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1. Introduction

In this paper, extensions of positive logic with strong negation are studied. We
give a sufficient condition (called the reduction property) for the completeness
of such a logic with respect to the class of finite trees. The condition (implicitly)
involves a certain refutation system employing Mints-style normal forms, and
it generalizes some results in [5,6]. Our completeness proof is constructive. As
an example, the method is applied to the connexive logic C (introduced in [7]),
an important non-classical logic.

2. Preliminaries

Let FOR be the set of all formulas generated from the set VAR = {p, q, p1, p2, . . .}
of propositional variables by the connectives:

∼ (strong negation), ∧ (conjunction), ∨ (disjunction), → (implication).

Greek capital letters (Φ,Ψ, . . .) stand for finite sets of formulas. A literal
is either a or ∼ a, where a ∈ VAR. We define: ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ)
and ϕ ⇔ ψ = (ϕ ↔ ψ) ∧ (∼ ψ ↔∼ ϕ). Also Φ −→ Ψ =

∧
Φ →

∨
Ψ, where

Ψ 	= ∅. (If Φ = ∅ then
∧

Φ = p → p.) We write: “Φ;Ψ” for “Φ∪Ψ” and “Φ;ψ”
for “Φ; {ψ}”.
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Positive (Intuitionistic) Logic (Lp) is the set of all ∼-free formulas that
are derivable from the axioms below by modus ponens (ϕ ϕ→ψ

ψ ).

(Ax1) ϕ → (ψ → ϕ)
(Ax2) (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
(Ax3) (ϕ ∧ ψ) → ϕ
(Ax4) (ϕ ∧ ψ) → ψ
(Ax5) (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ)))
(Ax6) ϕ → (ϕ ∨ ψ)
(Ax7) ψ → (ϕ ∨ ψ)
(Ax5) (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))

By an extension of Lp we mean a set L ⊆ FOR closed under subsitution
and modus ponens and such that Lp ⊆ L. Extensions of Lp will also be called
logics. We say that ϕ is L-equivalent to ψ iff ϕ ↔ ψ ∈ L.

A frame is a pair W = (W,R), where W is a non-empty set of points
(worlds) and R is a reflexive, transitive relation on W . A model is a triple M =
(W, V +, V −), where W is a frame and V + (V −) is a verification (falsification)
valuation (that is, a function assigning to a propositional variable a the set
of points at which a is true (false)) that satisfies the persistency condition:
If w ∈ V +(a) (w ∈ V −(a)) and wRx, then x ∈ V +(a) (x ∈ V −(a)). The
verification and falsification relations (|=+ and |=−) between M worlds and
formulas are defined as follows.

M, w |=+ a iff w ∈ V +(a) M, w |=− a iff w ∈ V −(a) (a ∈ VAR)
M, w |=+ ϕ ∧ ψ iff M, w |=+ ϕ and M, w |=+ ψ

M, w |=− ϕ ∧ ψ iff M, w |=− ϕ or M, w |=− ψ

M, w |=+ ϕ ∨ ψ iff M, w |=+ ϕ or M, w |=+ ψ

M, w |=− ϕ ∨ ψ iff M, w |=− ϕ and M, w |=− ψ

M, w |=+ ϕ → ψ iff for all x with wRx (M, x |=+ ϕ implies M, x |=+ ψ)
M, w |=− ϕ → ψ iff for all x with wRx (M, x |=+ ϕ implies M, x |=− ψ)
M, w |=+ ∼ ϕ iff M, w |=− ϕ

M, w |=− ∼ ϕ iff M, w |=+ ϕ

We say that a formula ϕ is valid in a frame W (in symbols ϕ ∈ VAL(W))
iff for every model M = (W, V +, V −) and w ∈ W , we have: M, w |=+ ϕ.

The condition for “M, w |=− ϕ → ψ” is that for the logic C. However,
it can be replaced with some other standard condition because it is not really
used in our general result.

For convenience, we say that a set Φ of formulas is (not) true at w iff so
is every ϕ ∈ Φ.

The one-point frame ◦ = ({x0}, (x0, x0)) will be especially important. We
also write “m = (◦, v+, v−)” instead of “(◦, V +, V −)”, and “m |= ϕ” instead
of “m,x0 |= ϕ”, where |=∈ {|=+, |=−}.

