×IR → D

Dec,σ
OR×IR.

Put succinctly:

Cl¬ � U.

In other words, DDec,σ
OR×IR is a reflective subcategory of DDec

OR×IR.

Proof. Entirely analogous to the proof of Theorem 1. �

4. Isomorphisms

In the previous section, we described ten different categories, and investigated
their properties on a basic level of category theory. More concretely, we checked
whether or not they have initial and/or terminal objects, and proved that some
of them have the σ-diagrams as a reflective subcategory. The present section is
devoted to the isomorphisms that arise in each of these categories. Remember
that we are searching for a category whose isomorphisms are exactly the Aris-
totelian isomorphisms that have already been studied in logical geometry, such

18Again, decreasing information OR and OR × IR morphisms are exactly the same when
restricted to σ-diagrams.
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that this category generalizes previous work in this field. For our purposes, this
is actually even the most important requirement we will impose on our various
categories: satisfying this criterion can be considered mandatory for a category
to be a viable candidate for further research. Therefore, the present section
can be regarded as a kind of ‘filter’ where all ten categories must pass through.
After this section, we will continue solely with those categories that did not
get ‘filtered out’ because they give rise to a wrong notion of isomorphism.

First of all, it should be clear that if f : D → D′ is an isomorphism in
any of the above categories, then f is a bijection. Indeed, if g : D′ → D is
such that g ◦ f = IdD and f ◦ g = IdD′ , then f and g, viewed as set functions
on the underlying fragments, are isomorphisms in the category of sets, hence
bijections. Of course, the converse is not true in any of the above categories:
not every bijection on fragments is an isomorphism.

Let us first focus on the category DAR. Since morphisms in this category
are called ‘Aristotelian morphisms’, the isomorphisms in this category are nat-
urally called ‘Aristotelian isomorphisms’. This does not violate previous work
in logical geometry, as the following theorem shows.

Theorem 5. The categorical notion of Aristotelian isomorphism corresponds
with the original notion of Aristotelian isomorphism that was defined in Def-
inition 4 of [12]. More precisely: f : D → D′ is an Aristotelian isomorphism
iff f is bijective and for all R ∈ AR and for all x, y ∈ F , it holds that
R(x, y) ⇔ ıB

′
B (R)(f(x), f(y)).

Proof. ⇒ Suppose that f : D → D′ is an Aristotelian isomorphism. This
means that f is an Aristotelian morphism and that there exists an Aristotelian
morphism g : D′ → D such that g ◦f = IdD and f ◦g = IdD′ . As already men-
tioned above, f is clearly a bijection as a set function on fragments. Now let R ∈
AR and x, y ∈ F arbitrary; we show that R(x, y) ⇔ ıB

′
B (R)(f(x), f(y)). Since

f is an Aristotelian morphism, it follows that R(x, y) ⇒ ıB
′

B (R)(f(x), f(y)).
Since g is an Aristotelian morphism and ıBB′(ıB

′
B (R)) = R, it follows that

ıB
′

B (R)(f(x), f(y)) ⇒ ıBB′(ıB
′

B (R))(gf(x), gf(y)) ⇔ R(gf(x), gf(y)). Given that
gf = IdD, we obtain that R(f(x), f(y)) ⇒ R(x, y).

⇐ Suppose that f is bijective and for all R ∈ AR and for all x, y ∈ F , it
holds that R(x, y) iff ıB

′
B (R)(f(x), f(y)). We have to show that f is an Aris-

totelian morphism and that there exists an Aristotelian morphism g : D′ → D
such that g ◦ f = IdD and f ◦ g = IdD′ . For all x, y ∈ F , we have R(x, y) ⇒
ıB

′
B (R)(f(x), f(y)), which precisely says that f is an Aristotelian morphism.
The function f : F → F ′ is bijective, so f−1 : F ′ → F exists and is well-
defined. By definition of f−1, we have f−1 ◦ f = IdD and f ◦ f−1 = IdD′ . We
now show that f−1 is an Aristotelian morphism. Let a, b ∈ F ′ arbitrary and
suppose R(a, b). Since f ◦ f−1 = IdD′ , it follows that R(ff−1(a), ff−1(b)).
We have ıBB′(R)(x, y) ⇔ R(f(x), f(y)) for all x, y ∈ F , and thus in partic-
ular for f−1(a) and f−1(b). Hence it follows that ıBB′(R)(f−1(a), f−1(b)), as
desired. �

Next, we focus on the categories D
Inc
OR×IR and D

Dec
OR×IR. After that,

we look at the isomorphisms in the category DOR×IR. Instead of proving
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analogues of Theorem 5, we investigate how isomorphisms in these categories
are related to each other and to the isomorphisms in DAR. To be able to do
this, we first need the following two lemmas on the level of morphisms.