We say that a logic L is complete with respect to a class W of frames (or
L is characterized by W) iff L =

⋂
{VAL(W) : W ∈ W}.

We assume that every logic defined by an axiom system has a general
characterization by a class WL of (possibly infinite) frames obtained by using
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canonical models (see e.g. [3]). The frames in WL are also referred to as L-
frames.

By a generated frame we mean a frame W with a least point x (that is,
xRy for all y ∈ W ).

Let Wi be an xi-generated frame (1 ≤ i ≤ k). Then x0(W1, . . . ,Wk)
is the x0-generated frame shown below. (It is obtained from W1, . . . ,Wk by
adding a new root, and it resembles Jaśkowski’s construction from S. McCall,
Polish Logic: 1920–1939.)

W1 · · · Wk

↖ ↗
x0

In this paper, we focus on the logics satisfying the following condition.
If generated frames W1, . . . ,Wk are L-frames, then so is x0(W1, . . . ,Wk).

In that case, we also say that WL is root-closed.

3. Normal Forms

Definition 3.1. A general form (cf. [1,5]) is a formula

α = Δ;Γ −→ Θ

where

Δ = {(ai → bi) → ci : 1 ≤ i ≤ k} (or Δ = ∅)

all ai, bi, ci are literals, Γ is a finite set of formulas of the kind:
a or a → b or a → (b → c) or a → b ∨ c, where a, b, c are literals, and Θ

is a finite, nonempty set of literals.
The rank r(α) of α is k, which is the size of Δ. (If Δ = ∅ then k = 0.)

Definition 3.2. A normal form is a general form such that:
If a → γ ∈ Γ then a ∈ Θ.

Definition 3.3. Let α be a normal form. An L-model (◦, v+, v−) is called de-
termined by α (symbolically, m(α) = (◦, v+, v−)) iff

x0 ∈ v+(ϕ) iff ϕ ∈ Γ, and x0 ∈ v−(ϕ) iff ∼ϕ ∈ Γ (ϕ ∈ VAR).

Definition 3.4. An L special normal form is a normal form α (so α = Δ;Γ −→
Θ) with the property that m(α) 	|=+ α0, where α0 = Γ −→ Θ. (Recall that
m(α) |=+ ϕ stands for m(α), x0 |=+ ϕ).

4. L Refutation System

The refutation system RL is defined as follows.

• Refutation axioms: All L special normal forms of rank 0.
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• Refutation rules:
Normalization rules: (Here Ψ 	= ∅).

ϕ; Φ −→ Ψ
ϕ ∨ ψ; Φ −→ Ψ

ψ; Φ −→ Ψ
ϕ ∨ ψ; Φ −→ Ψ

(R∨)

ψ; Φ −→ Ψ
ϕ → ψ; Φ −→ Ψ

ϕ → ψ; Φ −→ Ψ;ϕ
ϕ → ψ; Φ −→ Ψ

(R→)

Normal-form rules:
α1 . . . αk

α
(RL)

βi

α
(Ri)

where α(= Δ;Γ −→ Θ) is an L special normal form of rank k > 0,
and αi = Δ−

i ; bi → ci; Γ; ai −→ bi, βi = Δ−
i ; ci; Γ; (ai → bi) −→ Θ,

Δ−
i = Δ − {(ai → bi) → ci} (1 ≤ i ≤ k).

We say that a formula ϕ is refutable (in symbols � ϕ) iff ϕ is derivable from
refutation axioms by refutation rules. And we say that a logic L is RL-complete
iff for every normal form α, we have: Either α ∈ L or � α.

Remark 4.1. Since Lp ⊆ L, we have:
(i) The rule Ri and all normalization rules have the property that ϕ → ψ ∈

L, where ψ is the premise and ϕ is the conclusion.
(ii) Every formula αi is L-equivalent to Δ; Γ −→ (ai → bi).
(iii) Every formula βi is L-equivalent to Δ; Γ; (ai → bi) −→ Θ.

Definition 4.2. A formula ϕ is L-reducible to a finite set Ψ of formulas iff
(i) Ψ −→ ϕ ∈ L.
(ii) ϕ is derivable from each ψ ∈ Ψ by the normalization rules.

Corollary 4.3. If ϕ is L-reducible to Ψ, then ϕ → ψ ∈ L for each ψ ∈ Ψ.

5. The Reduction Property

Definition 5.1. A logic L has the reduction property iff we have:
1. For any formula ϕ, there is a general form αϕ such that: ϕ → αϕ ∈ L,

and if αϕ ∈ L then ϕ ∈ L.
2. Every general form α of rank k is L-reducible to some normal forms

α1, . . . , αn of rank k.
3. Let α be a normal form. If m(α) |=+ α0, then α0 ∈ L.

Theorem 5.2. If a logic L has the reduction property, then L is RL-complete.

Proof. Assume that L has the reduction property. We show, by induction on
the rank of a normal form α, that either α ∈ L or � α.
(1) k = 0. Then α = α0 = Γ −→ Θ.

Consider the model m(α). Either m(α) |=+ α0 or m(α) 	|=+ α0. If
m(α) |=+ α0 then α0 ∈ L (by Definition 5.1(3)), so α ∈ L. And if m(α) 	|=+ α0

then α is an L special normal form of rank 0, which is a refutation axiom, so
� α. Hence, α ∈ L or � α.
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(2) k > 0 and we assume that the theorem is true for normal forms of rank
< k. Then α = Δ;Γ −→ Θ and Δ 	= ∅.

Consider the general forms αi, βi (1 ≤ i ≤ k). They are of rank < k. By
Definition 5.1(2), each of them is L-reducible to some normal forms of rank
< k, which (by the induction hypothesis) are in L or refutable. So, all αi, βi

are also in L or refutable (by Definition 4.2).
If some βi is refutable, then so is α (by Ri), so we assume that every

βi ∈ L. Then, the formula Δ; Γ; (ai → bi) −→ Θ is in L as well (by Re-
mark 4.1(iii)). Now, if some αi ∈ L, then the formula Δ; Γ −→ (ai → bi) is in
L, so it follows that α ∈ L, and so we may assume that each αi is refutable.
Also, either m(α) |=+ α0 or m(α) 	|=+ α0. If m(α) |=+ α0 then α0 ∈ L (by
Definition 5.1(3)), so α ∈ L. And if m(α) 	|=+ α0 then α is an L special normal
form, so � α (by R).

Therefore, either α ∈ L or � α, as required. �

6. RL Refutation Trees

The derivations in RL can be presented as refutation trees. By an RL refutation
tree for a formula ϕ we mean a finite immediate-successor tree RT whose nodes
are labelled with formulas and which satisfies the following conditions. (For
any node x in RT , ϕ(x) is the label of x).

• ϕ is the label of the origin x0.
• If x is an end node, then ϕ(x) is an RL axiom.
• If x1, . . . , xn are the immediate successors of a node x, then ϕ(x) is ob-

tained from ϕ(x1), . . . , ϕ(xn) by an RL rule.

7. Finite Tree-Countermodels

Recall that a logic is an extension of Lp such that its general characteriza-
tion WL is root-closed. By modifying some results in [4], we now transform
refutation trees into countermodels.

Let RT be an RL refutation tree for a normal form α. We construct a
finite tree-countermodel (T , V +, V −) as follows.

• First, we define the finite, reflexive, transitive tree RT ↑
◦ by taking the

reflexive, transitive closure of the irreflexive, intransitive relation in RT .
• Second, we delete all nodes in RT ↑

◦ that are obtained by Ri or a normal-
ization rule, getting the subtree T of RT ↑

◦. Note that every node in T is
either an end node or a node obtained by RL, so the label of each node
in T is an L special normal form.

• Third, we define valuations V +, V − thus.
x ∈ V +(ϕ) iff ϕ ∈ Γ, and x ∈ V −(ϕ) iff ∼ϕ ∈ Γ (ϕ ∈ VAR).
By inspecting the refutation rules, we can see that if y is a successor of
x in T , then a literal is in Φ′ whenever it is in Φ, where ϕ(x) = Φ −→ Ψ
and ϕ(y) = Φ′ −→ Ψ′. So, the persitency condition is satisfied. Let
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M = (T , V +, V −).
Note that for any literal a, we have: M, x0 |=+ a iff m(α) |=+ a.