Lemma 3. Suppose that f is a bijective increasing resp. decreasing informa-
tion OR × IR morphism from D to D′. Then f−1 is a bijective decreasing
resp. increasing information OR × IR morphism from D′ to D.19

Proof. This follows immediately from the dual nature of Definitions 11 and 12
(recall that this duality concerns the underlying informativity ordering, rather
than the resulting categories). �

Lemma 4. Every Aristotelian morphism is an increasing information OR,
IR, and OR × IR morphism.

Proof. Let f : D → D′ be an Aristotelian morphism. Let x, y ∈ F be ar-
bitrary. Let RO, R′

O be the unique opposition relations such that RO(x, y)
and R′

O(f(x), f(y)). If RO ∈ AR, it follows that ıB
′

B (RO) = R′
O since f is

an Aristotelian morphism. Otherwise, RO = NCD, which is the least infor-
mative element of OR. In both cases, it is thus true that ıB

′
B (RO) ≤B′ R′

O.
Therefore, f is an increasing information OR morphism. Since Aristotelian
morphisms also preserve LI, RI and BI relations, the same proof also holds for
the implication relations, which shows that f is an increasing information IR
morphism as well. Combining these two results, we find that f is an increasing
information OR × IR morphism. �

Theorem 6. Every increasing information OR×IR isomorphism is a decreas-
ing information OR × IR isomorphism, and vice versa.

Proof. Suppose that f : D → D′ is an increasing information OR × IR iso-
morphism. Then there exists an increasing information OR×IR isomorphism
g : D′ → D such that g ◦ f = IdD and f ◦ g = IdD′ . Since f, g are bijections,
g = f−1 and f = g−1, Lemma 3 tells us that g, f are also decreasing informa-
tion OR × IR morphisms. Therefore, f is a decreasing information OR × IR
isomorphism. The same reasoning holds for the converse. �

Theorem 7. Every Aristotelian isomorphism is an increasing information OR×
IR isomorphism.

Proof. Suppose that f : D → D′ is Aristotelian isomorphism. Then, f is an
Aristotelian morphism, and there exists an Aristotelian morphism g : D′ → D
such that g ◦ f = IdD and f ◦ g = IdD′ . By Lemma 4, f and g are increasing
information OR×IR morphisms. Hence, f is an increasing information OR×
IR isomorphism. �

19Together with the reflexivity and antisymmetry of the informativity ordering, this lemma

immediately proves the OR × IR part of Proposition 4 as a corollary. Indeed, a bijective
OR × IR morphism is both increasing and decreasing, by the reflexivity of ≤. The current
lemma says that its inverse is also both increasing and decreasing, which by the antisymmetry
of ≤ implies that this inverse is also an OR × IR morphism.
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Theorem 8. Every increasing information OR × IR isomorphism is an Aris-
totelian isomorphism.

Proof. Suppose that f : D → D′ is an increasing information OR × IR iso-
morphism. Then, f is an increasing information OR × IR morphism, and
there exists an increasing information OR × IR morphism g : D′ → D such
that g ◦ f = IdD and f ◦ g = IdD′ . We will now show that f is an Aristotelian
isomorphism by using Theorem 5. As usual, it is clear that f is bijective. Now,
let x, y ∈ F be arbitrary, and let RO, R′

O ∈ OR be the unique opposition
relations such that RO(x, y) and R′

O(f(x), f(y)). Since f is an increasing in-
formation OR×IR morphism, it follows that ıB

′
B (RO) ≤B′ R′

O. Let R′′
O be the

unique opposition relation such that R′′
O(gf(x), gf(y)). Recall that g◦f = IdF ,

and hence, R′′
O = RO. Since R′

O(f(x), f(y)) and g is an increasing information
OR×IR morphism, it follows that ıBB′(R′

O) ≤B R′′
O = RO, which is equivalent

to saying that ıB
′

B (RO) ≥B′ R′
O. By the antisymmetry of ≤B′ , we have that

ıB
′

B (RO) = R′
O. The same proof also holds for the implication relations. Since

AR ⊂ OR ∪ IR, Theorem 5 allows us to conclude that f is an Aristotelian
isomorphism. �

Theorem 9. Every Aristotelian isomorphism is a decreasing information OR×
IR isomorphism, and vice versa.

Proof. This follows directly from Theorems 6, 7, and 8. �

Theorem 10. Every OR × IR isomorphism is an Aristotelian/increasing in-
formation OR×IR/decreasing information OR×IR isomorphism, and vice
versa.