• Finally, for any node x in RT , we define its world x� in T as follows. If
x is an end node or obtained by RL, then x� = x; and if x is obtained
from x1 by Ri or a normalization rule, then x� = x�

1.

Lemma 7.1. If x is a node in RT , then ϕ(x) is not true at x�.

Proof. (by induction on the number nx of nodes in the subtree of RT generated
by x).

(1) nx = 1. Then ϕ(x) is a refutation axiom, which is an L special normal
form Γ −→ Θ (so m(α) 	|=+ α0). Since x� = x, we have: ϕ(x�) = ϕ(x).
Hence, M, x� |=+ a for every literal a ∈ Γ. Note that if a → γ ∈ Γ then
a 	∈ Γ (otherwise, a ∈ Θ (because ϕ(x) is a normal form) and m(α) |=+

α0, which is impossible). Thus, M, x� |=+ a → γ for all a → γ ∈ Γ.
Therefore M, x� 	|=+ ϕ(x).

(2) nx > 1 and we assume that the theorem holds for the subtrees with fewer
elements than nx.
(2.1) ϕ(x) is obtained from ϕ(x1) by Ri or a normalization rule. Then

x� = x�
1. Since nx1 < nx, by the induction hypothesis, ϕ(x1) is not

true at x�
1. Hence ϕ(x1) is not true at x�. So, by Remark 4.1(i), ϕ(x)

is not true at x� (because ϕ(x) → ϕ(x1) is true everywhere).
(2.2) ϕ(x) is obtained from ϕ(x1), . . . , ϕ(xk) by RL. Then ϕ(x) = Δ;Γ −→

Θ is an L special normal form of rank k > 0, and ϕ(xi) = Δ−
i ; bi →

ci; Γ; ai −→ bi (1 ≤ i ≤ k). Also

x� = x (so ϕ(x�) = ϕ(x)) and nxi
< nx for all i. By the induction

hypothesis, ϕ(xi) is not true at x�
i (1 ≤ i ≤ k), so Δ; Γ −→ (ai → bi) is not

true at x�
i (1 ≤ i ≤ k) (by Remark 4.1(ii)). Hence, every ai → bi is not true at

x�
i and Δ;Γ is true at each x�

i . So, every ai → bi is not true at x� (because x�

precedes every x�
i ). Also, Δ; Γ is true at all x�

i , so Δ is true at x� and every
a → γ ∈ Γ is true at x� (see (1) above). Of course, every literal in Γ is true
and Θ is not true at x�.

Therefore ϕ(x) is not true at x�, as required. �

Theorem 7.2. If a logic L has the reduction property, then L is characterized
by the class of finite, reflexive, transitive trees.

Proof. Assume that L has the reduction property, and assume that ϕ 	∈ L.
Then, (by Definition 5.1(1)) its general form αϕ 	∈ L, and (by Definition 5.1(2))
α 	∈ L for some normal form α. So, by Theorem 5.2, α is refutable. Hence, by
Lemma 7.1, α is not true at some point in some model based on a finite, reflex-
ive, transitive tree. Thus, ϕ is not true there either (because, by Corollary 4.3,
ϕ → α is true everywhere). Therefore, ϕ is not valid in some finite, reflexive,
transitive tree, which gives the result. �
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8. Example

The connexive logic C was introduced in [7] as the extension of Lp by the
following axioms.
(Ax 9) ∼∼ϕ ↔ ϕ
(Ax10) ∼(ϕ ∧ ψ) ↔ (∼ϕ∨ ∼ψ)
(Ax11) ∼(ϕ ∨ ψ) ↔ (∼ϕ∧ ∼ψ)
(Ax12) ∼(ϕ → ψ) ↔ (ϕ →∼ψ)

Our refutation system RC is obtained from [5,6] by the following straight-
forward modifications.

C Special Normal Forms

Proposition 8.1. m(α) 	|=+ α0 iff Γ ∩ Θ = ∅.

Proof. (⇒) If Γ ∩ Θ 	= ∅, then α0 ∈ C, so α0 is true everywhere, so there is no
model on ◦ such that the formula α0 is not true.

(⇐) Assume that Γ ∩ Θ = ∅. Then m(α) 	|=+ α0. �

Corollary 8.2. A C special normal form is a normal form α such that Γ∩Θ = ∅.

The Reduction Property

Theorem 8.3. The logic C has the reduction property.

Proof. 1. For any formula ϕ, the general form αϕ is constructed as follows.
First, for every subformula ψ of ϕ, we define a unique corresponding vari-
able aψ thus. If ψ ∈ VAR then aψ = ψ, and if ψ 	∈ VAR then aψ is a new
variable.
Second, we define the set Σϕ as follows.

Σϕ = {(aψ1 ⊗ aψ2) ⇔ aψ1⊗ψ2 : ψ1 ⊗ ψ2 ∈ SUB(ϕ),⊗ ∈ {→,∧,∨}}
∪{∼ψ1 ⇔ a∼ψ1 :∼ψ1 ∈ SUB(ϕ)}

Third, we define: N(ϕ) = Σϕ −→ aϕ.
Note that the Deduction Theorem and the Replacement Theorem below
hold for C.
(ψ ⇔ χ) → (ϕ ⇔ ϕ(ψ/χ)), where ϕ(ψ/χ) results from ϕ by replacing
some occurrences of ψ with χ.
Thus (see [5]), it can be proved that

Σϕ −→ (ψ ⇔ aψ) ∈ C for any ψ ∈ SUB(ϕ).

Hence, in particular, Σϕ −→ (ϕ ⇔ aϕ) ∈ C, so Σϕ −→ (ϕ → aϕ) ∈ C.
Therefore, ϕ −→ (Σϕ → aϕ) ∈ C, that is, ϕ −→ N(ϕ) ∈ C.
Also, if N(ϕ) ∈ C then ϕ ∈ C (substitute ψ for aψ).
Finally, by using the axioms for ∼, we get the the general form αϕ C-
equivalent to N(ϕ), which gives the result.

2. Take any general form α of rank k. We have to show that α is C-reducible
to some normal forms such that:
(∗) If a → γ ∈ Γ (so a is a literal), then a ∈ Θ.
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Let a → γ ∈ Γ, and let Γ− = Γ − {a → γ}.
Consider the C general forms

α1 = Δ;Γ−; γ −→ Θ and α2 = Δ;Γ −→ Θ; a

Of course, α1∧α2 → α ∈ C. Also, α is dervable from both (so from some)
α1, α2 by R→. Now, in α1, we have γ instead of a → γ. If γ is a literal,
then the condition (∗) is satisfied (because a → γ 	∈ Γ−). So assume that
γ is not a literal. Then γ is either b ∨ c or b → c, where b, c are literals.
If γ = b ∨ c then we consider the general forms

α1.1 = Δ;Γ−; b −→ Θ and α1.2 = Δ;Γ−; c −→ Θ

in which the →-formula a → γ is eliminated. We have: α1∧α2 → α1 ∈ C,
and α1 is dervable from both (so from some) α1.1, α1.2 by R∨. Hence, α
is C-reducible to α1.1, α1.2, α2, and a → γ satisfies the condition (∗).
And if γ = b → c then proceed as above, obtaining general forms in which
a → γ satisfies the condition (∗).
Note that these transformations do not affect the rank k. Applying this
procedure to the other →-formulas in Γ, we, finally, get the result.

3. To prove that m(α) |=+ α0 implies α0 ∈ C, suppose that m(α) |=+ α0

but α0 	∈ C. Note that Γ∩Θ = ∅. (Otherwise α0 ∈ C). Also, if a → γ ∈ Γ
then a 	∈ Γ (because α is a normal form and α0 	∈ C). Then m(α) 	|=+ α0,
which is a contradiction.

�

Corollary 8.4. (i) C is RC-complete.
(ii) C is characterized by the class of finite, reflexive, transitive trees.

Remark 8.5. By straightforward modifications, similar results can be obtained
for the connexive logic C3 (introduced in [2]).
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