Proof. In light of the previous theorems, it suffices to prove the statement for
the increasing information OR×IR isomorphisms. It is clear that every OR×
IR isomorphism is an increasing information OR×IR isomorphism, simply by
definition. For the other direction, suppose that f is an increasing information
OR×IR isomorphism. Then, by Theorem 6, f is also a decreasing information
OR × IR isomorphism. Since f is now both increasing and decreasing, it is
by definition (and the antisymmetry of the informativity ordering) also an
OR × IR isomorphism. �

Together, Theorems 5-10 imply that the isomorphisms in the categories
DAR, DOR×IR, DInc

OR×IR and D
Dec
OR×IR are all equivalent to the Aristotelian

isomorphisms that were already studied in logical geometry. These four cate-
gories thus satisfy the mandatory requirement, as we were hoping for. As for
the six other candidates, the following two examples show that their isomor-
phisms do not satisfy this requirement.

Example 12. Let f be the OR morphism from Example 6. Since f is its
own inverse, f is an isomorphism in DOR, D

Inc
OR and D

Dec
OR. On the other

hand, remember that we have LI(100, 110) and RI(110, 100), or in other words
RI(f(100), f(110)). Thus, f is not an Aristotelian (iso)morphism.
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Table 2. Comparison of the different kinds of morphisms

Terminal Initial σ-diagrams as Aristotelian
objects objects reflective subcategory isomorphisms

DAR � � �
DOR �
DIR �
DOR×IR � � �
D

Inc
OR � �

D
Inc
IR � �

D
Inc
OR×IR � � � �

D
Dec
OR � �

D
Dec
IR �

D
Dec
OR×IR � � �

Example 13. Let g be the IR morphism from Example 6. It is clear that
both g and g−1 preserve all implication relations. For example, NI(100, 001)
and NI(110, 011), or in other words NI(f(100), f(001)). Therefore, g is an
isomorphism in DIR, DInc

IR and D
Dec
IR . On the other hand, remember that we

have C(100, 001) and SC(110, 011), or in other words SC(f(100), f(001)). Thus,
g is not an Aristotelian (iso)morphism.

Our results from this section and the previous one are summarized in
Table 2. From this table, of which the final column is the most important
one, it is clear that we can henceforth restrict our attention to the categories
involving OR × IR and AR. These four categories are further examined in
the following section.

5. Relations Between the Different Types of Morphisms

The considerations of the previous section on isomorphisms allow us to narrow
our focus to just the Aristotelian morphisms and the (increasing/decreasing
information) OR × IR morphisms. We start by investigating how these four
notions relate to each other. Then, we will use this information, together with
the category-theoretical results from Sect. 3, to evaluate the usefulness of the
four remaining categories. It is easiest to start by comparing the OR × IR
morphisms to the other ones.

Theorem 11. Every OR × IR morphism is an Aristotelian, an increasing in-
formation OR×IR and a decreasing information OR×IR morphism. None
of the three converse statements hold.

Proof. The first part of the theorem is trivial by the definitions of all the
morphisms involved, the fact that AR ⊂ OR ∪ IR and the reflexivity of the
informativity ordering. For the converse statements, concrete counterexamples
can be found in Examples 3, 7 and 9, respectively. �
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Theorem 12. If a map f is both an increasing and a decreasing information
OR × IR morphism, then f is an OR × IR morphism.

Proof. Suppose that f is both an increasing and a decreasing information OR×
IR morphism. Take any x, y ∈ F . Let RO, R′

O, RI and R′
I be the unique op-

position and implication relations such that RO(x, y), R′
O(f(x), f(y)), RI(x, y)

and R′
I(f(x), f(y)). Since f is an increasing infomorphism, we have that ıB

′
B (RO)

≤B′ R′
O and ıB

′
B (RI) ≤B′ R′

I . But since f is also a decreasing infomorphism,
we also have that R′

O ≤B′ ıB
′

B (RO) and R′
I ≤B′ ıB

′
B (RI). By the antisymmetry

of ≤B′ , we have that R′
O = ıB

′
B (RO) and R′

I = ıB
′

B (RI). This means that f is
an OR × IR morphism. �

Now, let us compare each of the three remaining kinds of morphisms two
by two.

Theorem 13. Every Aristotelian morphism is an increasing information OR×
IR morphism, but not the other way around.

Proof. For the positive statement, see Lemma 4. A concrete counterexample
for the converse statement is given by the bit deletion map d3 of Example 7,
as is already explained there. �

Theorem 14. Not every increasing information OR × IR morphism is a de-
creasing information OR×IR morphism, and also not the other way around.

Proof. Suppose, toward a contradiction, that every increasing information
OR×IR morphism is a decreasing information OR×IR morphism. Then by
Theorem 12, every increasing information OR×IR morphism is an OR×IR
morphism, which contradicts Theorem 11. For the other direction, an analo-
gous argument holds. �

Theorem 15. Not every Aristotelian morphism is a decreasing information
OR × IR morphism, and also not the other way around.

Proof. A concrete example of an Aristotelian morphism that is not a decreas-
ing information OR × IR morphism is given by the map ϕ from Example 3.
As explained there, this map is an Aristotelian morphism. However, we have
NIFOL(∀x(Sx → Px),∃x(Sx ∧ Px)) and also LISYL(∀x(Sx → Px),∃x(Sx ∧
Px)), or in other words, LISYL(ϕ(∀x(Sx → Px)), ϕ(∃x(Sx ∧ Px))). Since
ıSYLFOL(NI) �≥SYL LI, this means that ϕ is not a decreasing information OR×IR
morphism.

A concrete example of a decreasing information OR × IR morphism
that is not an Aristotelian morphism is given by the bit addition map a2 from
Example 9, as was already explained there. �

Combining all these theorems allows us to make the Venn diagram in
Fig. 7. A colored area means that there exist morphisms in this part of the Venn
diagram, while a white area means that there do not exist such morphisms.
Because of Theorem 11, the middle area is where the OR × IR morphisms
are located. Together with Theorem 12, it also creates the white ‘triangle’ at
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Figure 7. How the different kinds of morphisms relate to
each other

the bottom. Theorem 13 accounts for the other two white areas and, together
with the white triangle at the bottom, it also implies that the lower left area is
colored. Similarly, Theorem 14 and the white triangle at the bottom together
imply that the lower right area is colored. Finally, Theorem 15 and the white
area at the top together imply that the final remaining area (between Ar and
Inc) should be colored as well.

Now, what does such a Venn diagram tell us? For starters, it tells us
that, even though these four kinds of morphisms give rise to the same notion
of isomorphism, they have varying levels of restrictiveness. The most restrictive
morphisms, which give us the least amount of examples, are the OR×IR mor-
phism. They are more restrictive than the Aristotelian morphisms, which are
in turn more restrictive than the increasing information OR×IR morphisms.
Therefore, from this point of view, the category D

Inc
OR×IR is more interesting

to study than either DAR or DOR×IR. Indeed, this category is just as powerful
as these other categories on the level of isomorphisms, while simultaneously al-
lowing for more maps (like bit deletions) to be studied. The category D

Dec
OR×IR

is a bit strange from this perspective. On the one hand, it seems to be de-
feated by the category D

Inc
OR×IR, since it has slightly fewer colored regions

in the Venn diagram. More concretely, the increasing information OR × IR
morphisms have the advantage of containing all the Aristotelian morphisms,
whereas some of these are left out in the category D

Dec
OR×IR. However, there are

certain maps (like bit additions) that have proven to be interesting in logical
geometry, which are decreasing rather than increasing. This suggests that we
cannot dismiss this category altogether.

Looking back at Table 2, we see that there is not much that we can
use from there to differentiate between the four remaining categories. Indeed,
all four of them have the σ-diagrams as a reflective subcategory and all of
them have the same initial objects. The only categorical property that stands
out is the existence of terminal objects: they are only present in the category
D

Inc
OR×IR. Additionaly, this is a conservative extension of the category that

was studied by Vignero [22] (using slightly different terminology), where it
was proven that this category also has binary products and coproducts. All
these considerations together point towards D

Inc
OR×IR as the most promising

candidate for a category-theoretic framework for logical geometry. However,
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as has become clear throughout the current section, we will have to continue
paying attention to the decreasing information OR × IR morphisms as well.

6. Outlook and Conclusion

In this paper, we defined ten different categories that have Aristotelian dia-
grams as their objects, in the hope that one of them turns out to be a nice
mathematical framework for studying these diagrams. These categories were
analyzed and compared on two accounts. On the one hand, we checked which
of them are capable of generalizing important previous work from logical ge-
ometry. More concretely, we found that four of these ten categories give rise
to the notion of Aristotelian isomorphism. Also, we found that bit deletions
and additions can be considered as morphisms in some of these categories.
On the other hand, the ten categories were investigated from an elementary
category-theoretical perspective. In particular, we considered initial and termi-
nal objects, and we proved that in some cases, the σ-diagrams form a reflective
subcategory.

Combining all these results, the category D
Inc
OR×IR, which has increas-

ing information OR × IR morphisms as its arrows, comes out on top. Two
main avenues for further research now present themselves. The first is to in-
corporate this framework in both past and future work in logical geometry,
for instance by investigating the precise category-theoretical relation between
Aristotelian diagrams and involution posets [6]. The second is to study this
category on a deeper level of category theory, i.e., investigating other limits,
colimits, adjunctions, etc.
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